

1

2

3 **Tel1 activation by the MRX complex is sufficient for telomere length regulation but not for**
4 **the DNA damage response in *S. cerevisiae***

5

6 Rebecca Keener*†, Carla J. Connelly*, Carol W. Greider*

7 *Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine,
8 Baltimore, Maryland 21205 †Biochemistry, Cellular and Molecular Biology Graduate Program,
9 Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

10

11

12

13

14

15

16

17

18

23

24

25 **Running Title:** Pathways for telomeres and repair

26

27 **Keywords:** Tel1, MRX complex, telomere, DNA damage response, epistasis

28

29 **Corresponding Author:** Carol W. Greider

30 **Address:** 725 N. Wolfe St. PCTB 603 Baltimore, Maryland 21205

31 **Phone Number:** 410-955-3292

32 **e-mail address:** cgreider@jhmi.edu

33

34

35

36

37

38

39

40

41

42

43

44

45 **Abstract**

46

47 Previous models suggested that regulation of telomere length in *S. cerevisiae* by Tel1(ATM) and
48 Mec1(ATR) parallel the established pathways regulating the DNA damage response. Here we
49 provide evidence that telomere length regulation differs from the DNA damage response in
50 both the Tel1 and Mec1 pathways. We found that Rad53 mediates a Mec1 telomere length
51 regulation pathway but is dispensable for Tel1 telomere length regulation, whereas in the DNA
52 damage response Rad53 is regulated by both Mec1 and Tel1. Using epistasis analysis with a
53 Tel1 hypermorphic allele, Tel1-hy909, we found that the MRX complex is not required
54 downstream of Tel1 for telomere elongation but is required downstream of Tel1 for the DNA
55 damage response. Since models that invoke a required end processing event for telomerase
56 elongation are primarily based on the yeast pathways, our data call for a re-examination of the
57 requirement for telomere end processing in both yeast and mammalian cells.

58

59

60

61

62

63

64

65

66

67 **Introduction**

68

69 Telomere length regulation is critical for cell viability and disruption of length homeostasis leads
70 to disease (STANLEY AND ARMANIOS 2015). Telomerase adds telomere repeats onto chromosome
71 ends and redundant pathways tightly regulate this addition. In humans, decreased telomerase
72 activity causes short telomere syndromes (ARMANIOS AND BLACKBURN 2012) while telomerase
73 activation promotes cancer growth (GREIDER 1999). Thus, understanding the feedback pathways
74 for maintaining telomeres is critical to understanding disease. The Ataxia Telangiectasia-
75 Mutated (ATM) and Ataxia-Telangiectasia and Rad3-related (ATR) checkpoint kinases play a role
76 in both sensing damage and maintaining telomeres around an equilibrium point in yeast (RITCHIE
77 *et al.* 1999) and in mammalian cells (LEE *et al.* 2015; TONG *et al.* 2015; DE LANGE 2018) yet their
78 underlying mechanisms remain unclear.

79

80 In *Saccharomyces cerevisiae* multiple independent pathways control telomere length. Tel1, the
81 ATM homolog, and Mec1, the ATR homolog, regulate partially redundant pathways that affect
82 both telomere length and the DNA damage response. *TEL1* and *MEC1* mutations shorten
83 telomeres, although *TEL1* deletion has a greater effect on telomere shortening than *MEC1*
84 mutants. However, the double mutant has an additive effect on telomere shortening,
85 suggesting the kinases regulate parallel pathways (RITCHIE *et al.* 1999). While hypomorphs in
86 *MEC1* show clear telomere shortening, *MEC1* deletions have led to some conflicting conclusions
87 in the literature (DI DOMENICO *et al.* 2014). *MEC1* is an essential gene as *mec1Δ* cells are inviable
88 because they are not able to activate dNTP production. *mec1Δ* cells survive only with co-

89 deletion of either *SML1* or *CRT1*, and in *mec1Δ sml1Δ* or *mec1Δ crt1Δ* cells, dNTP production is
90 increased. *mec1Δ sml1Δ* and *mec1Δ crt1Δ* have different effects on telomere length which has
91 been attributed to the fact that *SML1* and *CRT1* regulate different pathways of dNTP production
92 (MAICHER *et al.* 2017). Mec1 and Tel1 also both play a role in the DNA damage response, where
93 Mec1 has the greater effect. *TEL1* deletion on its own does not show DNA damage sensitivity,
94 but strains with mutations in both *TEL1* and *MEC1* show higher sensitivity to DNA damage than
95 *MEC1* mutation alone (MORROW *et al.* 1995). These experiments indicate that *TEL1* and *MEC1*
96 have roles in both the DNA damage response and telomere length regulation.

97

98 The distinct effects of *tel1Δ* and *mec1Δ* on telomere length and the DNA damage response
99 suggest Tel1 and Mec1 may have different critical substrates. Both Tel1 and Mec1
100 phosphorylate S/T-Q motifs (KIM *et al.* 1999). This identical phosphorylation motif has made
101 identifying unique substrates of each kinase challenging. Mass spectrometry approaches have
102 identified specific Tel1 and Mec1 substrates, in addition to shared substrates (BASTOS DE OLIVEIRA
103 *et al.* 2015), but the biological consequences of these phosphorylation events remain unclear.

104

105 While hundreds of Tel1/Mec1 substrates have been identified, those that are critical for the
106 DNA damage response and telomere length have not been defined. We investigated the role of
107 two known substrates: Rad53 and the MRX complex. Both candidates were reported to be
108 phosphorylated by Tel1 and/or Mec1 in response to DNA damage (D'AMOURS AND JACKSON 2001;
109 NAKADA *et al.* 2003b; SMOLKA *et al.* 2007; ALBUQUERQUE *et al.* 2008; BASTOS DE OLIVEIRA *et al.* 2015;
110 LAVIN *et al.* 2015). In the DNA damage response, both Tel1 and Mec1 phosphorylate Rad53,

111 activating it's kinase activity (Figure 1A)(NAKADA *et al.* 2003b). However, Tel1 phosphorylation is
112 considered less important relative to Mec1 phosphorylation of Rad53 (USUI *et al.* 2001). In
113 response to a double-strand break, Tel1 interaction with the MRX complex activates Tel1 kinase
114 activity and Tel1 subsequently phosphorylates the MRX complex, in addition to other
115 substrates (LEE *et al.* 2013; BASTOS DE OLIVEIRA *et al.* 2015). The MRX complex resects the double-
116 strand break to facilitate repair and several studies indicate that Tel1 modulates this process
117 (LAVIN *et al.* 2015). In this model the MRX complex can be considered both upstream and
118 downstream of Tel1 for the DNA damage response (Figure 1A). Several studies have suggested
119 that similar regulatory events occur at the telomere (TSUKAMOTO *et al.* 2001; LARRIVEE *et al.* 2004;
120 VISCARDI *et al.* 2007; BONETTI *et al.* 2009), although specific mechanisms are not well established.

121

122 In this study we used mutagenesis and epistasis analysis to show that *RAD53* is in the *MEC1*
123 telomere length pathway. In addition, epistasis analysis showed the MRX complex acts both
124 upstream and downstream of Tel1 in the DNA damage response, as characterized by others.
125 However, strikingly, the MRX complex is only required upstream of Tel1 in telomere length
126 regulation. Therefore, while the MRX complex is required to activate Tel1 kinase activity, it is
127 not required for telomere resection. These findings demonstrate that the regulation of these
128 proteins in the DNA damage response are distinct from their regulation in telomere length
129 maintenance and challenge the assumption that a telomere must be resected by the MRX
130 complex for telomere elongation by telomerase.

131

132

133 **Materials and Methods**

134

135 **Molecular Cloning**

136

137 Each plasmid was constructed using Gibson Assembly (GIBSON 2011), for detailed explanations
138 of cloning strategies see File S1. Primers were designed using Snapgene software (GSL Biotech),
139 products were amplified with Phusion HS II DNA polymerase (Thermo Fisher F549), and Gibson
140 Assembly Master Mix (New England Biolabs E5510) was used according to the New England
141 Biolabs (NEB) recommended protocol. All restriction enzymes and NEB5 α competent cells (NEB
142 C2987H) are from NEB. Plasmids were prepared using QIAprep Miniprep Kit (Qiagen 27106) and
143 all sequencing was performed using the Sanger method.

144

145 **Site-directed mutagenesis**

146

147 S/T-Q mutations and *TEL1-hy909* mutations were introduced by site-directed mutagenesis
148 using primers designed by PrimerX.org. Primer sequences are listed in Table S3. In each case,
149 the plasmid was amplified using PfuTurbo (Agilent 600252). The product was *Dpn*I-treated,
150 ethanol precipitated, and transformed into DH5 α cells (Thermo Fisher 18265017). Clones were
151 isolated and sequence verified.

152

153 **Yeast culturing and transformation**

154

155 Yeast culturing, transformation, and sporulation were conducted as described in (GREEN AND
156 SAMBROOK 2012). Briefly, transformation was carried out on 50 mL of logarithmically cultured
157 cells treated with 0.1 M Lithium Acetate (LiAc, Sigma L6883). DNA was added to a 50 μ L aliquot
158 of cells in addition to 50 μ g boiled fish sperm carrier DNA (Roche 11467140001). Cells were
159 equilibrated at 30° for 10 minutes after which 0.5 mL 40% Polyethylene glycol (PEG₄₀₀₀, Sigma
160 P4338) containing 0.1 M LiAc was added. Cells were incubated at 30° for 30 minutes then heat
161 shocked at 42° for 15 minutes. Transformed cells were washed with sterile water and plated on
162 the appropriate selective media. In cases where an antibiotic selectable marker was used, cells
163 were recovered in 1 mL Yeast-extract Peptone Dextrose (YPD) at 30° for 3-4 hours before
164 plating. One-step integration was used for all integrated constructs. After transformation,
165 integration at the desired locus was confirmed by junction Polymerase Chain Reaction (PCR). In
166 cases where mutations were introduced, the region was amplified using Phusion HS II DNA
167 polymerase the amplicon was purified using AMPure beads (Beckman Coulter A63881), and
168 sequenced to confirm the presence of mutations *in vivo*.

169

170 **Passaging yeast**

171

172 Because we initiate our experiments with strains that are heterozygous for multiple alleles of
173 interest, dissection of twenty tetrads often yields all combinations of the alleles. This makes it
174 possible to obtain experimental and control samples in parallel. Treating all haploids in parallel
175 is critical for evaluating telomere length as telomere length can be sensitive to differences in
176 culturing time. In cases where the diploid genotype did not allow isolation of an important

177 control, a second diploid, from which that control can be segregated, was dissected in parallel.

178 After tetrad dissection and replica plating to identify segregants of interest, haploids were

179 streaked to single cell on a YPD plate. This streak was designated as the first passage, after

180 which these cells are estimated to have undergone 40 population doublings. Subsequently, cells

181 were re-streaked repeatedly to increase the number of cell divisions. Each passaged plate was

182 incubated for 48 hours at 30° after which cells were picked from the streak dilution and re-

183 streaked to single cell again on a fresh plate. Each passage is estimated to require

184 approximately 20 population doublings. Therefore, a strain passaged five times undergoes a

185 total of approximately 120 population doublings. At the desired number of passages, cells were

186 inoculated into a 5 mL liquid YPD culture and grown at 30° overnight or until saturated. Cell

187 pellets were saved at -20° until all time points had been collected, at which time genomic DNA

188 was extracted. Images of the plates at specific time points were taken to document potential

189 growth defects.

190

191 ***MRX-tag* and *mrx-18A* strain construction**

192

193 A yRK1006 *MRE11-3HA-URA3* segregant was mated to a yRK2040 *RAD50-G6-V5-LEU2*

194 segregant, yielding yRK1. The *XRS2-13myc-hphMX4* construct (pRK1028) was transformed into

195 yRK1, yielding yRK60. A yRK60 segregant with all three *MRX-tag* components was mated to a

196 *mec1Δ sml1Δ* haploid (JHUy816 segregant) to yield yRK79 and yRK80. The *mrx-18A* parental

197 diploids were constructed in a manner parallel to the *MRX-tag* parental diploids. A yRK1052

198 *mre11-4A-3HA-URA3* segregant was mated to a yRK2082 *rad50-10A-G6-V5-TRP1* segregant,

199 yielding yRK26. The *xrs2-4A-13myc-hphMX4* construct (pRK1040) was transformed into yRK26,
200 yielding yRK56. A yRK56 segregant with all three *mrx-18A* components was mated to a *mec1Δ*
201 *smf1Δ* haploid (yYM242 segregant) to yield yRK81 and yRK83. Mutations were confirmed again
202 in yRK81 and yRK83 by sequencing.

203

204 ***rad50S* knock-in using CRISPR/Cas9**

205

206 gRNA sequences were chosen using the algorithms published by Doench et al. via the Benchling
207 (Biology Software, 2019) interface (DOENCH *et al.* 2016). Two guides, RW 670 and RW 671, were
208 individually cloned into pCAS026 using the strategy described by Anand et al. (ANAND *et al.*
209 2017). gRNA sequences are listed in Table S3. Double-stranded homology repair templates
210 were amplified (primers RW 674, RW 675) using a 90-mer oligonucleotide as the template. The
211 repair template was designed to both introduce the Rad50S mutation (Lys81Ile) (ALANI *et al.*
212 1990) and introduce a silent mutation in the Protospacer Adjacent Motif (PAM) sequence.
213 Primer RW 672 was used as the template for the RW 670 guide and primer RW 673 was used as
214 the template for the RW 671 guide. SPRI beads (Beckman Coulter B23318) were used to purify
215 the repair template before transformation. yRK114 haploid cells were cultured for
216 transformation as described above except that no carrier DNA was added and 100 µL of cells
217 were used in the transformation reaction. Cells were transformed with 1 µg of pCAS026
218 containing the appropriate guide and 4-5 µg of double-stranded repair template. Cells were
219 grown on minimal media without uracil to select for cells that contained the pCAS026 plasmid.
220 The *rad50S* allele was validated by sequencing. yRK2112 was edited using the RW 670 guide

221 while yRK2116 was edited using the RW 671 guide. yRK2113 was transformed with pCAS026
222 containing the RW 670 guide but was not edited and was used in parallel to serve as a control.
223 Haploids were streaked on minimal media containing 5-Fluoroorotic Acid (5-FOA) (Toronto
224 Research Chemicals F595000) to select against the pCAS026 plasmid followed by five passages
225 on YPD plates before telomere elongation was observed by Southern blot (data not shown).

226

227 **Southern blot analysis**

228

229 Genomic DNA was extracted and used for Southern blot analysis as described previously (KAIZER
230 *et al.* 2015). Briefly, a cell pellet of approximately 50 μ L was resuspended in 1x Lysis Buffer (10
231 mM Tris, pH 8.0, 0.5 M EDTA, pH 8.0, 100 mM NaCl, 1% SDS, 2% Triton X-100) and cells were
232 lysed in the presence of 0.3mm glass beads (Biospec products, Inc. 11079105). Phenol-
233 chloroform (50:50) was added and cells were vortexed for 8 min (Eppendorf mixer 5432). The
234 DNA was ethanol precipitated and resuspended in 40-50 μ L TE (10 mM Tris, pH 8.0, 1 mM
235 EDTA) with RNaseA (10 μ g/mL) at 37° for one hour or 4° overnight.

236

237 Samples were cut with the restriction enzyme *Xhol* and electrophoresed at 47 V (12 mA) on a
238 1.0% agarose in 1x TTE buffer (20x = 1.78 M Tris base, 0.57 M Taurine, 0.01 M EDTA) for
239 approximately 24 hours. 200 ng of 2-log DNA ladder (NEB N3200) was included for reference.
240 The genomic DNA was transferred to a Hybond N+ membrane (GE Healthcare RPN303B) by
241 vacuum blotting (Boekel Appligene vacuum blotter) for 1 hour at 50 mbar with the gel covered
242 in 10x SSC buffer (1.5 M NaCl, 0.17 M sodium citrate). Once transferred, the DNA was UV

243 crosslinked (Stratagene UV Stratalinker 2400). The membrane was prehybridized in Church
244 buffer (0.5 M Tris, pH 7.2, 7% SDS, 1% bovine serum albumin, 1 mM EDTA) at 65° then $\alpha^{32}\text{P}$ -
245 dCTP-radiolabeled (Perkin Elmer) fragments of the Y' element and the 2-log DNA ladder were
246 added at 10^6 cpm/mL and 10^4 cpm/mL, respectively. The membrane was incubated with the
247 radiolabeled probe overnight, washed in 1x SSC, 0.1% SDS buffer at 65°, imaged with a Storage
248 Phospho Screen (GE Healthcare) overnight and then scanned on a Storm 825 imager (GE
249 Healthcare). The images were copied from ImageQuant (GE Life Sciences) to Adobe PhotoShop
250 CS6 and saved as .tif files. The images were cropped in Adobe PhotoShop CS6 to show only the
251 telomere restriction fragment.

252

253 **Western blot**

254

255 Protein extracts were prepared by Trichloroacetic acid (TCA) extraction (LINK AND LABAER 2011).
256 Samples were resolved on a NuPAGE 3-8% Tris-Acetate gradient polyacrylamide gel (Invitrogen
257 EA0375) in 1x Tris-Acetate running buffer (Invitrogen LA0041) using the Invitrogen NuPAGE
258 system with protein ladder standards (Bio-Rad 161-0374). The gel was transferred by
259 electroblotting to a PVDF membrane (Thermo Fisher IPFL00010) using NuPAGE transfer buffer
260 (20x: 40.8 g Bicine, 52.4 g Bis-Tris, 3.0 g EDTA) at 30 V for 1.5 hours. The membrane was
261 blocked with Odyssey buffer (Li-Cor 927-40000) for 1 hour at room temperature or overnight at
262 4°. Primary antibodies were diluted in blocking buffer and incubated at room temperature for 1
263 hour (Sigma Aldrich M2 Flag at 1:1,000; Invitrogen 22C5D8 Pgk1 at 1:6,000; Roche 12CA5 HA at
264 1:2,000; Invitrogen R960-25 V5 at 1:2,000; Santa Cruz 9E10 c-myc at 1:10,000). The membrane

265 was washed in 1x Tris Buffered Saline with Tween-20 (TBST) buffer (10x TBST: 0.2 M Tris Base,
266 1.5 M NaCl, 1% Tween-20) before incubation at room temperature for 30 minutes with a Horse
267 Radish Peroxidase (HRP) conjugated secondary antibody (Bio-Rad 1706516 at 1:10,000) in 5%
268 powdered milk (Bio-Rad 170-6404) resuspended in 1x TBST. The membrane was washed in 1x
269 TBST and then incubated with Forte HRP substrate (Millipore WBLUF0100) followed by imaging
270 on ImageQuant LAS 4000 mini biomolecular imager (GE Healthcare). The images were copied
271 from ImageQuant (GE Life Sciences) to Adobe PhotoShop CS6 and saved as .tif files.

272

273 **Mutagen challenge**

274

275 Strains of interest were inoculated to an initial OD600 of 0.15-0.25 in 8-10 mL YPD. Once the
276 density reached an OD600 of 0.5-0.6, the culture was split into untreated and treated samples.
277 4-nitroquinoline (Sigma N8141) was resuspended in acetone at a stock concentration of 1 mM.
278 15U Bleomycin (Fresenius Kabi C103610) was dissolved in 10 mL sterile water and used as a 1
279 mg/mL stock. Hydroxyurea (US Biologicals H9120) was resuspended in sterile water at a stock
280 concentration of 1 M. Methyl methanesulfonate (MMS) (Sigma 129925) was treated as 100%.
281 The appropriate chemical was added to each treated sample and cultured at 30° with slight
282 agitation for 1-2 hours, as indicated in the figure legends. Untreated samples were cultured in
283 parallel. Cell pellets of equal density were collected for each sample based on the OD600. The
284 size of the cell pellet varied between experiments from 0.6 OD to 8.0 OD, as indicated in the
285 figure legends. Each pellet was resuspended in 1 mL YPD and serially diluted 1:5 in YPD in a 96-
286 well dish. 4 µL of each dilution was spotted onto a YPD plate and the plates were cultured at

287 30° for 48 hours before being imaged on a Bio-Rad Gel Doc XR+ Imaging System under white
288 light using Image Lab 6.0.1 software.

289

290 **Quantitative MMS survival assay**

291

292 Freshly grown strains of interest were inoculated to an initial OD600 of 0.2-0.3 in 6 mL YPD.
293 Once density reached 0.5-0.6 OD600, an untreated sample was plated for each strain before
294 cells were treated with 0.01% MMS. 30-minute time points were taken up to 120 minutes for
295 each strain. A Millipore Scepter with 40 µm tips was used to measure cells/mL at each time
296 point. Approximately 500 cells were plated across five YPD plates, with approximately 100 cells
297 per plate, for each strain and at each timepoint. Samples were blinded before plating and the
298 plates were incubated at 30° for 48 hours. Colony forming units were counted for each blinded
299 sample and once all plates were counted, the results were unblinded. At each timepoint the
300 number of colonies was calculated as a proportion: the total number of colonies for that strain
301 at that timepoint relative to the total number of colonies for that strain at the untreated time
302 point (t=0). Data were graphed using Prism 5.0b and the standard error of the mean is shown.

303

304 **Plasmid end-joining assay**

305

306 Cells were cultured and treated as described above for yeast transformation. Once density
307 reached an OD600 of 0.6-0.8 the cells were transformed with 100 ng of *Stu*I-linearized pRS317
308 (SIKORSKI AND BOEKE 1991), which generates blunt ends, or with 100 ng of circular pRS317. 50 µg

309 boiled fish sperm carrier DNA (Roche 11467140001) was added to both linear and circular
310 transformation reactions. Three replicate transformations were performed for both linear and
311 circular plasmids and for each strain. Cells were plated on minimal media without lysine. After
312 48 hours of incubation at 30°, colony forming units were counted. The average number of
313 colonies of the three replicates containing circular DNA was calculated for each strain. Each
314 linear DNA transformation was treated as a technical replicate. The number of colonies from
315 each linear DNA transformation plate was normalized to the average number of colonies of
316 circular DNA for that strain. Data were plotted and analyzed in Prism 5.0b. An unpaired two-
317 tailed student *t*-test was performed between samples.

318

319 **Data Availability Statement**

320

321 All strains and plasmids are available upon request. The Reagent Table provides a reference for
322 all genes, strains, software, and many reagents used in this study. Table S1 contains all strains
323 used in this study. Table S2 contains all plasmids used in this study and a brief description of
324 their purpose. Table S3 contains all primers used in this study and a brief description of their
325 purpose. File S1 has a detailed explanation of how all plasmids used in this study were
326 constructed. All supplemental files, including the Reagent Table, have been uploaded to
327 figshare.

328

329

330

331 **Results**

332

333 **Rad53 regulates telomere length through the Mec1 pathway**

334

335 Rad53 kinase is a candidate substrate that could mediate telomere length since both Tel1 and

336 Mec1 phosphorylate Rad53 and kinase-dead Rad53 has short telomeres (LONGHESE *et al.* 2000;

337 NAKADA *et al.* 2003b). We used epistasis and mutational analyses to examine whether Rad53

338 functions in the Tel1 or Mec1 telomere length pathway (Figure 1A). We deleted either *SML1* or

339 *CRT1*, regulators of dNTP pools that were previously shown to suppress the lethality of *mec1Δ*

340 and *rad53Δ* (HUANG *et al.* 1998; ZHAO *et al.* 1998). While it is most common in the literature to

341 use *sml1Δ* to rescue *mec1Δ* lethality, there is evidence that *SML1* deletion can mask telomere

342 length phenotypes (LONGHESE *et al.* 2000). Therefore, we initially compared the effects of

343 deleting *sml1Δ* or *crt1Δ* on telomere length in *tel1Δ* or *mec1Δ* mutants.

344

345 All of our experiments were carried out in haploid yeast, however, to avoid telomere length

346 changes that can occur with long term propagation of haploids, we standardly generated fresh

347 haploids by sporulating heterozygous diploids (see methods). We generated diploid strains that

348 were heterozygous for *TEL1/tel1Δ MEC1/mec1Δ SML1/sml1Δ* and *CRT1/crt1Δ* and then

349 sporulated to obtain haploids with specific mutant combinations. While *sml1Δ* and *mec1Δ*

350 *sml1Δ* cells had telomeres similar to wild-type cells, *crt1Δ* cells had slightly shorter telomeres

351 (Figure 1B, compare lanes 2-5 to lanes 6-7) and *mec1Δ crt1Δ* cells had shorter telomeres than

352 *crt1Δ* cells (Figure 1B, compare lanes 8-9 to lanes 6-7). *mec1Δ crt1Δ* telomeres were similar to

353 the short telomeres reported in *mec1-1* and *mec1-21* cells (data not shown) (RITCHIE *et al.* 1999).
354 *tel1Δ sml1Δ* cells showed short telomeres very similar to *tel1Δ* mutants. However, *tel1Δ crt1Δ*
355 telomere lengths were slightly shorter than *tel1Δ sml1Δ* (Figure 1B, compare lanes 14-15 to
356 lanes 16-17). We conclude that *sm1Δ* masks the short telomere phenotype of *mec1Δ* cells
357 while *crt1Δ* does not, although *crt1Δ* has a mild telomere shortening effect on its own.

358

359 To examine whether Rad53 plays a role in the Tel1 or Mec1 telomere length pathway, we
360 generated diploids heterozygous for *TEL1/tel1Δ MEC1/mec1Δ RAD53/rad53Δ* and *CRT1/crt1Δ*
361 and sporulated to obtain specific mutant combinations. We observed that *crt1Δ* suppresses
362 *rad53Δ* lethality, consistent with previous reports (Figure S1B) (HUANG *et al.* 1998). We
363 compared *mec1Δ crt1Δ* telomeres to *mec1Δ rad53Δ crt1Δ* and observed no additive shortening
364 (Figure 1C, compare lanes 7-8 to lanes 5-6), which is consistent with Rad53 functioning in the
365 Mec1 telomere length regulation pathway. In contrast, we found there was additive shortening
366 in *tel1Δ rad53Δ crt1Δ* telomeres compared to *tel1Δ crt1Δ* (Figure 1C, compare lanes 11-12 to
367 lanes 15-16), supporting the conclusion that Tel1 and Rad53 are in different length regulation
368 pathways. However, *tel1Δ rad53Δ crt1Δ* telomeres were slightly longer than *tel1Δ mec1Δ crt1Δ*
369 telomeres (Figure 1C, compare lanes 11-12 to lanes 13-14), suggesting that either Rad53 has
370 functions in both the Tel1 and Mec1 telomere length pathways or that Rad53 acts exclusively in
371 the Mec1 telomere length pathway which also relies on additional Mec1 substrates for
372 telomere length regulation.

373

374 **Phosphorylation of Rad53 on S/T-Q motifs regulates telomere length**

375

376 To examine the role of Rad53 as a Tel1/Mec1 substrate that mediates telomere length, we
377 examined a Rad53 mutant where Tel1/Mec1 S/T-Q phosphorylation motifs were mutated to A-
378 Q. Previous work demonstrated that a subset of the Rad53 S/T-Q motif clusters are critical for
379 Rad53 function in the DNA damage response and that this mutant, *rad53*^{1-4/9-12AQ}, could not
380 respond to Mec1 or Tel1 regulation (LEE *et al.* 2003). Both Rad53 and *rad53*^{1-4/9-12AQ} were viable
381 when expressed off of a plasmid using the endogenous promoter in *rad53* Δ cells and did not
382 require co-deletion of *SML1* or *CRT1* (Figure S1A and data not shown). We integrated 3xFLAG-
383 tagged *rad53*^{1-4/9-12AQ} or 3xFLAG-tagged *RAD53* at the endogenous locus in *TEL1/tel1* Δ
384 *MEC1/mec1* Δ *CRT1/crt1* Δ diploid cells to better control the segregation of these alleles. Rad53
385 and Rad53^{1-4/9-12AQ} were stably expressed, as shown previously (LEE *et al.* 2003)(data not
386 shown). Unlike the plasmid expression system, we noted that integrated *rad53*^{1-4/9-12AQ} is lethal
387 unless it co-segregates with *sml1* Δ or *crt1* Δ (Figure S1B). *rad53*^{1-4/9-12AQ} *crt1* Δ cells had shorter
388 telomeres than *RAD53-tag crt1* Δ cells (Figure 1D, compare lanes 7-8 to lanes 5-6),
389 demonstrating that phosphorylation of Rad53 contributes to telomere length regulation.

390

391 We did not observe additive shortening in *mec1* Δ *rad53*^{1-4/9-12AQ} *crt1* Δ cells compared to *mec1* Δ
392 *crt1* Δ or *rad53*^{1-4/9-12AQ} *crt1* Δ cells (Figure 1D, compare lanes 15-16 to lanes 17-18 and lanes 13-
393 14), consistent with Mec1 targeting these phosphorylation sites. In contrast, we observed
394 additive shortening in *tel1* Δ *rad53*^{1-4/9-12AQ} *crt1* Δ cells compared to *rad53*^{1-4/9-12AQ} *crt1* Δ cells
395 (Figure 1D, compare lanes 9-10 to lanes 7-8), further supporting the conclusion that Tel1 and
396 Rad53 are in different pathways. We observed only a slight shortening in *tel1* Δ *rad53*^{1-4/9-12AQ}

397 *crt1Δ* cells compared to *tel1Δ crt1Δ* cells (Figure 1D, compare lanes 9-10 to lanes 11-12). Similar
398 to our earlier findings, this is consistent with either Tel1 and Mec1 phosphorylate Rad53 for
399 telomere length regulation or that there are other Mec1 substrates that are key for telomere
400 length in addition to Rad53.

401

402 **Tel1-hy909 requires Rad53 for DNA damage response but not for telomere length regulation**

403

404 To directly examine whether Tel1 telomere length regulation is Rad53-dependent, we
405 performed epistasis analysis with *rad53Δ crt1Δ* and a Tel1 hypermorphic allele, *TEL1-hy909*,
406 which has increased Tel1 kinase activity, increased DNA damage response function, and long
407 telomeres (BALDO *et al.* 2008). We generated diploids heterozygous for *TEL1/TEL1-hy909*
408 *RAD53/rad53Δ* and *CRT1/crt1Δ* and diploids heterozygous for *TEL1/TEL1-hy909 MEC1/mec1Δ*
409 and *CRT1/crt1Δ*. We first examined the DNA damage response in haploid cells by challenging
410 them with a DNA-damaging agent, methyl methanesulfonate (MMS). *mec1Δ crt1Δ* cells were
411 sensitive to DNA damage while *TEL1-hy909 mec1Δ crt1Δ* cells were not (Figure 2A), consistent
412 with previous reports (BALDO *et al.* 2008). This indicates that Tel1 hyperactivity can rescue the
413 DNA damage response in a *mec1Δ* mutant. Like *mec1Δ crt1Δ*, the *rad53Δ crt1Δ* cells were also
414 sensitive to DNA damage (Figure 2B). However, unlike *TEL1-hy909 mec1Δ crt1Δ* cells, *TEL1-*
415 *hy909 rad53Δ crt1Δ* cells were still sensitive to MMS challenge (Figure 2B). Further, while *TEL1-*
416 *hy909* was able to rescue *mec1Δ* lethality (Figure S2A), as previously shown (BALDO *et al.* 2008),
417 *TEL1-hy909* was not able to rescue *rad53Δ* lethality (Figure S2B). These data indicate that Rad53
418 is essential to mediate the Tel1-hy909 DNA damage response.

419

420 We next examined telomere length in *TEL1-hy909* and *TEL1-hy909 rad53Δ crt1Δ* mutants. *TEL1-*
421 *hy909 rad53Δ crt1Δ* cells had an intermediate telomere length between *TEL1-hy909* and *rad53Δ*
422 *crt1Δ* (Figure 2C). This indicates that either Rad53 has a partially redundant role in the Tel1
423 telomere length regulation pathway or that Rad53 and Tel1 function in independent pathways.
424 We reasoned that if Rad53 was important for Tel1-hy909 telomere elongation then telomeres
425 would not further elongate with increased divisions in the absence of Rad53. We passaged
426 *TEL1-hy909 rad53Δ crt1Δ* cells and observed that telomeres elongated with further passages
427 (Figure 2D). This suggests that Rad53 is not required for Tel1 telomere length regulation which
428 is in stark contrast to the Rad53-dependence of Tel1-hy909 for the DNA damage response
429 (Figure 2A). Together, these data suggest that Rad53, likely with other unidentified proteins,
430 functions in the Mec1 telomere length pathway, but is not required in the Tel1 telomere length
431 pathway.

432

433 **S/T-Q sites in MRX affect the DNA damage response but not telomere length regulation**

434

435 Having found that Rad53 is not essential to mediate the Tel1 telomere length response, we next
436 tested whether the MRX complex might be a critical Tel1 substrate. In both yeast and
437 mammalian cells, all three components of the MRX(N) complex are phosphorylated by
438 Tel1/Mec1 (ATM/ATR) (D'AMOURS AND JACKSON 2001; NAKADA *et al.* 2003b; SMOLKA *et al.* 2007;
439 ALBUQUERQUE *et al.* 2008; BASTOS DE OLIVEIRA *et al.* 2015; LAVIN *et al.* 2015). Tel1 and Mec1 have a
440 well characterized and conserved S/T-Q phosphorylation motif (KIM *et al.* 1999). Previous work

441 showed that mutation of all S/T-Q motifs in Xrs2 to A-Q had no effect on the DNA damage
442 response or on telomere length (MALLORY *et al.* 2003). To further probe whether MRX
443 phosphorylation affects function, we mutated all S/T-Q motifs across the entire MRX complex
444 and examined the effect on DNA damage response and telomere length.

445
446 Each MRX gene was epitope-tagged, the S/T-Qs were mutated to A-Qs, and the construct was
447 integrated at the endogenous locus (Figure 3A). We generated three strains with each gene
448 individually mutated at all S/T-Q sites, termed *mre11-4A*, *rad50-10A*, and *xrs2-4A*, as well as a
449 strain containing all three mutants, termed *mrx-18A* (see methods). As a control, we generated
450 a strain with all three proteins epitope-tagged but with wild-type coding sequence, referred to
451 as *MRX-tag*. Individually, and in combination with one another, the altered proteins were stable
452 as determined by western blot, indicating that mutations do not affect protein stability (Figure
453 3B).

454
455 To examine the role of Tel1 and Mec1 phosphorylation of MRX on the DNA damage response,
456 we tested the *mrx-18A* mutant for MMS sensitivity. None of the MRX S/T-Q mutants
457 individually or in combination showed increased sensitivity to MMS, hydroxyurea, bleomycin,
458 or 4-nitroquinoline (Figure S3A and data not shown). We noted *tel1Δ* alone does not have
459 detectable MMS sensitivity (Figure S3A) but there is an observable increase in MMS sensitivity
460 in *tel1Δ mec1Δ sml1Δ* compared to *mec1Δ sml1Δ* (Figure S3B). To take advantage of this
461 increased sensitivity, we put *mrx-18A* and *MRX-tag* in the sensitized background of *mec1Δ*
462 *sml1Δ* and assayed cells for an increased MMS sensitivity compared to *mec1Δ sml1Δ* alone.

463

464 Using the spotting assay, it was difficult to determine whether the sensitivity of *mrx-18A*
465 *mec1Δ sml1Δ* cells was increased compared to *MRX-tag* *mec1Δ sml1Δ* cells (Figure S3B). To
466 quantify the subtle DNA damage defect of *mrx-18A* *mec1Δ sml1Δ* cells we used a more sensitive
467 assay where colony forming units are counted as cells are treated with MMS over time. In this
468 quantitative assay we observed no difference in MMS sensitivity between *mrx-18A* *mec1Δ*
469 *sml1Δ* cells compared to *MRX-tag* *mec1Δ sml1Δ* (Figure 3C). We also noted in this assay that
470 *MRX-tag* *mec1Δ sml1Δ* cells were slightly more sensitive than *mec1Δ sml1Δ*, suggesting the tags
471 have a small effect on MRX complex function (Figure 3C). The epitope tags do not greatly
472 disrupt function as this small effect was only observed in a *mec1Δ sml1Δ* sensitized background.
473 No increased sensitivity was observed in response to 4-nitroquinoline, bleomycin, or
474 hydroxyurea (Figure S4A-C). As a control, we also examined *mrx-18A* *tel1Δ*, and found no
475 increased MMS-sensitivity (Figure S4D).

476

477 In addition to its role in homology-directed repair, MRX also plays a critical role in Non-
478 Homologous End Joining (NHEJ) in yeast (MOORE AND HABER 1996). We tested the effect of *mrx-*
479 *18A* on NHEJ using a plasmid re-ligation assay (BOULTON AND JACKSON 1996) and found no effect
480 of *mrx-18A* compared to *MRX-tag* (Figure 3D). These data suggest that phosphorylation of MRX
481 by on S/T-Q sites does not play a major role in NHEJ.

482

483 We next examined the telomere length phenotype of the *mrx-18A* mutant and found no effect
484 compared to the *MRX-tag* cells. *MRX-tag* cells exhibited slight telomere shortening compared

485 to untagged alleles, consistent with a slight defect seen in the DNA damage assay, however,
486 *mre11Δ* was significantly shorter by comparison (Figure 3E). Individual mutant subunits, *mre11-*
487 *4A*, *rad50-10A*, and *xrs2-4A*, also had no effect on telomere length (Figure S5). To determine
488 whether a change in telomere length would be seen after further cell divisions, we streaked
489 *mrx-18A* cells for approximately 120 population doublings and still saw no effect on telomere
490 length (Figure 3F). These data suggest that phosphorylation of the MRX complex by Tel1 or
491 Mec1 on S/T-Q sites is not critical for telomere length regulation.

492

493 **MRX is required downstream of Tel1 for the DNA damage response but not telomere length**

494

495 The lack of requirement for MRX phosphorylation by Tel1 or Mec1 raised the question of
496 whether MRX is required downstream of Tel1. Because double mutants of either *mre11Δ*,
497 *rad50Δ*, or *xrs2Δ* with *tel1Δ* produces a short telomere phenotype similar to any individual
498 mutant, it is not possible to establish epistasis. Therefore, we performed epistasis analysis with
499 the *TEL1-hy909* hypermorphic allele and *mre11Δ*, *rad50Δ*, or *xrs2Δ*. As described earlier, *TEL1-*
500 *hy909* elongates telomeres and provides a stark contrast to the short telomeres in *mre11Δ*,
501 *rad50Δ*, or *xrs2Δ* cells. Many studies suggest Tel1 and MRX act in the same epistasis pathway
502 and current models indicate that MRX recruits Tel1 to a DNA double-strand break, activates the
503 kinase, Tel1 phosphorylates MRX, and then MRX processes DNA ends for repair (OH AND
504 SYMINGTON 2018; PAULL 2018). Analogous pathways have been proposed for Tel1 and MRX in
505 telomere length regulation, (TSUKAMOTO *et al.* 2001; VISCARDI *et al.* 2007; BONETTI *et al.* 2009)

506 predicting that the MRX complex is downstream of Tel1 and that the MRX complex should be
507 epistatic to Tel1 in both the DNA damage response and telomere length regulation.

508

509 To examine the epistasis of MRX and Tel1, we generated strains heterozygous for *TEL1/TEL1-*
510 *hy909 MEC1/mec1Δ* and *SML1/sml1Δ* together with individual heterozygous deletions of
511 *mre11Δ, rad50Δ, or xrs2Δ* and initially examined the DNA damage response. We observed the
512 *TEL1-hy909 mre11Δ* double mutants were as sensitive to MMS as *mre11Δ* alone (Figure 4A),
513 consistent with previous work (BALDO *et al.* 2008). The other two double mutants, *TEL1-hy909*
514 *rad50Δ* and *TEL1-hy909 xrs2Δ*, were also both MMS sensitive (not shown). These results
515 support a role for MRX downstream of Tel1 in the DNA damage response, as previously
516 reported (MOORE AND HABER 1996; USUI *et al.* 2001). We found that, surprisingly, *TEL1-hy909*
517 *mec1Δ mre11Δ* spores were inviable, indicating the rescue of *mec1Δ* lethality by *TEL1-hy909* is
518 MRX-dependent (Figure S6). This was also true for *TEL1-hy909 mec1Δ rad50Δ* and *TEL1-hy909*
519 *mec1Δ xrs2Δ* (not shown).

520

521 We next examined telomere length in *TEL1-hy909 mre11Δ*, *TEL1-hy909 rad50Δ*, and *TEL1-hy909*
522 *xrs2Δ* double mutants and found that, surprisingly, in all three cases the double mutants had
523 long telomeres, similar to *TEL1-hy909* alone (Figure 4B). This indicates that, unlike the DNA
524 damage response, MRX is not epistatic to Tel1 for telomere length. Because this result differs
525 from previous findings, we repeated the experiment in the strain background (W303) used in
526 the previous study (BALDO *et al.* 2008). In this analysis, all three independently derived double
527 mutants *TEL1-hy909 mre11Δ*, *TEL1-hy909 rad50Δ*, and *TEL1-hy909 xrs2Δ* showed long

528 telomeres consistent with our initial findings (Figure S7A). We also passaged *TEL1-hy909 xrs2Δ*
529 for 120 population doublings to see if shortening might occur with further divisions. Instead, we
530 found telomeres elongated further with passaging (Figure S7B). These data suggest that MRX is
531 not required downstream of Tel1-hy909 to carry out telomere elongation.

532

533 To further investigate the requirement of nuclease activity at the telomere, we tested the
534 epistatic relationship between *TEL1-hy909* and deletion of Sae2(CtIP), which stimulates Mre11
535 (LENGSFELD *et al.* 2007), or Exo1, which has been suggested to play a role in telomere processing
536 (MOREAU *et al.* 2001). We generated diploid strains that were heterozygous for *TEL1/TEL1-*
537 *hy909 EXO1/exo1Δ* and diploid strains that were heterozygous for *TEL1/TEL1-hy909*
538 *SAE2/sae2Δ*. *TEL1-hy909 exo1Δ* cells and *TEL1-hy909 sae2Δ* cells had long telomeres, similar to
539 *TEL1-hy909* alone (Figure 4C, compare lanes 5-6 to lanes 7-8 and lanes 13-14 to lanes 15-16).
540 These data support the hypothesis that telomere resection by MRX/Sae2 or Exo1 is not
541 required for telomere length maintenance.

542

543 **Rad50S activates Tel1 for telomere length maintenance**

544

545 The ability of Tel1-hy909 to generate long telomeres in the absences of MRX suggests that this
546 hypermorph is constitutively active as it does not require activation by MRX. As an independent
547 approach to determine whether MRX is only required upstream of Tel1 in telomere length
548 regulation, we performed the a similar epistasis experiment using *tel1Δ* and a previously
549 identified MRX complex mutant, *rad50S* (ALANI *et al.* 1990). Rad50S produces a long telomere

550 phenotype which has been attributed to increased Tel1 activation (KIRONMAI AND MUNIYAPPA
551 1997). *rad50S* mutants are reported to have a sporulation defect (Usui *et al.* 2001), therefore
552 we performed these experiments in haploid cells. We used CRISPR/Cas9 to knock-in the *rad50S*
553 allele at the endogenous *RAD50* locus (Anand *et al.* 2017). Elongated telomeres were observed
554 after cells were passaged for approximately 120 population doublings (Figure 4D, lanes 3-4). In
555 these haploids, we subsequently introduced a *tel1Δ* or *TEL1-hy909* allele at the *TEL1* locus. As a
556 control, parallel strains were generated where a *mre11Δ* allele was introduced at the *MRE11*
557 locus. Without Mre11, Rad50S should not be able function in the MRX complex and the
558 hypermorph activity will not be observed. *rad50S tel1Δ* double mutants showed short
559 telomeres, similar in length to *tel1Δ* (Figure 4D) indicating *rad50S* does not affect telomere
560 elongation by acting downstream of Tel1. Telomere shortening was also observed in *rad50S*
561 *mre11Δ* cells, as expected (Figure 4D). These experiments suggest that Tel1 is required for the
562 telomere elongation seen in *rad50S* cells. Further, *rad50S TEL1-hy909* had very long telomeres
563 similar to *TEL1-hy909* (Figure 4E). Our data indicate that MRX activates Tel1 but does not
564 contribute to processing of telomeres to allow telomere length regulation after Tel1 activation.
565 In contrast, the MRX complex is critical downstream of Tel1 for the DNA damage response
566 (Figure 5).

567

568

569

570

571

572 **Discussion**

573

574 **Telomere elongation and DNA damage response are regulated through different mechanisms**

575

576 We found that, in contrast to published models, the MRX complex is not required after Tel1
577 activation for telomere elongation. Our data suggest a new model for the regulation of
578 telomere length in which Tel1 activation by MRX is sufficient for telomere length regulation but
579 not for the DNA damage response (Figure 5). Previous work has shown that Mec1 and Rad53
580 play a major role in DNA damage response, while Tel1 plays a minor role acting through Rad53
581 and the MRX complex. In the DNA damage response, the MRX complex is thought to act both
582 upstream and downstream of Tel1 (USUI *et al.* 2001; PAULL 2015). MRX binds to double-strand
583 breaks and interacts with Tel1, activating its kinase activity. Previously, a parallel model for
584 telomere length regulation suggested that MRX recruits and activates Tel1 at the telomere,
585 then MRX processes telomere ends to promote telomerase elongation (LARRIVEE *et al.* 2004;
586 BONETTI *et al.* 2009). In this model, Mec1 is considered secondary to Tel1 for telomere length
587 regulation and its function was presumed to be redundant. In contrast, we show that Mec1 and
588 Rad53 act in a separate, non-overlapping pathway from Tel1 for telomere length maintenance.
589 Together these data demonstrate that the Tel1 and Mec1 pathways differ significantly for the
590 DNA damage response and telomere length regulation.

591

592 **Dysregulation of dNTP pools can mask telomere length phenotypes**

593

594 The role of Mec1 in telomere length regulation has remained poorly understood, in part
595 because of discrepancies in reported telomere length phenotypes. *mec1Δ smi1Δ* telomeres
596 appear similar to wildtype while *mec1Δ crt1Δ* telomeres are shorter than wildtype (Figure 1B).
597 Both *smi1Δ* and *crt1Δ* suppress the lethality of *mec1Δ* through upregulation of different
598 pathways that regulate nucleotide pools (HUANG *et al.* 1998; ZHAO *et al.* 1998). Several studies
599 suggest that the increased telomere length in *mec1Δ smi1Δ* compared to *mec1-1* and *mec1-21*
600 alleles is due to increased telomerase processivity with increased dGTP levels (GUPTA *et al.*
601 2013). Recent work has suggested that while both mutants increase nucleotide pools, *smi1Δ*
602 and *crt1Δ* have different effects on the specific ratio of dGTP to other dNTPs (MAICHER *et al.*
603 2017). Because dGTP is limiting for telomerase processivity *in vitro* (GREIDER AND BLACKBURN 1987;
604 HAMMOND AND CECH 1997), it was proposed that an increased dGTP/dNTP ratio would elongate
605 telomeres. (MAICHER *et al.* 2017). However, increased dNTP levels are not sufficient to lengthen
606 telomeres, as *smi1Δ* and *crt1Δ* mutants do not show increased telomere length on their own.
607 Also, *crt1Δ* does not lengthen telomeres in either a *tel1Δ* or *mec1Δ* background (Figure 1B).
608 Therefore, while changes in dNTP pools in *mec1Δ smi1Δ* cells may mask telomere length
609 phenotypes (LONGHESE *et al.* 2000) the data are not consistent with altered telomerase
610 processivity as the mechanism.

611

612 **Rad53 phosphorylation by Mec1 contributes to telomere length regulation**

613

614 Previous work has shown that Tel1 or Mec1 phosphorylation of Rad53 is critical for the DNA
615 damage response. Our data demonstrate an additional role for Rad53 phosphorylation in

616 telomere length regulation. This phosphorylation is likely primarily performed by Mec1, as our
617 data indicate that Rad53 is in the Mec1 telomere length pathway and it has previously been
618 shown that Mec1 phosphorylation of Rad53 is predominant in the DNA damage response (Usui
619 *et al.* 2001). We cannot exclude the possibility that Tel1 phosphorylation of Rad53 contributes
620 in a small way to telomere length regulation. However, the *TEL1-hy909* hypermorphic allele
621 showed telomere elongation in the absence of Rad53 (Figure 2D), suggesting that Tel1 does not
622 require Rad53 for telomere length regulation. Our model suggests there are as yet unknown
623 substrates that mediate the Tel1 effect on telomere length (Figure 5).

624

625 **Rad53 is a critical mediator of Mec1 in telomere length regulation**

626

627 The *TEL1-hy909* hypermorphic allele can rescue the lethality of *mec1Δ*, as shown previously
628 (BALDO *et al.* 2008). However, we found that *TEL1-hy909* did not rescue *rad53Δ* lethality. Rad53
629 is a substrate of both Tel1 and Mec1 (SANCHEZ *et al.* 1996; SMOLKA *et al.* 2007). Both *mec1Δ* and
630 *rad53Δ* are thought to be lethal due to an inability to upregulate ribonucleotide reductases for
631 DNA repair. Tel1-hy909 has increased catalytic activity *in vitro* and is able to phosphorylate
632 Rad53 more efficiently than Tel1 (BALDO *et al.* 2008). Tel1-hy909 likely rescues *mec1Δ* lethality
633 because of its increased ability to activate Rad53. Our finding that *TEL1-hy909* cannot rescue
634 *rad53Δ* places Rad53 as the critical mediator of Mec1: Mec1 loss can be compensated for by
635 Tel1-hy909 but this hypermorph cannot compensate for loss of Rad53.

636

637 The *MRX* complex is epistatic to *TEL1-hy909* in the DNA damage response, as *TEL1-hy909*
638 *mre11Δ* was just as sensitive as *mre11Δ* to MMS challenge. This was also true for the other MRX
639 complex components. We unexpectedly found that *TEL1-hy909* *mec1Δ mre11Δ* is lethal while
640 *TEL1-hy909* *mec1Δ* is viable (Figure S6). It is unclear why the *TEL1-hy909* rescue of *mec1Δ*
641 viability is *MRX*-dependent. Previous models would suggest this is because the *MRX* complex is
642 required for Tel1 activation. However, our data indicate that the *TEL1-hy909* allele is
643 constitutively active.

644

645 **MRX complex phosphorylation by Tel1/Mec1 on S/T-Q sites is not required for DNA damage
646 response, NHEJ, or telomere length regulation**

647

648 Multiple studies have reported that Tel1/Mec1-dependent phosphorylation of the MRX
649 complex occurs in response to DNA damage. Thus, were surprised to find that the *mrx-18A*
650 mutant did not have a DNA damage phenotype or in NHEJ. The absence of an effect on
651 telomere length was also surprising, and suggests MRX is not the substrate that mediates the
652 Tel1 pathway of telomere length regulation.

653

654 **Telomere elongation can occur in the absence of MRX complex**

655

656 The fact that Tel1-hy909 telomere elongation can occur in the absence of the MRX complex
657 indicates that telomere elongation is possible without telomere end processing by MRX. This
658 epistasis indicates that the Tel1-hy909 hypermorph has bypassed the need to interact with

659 MRX for its activation, and that the point mutations in the *TEL1-hy909* allele promote
660 constitutive catalytic activity. This finding, combined with the fact that the *mrx-18A* mutant has
661 no telomere length defect, suggest that Tel1 does not require MRX for telomere length
662 regulation after it is activated. Further, the only known mutants in MRX that decrease telomere
663 length are those that decrease the MRX complex interaction with Tel1. (i.e. Xrs2 C-terminal
664 truncation) (NAKADA *et al.* 2003a; MA AND GREIDER 2009). Similarly, mutants that increase
665 telomere length are thought to hyperactivate Tel1 (i.e. *rad50S* and *TEL1-hy* alleles) (KIRONMAI
666 AND MUNIYAPPA 1997; BALDO *et al.* 2008). MRX mutants that alter the catalytic functions of the
667 complex are required for the DNA damage response but not for telomere length regulation. For
668 example, alleles of Mre11 that lack nuclease function do not show a telomere length
669 phenotype (MOREAU *et al.* 1999; TSUKAMOTO *et al.* 2001) but do inhibit the DNA damage
670 response (BUIS *et al.* 2008). Similarly, deletions of the Mre11 nuclease co-factor, Sae2 (CtIP)
671 alone, or in combination with Exo1 deletion, show no telomere length defects (BONETTI *et al.*
672 2009). This is consistent with our observation that, like *mre11Δ*, *TEL1-hy909* elongates
673 telomeres in *sae2Δ* and *exo1Δ* cells (Figure 4C). We conclude that cells with deletions of MRX
674 complex components have short telomeres because of the reduction in Tel1 activation, not
675 because the cell lacks the resection functions.

676

677 Our finding that MRX is not required downstream of Tel1 for telomere elongation has
678 important implications for telomere elongation models. Most models suggest that after
679 replication of the telomere the leading strand telomere is processed by a nuclease before
680 telomerase can elongate it. The presumption that leading strand replication leaves a blunt end

681 that requires processing is an assumption that has not been directly tested (LINGNER AND CECH
682 1998; PFEIFFER AND LINGNER 2013). In contrast to those models, our data suggest telomerase can
683 efficiently elongate telomeres without end processing. Tel1(ATM) and the MRX(N) complex are
684 thought to function by similar mechanisms in *S. cerevisiae* and mammalian cells (OH AND
685 SYMINGTON 2018; PAULL 2018). Therefore, the data presented here suggest we should rethink the
686 requirements for telomere resection preceding telomere elongation broadly across all
687 organisms.

688

689 **Author Contributions**

690

691 Study conception: CWG and RK, Methodology: RK and CWG, Investigation and Acquisition of
692 data: RK and CC, Supervision: CWG, Formal analysis and interpretation of data: RK and CWG,
693 Validation: RK and CC, Visualization: RK, Data curation: RK, Funding acquisition: CWG, Drafting
694 of manuscript: RK and CWG, Critical revision: RK, CC, and CWG

695

696 **Acknowledgements**

697

698 We thank Rini Mayangsuri for technical assistance with this work. We thank Brendan Cormack,
699 Geraldine Seydoux, the Greider Lab, and the Armanios Lab for critical reading of the manuscript
700 and helpful discussions. This work was supported by Bloomberg Distinguished Professorship (to
701 CWG) and the Turock Fellowship (to RK).

702

703 **Figure Legends**

704

705 **Figure 1 Rad53 is in the Mec1 telomere length regulation pathway**

706

707 (A) Diagram representing a simplified, current understanding of Tel1/Mec1 pathways in the
708 DNA damage response. (B)-(D) Southern blot analysis of telomeres from segregants with the
709 indicated genotype. Two independent, haploid segregants were assayed for each genotype. (B)
710 Haploid cells were passaged on solid media for approximately 120 population doublings to
711 decrease telomere length heterogeneity. Segregants are from JHUy937-1. (C) Segregants are
712 from yRK6002 and yRK6003. (D) Both Rad53 and Rad53^{1-4/9-12AQ} are epitope tagged with a
713 3xFLAG tag. Haploids were passaged for approximately 100 population doublings. Segregants
714 are yRK6008-1, yRK6008-2, yRK6009-1, yRK6009-2, yRK6010-1, yRK6010-2, yRK6011-1,
715 yRK6011-2, yRK6012-1, yRK6012-2, yRK6013-1, yRK6013-2, yRK6014-1, yRK6014-2, yRK6015-1,
716 and yRK6015-2.

717

718 **Figure 2 Tel1-hy909 requires Rad53 for the DNA damage response but not telomere
719 elongation**

720

721 (A)-(B) Yeast dilution series of untreated cells or cells cultured in 0.02% MMS for one hour. The
722 genotype is indicated to the left of the panels. (A) Segregants are from yRK5126 and yRK5127.
723 (B) Segregants are from yRK5028 and yRK5059. (C) Southern blot analysis of telomeres from
724 segregants with the indicated genotype. Two independent, haploid segregants were assayed

725 for each genotype. Because the *TEL1-hy909* hypermorf elongates telomeres in the parental
726 diploid (not shown), we observed increased telomere length heterogeneity across all genotypes
727 in the haploid segregants and observe the wild-type segregant telomeres were longer
728 compared to other Southern blots. Segregants are from yRK5028 and yRK5059. (D) Southern
729 blot analysis of telomeres from segregants with the indicated genotype. Segregants were
730 passaged on solid media for approximately 120 population doublings. Passage number is
731 indicated below the genotype as P1 for the first passage or P5 for the fifth passage. Note that
732 the WT telomeres were longer in the parental diploid due to Tel1-hy909. Segregants are from
733 yRK5028.

734

735 **Figure 3 The mrx-18A S/T-Q mutant does not affect the DNA damage response, NHEJ, or**
736 **telomere length**

737

738 (A) Domain structure of the MRX complex indicating location of S/T-Q motifs. Mre11 has an N-
739 terminal nuclease domain and a DNA binding domain. Rad50 has an N-terminal Walker A
740 domain and a C-terminal Walker B domain in addition to central coiled-coil domains (LEE *et al.*
741 2013). Xrs2 has a Forkhead association (FHA) domain followed by two BRCA1 domains and
742 there is a conserved region near the C-terminus (SHIMA *et al.* 2005; BECKER *et al.* 2006). The
743 domain sizes are relatively to scale for each protein and are consistent with NCBI annotation
744 (Mre11: BAA02017.1, Rad50: CAA65494, Xrs2: AAA35220.1). The location of each S/T-Q motif is
745 indicated with the involved S or T residue number indicated. (B) Western blots examining
746 stability of tagged MRX protein components individually or in combination. Samples were run

747 and transferred on duplicate gels simultaneously. The membranes were cut such that each
748 protein could be independently probed. Strains used in western blot are yRK114, yRK106,
749 yRK94, yRK138, yRK139, yRK133, yRK135, yRK102, and yRK90. (C) Proportion of colonies on
750 cells treated with 0.01% MMS over 120 minutes (see methods). Proportion is calculated as the
751 number of colonies at that time point for that genotype relative to the number of colonies for
752 that genotype at t=0. The average and standard error of the mean of six technical replicates is
753 plotted for each genotype with error bars only going upward. Strains included are yRK114,
754 yRK128, yRK104, and yRK92. (D) Plasmid end-joining assay results with three technical
755 replicates for each of two biological replicates. Black circles correspond to the first biological
756 replicate and pink triangles correspond to the second biological replicate. The number of linear
757 DNA transformation colonies for each genotype relative to the average number of circular DNA
758 transformation colonies for that genotype. An unpaired two-tailed student *t*-test was
759 performed between the samples. Comparison of *MRX-tag* to *mrx-18A* had a p-value = 0.0.0680
760 and was not significant (n.s.). *MRX-tag* was not significantly different from wildtype (data not
761 shown). Comparison of *mrx-18A* to *mre11Δ* had a p-values < 0.0001 (***) . Strains included are
762 segregants from yRK79, yRK80, yRK81, yRK83, and yRK5064. (E) Southern blot analysis of
763 telomeres from strains with the indicated genotype. Two independent, haploid segregants
764 were assayed for each genotype. The *mre11Δ* haploids were yRK1018 and yRK1019 and were
765 passaged for approximately 200 population doublings. *WT*, *MRX-tag*, and *mrx-18A* haploids
766 were segregants from yRK79, yRK80, yRK81, and yRK83. (F) Southern blot analysis of telomeres
767 from strains with the indicated genotype. Haploid cells were passaged on solid media for
768 approximately 140 population doublings. Passages 1, 3 and 6 are shown for simplicity. Two

769 independent haploids segregants were assayed for each genotype. There were no growth
770 defects observed over time. Segregants are from JHUy868, yRK79, yRK80, yRK81, and yRK83.

771

772 **Figure 4 Tel1-hy909 requires the MRX complex for the DNA damage response but not for**
773 **telomere elongation**

774

775 (A) Yeast dilution series of untreated cells or cells treated with 0.02% MMS for one hour. The
776 genotype is indicated to the left of the panels. To account for growth differences between the
777 genotypes different amounts of cells were collected for the initial dilution. 0.5 OD of cells were
778 collected for *WT* and *TEL1-hy909*, 1.5 OD of cells were collected for *mre11Δ*, and 8.0 OD of cells
779 were collected for *TEL1-hy909 mre11Δ*. Strains used in this assay were yRK114, yRK126,
780 yRK128, yRK104, yRK141, yRK92, yRK93, and yRK122. (B) Southern blot analysis of telomeres
781 from strains with the indicated genotype. Two independent, haploid segregants were assayed
782 for each genotype. Segregants are from JHUy816, yRK79, yRK80, yRK81, and yRK83. Cells
783 underwent minimal propagation before genomic DNA was prepared. (C) Southern blot analysis
784 of telomeres from strains with the indicated genotype. Two independent haploids segregants
785 were assayed for each genotype. Cells underwent minimal propagation before genomic DNA
786 was prepared. Segregants are from yRK5089, yRK5090, yRK5093, and yRK5094.

787 (D)-(E) CRISPR/Cas9 was used to knock-in the *rad50S* allele into a wild-type haploid strain
788 (yRK114). A transformant that was not edited at the *RAD50* locus but was transformed with the
789 Cas9 plasmid was used as a control and is referred to as *RAD50* (Figure 5D, lane 2). Both *RAD50*
790 and *rad50S* transformants were passaged on solid media for approximately 120 population

791 doublings (see 5D lanes 2-4, yRK2112-5, yRK2113-5, and yRK2116-5). *rad50S* or *RAD50* cells
792 were transformed to introduce *tel1Δ*, *mre11Δ* (Figure 5D lanes 5-10), or *TEL1-hy909* (Figure 5E
793 lanes 4-7). Cells were passaged on solid media for approximately 120 population doublings. The
794 strains used were yRK2118-5, yRK2120-5, yRK2121-5, yRK2122-5, yRK2123-5, yRK2124-5,
795 yRK2125-5, yRK2126-5, yRK2127-5, and yRK2128-5.

796

797 **Figure 5 Tel1 regulates telomere length in a pathway distinct from the DNA damage response**

798

799 Diagram demonstrating the distinctions between Tel1 pathways in the DNA damage response
800 and telomere length regulation. (A) The DNA damage response is most strongly regulated by
801 Mec1 and Rad53 as indicated with the bold arrows, although Tel1 signaling through Rad53 and
802 MRX plays a role. The MRX complex is both upstream and downstream of Tel1 in the DNA
803 damage response. (B) For telomere length regulation, Tel1 does not require MRX after
804 activation and Rad53 does not play a role in the Tel1 telomere length regulation pathway. The
805 Tel1/MRX pathway plays the major role in telomere length compared to a minor role of
806 Mec1/Rad53 pathway.

807

808

809

810

811

812

943 **Literature Cited**

944

945 Alani, E., R. Padmore and N. Kleckner, 1990 Analysis of wild-type and rad50 mutants of
946 yeast suggests an intimate relationship between meiotic chromosome synapsis and
947 recombination. *Cell* 61: 419-436.

948 Albuquerque, C. P., M. B. Smolka, S. H. Payne, V. Bafna, J. Eng *et al.*, 2008 A multidimensional
949 chromatography technology for in-depth phosphoproteome analysis. *Mol Cell*
950 *Proteomics* 7: 1389-1396.

951 Anand, R., G. Memisoglu and J. Haber, 2017 Cas9-mediated gene editing in *Saccharomyces*
952 *cerevisiae*.

953 Armanios, M., and E. H. Blackburn, 2012 The telomere syndromes. *Nature reviews. Genetics*
954 13: 693-704.

955 Bahler, J., J. Q. Wu, M. S. Longtine, N. G. Shah, A. McKenzie, 3rd *et al.*, 1998 Heterologous
956 modules for efficient and versatile PCR-based gene targeting in
957 *Schizosaccharomyces pombe*. *Yeast* 14: 943-951.

958 Baldo, V., V. Testoni, G. Lucchini and M. P. Longhese, 2008 Dominant TEL1-hy mutations
959 compensate for Mec1 lack of functions in the DNA damage response. *Mol Cell Biol*
960 28: 358-375.

961 Bastos de Oliveira, F. M., D. Kim, J. R. Cussiol, J. Das, M. C. Jeong *et al.*, 2015
962 Phosphoproteomics reveals distinct modes of Mec1/ATR signaling during DNA
963 replication. *Mol Cell* 57: 1124-1132.

964 Becker, E., V. Meyer, H. Madaoui and R. Guerois, 2006 Detection of a tandem BRCT in Nbs1
965 and Xrs2 with functional implications in the DNA damage response. *Bioinformatics*
966 22: 1289-1292.

967 Bonetti, D., M. Martina, M. Clerici, G. Lucchini and M. P. Longhese, 2009 Multiple pathways
968 regulate 3' overhang generation at *S. cerevisiae* telomeres. *Mol Cell* 35: 70-81.

969 Boulton, S. J., and S. P. Jackson, 1996 Identification of a *Saccharomyces cerevisiae* Ku80
970 homologue: roles in DNA double strand break rejoicing and in telomeric
971 maintenance. *Nucleic Acids Res* 24: 4639-4648.

972 Buis, J., Y. Wu, Y. Deng, J. Leddon, G. Westfield *et al.*, 2008 Mre11 nuclease activity has
973 essential roles in DNA repair and genomic stability distinct from ATM activation.
974 *Cell* 135: 85-96.

975 D'Amours, D., and S. P. Jackson, 2001 The yeast Xrs2 complex functions in S phase
976 checkpoint regulation. *Genes Dev* 15: 2238-2249.

977 de Lange, T., 2018 Shelterin-Mediated Telomere Protection. *Annu Rev Genet* 52: 223-247.

978 Di Domenico, E. G., E. Romano, P. Del Porto and F. Ascenzi, 2014 Multifunctional role of
979 ATM/Tel1 kinase in genome stability: from the DNA damage response to telomere
980 maintenance. *Biomed Res Int* 2014: 787404.

981 Doench, J. G., N. Fusi, M. Sullender, M. Hegde, E. W. Vaimberg *et al.*, 2016 Optimized sgRNA
982 design to maximize activity and minimize off-target effects of CRISPR-Cas9. *Nat
983 Biotechnol* 34: 184-191.

984 Gibson, D. G., 2011 Enzymatic assembly of overlapping DNA fragments. *Methods Enzymol*
985 498: 349-361.

986 Goldstein, A. L., and J. H. McCusker, 1999 Three new dominant drug resistance cassettes for
987 gene disruption in *Saccharomyces cerevisiae*. *Yeast* 15: 1541-1553.

988 Green, M., and J. Sambrook, 2012 *Molecular Cloning: A Laboratory Manual*

989 Greider, C. W., 1999 Telomerase activation: one step on the road to cancer? *Trends Genet*
990 15: 109-112.

991 Greider, C. W., and E. H. Blackburn, 1987 The telomere terminal transferase of *Tetrahymena*
992 is a ribonucleoprotein enzyme with two kinds of primer specificity. *Cell* 51: 887-
993 898.

994 Gupta, A., S. Sharma, P. Reichenbach, L. Marjavaara, A. K. Nilsson *et al.*, 2013 Telomere
995 length homeostasis responds to changes in intracellular dNTP pools. *Genetics* 193:
996 1095-1105.

997 Hammond, P. W., and T. R. Cech, 1997 dGTP-dependent processivity and possible template
998 switching of euplotes telomerase [In Process Citation]. *Nucleic Acids Res* 25: 3698-
999 3704.

1000 Huang, M., Z. Zhou and S. J. Elledge, 1998 The DNA replication and damage checkpoint
1001 pathways induce transcription by inhibition of the Crt1 repressor. *Cell* 94: 595-605.

1002 Kaizer, H., C. J. Connelly, K. Bettridge, C. Viggiani and C. W. Greider, 2015 Regulation of
1003 Telomere Length Requires a Conserved N-Terminal Domain of Rif2 in
1004 *Saccharomyces cerevisiae*. *Genetics* 201: 573-586.

1005 Kim, S. T., D. S. Lim, C. E. Canman and M. B. Kastan, 1999 Substrate specificities and
1006 identification of putative substrates of ATM kinase family members. *J Biol Chem*
1007 274: 37538-37543.

1008 Kironmai, K. M., and K. Muniyappa, 1997 Alteration of telomeric sequences and senescence
1009 caused by mutations in RAD50 of *Saccharomyces cerevisiae*. *Genes Cells* 2: 443-455.

1010 Larrivee, M., C. LeBel and R. J. Wellinger, 2004 The generation of proper constitutive G-tails
1011 on yeast telomeres is dependent on the MRX complex. *Genes Dev* 18: 1391-1396.

1012 Lavin, M. F., S. Kozlov, M. Gatei and A. W. Kijas, 2015 ATM-Dependent Phosphorylation of
1013 All Three Members of the MRN Complex: From Sensor to Adaptor. *Biomolecules* 5:
1014 2877-2902.

1015 Lee, J. H., M. R. Mand, R. A. Deshpande, E. Kinoshita, S. H. Yang *et al.*, 2013 Ataxia
1016 telangiectasia-mutated (ATM) kinase activity is regulated by ATP-driven
1017 conformational changes in the Mre11/Rad50/Nbs1 (MRN) complex. *J Biol Chem*
1018 288: 12840-12851.

1019 Lee, S.-J., M. F. Schwartz, J. K. Duong and D. F. Stern, 2003 Rad53 Phosphorylation Site
1020 Clusters Are Important for Rad53 Regulation and Signaling. *Molecular and Cellular*
1021 *Biology* 23: 6300-6314.

1022 Lee, S. S., C. Bohrson, A. M. Pike, S. J. Wheelan and C. W. Greider, 2015 ATM Kinase Is
1023 Required for Telomere Elongation in Mouse and Human Cells. *Cell Rep* 13: 1623-
1024 1632.

1025 Lengsfeld, B. M., A. J. Rattray, V. Bhaskara, R. Ghirlando and T. T. Paull, 2007 Sae2 is an
1026 endonuclease that processes hairpin DNA cooperatively with the
1027 Mre11/Rad50/Xrs2 complex. *Mol Cell* 28: 638-651.

1028 Lingner, J., and T. R. Cech, 1998 Telomerase and chromosome end maintenance. *Curr Opin*
1029 *Genet Dev* 8: 226-232.

1030 Link, A. J., and J. LaBaer, 2011 Trichloroacetic acid (TCA) precipitation of proteins. *Cold*
1031 *Spring Harb Protoc* 2011: 993-994.

1032 Longhese, M. P., V. Paciotti, H. Neecke and G. Lucchini, 2000 Checkpoint Proteins Influence
1033 Telomeric Silencing and Length Maintenance in Budding Yeast. *Genetics* 155: 1577-
1034 1591.

1035 Ma, Y., and C. W. Greider, 2009 Kinase-independent functions of TEL1 in telomere
1036 maintenance. *Mol Cell Biol* 29: 5193-5202.

1037 Maicher, A., I. Gazy, S. Sharma, L. Marjavaara, G. Grinberg *et al.*, 2017 Rnr1, but not Rnr3,
1038 facilitates the sustained telomerase-dependent elongation of telomeres. *PLoS Genet*
1039 13: e1007082.

1040 Mallory, J. C., V. I. Bashkirov, K. M. Trujillo, J. A. Solinger, M. Dominska *et al.*, 2003 Amino
1041 acid changes in Xrs2p, Dun1p, and Rfa2p that remove the preferred targets of the
1042 ATM family of protein kinases do not affect DNA repair or telomere length in
1043 *Saccharomyces cerevisiae*. *DNA Repair (Amst)* 2: 1041-1064.

1044 Moore, J. K., and J. E. Haber, 1996 Cell cycle and genetic requirements of two pathways of
1045 nonhomologous end-joining repair of double-strand breaks in *Saccharomyces*
1046 *cerevisiae*. *Mol Cell Biol* 16: 2164-2173.

1047 Moreau, S., H. R. Ferguson and L. S. Symington, 1999 The nuclease activity of Mre11 is
1048 required for meiosis but not for mating type switching, end joining or telomere
1049 maintenance. *Mol. Cell Biol.* in press.

1050 Moreau, S., E. A. Morgan and L. S. Symington, 2001 Overlapping functions of the
1051 *Saccharomyces cerevisiae* Mre11, Exo1 and Rad27 nucleases in DNA metabolism.
1052 *Genetics* 159: 1423-1433.

1053 Morrow, D. M., D. A. Tagle, Y. Shiloh, F. S. Collins and P. Hieter, 1995 TEL1, an *S. cerevisiae*
1054 homolog of the human gene mutated in ataxia telangiectasia, is functionally related
1055 to the yeast checkpoint gene MEC1. *Cell* 82: 831-840.

1056 Mumberg, D., R. Muller and M. Funk, 1995 Yeast vectors for the controlled expression of
1057 heterologous proteins in different genetic backgrounds. *Gene* 156: 119-122.

1058 Nakada, D., K. Matsumoto and K. Sugimoto, 2003a ATM-related Tel1 associates with
1059 double-strand breaks through an Xrs2-dependent mechanism. *Genes Dev* 17: 1957-
1060 1962.

1061 Nakada, D., T. Shimomura, K. Matsumoto and K. Sugimoto, 2003b The ATM-related Tel1
1062 protein of *Saccharomyces cerevisiae* controls a checkpoint response following
1063 phleomycin treatment. *Nucleic Acids Res* 31: 1715-1724.

1064 Norrander, J., T. Kempe and J. Messing, 1983 Construction of improved M13 vectors using
1065 oligodeoxynucleotide-directed mutagenesis. *Gene* 26: 101-106.

1066 Oh, J., and L. S. Symington, 2018 Role of the Mre11 Complex in Preserving Genome
1067 Integrity. *Genes (Basel)* 9.

1068 Paull, T. T., 2015 Mechanisms of ATM Activation. *Annu Rev Biochem* 84: 711-738.

1069 Paull, T. T., 2018 20 Years of Mre11 Biology: No End in Sight. *Molecular Cell* 71: 419-427.

1070 Pfeiffer, V., and J. Lingner, 2013 Replication of telomeres and the regulation of telomerase.
1071 *Cold Spring Harb Perspect Biol* 5: a010405.

1072 Ralser, M., H. Kuhl, M. Ralser, M. Werber, H. Lehrach *et al.*, 2012 The *Saccharomyces*
1073 *cerevisiae* W303-K6001 cross-platform genome sequence: insights into ancestry
1074 and physiology of a laboratory mutt. *Open Biol* 2: 120093.

1075 Ritchie, K. B., J. C. Mallory and T. D. Petes, 1999 Interactions of TLC1 (which encodes the
1076 RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the
1077 yeast *Saccharomyces cerevisiae*. *Mol Cell Biol* 19: 6065-6075.

1078 Sanchez, Y., B. A. Desany, W. J. Jones, Q. Liu, B. Wang *et al*, 1996 Regulation of RAD53 by the
1079 ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. *Science*
1080 271: 357-360.

1081 Shima, H., M. Suzuki and M. Shinohara, 2005 Isolation and characterization of novel xrs2
1082 mutations in *Saccharomyces cerevisiae*. *Genetics* 170: 71-85.

1083 Sikorski, R. S., and J. D. Boeke, 1991 In vitro mutagenesis and plasmid shuffling: from
1084 cloned gene to mutant yeast. *Methods Enzymol* 194: 302-318.

1085 Sikorski, R. S., and P. Hieter, 1989 A system of shuttle vectors and yeast host strains
1086 designed for efficient manipulation of DNA in *Saccharomyces cerevisiae*. *Genetics*
1087 122: 19-27.

1088 Smolka, M. B., C. P. Albuquerque, S. H. Chen and H. Zhou, 2007 Proteome-wide identification
1089 of in vivo targets of DNA damage checkpoint kinases. *Proc Natl Acad Sci U S A* 104:
1090 10364-10369.

1091 Stanley, S. E., and M. Armanios, 2015 The short and long telomere syndromes: paired
1092 paradigms for molecular medicine. *Curr Opin Genet Dev* 33: 1-9.

1093 Tong, A. S., J. L. Stern, A. Sfeir, M. Kartawinata, T. de Lange *et al*, 2015 ATM and ATR
1094 Signaling Regulate the Recruitment of Human Telomerase to Telomeres. *Cell Rep*
1095 13: 1633-1646.

1096 Tsukamoto, Y., A. K. Taggart and V. A. Zakian, 2001 The role of the Mre11-Rad50-Xrs2
1097 complex in telomerase- mediated lengthening of *Saccharomyces cerevisiae*
1098 telomeres. *Curr Biol* 11: 1328-1335.

1099 Usui, T., H. Ogawa and J. H. Petrini, 2001 A DNA damage response pathway controlled by
1100 Tel1 and the Mre11 complex. *Mol Cell* 7: 1255-1266.

1101 Viscardi, V., D. Bonetti, H. Cartagena-Lirola, G. Lucchini and M. P. Longhese, 2007 MRX-
1102 dependent DNA damage response to short telomeres. *Mol Biol Cell* 18: 3047-3058.

1103 Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson *et al.*, 1999 Functional
1104 characterization of the *S. cerevisiae* genome by gene deletion and parallel analysis.
1105 *Science* 285: 901-906.

1106 Zhao, X., E. G. Muller and R. Rothstein, 1998 A suppressor of two essential checkpoint genes
1107 identifies a novel protein that negatively affects dNTP pools. *Mol Cell* 2: 329-340.

1108

Figure 1

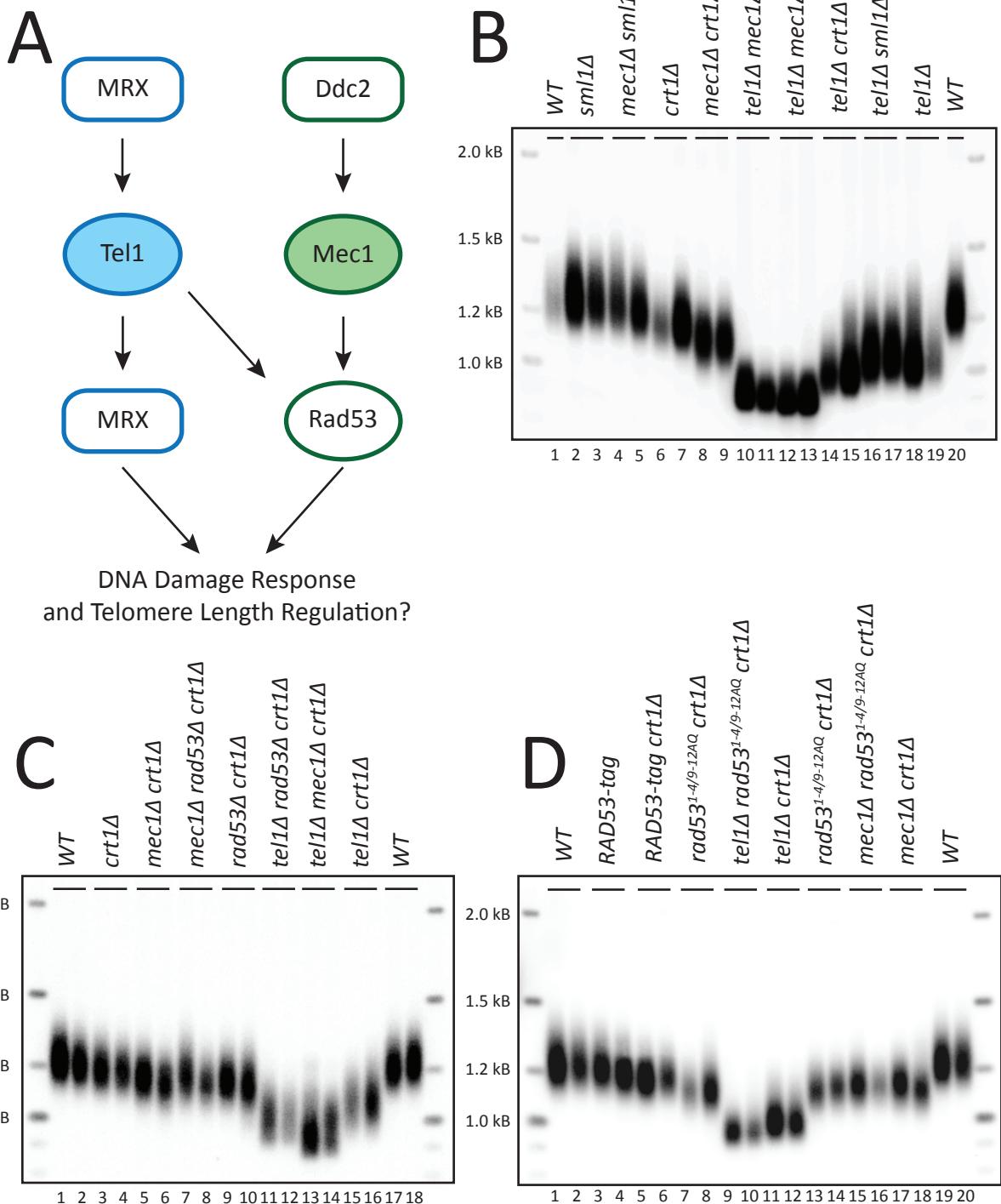


Figure 2

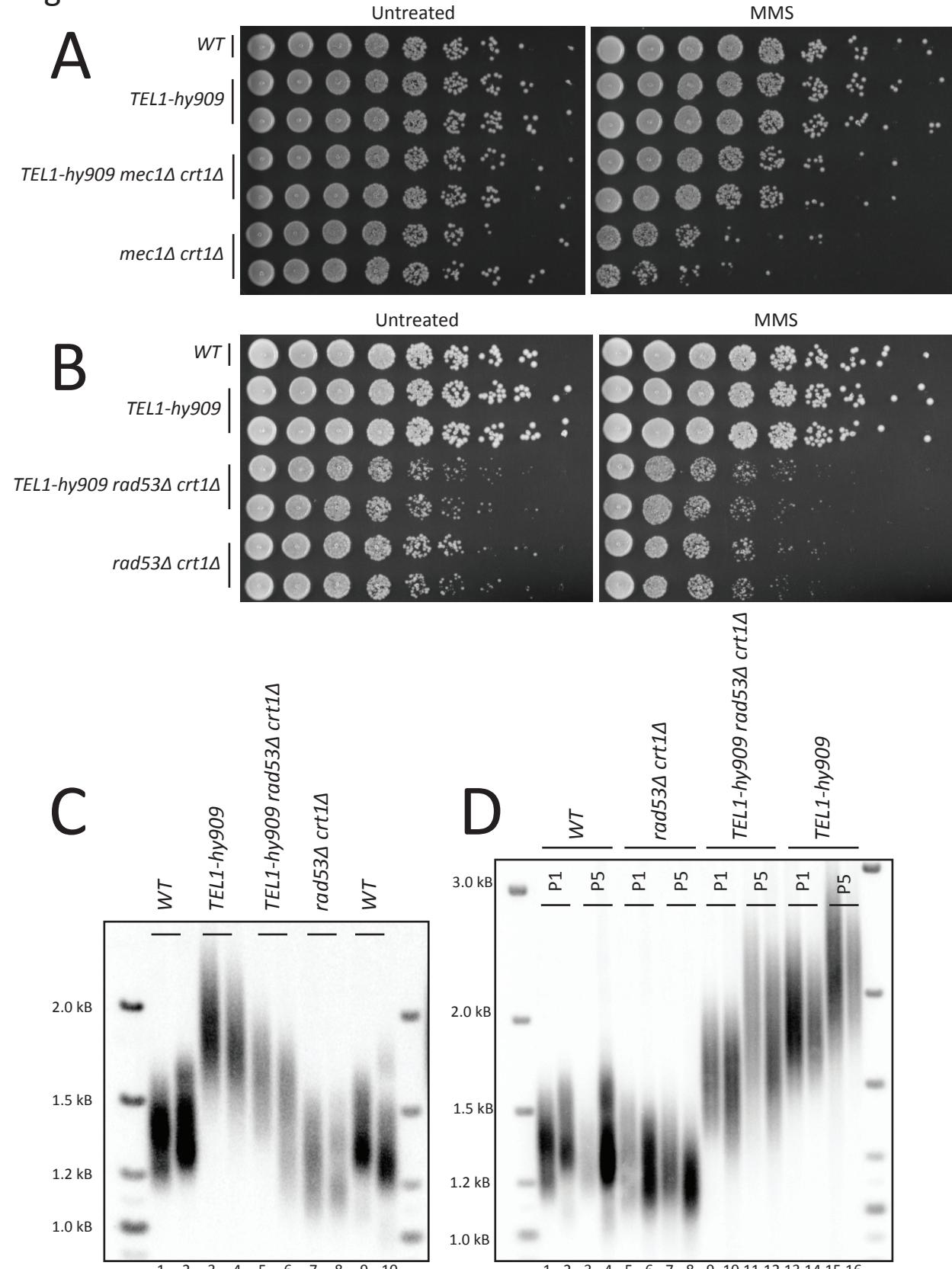
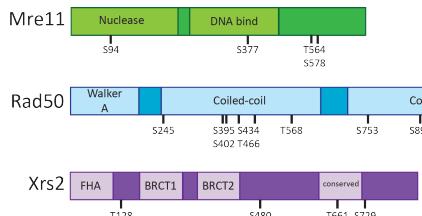
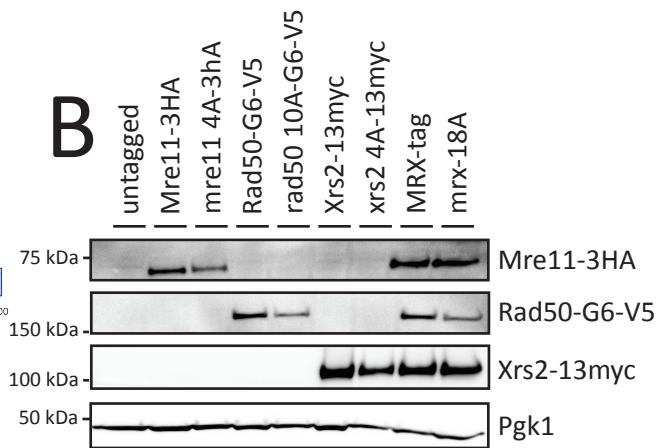
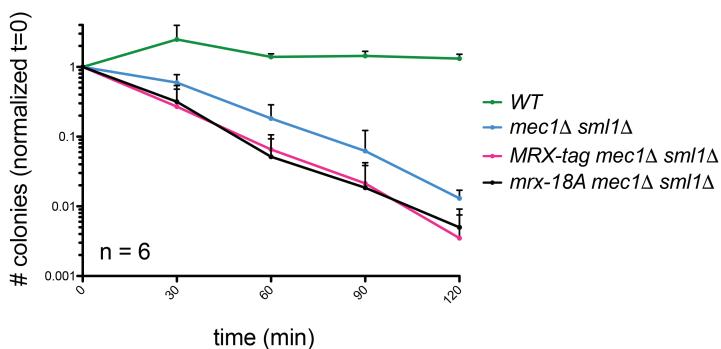
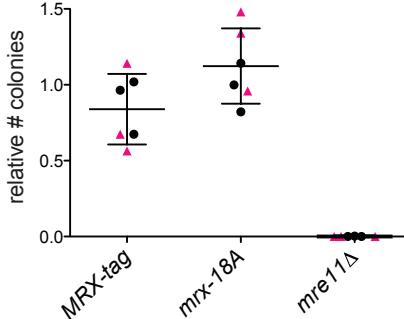
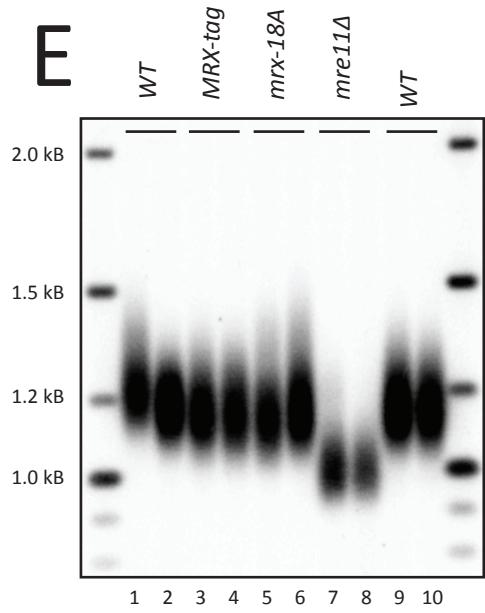




Figure 3


A


B


C

D

E

F

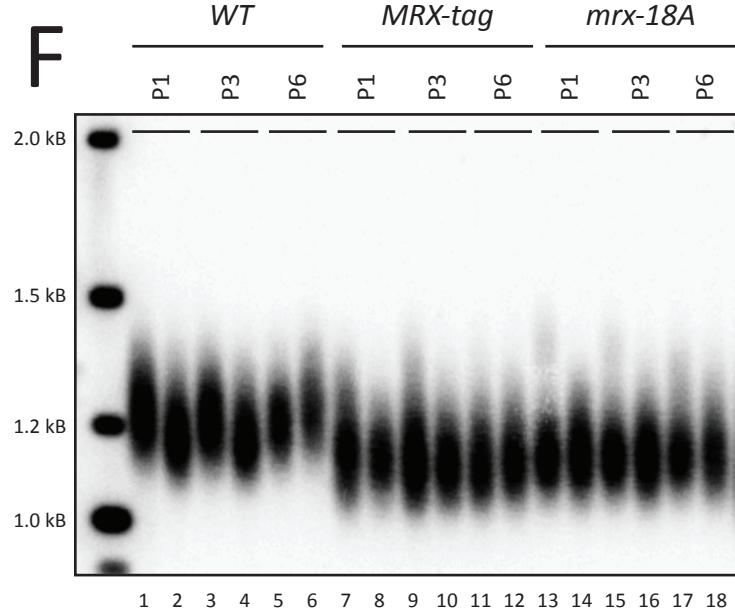


Figure 4

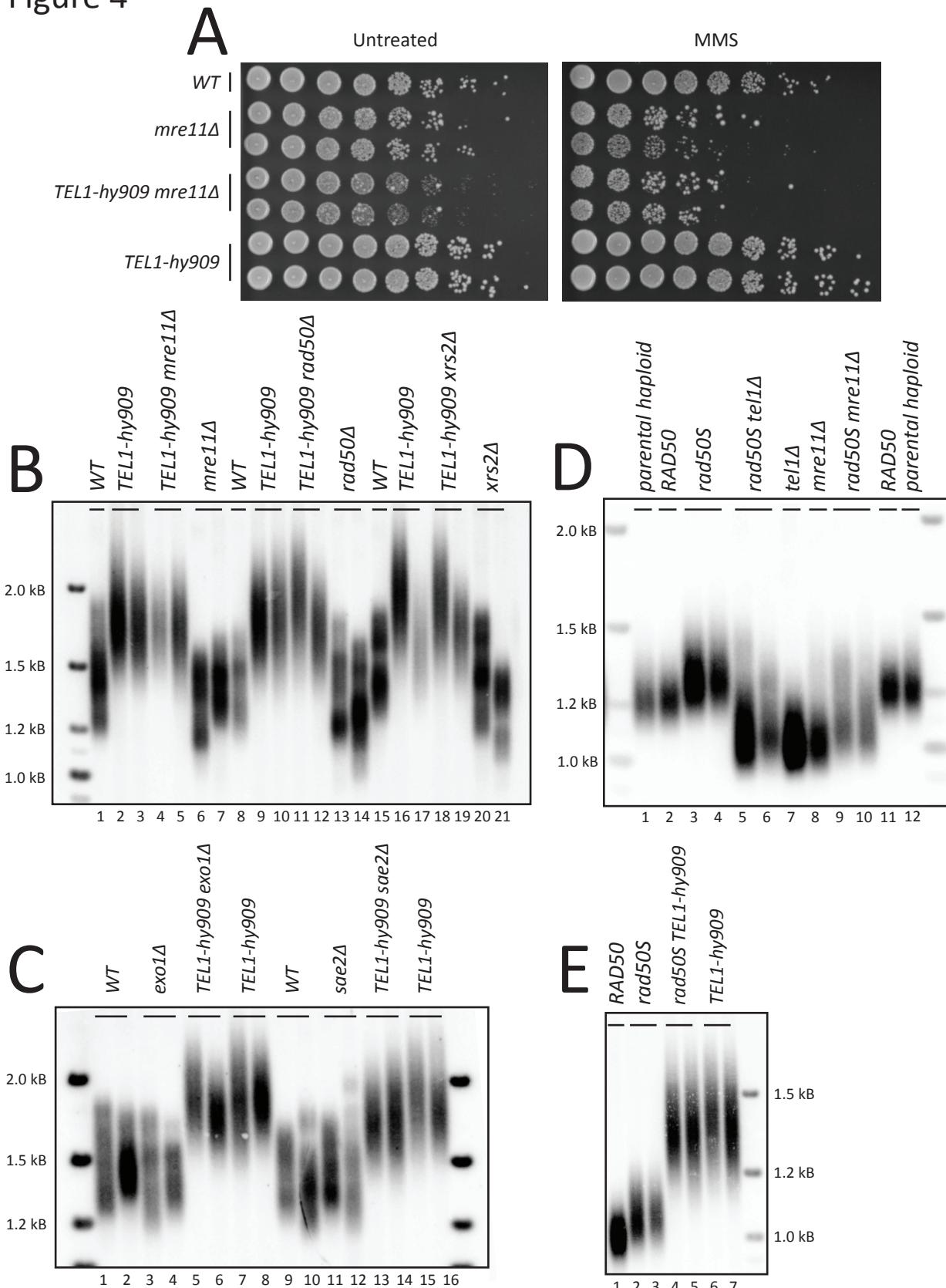
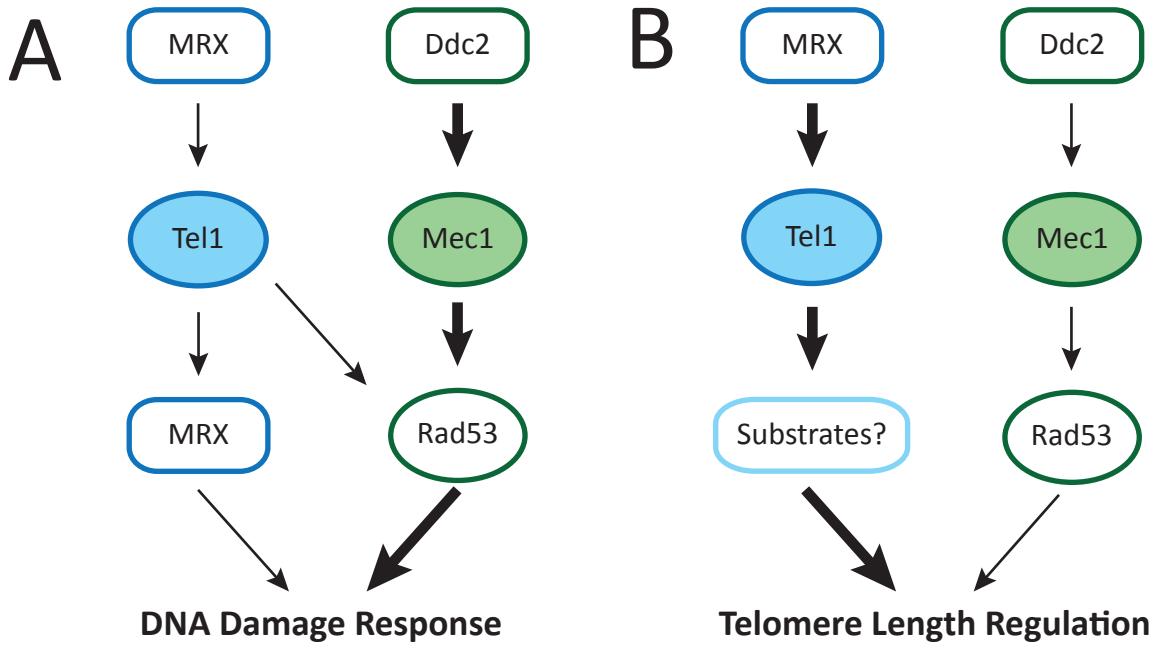



Figure 5

