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Abstract

The proliferation of genome-wide association studies (GWAS) has prompted the use of two-1

sample Mendelian randomization (MR) with genetic variants as instrumental variables (IV)2

for drawing reliable causal relationships between health risk factors and disease outcomes.3

However, the unique features of GWAS demand that MR methods account for both linkage4

disequilibrium (LD) and ubiquitously existing horizontal pleiotropy among complex traits,5

which is the phenomenon wherein a variant affects the outcome through mechanisms other6

than exclusively through the exposure. Therefore, statistical methods that fail to consider LD7

and horizontal pleiotropy can lead to biased estimates and false-positive causal relationships.8

To overcome these limitations, we propose a probabilistic model for MR analysis to identify9

the casual effects between risk factors and disease outcomes using GWAS summary statistics10

in the presence of LD and to properly account for horizontal pleiotropy among genetic variants11

∗Correspondence should be addressed to Jin Liu (jin.liu@duke-nus.edu.sg)
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(MR-LDP). MR-LDP utilizes a computationally efficient parameter-expanded variational Bayes12

expectation-maximization (PX-VBEM) algorithm to estimate the parameter of interest and13

further calibrates the evidence lower bound (ELBO) for a likelihood ratio test. We then14

conducted comprehensive simulation studies to demonstrate the advantages of MR-LDP over15

the existing methods in terms of both type-I error control and point estimates. Moreover, we16

used two real exposure-outcome pairs (CAD-CAD and Height-Height; CAD for coronary artery17

disease) to validate the results from MR-LDP compared with alternative methods, showing18

that our method is more efficient in using all instrumental variants in LD. By further applying19

MR-LDP to lipid traits and body mass index (BMI) as risk factors for complex diseases, we20

identified multiple pairs of significant causal relationships, including a protective effect of21

high-density lipoprotein cholesterol (HDL-C) on peripheral vascular disease (PVD), and a22

positive causal effect of body mass index (BMI) on hemorrhoids.23

1 Introduction24

Epidemiological studies have contributed tremendously to improving our understanding of the25

primary causes of complex diseases. However, numerous cases of significant associations from26

observational studies have been subsequently contradicted by large clinical trials [1, 2]. Drawing27

causal inferences from observational studies is particularly challenging because of unmeasured28

confounding, reverse causation and selection bias [3, 4]. Although the randomized controlled29

trial (RCT) is considered a gold standard to evaluate causality in an exposure-outcome pair,30

RCTs have certain limitations including impracticality (no intervention may exist), high31

expense, and ethical issues [5]. Fortunately, as germline genetic variants (single nucleotide32

polymorphisms, SNPs) are fixed after random mating and cannot be modified by subsequent33

factors, e.g., environment factors and living styles, Mendelian randomization (MR) uses genetic34

variants as instruments to examine the causal effects between health risk factors and disease35

outcomes, largely excluding the influence from unobserved confounding factors [3]. In the past36

decade, a large number of genome-wide association studies (GWAS) have been successfully37

used to identify genetic variants associated with complex traits at the genome-wide significance38

level, including both health factors and diseases, e.g., lipids, BMI, and type-2 diabetes, and39

most of completed GWAS are simply observational studies instead of RCTs. The results from40

completed GWAS are mostly publicly accessible, e.g., GWAS Catalog outlines a list of sources for41
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summary statistics (https://www.ebi.ac.uk/gwas/downloads/summary-statistics). This42

large amount of publicly available GWAS summary statistics has prompted the widespread43

use of two-sample MR as an efficient and cost-effective method to interrogate the causal44

relationships among health risk factors and disease outcomes.45

MR is closely related to the instrumental variable (IV) methods, which have a long history of46

use in econometrics [6]. Classically, an inverse-variance weighted (IVW) and a likelihood-based47

approach have been used for two-sample MR analysis with summary-level data [7]. These48

methods must strictly obey assumptions for MR, including two most fundamental ones:49

1. IVs affect the outcome exclusively through the risk exposures.50

2. IVs are independent from each other, or in a GWAS context, instrumental variants are51

not in LD.52

The first assumption is also referred to as exclusion restriction assumption or no horizontal53

pleiotropy. The violation of this assumption can distort the statistical inference for MR analysis,54

leading to biased estimates and false-positive causal relationships. Recent comprehensive55

surveys reported persuasive pleiotropy among complex traits [8, 9], such as autoimmune56

diseases [10] and psychiatric disorders [11]. Consequently, methods that do not account for57

pleiotropy can substantially reduce the power and inflate the false-positive discoveries. To58

address this issue, sisVIVE was proposed in the presence of individual-level data [12]. To further59

relax this assumption for two-sample MR analysis using summary-level data, various statistical60

methods have been proposed and we divide them into two categories. The first group consists61

of step-wise methods to correct the impact of horizontal pleiotropy. These methods first detect62

and remove SNPs with horizontal pleiotropy, and MR analysis is performed in the subsequent63

step, including Q test [13], Cook’s distance [14], Studentized residuals [14], GSMR [15], and64

MR-PRESSO [16]. The drawback of this type of methods is that the number of SNPs after65

removal is limited given that abundant pleiotropy exists among complex traits, which can66

substantially reduce the statistical power to detect the causal relationships. In contrast, the67

second group of methods jointly estimate causal effects by taking into account the horizontal68

pleiotropy, e.g., MR-Egger [17], MRMix [18] and RAPS [19]. Compared to MR-Egger, RAPS69

further addressed the measurement error issues, where most of existing methods applicable to70

GWAS summary statistics assume that sampling error from SNP-exposure is negligible [20].71
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On the other hand, minimal literature is available regarding the relaxation of the second72

assumption above. Among the methods mentioned above, only GSMR is capable of accounting73

weak or moderate linkage disequilibrium (LD) for SNPs, while others demand all instrumental74

SNPs to be independent, which is typically achieved by conducting SNP pruning and thus75

reducing the number of instrumental variants for follow-up MR analysis. As SNPs within76

proximity tend to be highly correlated, MR methods not accounting for LD structure may77

substantially lose statistical power due to the pruning process to obtain independent SNPs.78

Moreover, GSMR is a step-wise method to remove instrumental variants with horizontal79

pleiotropy, making it less powerful due to the removal of invalid variants.80

In this paper, we propose a statistically unified and efficient two-sample MR method to81

utilize all weak instruments within LD (MR-LD), and further consider a MR-LD accounting82

for horizontal Pleiotropy (MR-LDP). Similar to RAPS, MR-LDP does not require the no83

measurement error assumption. The key idea is to build a joint probabilistic model for GWAS84

summary statistics from both exposure and outcome using a reference panel to reconstruct LD85

among instrumental variants and to conduct a formal hypothesis testing to make inferences86

about the causal effect that links the exposure and the outcome through a linear relationship. We87

also develop an efficient variational Bayesian expectation-maximization algorithm accelerated88

by using the parameter expansion (PX-VBEM) to estimate the causal effect for MR-LD and89

MR-LDP. Moreover, we calibrate the evidence lower bound (ELBO) to construct the likelihood90

ratio test for the evaluation of statistical significance of the estimated effect. Simulation studies91

show that MR-LDP outperforms competing methods in terms of type-I error control and point92

estimates for making causal inference. Additionally, we used two real exposure-outcome pairs93

to validate results from MR-LD and MR-LDP compared with alternative methods, particularly94

showing our methods more efficiently use all SNPs in LD. By further applying MR-LDP to95

summary statistics from GWAS, we identified multiple pairs of significant causal relationships,96

including a protective effect of high-density lipoprotein cholesterol (HDL-C) on peripheral97

vascular disease (PVD), and a positive causal effect of BMI on hemorrhoids.98
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2 Material and Methods99

2.1 Reference panel data100

As MR-LD and MR-LDP use the marginal effect sizes and their standard errors from GWAS101

summary statistics to build a probabilistic model for making causal inference, information102

regarding correlations among SNPs is missing, i.e., LD denoted as R is missing. Thus, we need103

to use a reference panel dataset to assist with reconstructing LD. In this study, given that we104

primarily focus on European populations, we choose to use samples from the following resource105

as the external reference panel: UK10K Project (Avon Longitudinal Study of Parents and106

Children, ALSPAC; TwinsUK) merged with 1000 Genome Project Phase 3 (N = 4, 284), which107

is denoted UK10K thereafter. As SNPs from HapMap Project Phase 3 (HapMap3) are more108

reliable, we choose to limit our analysis using SNPs from HapMap3 (p = 1, 189, 556).109

As samples from ALSPAC and TwinsUK include populations other than European, we110

conducted strict quality control for UK10K data using PLINK [21]. First, SNPs were excluded111

from the analysis if their calling rates were less than 95%, minor allele frequencies were less112

than 0.01, or p-values were less than 1 × 10−6 in the Hardy-Weinberg equilibrium test. We113

then removed the individuals with genotype missing rates greater than 5%. To further remove114

individuals with high relatedness in all samples, we used GCTA [22] to first identify those115

individual pairs with estimated genetic relatedness greater than 0.05 and then randomly remove116

one from such a pair. Additionally, we carried out the principal components analysis (PCA) on117

the individuals to identify the population stratification [23]. In this way , we extracted the118

clustering subgroup representing the major European ancestry using hierarchical clustering on119

principal components(HCPC) approach [24]. Finally, there were 3,764 individuals remained120

with 989,932 SNPs.121

2.2 Choice of LD matrix122

Since the LD between two SNPs decays exponentially with respect to their distance, we use123

LDetect [25] to partition the whole genome into L blocks first and then calculate the estimated124

correlation matrix in each block. For each block, we adopt a shrinkage method to guarantee125

the sparsity and positive definiteness of the estimated correlation matrix [26]. In particular,126

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2019. ; https://doi.org/10.1101/684746doi: bioRxiv preprint 

https://doi.org/10.1101/684746
http://creativecommons.org/licenses/by-nc-nd/4.0/


the correlation matrix estimator R̂(l) in each block is obtained by optimizing as follows127

R̂(l) = arg min
R(l)�0

(‖R(l) − R̂(l)
emp‖2

F/2− τ log |R(l)|+ λ‖R(l)−‖1), (2.1)

where R̂
(l)
emp is the empirical correlation matrix in the l-th block, λ ≥ 0 is the shrinkage tuning128

parameter, and the lasso-type penalty ensures a sparse solution. In addition, τ > 0 is fixed at129

a small value and the logarithmic barrier term is used to enforce a positive-definite solution.130

More details can be found in [26]. A corresponding R package named PDSCE is available to131

complete the estimation process. In addition, we fix the shrinkage parameter λ to be 0.055 in132

simulation studies and vary λ ∈ {0.1, 0.15} in real data analysis.133

2.3 Likelihood for summary statistics134

Before elaborating on our method, we first review the following multiple linear regression model135

that links a trait to genotype data:136

y = Gγ + ε,

where y is an n× 1 vector for trait among n individuals, G is an n× p matrix for genotypes,137

γ is a p × 1 vector for effect sizes, and ε is the vector for random noises. Suppose that the138

individual-level data {G,y} are not accessible, but the summary statistics {γ̂k, ŝ2
k}k=1,···p from139

univariate linear regression are available:140

γ̂k = (gT

kgk)
−1gT

ky, ŝ2
k = (ngT

kgk)
−1(y − gkγ̂k)

T(y − gkγ̂k),

where gk is the k-th column of G, γ̂k and ŝ2
k are estimated effect sizes and its variance for SNP141

k, respectively. R̂ denotes the correlation among all genotyped SNPs and Ŝ = diag([̂s1, · · · , ŝp]),142

which is a diagonal matrix for corresponding standard errors. Provided that sample size143

n is large enough and the trait is highly polygenic (i.e., the squared correlation coefficient144

between the trait and each genetic variant is close to zero), we can use the following formula145

to approximate the distribution of γ based on the summary statistics in a similar fashion146

as [27, 28, 29, 30]:147

γ̂|γ, R̂, Ŝ ∼ N (ŜR̂Ŝ−1γ, ŜR̂Ŝ). (2.2)

Analogously, we apply this distribution to the two-sample MR analysis. The summary statis-148

tics for SNP-exposure and SNP-outcome are denoted by {γ̂k, ŝ2
γk
}k=1,··· ,p and {Γ̂k, ŝ2

Γk
}k=1,··· ,p,149
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respectively. Therefore, the likelihood for two-sample summary statistics can be written as:150

γ̂|γ, R̂, Ŝγ ∼ N (ŜγR̂Ŝ−1
γ γ, ŜγR̂Ŝγ),

Γ̂|Γ, R̂, ŜΓ ∼ N (ŜΓR̂Ŝ−1
Γ Γ, ŜΓR̂ŜΓ), (2.3)

where Ŝγ = diag([̂sγ1 , · · · , ŝγp ]) and ŜΓ = diag([̂sΓ1 , · · · , ŝΓp ]) are both diagonal matrices. In this151

formulation, the correlations among all p SNPs, R̂, are not estimable from summary statistics152

itself. Zhu and Stephens [29] showed that R̂ could be replaced with R̂ref that is estimated153

from independent samples, where the difference in log-likelihood between individual-level data154

and summary statistics is a constant that does not depend on the effect size assuming that155

polygenicity holds and the sample size of individual-level data is large. Thus, distributions156

for summary statistics (2.3) will produce approximately the same inferential results as its157

counterpart for individual-level data. Hereafter, we use R̂ implicitly for R̂ref and details on158

estimating R̂ can be found in Section 2.2.159

2.4 MR-LDP model overview160

The fundamental assumptions for two-sample MR analysis include the independence among161

instrumental variables, and three IV assumptions for a genetic instrument: (1) associated with162

health risk factors (γ 6= 0); (2) independent of unobserved confounding factors between the risk163

factors and the disease outcomes; (3) independent of Y given risk factors and confounders. Given164

strong LD structure among SNPs and abundant horizontal pleiotropy in GWAS, these unique165

features invalidate the independence assumption for genetic variants and two IV assumptions166

(2) and (3). Our proposed MR-LDP aims to make causal inference of the risk factors on a167

disease outcome using a probabilistic model by accounting for both the LD structure and the168

influence of horizontal pleiotropy as depicted in Figure 1. We first utilize an approximated169

likelihood to depict the distribution of correlated SNPs from GWAS summary statistics for170

the risk exposure and the disease outcome, respectively, as shown Equation (2.3). Given p171

instrumental variants, the inputs for MR-LDP are GWAS summary statistics for SNP-exposure172

and SNP-outcome, respectively, and a genotype reference panel (Figure 1A). By introducing an173

additional random effect α, we would further eliminate the variance in the disease outcome due174

to pervasive horizontal pleiotropy. Since MR-LDP uses an approximated likelihood to jointly175

delineate the distribution for summary statistics (i.e., estimated effect sizes and their standard176

errors) from GWAS, it is free of the assumption for no measurement errors, requiring that177
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sample sizes used to generate GWAS summary statistics are large [31, 20]. Figure 1B depicts178

MR-LDP as a probabilistic graphical model, where the observed variables of our model include179

GWAS summary statistics from both the SNP-exposure and the SNP-outcome, and an external180

reference panel for genotype data. We assume that αk and γk follow two independent Gaussian181

distributions. The latent variable γk and parameter β0 jointly assist with formulating the182

distribution for SNP-outcome. Then, we can formalize the hypothesis testing for β0 as shown183

in Figure 1B. The scatter plots of estimated effect sizes for SNP-exposure against SNP-outcome184

together with the MR-LDP analysis results (β̂0 and p-value) are shown in Figure 1C. In both185

BMI-T2D and BMI-VV, there is a dominant proportion of instrumental variants in the center186

that is largely due to LD, and methods that do not account for LD tend to inflate findings.187

2.5 Details of MR-LDP188

Parameterization for causal relationship The relationship between γ and Γ can be constructed189

using linear structural models as follows:190

Γj = β0γj, or Γj = αj + β0γj, (2.4)

where j = 1, . . . , p , considering without/with horizontal pleiotropy, respectively [12, 32]. Note191

that β0 is the effect size of the exposure on the outcome and α = [α1, . . . , αp]
T is the vector of192

effects of genetic variants on the outcome due to horizontal pleiotropy. Importantly, β0 can193

be interpreted as the causal effect between exposure and outcome in the study [32]. More194

details regarding linear structural models incorporating the relationship (2.4) are available in195

the supplementary document. As MR-LD can be taken as a special case of MR-LDP by taking196

all α to be zero, we focus on deriving MR-LDP in the main text and provide the supplementary197

document for details on MR-LD.198

Empirical Bayes model By assuming that γ and α are two latent variables coming from two199

independent Gaussian distributions, the complete-data likelihood can be written as follows:200

Pr(Γ̂, γ̂,γ,α|Ŝγ , ŜΓ, R̂;θ) = Pr(Γ̂|γ,α, R̂, ŜΓ; β0)Pr(γ̂|γ, R̂, Ŝγ)Pr(α|σ2
α)Pr(γ|σ2

γ), (2.5)

where θ
def
= {β0, σ

2
γ , σ

2
α} denotes the collection of model parameters. Integrating out the latent201

variables γ and α, the marginal likelihood can be written as:202

Pr(Γ̂, γ̂|Ŝγ , ŜΓ, R̂;θ) =

∫ ∫
Pr(Γ̂, γ̂,α,γ|Ŝγ , ŜΓ, R̂;θ)dγ dα.
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Figure 1: MR-LDP model overview: (A) Inputs for MR-LDP include GWAS summary statistics

from both the risk factor (Blue) and the disease outcome (Yellow), and an external reference

panel data (Red). (B) A probabilistic graphical model representation of MR-LDP. The box

is the “plate” representing SNPs, k = 1, . . . , p. The circles are either variables or parameters.

The circles at the root are parameters. The variables in shaded circles are observed (i.e.,

GWAS summary statistics {γ̂k, ŝγk}k=1,··· ,p and {Γ̂k, ŝΓk
}k=1,··· ,p, and the estimated R̂ for these

p SNPs from a reference panel) and variables in unshaded circles are latent variables (i.e.,

γk and αk , k = 1, . . . , p). The primary goal is to conduct a formal hypothesis testing for

H0 : β0 = 0 vs H1 : β0 6= 0. (C) Scatter plots of effect sizes with their standard errors for two

exposure-outcome pairs: BMI-T2D and BMI-VV; T2D for type-2 diabetes and VV for varicose

veins. Dots represent the effect sizes from SNP-exposure against these from SNP-outcome,and

horizontal and vertical bars represent the standard errors from SNP-exposure and SNP-outcome,

respectively. The estimated β0 and its p-value from MR-LDP are not shown in each subfigure.

Algorithm The standard expectation-maximization (EM) algorithm is a common choice to203

find the maximum likelihood for probabilistic models in the presence of latent variables [33].204

However, it may cause instability or numerical failure as R̂ can be non-positive definite due to205

the relative small sample size in the reference panel. To address these issues, we develop an206

accelerated variational Bayes (VB) EM algorithm in light of [34], namely, PX-VBEM. Starting207

with the algorithm, we expand the original MR-LD/MR-LDP model (2.5) as follows:208

γ̂|γ, R̂, Ŝγ ∼ N (ξŜγR̂Ŝ−1
γ γ, ŜγR̂Ŝγ). (2.6)

Next, we sketch the VBEM algorithm using the parameter expanded in Equation (2.6) for209
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MR-LDP and algorithmic details for MR-LD can be found in the supplementary document.210

The model parameters for MR-LDP after parameter expansion become θ = {β0, σ
2
γ , σ

2
α, ξ}.211

Given variational posterior distribution q(γ,α), it is straightforward to evaluate the marginal212

log-likelihood by decomposing it into two parts, the evidence lower bound (ELBO) and the213

Kullback-Leibler (KL) divergence, which is denoted as follows:214

log Pr(γ̂, Γ̂|Ŝγ , ŜΓ, R̂;θ) = L(q) + KL(q‖p), (2.7)

where215

L(q) =

∫∫
γ,α

q(γ,α) log
Pr(γ̂, Γ̂,γ,α|Ŝγ , ŜΓ, R̂;θ)

q(γ,α)
dγ dα,

KL(q‖p) =

∫∫
γ,α

q(γ,α) log
q(γ,α)

p(γ,α|γ̂, Γ̂, Ŝγ , ŜΓ, R̂;θ)
dγ dα, (2.8)

where L(q) is the ELBO of the marginal log-likelihood, and KL(q‖p) is the KL divergence216

between two distributions. Moreover, KL(q‖p) ≥ 0 with equality holding if and only if the217

variational posterior distribution (q) is equal to the true posterior distribution (p). As a218

consequence, minimizing the KL divergence is equivalent to maximizing ELBO. Compared219

with the standard EM algorithm, the crux of VBEM is to optimize q within a factorizable220

family of distributions by the mean-field assumption [35], which assumes that q(γ,α) can be221

factorized as222

q(γ,α) =

p∏
j=1

qγj(γj)

p∏
k=1

qαk
(αk). (2.9)

This only assumption in variational inference promotes computational efficiency and scalability223

in large-scale computational problems given that a coordinate descent algorithm is commonly224

used to identify the optimal distribution q∗. To briefly show this, we first note that this factor-225

ization (2.9) is used as an approximation for the posterior distribution p(γ,α|γ̂, Γ̂, Ŝγ , ŜΓ, R̂;θ).226

In the VB E-step, given the latent variables γ−k and α, the terms with γk have a quadratic form,227

where γ−k is the γ vector removing the k-th element. Similarly, when all other latent variables228

fixed, we can show that the terms with αk also take a quadratic form. Thus, the variational229

posterior distribution for γk and αk are both from Gaussian distributions, N (µγk , σ
2
γk

) and230

N (µαk
, σ2

αk
), respectively, where we call {µγk , σ2

γk
, µαk

, σ2
αk
}k=1,...,p variational parameters. The231

details of derivations for updating these variational parameters, and the ELBO L(q) in the232

marginal log-likelihood (2.7) at the old parameter θold can be found in the supplementary233
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document. After updating variational parameters in the VB E-step, model parameters (θ) can234

be updated by setting the derivative of the ELBO to zero. Derivation details can be found235

in supplementary document, where we summarize the PX-VBEM algorithms for MR-LD and236

MR-LDP in Algorithms 1 and 2, respectively.237

Inference for causality We can easily formulate the problem (2.5) as a statistical test for238

the null hypothesis that the health risk factor is not associated with the disease of interest,239

or H0 : β0 = 0. Testing this hypothesis requires evaluating the marginal log-likelihood of240

observed data in MR-LD or MR-LDP similar to what has been done previously in [36, 37];241

details are given in supplementary document. As VB searches within a factorizable family for242

the posterior distribution, one can only obtain an approximation for the posterior distribution243

of latent variables. Earlier works showed that VBEM provides useful and accurate posterior244

mean estimates [38]. Despite its computational efficiency and accuracy for estimating posterior245

mean, VB suffers from under-estimating the variance of the target distribution [25, 39, 40].246

Thus, the evidence lower bound (ELBO) from VB-type algorithm cannot be directly used to247

conduct a likelihood-based test. In this paper, we follow Yang et al. [37] and adopt the similar248

strategy to calibrate ELBO as well as mitigate the bias of variance. Details for the PX-VBEM249

algorithm and the calibration of ELBO can be found in the supplementary document.250

Relationship between MR-LD and TWAS Using transcriptome data as risk factors, MR-251

LD can be viewed as a TWAS-type analysis using summary-level data from both expression252

quantitative trait loci (eQTL) and GWAS, where eQTL and GWAS summary statistics are used253

for SNP-exposure and SNP-outcome, respectively. Since TWAS-type analysis only seeks genes254

that are significantly associated with the outcome of interest at the genome-wide level, one255

cannot infer causality without excluding other potential associations, e.g., horizontal pleiotropy.256

We note that PMR-Egger [41] was recently proposed to calibrate the type-I error control by257

using a burden test assumption to infer causal relationship. However, this assumption depends258

heavily on the fact that all effect sizes from horizontal pleiotropy are the same. Therefore,259

MR-LDP can also be viewed as a relaxation of the burden assumption that is more powerful to260

account for horizontal pleiotropy with more general patterns.261
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3 Results262

3.1 Simulations263

Methods for comparison We compared the performance of five methods in the main text: (1)264

our MR-LD and MR-LDP implemented in the R package MR.LDP; (2) GSMR implemented in265

the R package gsmr; (3) RAPS implemented in the R package mr.raps; (4) IVW implemented266

in the R package MendelianRandomization; (5) MR-Egger implemented in the R package267

MendelianRandomization. All methods were used with default settings. We conducted com-268

prehensive simulation studies to better gauge the performance of each method in simulation269

studies in terms of type-I error control and point estimates.270

In simulation studies, we considered genetic instruments both without and with horizontal271

pleiotropy. In the scenario that genetic instruments have horizontal pleiotropy, we further272

considered two cases: sparse and dense horizontal pleiotropy, i.e., sparse horizontal pleiotropy273

indicates that only a proportion of genetic instruments have direct effects on the outcome274

while dense horizontal pleiotropy indicates that all genetic instruments have direct effects. As275

GSMR is a step-wise method that first removes invalid instruments, dense horizontal pleiotropy276

theoretically implies that all genetic instruments are invalid. To make fair comparisons, we277

considered sparse horizontal pleiotropy with sparsity at 0.2 or 0.4. In addition, as RAPS, IVW,278

and MR-Egger tend to inflate type-I error in the presence of LD, we conducted SNP pruning279

for a fair comparison of point estimates.280

Simulation settings To make our simulations as realistic as possible, we started by generating281

the individual-level two-sample data as follows282

x = G1γ + Uxηx + e1, y = β0x + G2α + Uyηy + e2,

where G1 ∈ Rn1×p and G2 ∈ Rn2×p were both genotype matrices, Ux ∈ Rn1×q and Uy ∈ Rn2×q
283

were matrices for confounding variables, n1 and n2 were the corresponding sample sizes, p was284

the number of genetic variants, x ∈ Rn1×1 was the exposure vector, y ∈ Rn2×1 was the outcome285

vector, and the error terms e1 and e2 were obtained from N (0, σ2
e1

In1) and N (0, σ2
e2

In2),286

respectively. In this generative model, β0 was the true causal effect while α exhibited the direct287

effects on the disease. We considered two cases: dense and sparse horizontal pleiotropy. For288

the dense case, we assumed that αks was independent and identically distributed as N (0, σ2
α).289

However, for the sparse case, we assumed that only a fraction of αks was from a Gaussian290
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distribution and remainders were zero. In simulations, we considered sparsity both at 0.2291

and 0.4. Note that σ2
α was set by controlling the heritability due to horizontal pleiotropy.292

Moreover, to mimic the real applications where an external reference panel was applied to293

estimate the correlation among SNPs, another genotype matrix G3 ∈ Rn3×p was generated as294

the reference panel data to estimate the correlation matrix, where n3 was the sample size in295

the reference panel. We fixed n1 = n2 = 20, 000 but varied n3 ∈ {500, 2, 500, 4, 000}. In details,296

we first generated a data matrix from multivariate normal distribution N (0,Σ(ρ)), where297

Σ(ρ) is a block autoregressive (AR) with ρ = 0, 0.4, or 0.8 representing weak, moderate or298

strong LD, respectively. We then generated minor allele frequencies from a uniform distribution299

U(0.05, 0.5) and categorized the data matrix into dosage values {0, 1, 2} according to Hardy-300

Weinberg equilibrium under the generated minor allele frequencies. The number of blocks was301

M = 10 or 20 and the number of SNPs within each block was 50. Correspondingly, p = 500302

or 1, 000. For confounding variables, we sampled each column of Ux and Uy from a standard303

normal distribution with fixed q = 50 while ηx ∈ Rq×1 and ηy ∈ Rq×1 were the corresponding304

coefficients of confounding factors. Each row of (ηx,ηy) was generated from a multivariate305

normal distribution N (0,Ση), and Ση is a two-by-two matrix with diagonal elements set as 1306

and off-diagonal elements set as 0.8.307

We then conducted single-variant analysis to obtain the summary statistics for SNP-308

exposure and SNP-outcome, {γ̂k, ŝ2
γk}k=1,··· ,p and {Γ̂k, ŝ2

Γk}k=1,··· ,p, respectively. In simulations,309

we controlled the signal magnitude for both γ and α using their corresponding heritability,310

h2
γ = var(β0G1γ)

var(y)
and h2

α = var(G2α)
var(y)

, respectively. Thus, we could control h2
α and h2

γ at any311

value by controlling confounding variables, and the error terms, σ2
e1

and σ2
e2

. In all settings, we312

fixed h2
γ = 0.1 and varied h2

α ∈ {0, 0.05, 0.1}.313

Simulation results: Type-I error control and point estimates We conducted various simulation314

studies to make comparisons of MR-LD and MR-LDP with other four commonly used alternative315

methods: (1) IVW; (2) MR-Egger; (3) GSMR; (4) RAPS. We first compared the type-I error rate316

for MR-LD and MR-LDP together with other alternative methods based on 1,000 replications.317

The simulation results for dense pleiotropy and sparse pleiotropy with sparsity at 0.2 and 0.4318

are shown in Figures 2, and S2 - S8, respectively with n3 = 500; 2, 500; 4, 000, respectively.319

Note that when h2
α = 0, there was no difference between dense and sparse pleiotropy. As shown320

in the left column of Figure 2A, in the case of no horizontal pleiotropy (h2
α = 0), all methods321
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could control type-I error at the nominal level 0.05 generally well when genetic variants were322

independent (ρ = 0). However, as LD become stronger (ρ = 0.4 or 0.8), alternative methods323

failed to control type-I error without SNP pruning. In this setting (h2
α = 0), MR-LD and324

MR-LDP performed equally well in type-I error control. In the presence of horizontal pleiotropy325

(h2
α = 0.05 or 0.1), as shown in the middle and right columns of Figure 2A, MR-LD failed to326

control type-I error for all ρ values while type-I error rates of alternative methods without327

SNP pruning were not controlled in the case of moderate or strong LD. However, MR-LDP328

could still control type-I error at its nominal level. The similar patterns could be observed for329

settings under sparse horizontal pleiotropy with sparsity at 0.2 and 0.4 as shown in Figures 2C,330

and S4 - S8, where the settings was not in favor of MR-LDP. Note that after SNP pruning,331

genetic variants that remained could be taken as independent. Thus, alternative methods after332

SNP pruning could control type-I error in all settings. However, this is achieved at the expense333

of losing weak instruments in LD.334

Next, we made comparisons of point estimates for MR-LD and MR-LDP together with335

alternative methods, where SNP pruning was performed for analysis using alternative methods.336

In this simulation, β0 = 0.1 and results were based on 100 replications. Clearly, as shown337

in Figure 2B, the proposed methods, MR-LD and MR-LDP, had narrower standard errors338

than alternative methods when LD was moderate or strong (ρ = 0.4 or 0.8) as the number of339

valid instruments were less after SNP pruning for alternative methods. MR-LD and MR-LDP340

performed equally well in the case of no horizontal pleiotropy, while MR-LD that did not341

account for horizontal pleiotropy was biased. Similar patterns could be observed for dense and342

sparse pleiotropy both at sparsity equaling 0.2 and 0.4, as shown in Figures 2D, and S4 - S8.343

3.2 CAD-CAD and Height-Height studies344

In addition, we used real datasets, i.e., CAD-CAD and Height-Height pairs, to compare the345

estimates from MR-LD and MR-LDP with those from other four alternative methods, where346

the causal effect β0 can be taken as known, i.e., β0 = 1. In these two examples, we used GWAS347

summary statistics for the same traits (i.e., CAD and BMI, respectively) from three datasets –348

selection, exposure and outcome [42]. The first two datasets are non-overlapping GWAS for349

the same trait. The exposure dataset and outcome dataset are non-overlapping individuals350

from European ancestry. Since IVW, MR-Egger, and RAPS are designed for independent or351

weak-LD SNPs and GSMR only works for SNPs with moderate LD, we conducted the LD-based352
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(A) Type-I error (B) Point estimates for β0

(C) Type-I error (D) Point estimates for β0

Figure 2: Simulation of type-I error control and point estimates under the dense horizontal

pleiotropy (A, B) and the sparse (0.2) horizontal pleiotropy (C, D). n1 = n2 = 20, 000, n3 = 500.

clumping to obtain the near-independent SNPs based on PLINK [43]. Individual-level genotype353

data from UK10K projects was served as the reference panel in this study.354

For CAD-CAD analysis, the selection dataset is myocardial infarction (MI) data from355

UK Biobank (UKB), the exposure data is obtained from the C4D Genetics Consortium [44],356

and the outcome data is obtained from the transatlantic Coronary ARtery DIsease Genome357

wide Replication and Meta-analysis (CARDIoGRAM) [45]. We first selected instrumental358

variants using MI from UKB under different p-value thresholds and then conducted MR analysis359

between the exposure and the outcome using MR-LD, MR-LDP, least squares (LS), IVW,360

MR-Egger, Raps and GSMR . First, the scatter plots of γ̂ (C4D) against Γ̂ (CAD1) are shown361

in Figure S9 in the supplementary document, where we found that when a large threshold, e.g.,362

p-value=0.001, is applied to select more genetic variants, the points in the center make the363

inference for causality difficult. We reported the point estimates with its 95% corresponding364

confidence intervals for all methods in Figures 3 and S10 for λ = 0.1 and 0.15, respectively.365
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Clearly, MR-LD and MR-LDP were superior to other methods in terms of smaller bias and366

shorter confidence interval when the number of instrumental variants is large. Moreover, the367

estimates from MR-LD and MR-LDP also exhibited statistical significance consistently, while368

the coverage of β0 = 1 from other methods was incorrect under small thresholds except for369

RAPS with larger standard errors due to the SNP pruning. Additionally, estimates from370

GSMR, IVW, and MR-Egger were always biased when the threshold was small.371

Figure 3: The result of estimates and confidence intervals for CAD-CAD using UK10K as the

reference panel with shrinkage parameter λ = 0.1 under different p-value thresholds to choose

genetic variants. MR-LD, MR-LDP and LS methods use all SNPs selected by the screening

dataset. Default value is used to choose r2 in GSMR and the other three methods is 0.001.

Next, we investigated the case that both the exposure and outcome were from human height.372

In particular, we treated the height in UK Biobank [46] as the screening dataset. The exposure373

data is from the height for males in a European population-based study and the outcome data374

is from the height for females in EUR population [47]. First,the scatter plot of γ̂ (height for375
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males) against Γ̂ (height for females) are shown in Figure S11 in the supplementary document.376

Since height is highly polygenic and sample size is very large in [47] (270,000 individuals), the377

points are crowded in the middle even with a very small threshold (p-value = 5× 10−6). The378

results of point estimates with their 95% confidence intervals were illustrated in Figure S12 -379

S13 for λ = 0.1 and 0.15, respectively. Similar patterns were observed in all cases. In particular,380

RAPS only offered a better performance with larger instrumental variants but did not work for381

some small thresholds, GSMR failed to estimate the causal effect for this validation study, and382

other methods underestimated the causal effect with relatively larger standard errors. MR-LD383

and MR-LDP used all SNPs passing a certain thresholding value and thus provided more384

accurate estimates of β0 = 1.385

3.3 The causal effects of lipids and BMI on common human diseases386

We further applied our method, MR-LDP, to estimate the causal effects of lipids and BMI on387

complex diseases including coronary artery disease (CAD1 and CAD2 from CARDIoGRAM and388

UKB, respectively), asthma, allergic rhinitis (AR), cancer, major depression disorder (MDD),389

type 2 diabetes (T2D), dyslipidemia (Dyslid), hypertensive disease (Hyper), hemorrhoids,390

hernia abdominopelvic cavity hernia, insomnia, iron deficiency anemias (IDA), irritable bowel391

syndrome (IBS), macular degeneration, osteoarthritis, osteoporosis, peripheral vascular disease392

(PVD), peptic ulcer (PU), psychiatric disorder, acute reaction to stress (Stress), varicose veins393

(VV), and disease count (DC). The summary statistics for risk factors include lipoprotein394

cholesterol(HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and395

body mass index (BMI). Tables S6 and S7 in the supplementary document summarize the total396

number of SNPs and sample sizes for each trait in each health risk factor or disease outcome397

and the details for the sources of these GWAS summary statistics.398

First, we applied MR-LDP together with alternative methods to analyze to the exposure-399

outcome pairs using lipids as the exposure, i.e., HDL-C, LDL-C, and TC. Specifically, the400

selection and exposure datasets were obtained from [48] and [49], respectively, where the401

threshold for selecting instrumental variants in the selection dataset is set to 1× 10−4. The402

association results from the analysis are summarized in Table 1. Note that we did SNP pruning403

for RAPS, IVW, and MR-Egger and used the default settings in all alternative methods. As404

GSMR removes SNPs by providing an LD threshold, we chose to use r2 = 0.05 as suggested by405

its paper [15].406
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In practice, HDL-C and LDL-C are often referred as “good” and “bad” cholesterol, re-407

spectively. HDL-C is known to be inversely correlated with heart and vascular diseases. We408

found several significant protective effects of HDL-C against CAD1 (β̂ = −0.09), CAD2 disease409

(β̂ = −0.08), T2D (β̂ = −0.09), Dyslid (β̂ = −0.14), Hyper (β̂ = −0.05) , PVD (β̂ = −0.11)410

and DC (β̂ = −0.04), which is consistent with known epidemiological associations in the same411

direction [50, 51, 52]. In particular, although HDL-C was found to be associated with CAD412

in multiple observational studies [53, 54, 55], the role of HDL-C in CAD was overturned by413

later studies [56, 57]. Recently, Zhao et al. [42] showed that the effect of HDL-C in CAD414

is heterogeneous using different instruments. Moreover, MR-LDP identified the significant415

negative causality between HDL-C and PVD, which is consistent with previous studies [58, 59].416

On the other hand, MR-LDA identified the significant positive causality between LDL-C and417

CAD which is consistent with the fact that LDL-C narrows the arteries and increases the418

chance of developing heart diseases. Regarding TC, MR-LDP identified the significant risk419

effects for cardiovascular disease as confirmed by RCTs .420

To better understand of the impact of different thresholds, we re-performed the analysis for421

HDL-C on CAD1, CAD2, and PVD, separately, using a sequence of thresholds as shown in422

Figures 4, and S14 - S18. Several patterns can be observed: 1. Methods taking into account LD423

have small standard errors; 2. Using more SNPs under larger thresholds, the standard errors424

become smaller; 3. As thresholds become relatively large, e.g., 0.005, the point estimates tend425

to be biased. The first two patterns are expected. Generally, MR-LDP is robust under different426

thresholds but shows biasedness when the threshold is too liberal, which is primarily due to427

the inclusion of invalid variants. As the threshold is relatively large, more genetic variants with428

no associations to the exposure are included in the analysis, which induce biasedness either429

upward or downward depending on the directions of effects for invalid instrumental variants.430

Second, we examine the associations between BMI and common diseases where the exposure431

and the selection datasets were obtained from GIANT [60] and [61], respectively. We chose432

threshold to be 1 × 10−4 for selecting the instrumental variants from the selection dataset.433

The association results from the analysis are summarized in Table 2. Overall, our MR-LDP434

detected relatively more significant causality between BMI and complex diseases in this study.435

The extent of obesity increase the risk of certain diseases, such as heart disease, type 2 diabetes436

and hypertensive disease identified by RCT [62].437
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Lipids Outcome #SNPALL MR-LDP #SNPGSMR GSMR(prune) #SNPLD RAPS(prune) IVW(prune) MR-Egger(prune)

HDL-C CAD1 2104 -0.09(0.027) 269 -0.26(0.038) 203 -0.38(0.07) -0.36(0.07) -0.28(0.157)

CAD2 2071 -0.08(0.02) 277 -0.07(0.03) 206 -0.15(0.047) -0.15(0.047) -0.08(0.098)

T2D 2071 -0.09(0.031) 272 -0.16(0.044) 206 -0.33(0.081) -0.35(0.082) 0.03(0.17)

Dyslid 2071 -0.14(0.023) 255 -0.1(0.03) 206 -0.23(0.08) -0.26(0.076) -0.17(0.158)

Hyper 2071 -0.05(0.017) 270 -0.14(0.022) 206 -0.2(0.037) -0.21(0.038) -0.09(0.079)

PVD 2071 -0.11(0.048) 277 -0.12(0.077) 206 -0.19(0.109) -0.19(0.105) 0.12(0.222)

DC 2071 -0.04(0.01) 270 -0.08(0.013) 206 -0.09(0.025) -0.1(0.025) -0.03(0.052)

LDL-C CAD1 1867 0.27(0.029) 257 0.42(0.037) 193 0.34(0.065) 0.32(0.062) 0.33(0.133)

CAD2 1820 0.11(0.021) 266 0.16(0.027) 199 0.15(0.043) 0.14(0.043) 0.26(0.085)

Dyslid 1820 0.56(0.03) 258 0.94(0.027) 199 0.9(0.053) 0.86(0.051) 0.93(0.1)

DC 1820 0.08(0.01) 267 0.13(0.012) 199 0.13(0.019) 0.13(0.019) 0.17(0.037)

TC CAD1 2546 0.24(0.028) 309 0.46(0.036) 215 0.41(0.061) 0.39(0.062) 0.35(0.146)

CAD2 2484 0.08(0.02) 314 0.16(0.029) 218 0.15(0.043) 0.14(0.043) 0.22(0.094)

Dyslid 2484 0.54(0.03) 303 1.08(0.029) 218 0.93(0.055) 0.9(0.051) 0.97(0.111)

DC 2484 0.06(0.01) 314 0.13(0.012) 218 0.12(0.019) 0.12(0.019) 0.14(0.041)

Table 1: Causal associations of lipids with common diseases using UK10K as the reference

panel with shrinkage parameter λ = 0.1. MR-LDP uses all SNPs selected by the screening

dataset. The thresholds of r2 for GSMR and the other three methods are 0.05 and 0.001,

respectively. Statistically significant results are indicated in blue.

We also estimated some causal effects that are rarely involved in the previous MR analysis438

but reported in the epidemiological studies. For instance, BMI is an important risk factor for439

hemorrhoids [63]. BMI is positively associated with knee osteoarthritis and sleep duration440

reported by [64] and [65], respectively. We also confirmed a protective effect of BMI on441

osteoporosis reported by [66] and [67]. Moreover, the increased BMI is also considered to be442

one of the contributing factors for peripheral vascular disease [68].443

In addition, MR-Egger is too conservative to identify the causal relationship between BMI444

and common diseases, and the same conclusion can be found in [18]. Similar to lipids studies,445

we re-performed the analysis for BMI on hemorrhoids and PVD, respectively, using a sequence446

of thresholds as shown in Figures S19 - S22. The patterns are similar to those in Figures 4,447

and S14 - S18

Outcome #SNPALL MR-LDP #SNPGSMR GSMR(prune) #SNPLD RAPS(prune) IVW(prune) MR-Egger(prune)

CAD1 4405 0.2(0.084) 701 0.33(0.07) 563 0.2(0.121) 0.17(0.091) 0.2(0.129)

Asthma 4428 0.28(0.073) 707 0.23(0.061) 563 0.24(0.107) 0.19(0.08) 0.18(0.115)

CAD2 4428 0.23(0.066) 708 0.21(0.062) 563 0.26(0.105) 0.2(0.079) 0.22(0.113)

T2D 4428 0.85(0.141) 708 0.84(0.091) 563 1.22(0.16) 0.93(0.124) 1.46(0.175)

Dyslip 4428 0.22(0.076) 704 0.29(0.059) 563 0.18(0.133) 0.16(0.086) 0.29(0.124)

Hemorrhoids 4428 0.3(0.135) 709 0.2(0.111) 563 0.15(0.17) 0.11(0.129) -0.1(0.184)

Hyper 4428 0.47(0.066) 703 0.5(0.047) 563 0.58(0.095) 0.46(0.067) 0.54(0.097)

Insomnia 4428 0.77(0.235) 708 0.85(0.215) 563 1.24(0.325) 0.96(0.246) 0.6(0.353)

Osteoa 4428 0.27(0.078) 709 0.27(0.068) 563 0.26(0.114) 0.2(0.084) 0.39(0.119)

Osteop 4428 -0.44(0.178) 709 -0.36(0.15) 563 -0.62(0.238) -0.48(0.178) -0.73(0.254)

PVD 4428 0.35(0.167) 709 0.41(0.159) 563 0.32(0.242) 0.24(0.183) 0.41(0.263)

DC 4428 0.27(0.035) 700 0.3(0.027) 563 0.3(0.051) 0.23(0.037) 0.26(0.053)

Table 2: Causal associations of BMI with common diseases using UK10K as the reference panel

with shrinkage parameter λ = 0.1. MR-LDP uses all SNPs selected by the screening dataset.

The thresholds of r2 for GSMR and the other three methods are 0.05 and 0.001, respectively.

Statistically significant results are indicated in blue.
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Figure 4: The causal associations of HDL-C on CAD1 under different thresholds using UK10K

as the reference panel with λ = 0.1.

4 Discussion449

Here, we proposed a statistically rigorous and efficient approach to perform a two-sample MR450

analysis that accounts for both LD structure and horizontal pleiotropy using GWAS summary451

statistics and a genotype reference panel. We implemented our method in the R package452

MR.LDP, which is available for download at Github. MR-LDP jointly estimated the causal453

effect through an approximated likelihood of GWAS summary statistics from both the risk454

factor and disease outcome using an additional variance component to eliminate the impact of455

horizontal pleiotropy. Thus, MR-LDP controls for type-I error in the presence of LD structure456

among instrumental variants and horizontal pleiotropy and is statistically more powerful in457

identifying causal effects.458

MR-LDP is particularly suited to analyze complex traits that have multiple instrumental459
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variants within LD. The key is to jointly model the distributions for summary statistics and460

the causal relationship between the risk factor and disease outcome. The only approximation461

here uses the fact of polygenicity in complex traits for the distributions of summary statistics.462

Moreover, we model the causality as Equation (2.4) as the average of ‘local’ causal effect [32].463

The linear model (2.4) holds in very general situations, beyond the linear structural model464

presented in the supplementary document; see Appendix A in [32] for details. To further465

eliminate the impact of horizontal pleiotropy, we used a random effect to control the variation in466

disease outcome. As horizontal pleiotropy is not an estimate of interest, a Gaussian distribution467

with a mean of zero and a variance parameter is generally robust although the underlying468

horizontal pleiotropy is sparse. Therefore, the complete-data likelihood for MR-LDP can be469

written as Equation (2.5). As the iteration for the standard EM algorithm involves inverting470

R̂, which may cause numerical failure, we developed a PX-VBEM algorithm by expanding471

parameters. Our previous works have shown that the parameter expansion step is crucial in472

speeding up the algorithm, and we refer to the supplementary document in [36] for details.473

To further conduct hypothesis testing for causal effects, we calibrated the EBLO from the474

PX-VBEM algorithm. In our numerical studies, we demonstrated that MR-LDP is more475

effective in controlling type-I error in the presence of LD and either sparse or dense horizontal476

pleiotropy. These merits enable us to apply MR-LDP using GWAS summary statistics, likely477

yielding more fruitful and meaningful causal discovery in the future.478

We used two pairs (CAD-CAD and Height-Height) of real data to partially validate the479

proposed method. As the risk factor and the outcome are the same, we can take true causal480

effect as known (β0 = 1). By applying MR-LD and MR-LDP with alternative methods, we481

found that estimates from the proposed methods can effectively cover the true β0 with 95%482

confidence intervals with instrument variants chosen under a wide ranging of thresholds. When483

more instrumental variants come into the model under a less stringent threshold, the estimates484

for the causality have narrower confidence intervals or smaller standard errors. We also note485

that MR-LDP has wider confidence interval. This is because MR-LDP makes additional efforts486

to model the horizontal pleiotropy.487

In this article, we primarily focus on modeling the lipids and BMI as the exposures and488

complex diseases as the outcomes. Using a threshold of 1 × 10−4 in the selection dataset,489

we identified multiple pairs of significant causal relationships, including a protective effect490
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of high-density lipoprotein cholesterol (HDL-C) on peripheral vascular disease (PVD), and a491

positive causal effect of body mass index (BMI) on hemorrhoids. We further demonstrated the492

robustness of MR-LDP using a sequence of threshold values to select instrumental variants.493

The empirical results show that the threshold of 0.001 is optimal to balance the standard error494

and biasedness. However, MR-LDP is not without limitations. First, MR-LDP cannot be495

utilized for overlapped samples in SNP-exposure and SNP-outcome. Furthermore, MR-LDP496

cannot address the selection bias explicitly but uses an extra SNP-exposure summary statistics497

to select instrumental variants.498

Web Resources499

MR.LDP is available at Github (https://github.com/QingCheng0218/MR.LDP).500

BMI(Jap): ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/AkiyamaM_28892062_501

GCST004904.502

Other BMI datasets: https://portals.broadinstitute.org/collaboration/giant/index.503

php/GIANT_consortium_data_files#2018_GIANT_and_UK_BioBank_Meta_Analysis_for_Public_504

Release505

lipids(screen datasets): http://csg.sph.umich.edu/willer/public/lipids2010/.506

lipids(exposure datasets): http://csg.sph.umich.edu/willer/public/lipids2013/.507

CAD datasets: http://www.cardiogramplusc4d.org/data-downloads/508

Common human disease datasets: http://cnsgenomics.com/data.html.509

UK10K datasets: https://www.uk10k.org/data_access.html.510
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