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Abstract

1 The proliferation of genome-wide association studies (GWAS) has prompted the use of two-
> sample Mendelian randomization (MR) with genetic variants as instrumental variables (IV)
3 for drawing reliable causal relationships between health risk factors and disease outcomes.
+ However, the unique features of GWAS demand that MR methods account for both linkage
s disequilibrium (LD) and ubiquitously existing horizontal pleiotropy among complex traits,
s which is the phenomenon wherein a variant affects the outcome through mechanisms other
7 than exclusively through the exposure. Therefore, statistical methods that fail to consider LD
¢ and horizontal pleiotropy can lead to biased estimates and false-positive causal relationships.
o To overcome these limitations, we propose a probabilistic model for MR analysis to identify
10 the casual effects between risk factors and disease outcomes using GWAS summary statistics

u in the presence of LD and to properly account for horizontal pleiotropy among genetic variants
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(MR-LDP). MR-LDP utilizes a computationally efficient parameter-expanded variational Bayes
expectation-maximization (PX-VBEM) algorithm to estimate the parameter of interest and
further calibrates the evidence lower bound (ELBO) for a likelihood ratio test. We then
conducted comprehensive simulation studies to demonstrate the advantages of MR-LDP over
the existing methods in terms of both type-I error control and point estimates. Moreover, we
used two real exposure-outcome pairs (CAD-CAD and Height-Height; CAD for coronary artery
disease) to validate the results from MR-LDP compared with alternative methods, showing
that our method is more efficient in using all instrumental variants in LD. By further applying
MR-LDP to lipid traits and body mass index (BMI) as risk factors for complex diseases, we
identified multiple pairs of significant causal relationships, including a protective effect of
high-density lipoprotein cholesterol (HDL-C) on peripheral vascular disease (PVD), and a

positive causal effect of body mass index (BMI) on hemorrhoids.

1 Introduction

Epidemiological studies have contributed tremendously to improving our understanding of the
primary causes of complex diseases. However, numerous cases of significant associations from
observational studies have been subsequently contradicted by large clinical trials [1} 2]. Drawing
causal inferences from observational studies is particularly challenging because of unmeasured
confounding, reverse causation and selection bias [3| [4]. Although the randomized controlled
trial (RCT) is considered a gold standard to evaluate causality in an exposure-outcome pair,
RCTs have certain limitations including impracticality (no intervention may exist), high
expense, and ethical issues [5]. Fortunately, as germline genetic variants (single nucleotide
polymorphisms, SNPs) are fixed after random mating and cannot be modified by subsequent
factors, e.g., environment factors and living styles, Mendelian randomization (MR) uses genetic
variants as instruments to examine the causal effects between health risk factors and disease
outcomes, largely excluding the influence from unobserved confounding factors [3]. In the past
decade, a large number of genome-wide association studies (GWAS) have been successfully
used to identify genetic variants associated with complex traits at the genome-wide significance
level, including both health factors and diseases, e.g., lipids, BMI, and type-2 diabetes, and
most of completed GWAS are simply observational studies instead of RCTs. The results from

completed GWAS are mostly publicly accessible, e.g., GWAS Catalog outlines a list of sources for
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summary statistics (https://www.ebi.ac.uk/gwas/downloads/summary-statistics). This
large amount of publicly available GWAS summary statistics has prompted the widespread
use of two-sample MR as an efficient and cost-effective method to interrogate the causal

relationships among health risk factors and disease outcomes.
MR is closely related to the instrumental variable (IV) methods, which have a long history of
use in econometrics [6]. Classically, an inverse-variance weighted (IVW) and a likelihood-based
approach have been used for two-sample MR analysis with summary-level data [7]. These

methods must strictly obey assumptions for MR, including two most fundamental ones:
1. IVs affect the outcome exclusively through the risk exposures.

2. IVs are independent from each other, or in a GWAS context, instrumental variants are

not in LD.

The first assumption is also referred to as exclusion restriction assumption or no horizontal
pleiotropy. The violation of this assumption can distort the statistical inference for MR analysis,
leading to biased estimates and false-positive causal relationships. Recent comprehensive
surveys reported persuasive pleiotropy among complex traits [8, 9], such as autoimmune
diseases [10] and psychiatric disorders [I1]. Consequently, methods that do not account for
pleiotropy can substantially reduce the power and inflate the false-positive discoveries. To
address this issue, sisVIVE was proposed in the presence of individual-level data [12]. To further
relax this assumption for two-sample MR analysis using summary-level data, various statistical
methods have been proposed and we divide them into two categories. The first group consists
of step-wise methods to correct the impact of horizontal pleiotropy. These methods first detect
and remove SNPs with horizontal pleiotropy, and MR analysis is performed in the subsequent
step, including Q test [13], Cook’s distance [14], Studentized residuals [14], GSMR [15], and
MR-PRESSO [16]. The drawback of this type of methods is that the number of SNPs after
removal is limited given that abundant pleiotropy exists among complex traits, which can
substantially reduce the statistical power to detect the causal relationships. In contrast, the
second group of methods jointly estimate causal effects by taking into account the horizontal
pleiotropy, e.g., MR-Egger [17], MRMix [I8] and RAPS [19]. Compared to MR-Egger, RAPS
further addressed the measurement error issues, where most of existing methods applicable to

GWAS summary statistics assume that sampling error from SNP-exposure is negligible [20].
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On the other hand, minimal literature is available regarding the relaxation of the second
assumption above. Among the methods mentioned above, only GSMR is capable of accounting
weak or moderate linkage disequilibrium (LD) for SNPs, while others demand all instrumental
SNPs to be independent, which is typically achieved by conducting SNP pruning and thus
reducing the number of instrumental variants for follow-up MR analysis. As SNPs within
proximity tend to be highly correlated, MR methods not accounting for LD structure may
substantially lose statistical power due to the pruning process to obtain independent SNPs.
Moreover, GSMR is a step-wise method to remove instrumental variants with horizontal
pleiotropy, making it less powerful due to the removal of invalid variants.

In this paper, we propose a statistically unified and efficient two-sample MR method to
utilize all weak instruments within LD (MR-LD), and further consider a MR-LD accounting
for horizontal Pleiotropy (MR-LDP). Similar to RAPS, MR-LDP does not require the no
measurement error assumption. The key idea is to build a joint probabilistic model for GWAS
summary statistics from both exposure and outcome using a reference panel to reconstruct LD
among instrumental variants and to conduct a formal hypothesis testing to make inferences
about the causal effect that links the exposure and the outcome through a linear relationship. We
also develop an efficient variational Bayesian expectation-maximization algorithm accelerated
by using the parameter expansion (PX-VBEM) to estimate the causal effect for MR-LD and
MR-LDP. Moreover, we calibrate the evidence lower bound (ELBO) to construct the likelihood
ratio test for the evaluation of statistical significance of the estimated effect. Simulation studies
show that MR-LDP outperforms competing methods in terms of type-I error control and point
estimates for making causal inference. Additionally, we used two real exposure-outcome pairs
to validate results from MR-LD and MR-LDP compared with alternative methods, particularly
showing our methods more efficiently use all SNPs in LD. By further applying MR-LDP to
summary statistics from GWAS, we identified multiple pairs of significant causal relationships,
including a protective effect of high-density lipoprotein cholesterol (HDL-C) on peripheral

vascular disease (PVD), and a positive causal effect of BMI on hemorrhoids.
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2 Material and Methods

2.1 Reference panel data

As MR-LD and MR-LDP use the marginal effect sizes and their standard errors from GWAS
summary statistics to build a probabilistic model for making causal inference, information
regarding correlations among SNPs is missing, i.e., LD denoted as R is missing. Thus, we need
to use a reference panel dataset to assist with reconstructing LD. In this study, given that we
primarily focus on European populations, we choose to use samples from the following resource
as the external reference panel: UK10K Project (Avon Longitudinal Study of Parents and
Children, ALSPAC; TwinsUK) merged with 1000 Genome Project Phase 3 (N = 4,284), which
is denoted UK10K thereafter. As SNPs from HapMap Project Phase 3 (HapMap3) are more
reliable, we choose to limit our analysis using SNPs from HapMap3 (p = 1, 189, 556).

As samples from ALSPAC and TwinsUK include populations other than European, we
conducted strict quality control for UK10K data using PLINK [21]. First, SNPs were excluded
from the analysis if their calling rates were less than 95%, minor allele frequencies were less
than 0.01, or p-values were less than 1 x 107% in the Hardy-Weinberg equilibrium test. We
then removed the individuals with genotype missing rates greater than 5%. To further remove
individuals with high relatedness in all samples, we used GCTA [22] to first identify those
individual pairs with estimated genetic relatedness greater than 0.05 and then randomly remove
one from such a pair. Additionally, we carried out the principal components analysis (PCA) on
the individuals to identify the population stratification [23]. In this way , we extracted the
clustering subgroup representing the major European ancestry using hierarchical clustering on
principal components(HCPC) approach [24]. Finally, there were 3,764 individuals remained
with 989,932 SNPs.

2.2 Choice of LD matrix

Since the LD between two SNPs decays exponentially with respect to their distance, we use
LDetect [25] to partition the whole genome into L blocks first and then calculate the estimated
correlation matrix in each block. For each block, we adopt a shrinkage method to guarantee

the sparsity and positive definiteness of the estimated correlation matrix [26]. In particular,
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27 the correlation matrix estimator R® in each block is obtained by optimizing as follows

R® = argmin(|RY — R® _[12/2 — 71og |RV| + A|RO|1), (2.1)

emp
RS>0

128 Where f{éﬁlp is the empirical correlation matrix in the [-th block, A > 0 is the shrinkage tuning
120 parameter, and the lasso-type penalty ensures a sparse solution. In addition, 7 > 0 is fixed at
130 a small value and the logarithmic barrier term is used to enforce a positive-definite solution.
13 More details can be found in [26]. A corresponding R package named PDSCE is available to
122 complete the estimation process. In addition, we fix the shrinkage parameter A to be 0.055 in

133 simulation studies and vary A € {0.1,0.15} in real data analysis.

e 2.3 Likelihood for summary statistics

135 Before elaborating on our method, we first review the following multiple linear regression model

s that links a trait to genotype data:
y =Gv +e

137 where y is an n X 1 vector for trait among n individuals, G is an n X p matrix for genotypes,
s~y is a p X 1 vector for effect sizes, and € is the vector for random noises. Suppose that the
139 individual-level data {G,y} are not accessible, but the summary statistics {7, 82 }r=1..., from

4o univariate linear regression are available:
i = (grgr) 'gry,  Si = (ngign) (v — &) (Y — 8 k):

w1 where gy is the k-th column of G, 4, and S? are estimated effect sizes and its variance for SNP
12k, respectively. R denotes the correlation among all genotyped SNPs and S= diag([S1, -+ ,Sp)),
13 which is a diagonal matrix for corresponding standard errors. Provided that sample size
e n is large enough and the trait is highly polygenic (i.e., the squared correlation coefficient
115 between the trait and each genetic variant is close to zero), we can use the following formula
us to approximate the distribution of 4 based on the summary statistics in a similar fashion

w as 27, 28, 29, 130]:
5v,R,S ~ N(SRS™'v,SRS). (2.2)

s Analogously, we apply this distribution to the two-sample MR analysis. The summary statis-

s tics for SNP-exposure and SNP-outcome are denoted by {7,82, }r=1,.. , and {fk,/s\%k}kzl,...,p,

6
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150 respectively. Therefore, the likelihood for two-sample summary statistics can be written as:

SRS, ~ NGRS 8RS,
T|T,R,Sr ~ MN(SpRS;'T,SrRS), (2.3)
151 where §,Y = diag([sy,, - ,s,,]) and Sr = diag([Sr,, - - - ,s,]) are both diagonal matrices. In this

~

12 formulation, the correlations among all p SNPs, R, are not estimable from summary statistics
153 itself. Zhu and Stephens [29] showed that R could be replaced with R that is estimated
152 from independent samples, where the difference in log-likelihood between individual-level data
155 and summary statistics is a constant that does not depend on the effect size assuming that
156 polygenicity holds and the sample size of individual-level data is large. Thus, distributions
157 for summary statistics will produce approximately the same inferential results as its
158 counterpart for individual-level data. Hereafter, we use R implicitly for R™f and details on

1 estimating R can be found in Section

w 2.4 MR-LDP model overview

11 The fundamental assumptions for two-sample MR analysis include the independence among
162 instrumental variables, and three IV assumptions for a genetic instrument: (1) associated with
163 health risk factors (y # 0); (2) independent of unobserved confounding factors between the risk
e factors and the disease outcomes; (3) independent of Y given risk factors and confounders. Given
165 strong LD structure among SNPs and abundant horizontal pleiotropy in GWAS, these unique
166 features invalidate the independence assumption for genetic variants and two IV assumptions
167 (2) and (3). Our proposed MR-LDP aims to make causal inference of the risk factors on a
168 disease outcome using a probabilistic model by accounting for both the LD structure and the
150 influence of horizontal pleiotropy as depicted in Figure [[l We first utilize an approximated
o likelihood to depict the distribution of correlated SNPs from GWAS summary statistics for
i the risk exposure and the disease outcome, respectively, as shown Equation . Given p
12 instrumental variants, the inputs for MR-LDP are GWAS summary statistics for SNP-exposure
113 and SNP-outcome, respectively, and a genotype reference panel (Figure [L]A). By introducing an
s additional random effect ar, we would further eliminate the variance in the disease outcome due
s to pervasive horizontal pleiotropy. Since MR-LDP uses an approximated likelihood to jointly
176 delineate the distribution for summary statistics (i.e., estimated effect sizes and their standard

177 errors) from GWAS; it is free of the assumption for no measurement errors, requiring that

7


https://doi.org/10.1101/684746
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/684746; this version posted August 3, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

aCC-BY-NC-ND 4.0 International license.
sample sizes used to generate GWAS summary statistics are large [31], 20]. Figure depicts
MR-LDP as a probabilistic graphical model, where the observed variables of our model include
GWAS summary statistics from both the SNP-exposure and the SNP-outcome, and an external
reference panel for genotype data. We assume that «y and ;. follow two independent Gaussian
distributions. The latent variable v, and parameter [, jointly assist with formulating the
distribution for SNP-outcome. Then, we can formalize the hypothesis testing for 3y as shown
in Figure [IB. The scatter plots of estimated effect sizes for SNP-exposure against SNP-outcome
together with the MR-LDP analysis results (Bg and p-value) are shown in Figure . In both
BMI-T2D and BMI-VV, there is a dominant proportion of instrumental variants in the center

that is largely due to LD, and methods that do not account for LD tend to inflate findings.

2.5 Details of MR-LDP

Parameterization for causal relationship — The relationship between « and I" can be constructed

using linear structural models as follows:

' = Boyj, or I'j=a;+ By, (2.4)

where j = 1,...,p , considering without/with horizontal pleiotropy, respectively [12] [32]. Note
that S is the effect size of the exposure on the outcome and @ = [y, ..., ;)7 is the vector of
effects of genetic variants on the outcome due to horizontal pleiotropy. Importantly, 5y can
be interpreted as the causal effect between exposure and outcome in the study [32]. More
details regarding linear structural models incorporating the relationship are available in
the supplementary document. As MR-LD can be taken as a special case of MR-LDP by taking
all a to be zero, we focus on deriving MR-LDP in the main text and provide the supplementary
document for details on MR-LD.

Empirical Bayes model By assuming that v and a are two latent variables coming from two

independent Gaussian distributions, the complete-data likelihood can be written as follows:
Pr(T, 7,7, @|S,,Sr, R; 8) = Pr(T}y, . R, Sr; )Pr(7]7, R, S, )Pr(c|o2)Pr(v|02), (2.5)

where 9 = {Po, 0_27, 02} denotes the collection of model parameters. Integrating out the latent

variables 4 and «, the marginal likelihood can be written as:
Pr(F,5[S,,Sr, R: 0) //Pr(f,fy, a,~[S,. 8r, R: 0)dy da.

8
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Figure 1: MR-LDP model overview: (A) Inputs for MR-LDP include GWAS summary statistics
from both the risk factor (Blue) and the disease outcome (Yellow), and an external reference
panel data (Red). (B) A probabilistic graphical model representation of MR-LDP. The box
is the “plate” representing SNPs, &k = 1,...,p. The circles are either variables or parameters.
The circles at the root are parameters. The variables in shaded circles are observed (i.e.,
GWAS summary statistics {7, 8, }r=1,. p and {Ts.8r, Yeet... . and the estimated R for these
p SNPs from a reference panel) and variables in unshaded circles are latent variables (i.e.,
v and ay , k = 1,...,p). The primary goal is to conduct a formal hypothesis testing for
Ho:80=0 vs Hi:pPy#0. (C) Scatter plots of effect sizes with their standard errors for two
exposure-outcome pairs: BMI-T2D and BMI-VV; T2D for type-2 diabetes and VV for varicose
veins. Dots represent the effect sizes from SNP-exposure against these from SNP-outcome,and
horizontal and vertical bars represent the standard errors from SNP-exposure and SNP-outcome,
respectively. The estimated [y and its p-value from MR-LDP are not shown in each subfigure.

203 Algorithm — The standard expectation-maximization (EM) algorithm is a common choice to
200 find the maximum likelihood for probabilistic models in the presence of latent variables [33].
205 However, it may cause instability or numerical failure as R can be non-positive definite due to
206 the relative small sample size in the reference panel. To address these issues, we develop an
207 accelerated variational Bayes (VB) EM algorithm in light of [34], namely, PX-VBEM. Starting
208 with the algorithm, we expand the original MR-LD/MR-~LDP model as follows:

:)\I|77 ﬁ? /S\‘Y ~ N(§SV§‘S_177 S‘Yﬁ/s\‘Y> (26)

200 Next, we sketch the VBEM algorithm using the parameter expanded in Equation (2.6)) for


https://doi.org/10.1101/684746
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/684746; this version posted August 3, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

aCC-BY-NC-ND 4.0 International license.

MR-LDP and algorithmic details for MR-LD can be found in the supplementary document.
The model parameters for MR-LDP after parameter expansion become 6 = {60,03, o2 &}
Given variational posterior distribution ¢(-, ), it is straightforward to evaluate the marginal
log-likelihood by decomposing it into two parts, the evidence lower bound (ELBO) and the
Kullback-Leibler (KL) divergence, which is denoted as follows:

log Pr(3, TS, Sr, R: 0) = L(q) + KL(q||p), (2.7)

where

Pr(~,T, ,aS,S ,RO
L(q) = // q(v, e) log &.T 7(7| 7) 2 )dvda,

q(v, @)
KL(qllp) = // q(7, @) log ~——dv da, (2.8)
(’Y’a|771—‘s’yasr7R0)

where L(q) is the ELBO of the marginal log-likelihood, and KL(g||p) is the KL divergence
between two distributions. Moreover, KL(¢||p) > 0 with equality holding if and only if the
variational posterior distribution (g) is equal to the true posterior distribution (p). As a
consequence, minimizing the KL divergence is equivalent to maximizing ELBO. Compared
with the standard EM algorithm, the crux of VBEM is to optimize ¢ within a factorizable
family of distributions by the mean-field assumption [35], which assumes that ¢(v, &) can be

factorized as

a) = H G, (1) | [ one () (2.9)

This only assumption in variational inference promotes computational efficiency and scalability
in large-scale computational problems given that a coordinate descent algorithm is commonly
used to identify the optimal distribution ¢*. To briefly show this, we first note that this factor-
ization 1} is used as an approximation for the posterior distribution p(v, a|7, f‘, /S\w §p, f{; 0).
In the VB E-step, given the latent variables v_, and «, the terms with v, have a quadratic form,
where «_, is the 7 vector removing the k-th element. Similarly, when all other latent variables
fixed, we can show that the terms with «; also take a quadratic form. Thus, the variational
posterior distribution for v, and aj are both from Gaussian distributions, N (ji.,, aik) and
N (o, 03,), respectively, where we call {1y, , 02, oy, 02, }r=1,...p Variational parameters. The
details of derivations for updating these variational parameters, and the ELBO L(q) in the

marginal log-likelihood 1) at the old parameter 8% can be found in the supplementary

10
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document. After updating variational parameters in the VB E-step, model parameters (8) can
be updated by setting the derivative of the ELBO to zero. Derivation details can be found
in supplementary document, where we summarize the PX-VBEM algorithms for MR-LD and
MR-LDP in Algorithms 1 and 2, respectively.

Inference for causality ~ We can easily formulate the problem as a statistical test for
the null hypothesis that the health risk factor is not associated with the disease of interest,
or Ho : By = 0. Testing this hypothesis requires evaluating the marginal log-likelihood of
observed data in MR-LD or MR-~-LDP similar to what has been done previously in [36], [37];
details are given in supplementary document. As VB searches within a factorizable family for
the posterior distribution, one can only obtain an approximation for the posterior distribution
of latent variables. Earlier works showed that VBEM provides useful and accurate posterior
mean estimates [38]. Despite its computational efficiency and accuracy for estimating posterior
mean, VB suffers from under-estimating the variance of the target distribution [25] [39] 40].
Thus, the evidence lower bound (ELBO) from VB-type algorithm cannot be directly used to
conduct a likelihood-based test. In this paper, we follow Yang et al. [37] and adopt the similar
strategy to calibrate ELBO as well as mitigate the bias of variance. Details for the PX-VBEM
algorithm and the calibration of ELBO can be found in the supplementary document.
Relationship between MR-LD and TWAS  Using transcriptome data as risk factors, MR-
LD can be viewed as a TWAS-type analysis using summary-level data from both expression
quantitative trait loci (eQTL) and GWAS, where eQTL and GWAS summary statistics are used
for SNP-exposure and SNP-outcome, respectively. Since TWAS-type analysis only seeks genes
that are significantly associated with the outcome of interest at the genome-wide level, one
cannot infer causality without excluding other potential associations, e.g., horizontal pleiotropy.
We note that PMR-Egger [41] was recently proposed to calibrate the type-I error control by
using a burden test assumption to infer causal relationship. However, this assumption depends
heavily on the fact that all effect sizes from horizontal pleiotropy are the same. Therefore,
MR-LDP can also be viewed as a relaxation of the burden assumption that is more powerful to

account for horizontal pleiotropy with more general patterns.
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3 Results

3.1 Simulations

Methods for comparison ~ We compared the performance of five methods in the main text: (1)
our MR-LD and MR-LDP implemented in the R package MR.LDP; (2) GSMR implemented in
the R package gsmr; (3) RAPS implemented in the R package mr.raps; (4) IVW implemented
in the R package MendelianRandomization; (5) MR-Egger implemented in the R package
MendelianRandomization. All methods were used with default settings. We conducted com-
prehensive simulation studies to better gauge the performance of each method in simulation
studies in terms of type-I error control and point estimates.

In simulation studies, we considered genetic instruments both without and with horizontal
pleiotropy. In the scenario that genetic instruments have horizontal pleiotropy, we further
considered two cases: sparse and dense horizontal pleiotropy, i.e., sparse horizontal pleiotropy
indicates that only a proportion of genetic instruments have direct effects on the outcome
while dense horizontal pleiotropy indicates that all genetic instruments have direct effects. As
GSMR is a step-wise method that first removes invalid instruments, dense horizontal pleiotropy
theoretically implies that all genetic instruments are invalid. To make fair comparisons, we
considered sparse horizontal pleiotropy with sparsity at 0.2 or 0.4. In addition, as RAPS, IVW,
and MR-Egger tend to inflate type-I error in the presence of LD, we conducted SNP pruning
for a fair comparison of point estimates.

Simulation settings To make our simulations as realistic as possible, we started by generating

the individual-level two-sample data as follows
x=Gv+ U, +e, y=px+Gx+Uyn, + ey,

where G € R™*? and Gy € R"2*? were both genotype matrices, U, € R™*? and U, € R"**4
were matrices for confounding variables, n; and ns, were the corresponding sample sizes, p was
the number of genetic variants, x € R™*! was the exposure vector, y € R"™*! was the outcome
vector, and the error terms e; and e, were obtained from N(0,02 I,,) and N (0,02 I,,),
respectively. In this generative model, 5y was the true causal effect while a exhibited the direct
effects on the disease. We considered two cases: dense and sparse horizontal pleiotropy. For
the dense case, we assumed that a;s was independent and identically distributed as N(0,02).

However, for the sparse case, we assumed that only a fraction of ags was from a Gaussian
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distribution and remainders were zero. In simulations, we considered sparsity both at 0.2
and 0.4. Note that o2 was set by controlling the heritability due to horizontal pleiotropy.
Moreover, to mimic the real applications where an external reference panel was applied to
estimate the correlation among SNPs, another genotype matrix Gz € R™*P was generated as
the reference panel data to estimate the correlation matrix, where nz was the sample size in
the reference panel. We fixed n; = ny = 20,000 but varied n3 € {500, 2,500,4,000}. In details,
we first generated a data matrix from multivariate normal distribution N (0, X(p)), where
3i(p) is a block autoregressive (AR) with p = 0,0.4, or 0.8 representing weak, moderate or
strong LD, respectively. We then generated minor allele frequencies from a uniform distribution
U(0.05,0.5) and categorized the data matrix into dosage values {0, 1,2} according to Hardy-
Weinberg equilibrium under the generated minor allele frequencies. The number of blocks was
M =10 or 20 and the number of SNPs within each block was 50. Correspondingly, p = 500
or 1,000. For confounding variables, we sampled each column of U, and U, from a standard
normal distribution with fixed ¢ = 50 while n, € R?*! and n, € R?*! were the corresponding
coefficients of confounding factors. Each row of (n,,n,) was generated from a multivariate
normal distribution N(0,X,), and X, is a two-by-two matrix with diagonal elements set as 1
and off-diagonal elements set as 0.8.

We then conducted single-variant analysis to obtain the summary statistics for SNP-
exposure and SNP-outcome, {7, 82, }r=1,.. , and {fka/s\%‘k}kZI,--~,pa respectively. In simulations,

we controlled the signal magnitude for both 4 and a using their corresponding heritability,

h% _ VaI(hoGiv) .4 hi _ var(Gea)

TG varG) - respectively. Thus, we could control hZ, and h2 at any

value by controlling confounding variables, and the error terms, o2 , and 032. In all settings, we
fixed h2 = 0.1 and varied A2, € {0,0.05,0.1}.

Simulation results: Type-1 error control and point estimates ~ We conducted various simulation
studies to make comparisons of MR-LLD and MR-LDP with other four commonly used alternative
methods: (1) IVW; (2) MR-Egger; (3) GSMR; (4) RAPS. We first compared the type-I error rate
for MR-LD and MR-LDP together with other alternative methods based on 1,000 replications.
The simulation results for dense pleiotropy and sparse pleiotropy with sparsity at 0.2 and 0.4
are shown in Figures 2| and S2 - S8, respectively with nz = 500; 2, 500; 4, 000, respectively.
Note that when h2, = 0, there was no difference between dense and sparse pleiotropy. As shown

in the left column of Figure in the case of no horizontal pleiotropy (h% = 0), all methods
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322 could control type-I error at the nominal level 0.05 generally well when genetic variants were
23 independent (p = 0). However, as LD become stronger (p = 0.4 or 0.8), alternative methods
24 failed to control type-I error without SNP pruning. In this setting (h% = 0), MR-LD and
»s  MR-LDP performed equally well in type-I error control. In the presence of horizontal pleiotropy
26 (h% = 0.05 or 0.1), as shown in the middle and right columns of Figure , MR-LD failed to
w27 control type-1 error for all p values while type-I error rates of alternative methods without
28  SNP pruning were not controlled in the case of moderate or strong LD. However, MR-LDP
»9 could still control type-I error at its nominal level. The similar patterns could be observed for
30 settings under sparse horizontal pleiotropy with sparsity at 0.2 and 0.4 as shown in Figures 2C]
;1 and S4 - S8, where the settings was not in favor of MR-LDP. Note that after SNP pruning,
;2 genetic variants that remained could be taken as independent. Thus, alternative methods after
;33 SNP pruning could control type-I error in all settings. However, this is achieved at the expense
s of losing weak instruments in LD.

335 Next, we made comparisons of point estimates for MR-LD and MR-LDP together with
136 alternative methods, where SNP pruning was performed for analysis using alternative methods.
sz In this simulation, Sy = 0.1 and results were based on 100 replications. Clearly, as shown
1 in Figure 2B] the proposed methods, MR-LD and MR-LDP, had narrower standard errors
19 than alternative methods when LD was moderate or strong (p = 0.4 or 0.8) as the number of
s valid instruments were less after SNP pruning for alternative methods. MR-LD and MR-LDP
s performed equally well in the case of no horizontal pleiotropy, while MR-LD that did not
sz account for horizontal pleiotropy was biased. Similar patterns could be observed for dense and

13 sparse pleiotropy both at sparsity equaling 0.2 and 0.4, as shown in Figures 2D}, and S4 - S8.

w 3.2 CAD-CAD and Height-Height studies

us  In addition, we used real datasets, i.e., CAD-CAD and Height-Height pairs, to compare the
us  estimates from MR-LD and MR-LDP with those from other four alternative methods, where
.7 the causal effect Sy can be taken as known, i.e., By = 1. In these two examples, we used GWAS
ug  summary statistics for the same traits (i.e., CAD and BMI, respectively) from three datasets —
10 selection, exposure and outcome [42]. The first two datasets are non-overlapping GWAS for
0 the same trait. The exposure dataset and outcome dataset are non-overlapping individuals
31 from European ancestry. Since IVW, MR-Egger, and RAPS are designed for independent or
32 weak-LD SNPs and GSMR only works for SNPs with moderate LD, we conducted the LD-based
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Figure 2: Simulation of type-I error control and point estimates under the dense horizontal
pleiotropy (A, B) and the sparse (0.2) horizontal pleiotropy (C, D). n; = ny = 20,000, ng = 500.

clumping to obtain the near-independent SNPs based on PLINK [43]. Individual-level genotype
data from UK10K projects was served as the reference panel in this study.

For CAD-CAD analysis, the selection dataset is myocardial infarction (MI) data from
UK Biobank (UKB), the exposure data is obtained from the C4D Genetics Consortium [44],
and the outcome data is obtained from the transatlantic Coronary ARtery DlIsease Genome
wide Replication and Meta-analysis (CARDIoGRAM) [45]. We first selected instrumental
variants using MI from UKB under different p-value thresholds and then conducted MR analysis
between the exposure and the outcome using MR-LD, MR-LDP, least squares (LS), IVW,
MR-Egger, Raps and GSMR, . First, the scatter plots of 4 (C4D) against T (CAD1) are shown
in Figure S9 in the supplementary document, where we found that when a large threshold, e.g.,
p-value=0.001, is applied to select more genetic variants, the points in the center make the
inference for causality difficult. We reported the point estimates with its 95% corresponding

confidence intervals for all methods in Figures [3| and S10 for A = 0.1 and 0.15, respectively.
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Clearly, MR-LD and MR-LDP were superior to other methods in terms of smaller bias and
shorter confidence interval when the number of instrumental variants is large. Moreover, the
estimates from MR-LD and MR-LDP also exhibited statistical significance consistently, while
the coverage of By = 1 from other methods was incorrect under small thresholds except for
RAPS with larger standard errors due to the SNP pruning. Additionally, estimates from
GSMR, IVW, and MR-Egger were always biased when the threshold was small.

P-value = 9€-06 P-vaive = 1€-05 P-value = 5€-05 P-value = 1€-04

0. 0. 0. 0.
o o o o
pai=107 pai =124 pai = 240 pai =319
Ping =31 Ping = 36 Pind = 78 Ping = 106
Pesur = 36 Pesmr = 42 Pesmr = 95 Peswr = 124
P-value = 5e-04 P-value = 0.001 P-value = 0.005 P-value = 0.01

Bo (95% Confidence Interval)

A

w [e) [e) w
S- * S- + S- ¢ S-

Pai =780 Pai = 1207 Pai = 3944 Pai =696
Pina = 323 Pind = 508 Pina = 1612 ’ Pind = 2738
Pesmr =353 Pesmr = 556 Pesmr = 1851 Pesmr = 3219
L} ' 1 L} ' 1 1 1 L} ' 1 L} ) 1 1 1 L} ' 1 L} ' L} 1 1 L} ' 1 L}
Threshold
4 MR-LD ¢ LS -9~ IVW(prune) GSMR
Method

- MR-LDP -§- RAPS(prune) MR-Egger(prune)

Figure 3: The result of estimates and confidence intervals for CAD-CAD using UK10K as the
reference panel with shrinkage parameter A = 0.1 under different p-value thresholds to choose
genetic variants. MR-LD, MR-LDP and LS methods use all SNPs selected by the screening
dataset. Default value is used to choose 7? in GSMR and the other three methods is 0.001.

Next, we investigated the case that both the exposure and outcome were from human height.
In particular, we treated the height in UK Biobank [46] as the screening dataset. The exposure
data is from the height for males in a European population-based study and the outcome data

is from the height for females in EUR population [47]. First,the scatter plot of 4 (height for
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w6 males) against r (height for females) are shown in Figure S11 in the supplementary document.
w7 Since height is highly polygenic and sample size is very large in [47] (270,000 individuals), the
7 points are crowded in the middle even with a very small threshold (p-value = 5 x 107%). The
so results of point estimates with their 95% confidence intervals were illustrated in Figure S12 -
0 913 for A = 0.1 and 0.15, respectively. Similar patterns were observed in all cases. In particular,
;1 RAPS only offered a better performance with larger instrumental variants but did not work for
;2 some small thresholds, GSMR failed to estimate the causal effect for this validation study, and
;3 other methods underestimated the causal effect with relatively larger standard errors. MR-LD
s« and MR-LDP used all SNPs passing a certain thresholding value and thus provided more

;s accurate estimates of Gy = 1.

w 3.3 The causal effects of lipids and BMI on common human diseases

;7 We further applied our method, MR-LDP, to estimate the causal effects of lipids and BMI on
;s complex diseases including coronary artery disease (CAD1 and CAD2 from CARDIoGRAM and
10 UKB, respectively), asthma, allergic rhinitis (AR), cancer, major depression disorder (MDD),
w0 type 2 diabetes (T2D), dyslipidemia (Dyslid), hypertensive disease (Hyper), hemorrhoids,
;1 hernia abdominopelvic cavity hernia, insomnia, iron deficiency anemias (IDA), irritable bowel
32 syndrome (IBS), macular degeneration, osteoarthritis, osteoporosis, peripheral vascular disease
23 (PVD), peptic ulcer (PU), psychiatric disorder, acute reaction to stress (Stress), varicose veins
;¢ (VV), and disease count (DC). The summary statistics for risk factors include lipoprotein
s cholesterol(HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and
1s body mass index (BMI). Tables S6 and S7 in the supplementary document summarize the total
;7 number of SNPs and sample sizes for each trait in each health risk factor or disease outcome
s and the details for the sources of these GWAS summary statistics.

399 First, we applied MR-LDP together with alternative methods to analyze to the exposure-
w0 outcome pairs using lipids as the exposure, i.e., HDL-C, LDL-C, and TC. Specifically, the
s selection and exposure datasets were obtained from [48] and [49], respectively, where the
w2 threshold for selecting instrumental variants in the selection dataset is set to 1 x 107%. The
w3 association results from the analysis are summarized in Table[l Note that we did SNP pruning
s for RAPS, IVW, and MR-Egger and used the default settings in all alternative methods. As
ws  GSMR removes SNPs by providing an LD threshold, we chose to use r* = 0.05 as suggested by

a6 its paper [15].
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a07 In practice, HDL-C and LDL-C are often referred as “good” and “bad” cholesterol, re-
w8 spectively. HDL-C is known to be inversely correlated with heart and vascular diseases. We
w0 found several significant protective effects of HDL-C against CAD1 (3 = —0.09), CAD2 disease
a0 (B =—0.08), T2D (3 = —0.09), Dyslid (3 = —0.14), Hyper (3 = —0.05) , PVD (8 = —0.11)
a1 and DC (B\ = —0.04), which is consistent with known epidemiological associations in the same
a2 direction [50 51 [52]. In particular, although HDL-C was found to be associated with CAD
a3 in multiple observational studies [53], 54, [55], the role of HDL-C in CAD was overturned by
ae later studies [56, 57]. Recently, Zhao et al. [42] showed that the effect of HDL-C in CAD
a5 is heterogeneous using different instruments. Moreover, MR-LDP identified the significant
a6 negative causality between HDL-C and PVD, which is consistent with previous studies [58, [59].
a7 On the other hand, MR-LDA identified the significant positive causality between LDL-C and
ss CAD which is consistent with the fact that LDL-C narrows the arteries and increases the
a0 chance of developing heart diseases. Regarding TC, MR-LDP identified the significant risk
a0 effects for cardiovascular disease as confirmed by RCTs .

21 To better understand of the impact of different thresholds, we re-performed the analysis for
w22 HDL-C on CAD1, CAD2, and PVD, separately, using a sequence of thresholds as shown in
2 Figures[d and S14 - S18. Several patterns can be observed: 1. Methods taking into account LD
24 have small standard errors; 2. Using more SNPs under larger thresholds, the standard errors
w5 become smaller; 3. As thresholds become relatively large, e.g., 0.005, the point estimates tend
w6 to be biased. The first two patterns are expected. Generally, MR-LDP is robust under different
a7 thresholds but shows biasedness when the threshold is too liberal, which is primarily due to
w8 the inclusion of invalid variants. As the threshold is relatively large, more genetic variants with
20 N0 associations to the exposure are included in the analysis, which induce biasedness either
a0 upward or downward depending on the directions of effects for invalid instrumental variants.

431 Second, we examine the associations between BMI and common diseases where the exposure
s and the selection datasets were obtained from GIANT [60] and [61], respectively. We chose
s threshold to be 1 x 10~ for selecting the instrumental variants from the selection dataset.
s The association results from the analysis are summarized in Table 2] Overall, our MR-LDP
i35 detected relatively more significant causality between BMI and complex diseases in this study.
16 The extent of obesity increase the risk of certain diseases, such as heart disease, type 2 diabetes

a7 and hypertensive disease identified by RCT [62].
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Lipids ‘ Outcome #SNPsLL MR-LDP #SNPGsMR GSMR(prune) #SNPLp RAPS(prune) IVW (prune) MR-Egger(prune)
HDL-C CAD1 2104 -0.09(0.027) 269 -0.26(0.038) 203 -0.38(0.07) -0.36(0.07) -0.28(0.157)
CAD2 2071 -0.08(0.02) 277 -0.07(0.03) 206 20.15(0.047)  -0.15(0.047) -0.08(0.098)

T2D 2071 -0.09(0.031) 272 -0.16(0.044) 206 -0.33(0.081)  -0.35(0.082) 0.03(0.17)

Dyslid 2071 -0.14(0.023) 255 -0.1(0.03) 206 -0.23(0.08) -0.26(0.076) -0.17(0.158)

Hyper 2071 -0.05(0.017) 270 -0.14(0.022) 206 -0.2(0.037) -0.21(0.038) -0.09(0.079)

PVD 2071 -0.11(0.048) 277 -0.12(0.077) 206 -0.19(0.109) -0.19(0.105) 0.12(0.222)

DC 2071 -0.04(0.01) 270 -0.08(0.013) 206 -0.09(0.025) -0.1(0.025) -0.03(0.052)

LDL-C CAD1 1867 0.27(0.029) 257 0.42(0.037) 193 0.34(0.065) 0.32(0.062) 0.33(0.133)
CAD2 1820 0.11(0.021) 266 0.16(0.027) 199 0.15(0.043) 0.14(0.043) 0.26(0.085)

Dyslid 1820 0.56(0.03) 258 0.94(0.027) 199 0.9(0.053) 0.86(0.051) 0.93(0.1)

DC 1820 0.08(0.01) 267 0.13(0.012) 199 0.13(0.019) 0.13(0.019) 0.17(0.037)

TC CAD1 2546 0.24(0.028) 309 0.46(0.036) 215 0.41(0.061) 0.39(0.062) 0.35(0.146)
CAD2 2484 0.08(0.02) 314 0.16(0.029) 218 0.15(0.043) 0.14(0.043) 0.22(0.094)

Dyslid 2484 0.54(0.03) 303 1.08(0.029) 218 0.93(0.055) 0.9(0.051) 0.97(0.111)

DC 2484 0.06(0.01) 314 0.13(0.012) 218 0.12(0.019) 0.12(0.019) 0.14(0.041)

Table 1: Causal associations of lipids with common diseases using UK10K as the reference
panel with shrinkage parameter A = 0.1. MR-LDP uses all SNPs selected by the screening
dataset. The thresholds of 7% for GSMR and the other three methods are 0.05 and 0.001,
respectively. Statistically significant results are indicated in blue.

We also estimated some causal effects that are rarely involved in the previous MR analysis
but reported in the epidemiological studies. For instance, BMI is an important risk factor for
hemorrhoids [63]. BMI is positively associated with knee osteoarthritis and sleep duration
reported by [64] and [65], respectively. We also confirmed a protective effect of BMI on
osteoporosis reported by [66] and [67]. Moreover, the increased BMI is also considered to be
one of the contributing factors for peripheral vascular disease [6§].

In addition, MR-Egger is too conservative to identify the causal relationship between BMI
and common diseases, and the same conclusion can be found in [I8]. Similar to lipids studies,
we re-performed the analysis for BMI on hemorrhoids and PVD, respectively, using a sequence

of thresholds as shown in Figures S19 - S22. The patterns are similar to those in Figures [4]

and S14 - S18
Outcome #SNPaLL MR-LDP #SNPgsMR GSMR(prune) #SNPLp RAPS(prune) IVW (prune) MR-Egger(prune)
CAD1 4405 0.2(0.084) 701 0.33(0.07) 563 0.2(0.121) 0.17(0.091) 0.2(0.129)
Asthma 4428 0.28(0.073) 707 0.23(0.061) 563 0.24(0.107) 0.19(0.08) 0.18(0.115)
CAD2 4428 0.23(0.066) 708 0.21(0.062) 563 0.26(0.105) 0.2(0.079) 0.22(0.113)
T2D 4428 0.85(0.141) 708 0.84(0.091) 563 1.22(0.16) 0.93(0.124) 1.46(0.175)
Dyslip 4428 0.22(0.076) 704 0.29(0.059) 563 0.18(0.133) 0.16(0.086) 0.29(0.124)
Hemorrhoids 4428 0.3(0.135) 709 0.2(0.111) 563 0.15(0.17) 0.11(0.129) -0.1(0.184)
Hyper 4428 0.47(0.066) 703 0.5(0.047) 563 0.58(0.095) 0.46(0.067) 0.54(0.097)
Insomnia 4428 0.77(0.235) 708 0.85(0.215) 563 1.24(0.325) 0.96(0.246) 0.6(0.353)
Osteoa 4428 0.27(0.078) 709 0.27(0.068) 563 0.26(0.114) 0.2(0.084) 0.39(0.119)
Osteop 4428 -0.44(0.178) 709 -0.36(0.15) 563 -0.62(0.238) -0.48(0.178) -0.73(0.254)
PVD 4428 0.35(0.167) 709 0.41(0.159) 563 0.32(0.242) 0.24(0.183) 0.41(0.263)
DC 4428 0.27(0.035) 700 0.3(0.027) 563 0.3(0.051) 0.23(0.037) 0.26(0.053)

Table 2: Causal associations of BMI with common diseases using UK10K as the reference panel
with shrinkage parameter A = 0.1. MR-LDP uses all SNPs selected by the screening dataset.
The thresholds of r? for GSMR and the other three methods are 0.05 and 0.001, respectively.
Statistically significant results are indicated in blue.
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Figure 4: The causal associations of HDL-C on CAD1 under different thresholds using UK10K
as the reference panel with A = 0.1.

4 Discussion

Here, we proposed a statistically rigorous and efficient approach to perform a two-sample MR
analysis that accounts for both LD structure and horizontal pleiotropy using GWAS summary
statistics and a genotype reference panel. We implemented our method in the R package
MR.LDP, which is available for download at Github. MR-LDP jointly estimated the causal
effect through an approximated likelihood of GWAS summary statistics from both the risk
factor and disease outcome using an additional variance component to eliminate the impact of
horizontal pleiotropy. Thus, MR-LDP controls for type-I error in the presence of LD structure
among instrumental variants and horizontal pleiotropy and is statistically more powerful in
identifying causal effects.

MR-LDP is particularly suited to analyze complex traits that have multiple instrumental
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w0 variants within LD. The key is to jointly model the distributions for summary statistics and
w1 the causal relationship between the risk factor and disease outcome. The only approximation
w2 here uses the fact of polygenicity in complex traits for the distributions of summary statistics.
w3 Moreover, we model the causality as Equation as the average of ‘local’ causal effect [32].
s6s  The linear model holds in very general situations, beyond the linear structural model
w5 presented in the supplementary document; see Appendix A in [32] for details. To further
w6 eliminate the impact of horizontal pleiotropy, we used a random effect to control the variation in
w7 disease outcome. As horizontal pleiotropy is not an estimate of interest, a Gaussian distribution
w8 with a mean of zero and a variance parameter is generally robust although the underlying
w0 horizontal pleiotropy is sparse. Therefore, the complete-data likelihood for MR-LDP can be
a0 written as Equation (2.5]). As the iteration for the standard EM algorithm involves inverting
an f{, which may cause numerical failure, we developed a PX-VBEM algorithm by expanding
a2 parameters. Our previous works have shown that the parameter expansion step is crucial in
a3 speeding up the algorithm, and we refer to the supplementary document in [36] for details.
s To further conduct hypothesis testing for causal effects, we calibrated the EBLO from the
a5 PX-VBEM algorithm. In our numerical studies, we demonstrated that MR-LDP is more
as  effective in controlling type-I error in the presence of LD and either sparse or dense horizontal
s pleiotropy. These merits enable us to apply MR-LDP using GWAS summary statistics, likely
as yielding more fruitful and meaningful causal discovery in the future.

479 We used two pairs (CAD-CAD and Height-Height) of real data to partially validate the
w0 proposed method. As the risk factor and the outcome are the same, we can take true causal
s effect as known (5y = 1). By applying MR-LD and MR-LDP with alternative methods, we
w2 found that estimates from the proposed methods can effectively cover the true Sy with 95%
a3 confidence intervals with instrument variants chosen under a wide ranging of thresholds. When
sa  More instrumental variants come into the model under a less stringent threshold, the estimates
s for the causality have narrower confidence intervals or smaller standard errors. We also note
ss  that MR-LDP has wider confidence interval. This is because MR-LDP makes additional efforts
.7 to model the horizontal pleiotropy.

488 In this article, we primarily focus on modeling the lipids and BMI as the exposures and
s complex diseases as the outcomes. Using a threshold of 1 x 107 in the selection dataset,

w0 we identified multiple pairs of significant causal relationships, including a protective effect
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of high-density lipoprotein cholesterol (HDL-C) on peripheral vascular disease (PVD), and a
positive causal effect of body mass index (BMI) on hemorrhoids. We further demonstrated the
robustness of MR-LDP using a sequence of threshold values to select instrumental variants.
The empirical results show that the threshold of 0.001 is optimal to balance the standard error
and biasedness. However, MR-LDP is not without limitations. First, MR-LDP cannot be
utilized for overlapped samples in SNP-exposure and SNP-outcome. Furthermore, MR-LDP
cannot address the selection bias explicitly but uses an extra SNP-exposure summary statistics

to select instrumental variants.

Web Resources

MR.LDP is available at Github (https://github.com/QingCheng0218/MR.LDP).

BMI(Jap): ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/AkiyamaM_283892062_
GCST004904.

Other BMI datasets: https://portals.broadinstitute.org/collaboration/giant/index.
php/GIANT _consortium_data_files#2018_GIANT_and_UK_BioBank_Meta_Analysis_for_Public_
Release

lipids(screen datasets): http://csg.sph.umich.edu/willer/public/1ipids2010/.

lipids(exposure datasets): http://csg.sph.umich.edu/willer/public/lipids2013/.

CAD datasets: http://www.cardiogramplusc4d.org/data-downloads/

Common human disease datasets: http://cnsgenomics.com/data.html.

UKI10K datasets: https://www.uk10k.org/data_access.html.
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