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Summary

High-dimensional data, such as those generated using single-cell RNA sequencing, present challenges in
interpretation and visualization. Numerical and computational methods for dimensionality reduction allow for low-
dimensional representation of genome-scale expression data for downstream clustering, trajectory
reconstruction, and biological interpretation. However, a comprehensive and quantitative evaluation of the
performance of these techniques has not been established. We present an unbiased framework that defines
metrics of global and local structure preservation in dimensionality reduction transformations. Using discrete and
continuous scRNA-seq datasets, we find that input cell distribution and method parameters are largely
determinant of global, local, and organizational data structure preservation by eleven published dimensionality
reduction methods. Code available at github.com/KenLaulLab/DR-structure-preservation allows for rapid
evaluation of further datasets and methods.
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Introduction

Single-cell RNA sequencing (scRNA-seq) offers parallel, genome-scale measurement of tens of thousands of
transcripts for thousands of cells (Klein et al., 2015; Macosko et al., 2015). Data of this magnitude provide
powerful insight toward cell identity and developmental trajectory — states and fates — which are used to
interrogate tissue heterogeneity and characterize disease progression (Regev et al., 2017; Wagner et al., 2019).
Yet, extracting meaningful information from such high-dimensional data presents a massive challenge.
Numerical and computational methods for dimensionality reduction have been developed to reconstruct
underlying distributions from native “gene space” and provide low-dimensional, latent representations of single-
cell data for more intuitive downstream interpretation. Basic clustering methods and linear transformations such
as principal component analysis (PCA) have proven to be valuable tools in this field (Sorzano, Vargas and

Montano, 2014; Levine et al., 2015; Kiselev et al., 2017; Tsuyuzaki et al., 2019). However, given the distribution
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and sparsity of scRNA-seq data, complex, nonlinear transformations are often required to capture and visualize
expression patterns. Unsupervised machine learning techniques and, more recently, deep learning methods, are
being rapidly developed to assist researchers in single-cell transcriptomic analysis (Van der Maaten and Hinton,
2008; Pierson and Yau, 2015; Linderman et al., 2017; Wang et al., 2017; Becht et al., 2018; Ding, Condon and
Shah, 2018; Lopez et al., 2018; Risso et al., 2018; Eraslan et al., 2019; Townes et al., 2019). Because these
techniques condense cell features in the native space to a small number of latent dimensions for visualization,
lost information can result in exaggerated or dampened cell-cell similarity. Furthermore, depending on input data
and user-defined parameters, the structure of resulting embeddings can vary greatly, potentially altering
biological interpretation (Kobak and Berens, 2019).

With a deluge of computational techniques for dimensionality reduction, the field is lacking a comprehensive
assessment of native organizational distortion consequential to such methods. Characterization of these tools
would enable end users to confidently determine the most suitable methods for their application. We present an
unbiased, quantitative framework for evaluation of data structure preservation by dimensionality reduction
transformations. We propose three metrics for broad characterization of strengths and weaknesses of these
methods based on cell-cell distance in native gene space. Initial benchmarking of eleven published software
tools on discrete and continuous cell distributions shows global, local, and organizational data structure
conservation under different parameter and input conditions. Interpretation and best practices, as well as

extensibility of this method to other dimensionality reduction tools, is discussed.
Results

Cell distance distributions describe global structure of high-dimensional datasets

In order to evaluate dimensionality reduction techniques, Euclidean cell-cell distance in native, high-dimensional
space is used as a quantitative standard. Counts of unique molecular identifiers (UMI) for each gene make up
the features, or columns of the dataset, while every observation, or row, represents a single cell (Figure 1A). In
this way, transcriptomic data can be represented as an m x n matrix (cells x genes).

The global data structure in the native space can be constructed by first calculating an m x m matrix that contains
the pairwise distances between all observations in n dimensions (Figure 1B, top). The upper triangle of this
distance matrix contains all unique cell distances in the dataset, which can then be represented by a probability
density distribution as in Figure 1D. From these distances, local “neighborhoods” can be defined in the form of
a K nearest-neighbor (Knn) graph. The Knn graph is represented by a binary m x m matrix that defines the K
cells with the shortest distances from each cell in the dataset (Figure 1B, bottom). Similarly, a distance matrix,
distance distribution, and Knn graph can be constructed from a low-dimensional latent space resulting from
dimensionality reduction (Figure 1C).

Overall distance preservation following dimensionality reduction is measured by Mantel correlation (Figure 1D,

right). This method was designed for symmetrical matrices that represent element-wise similarity between two

vectors, and appropriately accounts for multiple testing of@ distances (Mantel, 1967). Structural alteration
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of the cell distance distribution — constructed from the upper triangle of the distance matrix — is quantified by the
Wasserstein metric, or Earth-Mover’s Distance (EMD) (Figure 1D, left). Widely applied to image processing, this
metric determines the energy associated with shifting one distribution to another, and can also be defined as the
area between two cumulative probability distributions (Werman, Peleg and Rosenfeld, 1985; Rubner, Tomasi
and Guibas, 1998, 2000; Levina and Bickel, 2001). Finally, preservation of the Knn graph before and after low-
dimensional embedding can also be quantified as the percentage of total binary matrix elements conserved in

order to describe maintenance of local substructures in the data.

Discrete and continuous cell distributions exemplify common biological patterns in vivo

A major consideration for testing dimensionality reduction techniques is the true structure of the input data in
native, high-dimensional space. For the scope of our evaluation applied to single-cell transcriptomics, we identify
two overarching classes of scRNA-seq data for proof-of-principal: discrete and continuous. Discrete single-cell
data are comprised of differentiated cell types with unique, highly discernable gene expression profiles. These
data include classic PBMC experiments and neuronal datasets which can be easily clustered into distinct cell
types (Zeisel et al., 2015; Rheaume et al., 2018). Conversely, continuous data represent multi-faceted
expression gradients present during cell development and differentiation, and are commonly associated with
dynamic systems such as erythropoiesis or embryonic development (Tusi et al., 2018; Wagner et al., 2019).
Recently, computational tools for trajectory inference and lineage reconstruction from these data are being
rapidly developed to query differential expression and gene-regulatory events involved in cell fate decisions (Qiu
et al., 2017; Herring, Chen, et al., 2018; Saelens et al., 2019; Van den Berge et al., 2019).

Mouse retina cells, analyzed using Drop-seq by Macosko and coworkers, provide a discrete cell distribution for
our analysis (Macosko et al., 2015) (GEO accession ID GSM1626793). Counts data from 20,478 genes for 1,326
cells were analyzed using PhenoGraph to determine “ground-truth” cell clusters by the Louvain algorithm (Figure
2A) (Levine et al., 2015). We performed relatively coarse clustering, ignoring subtype heterogeneity in favor of
clusters reflecting principal cell identity amenable to our downstream analyses (see Methods). A t-SNE projection
primed with 100 principal components (PCs) of all transcript counts allows for visualization of the data structure
and represented cell types (Figure 2B). As evident from the 2D embedding, these data are highly discrete, and
constituent cell clusters are easily distinguished by gene expression (Figure 2C, Figure S2A).

Mouse colon data, representing a continuous distribution of actively differentiating cells along the crypt-villus axis
of the colonic epithelium, were generated using inDrops scRNA-seq (Herring, Banerjee, et al., 2018) (GEO
accession ID GSM2743164). Counts data from 25,504 genes for 1,117 cells were similarly analyzed by
PhenoGraph and t-SNE to visualize continuous data structure (Figure 2D,E). The six clusters form a branching
continuum of cell states identified by expression markers (Figure 2F, Figure S2B), resolving two major lineages
in the colon: absorptive colonocytes and secretory goblet cells (Lepourcelet et al., 2005; Tamura et al., 2007;
Larsson et al., 2012). These clusters are linked together by pseudotemporal trajectories and thus their

arrangement is expected to be conserved upon low-dimensional embedding into a latent space.
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Input cell distribution determines performance of global structure preservation

Using the metrics outlined in Figure 1, we compared eleven published dimensionality reduction techniques
applied to continuous and discrete datasets. To allow for direct input to dimensionality reduction tools, raw counts
for both datasets were feature-selected to the 500 most variable genes. This “brute force” feature selection
technique may not be optimal for enriching rare cell types for higher-level analyses (Chen, Herring and Lau,
2018). However, for our purpose of proof-of-principal valuation of dimensionality reduction methods, it easily
provides a high level of differential information for unsupervised algorithms without biasing data input. Calculating
our metrics on all cells in the dataset, we first assess global structure preservation following transformation to a
dimension-reduced latent space. Representative examples of two-dimensional projections and their
corresponding distance distributions and correlations using SIMLR for the retina dataset and UMAP for the colon
dataset are shown in Figure 3A and Figure 3E, respectively. Notably, the largest discrepancy in structural
preservation is between the two datasets, highlighting the significance of input cell distribution to overall method
performance. Intuitively, Knn preservation is higher for all eleven methods when applied to the colon dataset,
reflecting the notion of continuous neighborhoods — a moving window of expression gradients — connecting all
cells through developmental pseudotime. Another important observation regarding the dimension-reduced latent
spaces involves the directionality of the cell distance distribution shift. A compression of distances from native to
latent space is indicated by a shift left in the cumulative distance distribution (Figure 3B,F, Figure S1A) or below
the identity line in the unique distance correlation (Figure 3D,H, Figure S1B). Alternatively, a shift right in the
cumulative distance distribution or above the identity line of the distance correlation signifies an exaggeration of
native distances (Figure S1). These phenomena are important in the context of global versus local structure
preservation. For example, UMAP appears to compress small, local distances to a greater extent than t-SNE,
while both methods maintain relative global structure as indicated by a favorable correlation of large distances
between clusters. Although this characteristic of UMAP embeddings causes greater information loss reflected in
less favorable preservation metrics (Figure 3C,G), clusters within the resulting projections tend to be highly

condensed and perhaps more easily interpreted (Figure S3A,B).

Parameter optimization plays key role in structural preservation

User-defined parameters for unsupervised algorithms often present themselves as “black-box” knobs with
unknown consequences. Tuning these parameters can be a daunting task for the single-cell analyst, but is known
to be crucial to algorithm performance (Belkina et al., 2018; Kobak and Berens, 2019; Tsuyuzaki et al., 2019).
Using our proposed metrics, we evaluated global structure preservation across a range of perplexity values for
t-SNE and UMAP algorithms applied to both discrete and continuous data. Through a balance of distance
correlation, EMD, and Knn preservation, we can identify an initial range of optimal perplexity values between 2

and 10 % of the total number of cells in the dataset (Figure S3C).
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Substructure analysis illuminates contribution to global performance

To corroborate results of global structure preservation and dissect contribution of local (within cluster) and
organizational (between cluster) distances to overall dimensionality reduction performance, clusters were
isolated for targeted substructure quantification. Here, we can measure distance preservation of individual
clusters as well as distances between clusters to emphasize local arrangement (Figure S1C,D).

Retinal cone cells (Figure 2A, cluster 4, n = 94) were used as an example of local distances in the discrete
dataset, while mature colonocytes (Figure 2D, cluster 1, n = 273) were isolated in the colon dataset (Figure
4A,B,E,F). Local distance compression represents the overarching trend for the eleven evaluated tools, indicated
by a correlation shift below the identity line. The latent spaces from scVI and 10-component PCA are notable
exceptions, yielding the two lowest EMD values for each dataset (Figure S4A). This most likely results from the
10-dimensional latent spaces of these methods capturing more cellular variability than 2D projections. Added
noise in the SIMLR latent space of mouse retina cells indicates a disagreement with Louvain cluster membership,
and may be attributed to the truncated, 500-feature input used for our analysis (Figure 4B). Moreover, this
observation suggests that discrete, “on-off” expression patterns are less robust to dropouts that cause mis-
assignment of cell type than continuous gradients of gene expression.

Besides maintenance of intra-cluster local structure, dimensionality reduction methods are also tasked with
preserving cellular neighborhoods, or relationships between clusters. By calculating distance distributions from
cells in one cluster to those in another, we can evaluate these associations. Furthermore, we can analyze
pairwise cluster-cluster distances to investigate organization of data substructures (Figure S1C). In the mouse
retina dataset, distances between bipolar cells, rod cells, and amacrine cells (Figure 2A, clusters 0, 1, 2, n= 309,
281, 258) are marked largely by compression, with some tools altering the arrangement of the three clusters
(Figure 4D, red boxes). For example, the bipolar and amacrine clusters are closest to one another in the native
gene space, but the bipolar cell cluster is closer to the rod cell cluster in the UMAP embedding, as indicated by
the ordering of each distribution on the axes of the 2D histogram plot. Conversely, relative distances between
three adjacent clusters along the goblet cell lineage (Figure 2D, clusters 0, 3 and 4, n = 274, 140 and 135) are
more highly conserved by all dimensionality reductions. These results confirm that related cells in continuous
scRNA-seq data are tethered to their neighbors through intermediate expression states, resulting in improved

local structure preservation upon latent projection (Figure S4).

Discussion

Single-cell RNA sequencing (scRNA-seq) allows for high-throughput, genome-scale measurement of mRNA
expression in individual cells. Interpretation, pattern detection, and visualization of such high-dimensional
observations present major challenges, and current datasets are constantly expanding in breadth and resolution.
Systems biologists have derived and adapted numerical and computational methods for dimensionality reduction
to allow for low-dimensional representation of single-cell data and deduction of cell states and fates (Van der
Maaten and Hinton, 2008; Pierson and Yau, 2015; Linderman et al., 2017; Wang et al., 2017; Becht et al., 2018;
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Ding, Condon and Shah, 2018; Lopez et al., 2018; Risso et al., 2018; Eraslan et al., 2019; Townes et al., 2019).
As software tools for single-cell analysis become widely available to lab-based researchers, there is a need to
thoroughly understand how underlying biological information is maintained or distorted by these techniques. Two
scRNA-seq datasets, representing discrete, differentiated cell types (Macosko et al., 2015) and continuous,
hierarchical differentiation states (Herring, Banerjee, et al., 2018) were used to investigate cell distance
preservation by eleven published dimensionality reduction methods. These dichotomous data offer insight into
strengths and weaknesses of these tools for different applications. Distance correlation, EMD between distance
distributions, and nearest-neighbor preservation were assessed to quantify cell dispersion, global data structure
preservation, and neighborhood maintenance.

We identified dispersion trends in local and global distance distributions that denote expansion and contraction
of native cell distances (Figure S1). This allowed us to evaluate general performance of dimensionality reduction
methods on entire single-cell datasets (Figure 3), and take a deeper dive to examine how local distances — within
or between clusters — contribute to the global structure of a low-dimensional latent space (Figure 4). With a goal
of grouping cells by their gene expression profiles, most dimensionality reduction tools evaluated herein
compressed local distances, embellishing cluster similarity, while maintaining or expanding global distances,
exaggerating cluster distinction (Figure 3, Figure 4). These characteristics of dimensionality reduction methods
are desirable for most applications. However, resolution of rare cell types and sub-cluster heterogeneity may be
lost, stressing the importance of input data quality, feature selection, and user-defined parameters.

Discrete scRNA-seq data are more susceptible to structural perturbation by downstream dimensionality
reduction, as indicated by larger EMD values and lower distance correlations in the retina dataset than colonic
epithelial cells (Figure 3, Figure S4). The possibility of cell type misclassification, or “noisy” cluster membership
in low-dimensional embeddings compared to consensus Louvain clustering, is exacerbated in discrete data. This
noise is intensified by gene dropouts, and is therefore sensitive to sequencing depth and capture efficiency. We
also observed cluster rearrangement within the retina dataset, suggesting that relative substructure organization
is poorly defined for discrete datasets (Figure 4D, Figure S4). On the other hand, continuous cell distributions
are more robust to these effects. In a continuum of gene expression, as in the actively differentiating cells along
the crypt-villus axis of the colonic epithelium, cell clusters are tethered to one another through intermediate
states. In this way, preservation of local and relative substructures is built-in to dimensionality reduction analysis
of continuous datasets, and results in more credible representations of native data structure (Figure 4F,H, Figure
S4). Finally, cursory exploration of the perplexity parameter in t-SNE and UMAP reveals a range of optimal
values that yield favorable structure preservation metrics, endorsing the need for parameter optimization for
dimensionality reduction of scRNA-seq datasets (Figure S3C).

As high-dimensional datasets become increasingly pervasive in systems biology, computational tools for reliable
and reproducible analysis of these data become tremendous assets to discovery. Dimensionality reduction
techniques allow for embedding cellular observations with tens of thousands of gene features into a low-
dimensional space for visualization and downstream processing. Many such methods exist, calling on concepts

from mathematics and computer science to aggregate underlying biological patterns into a latent representation
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of the data. We present an unbiased, quantitative framework based on native cell distance to evaluate data
structure preservation by dimensionality reduction tools. All code associated with this project is available at
github.com/KenLaulLab/DR-structure-preservation, and is readily extensible to additional scRNA-seq datasets

and dimensionality reduction methods.
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Figure 1. Cell distance distributions describe global structure of high-dimensional datasets. A) Representation of
gene counts matrix as output by scRNA-seq processing pipeline. B) Cell-cell Euclidean distances in native gene
space are calculated to generate an m x m matrix, where m is the total number of cells. K nearest-neighbors
(Knn) graph is constructed from these distances as a binary m x m matrix. C) Upon transformation to low-
dimensional latent space, a distance matrix and Knn graph can be calculated as in B. D) Distance matrices from
native (B) and latent (C) spaces are used to build cumulative probability density distributions, which can be
compared to one another by Earth Mover’s Distance (EMD, left). Unique distances from the upper triangle of
each distance matrix are correlated by Mantel test (right). Knn preservation represents element-wise comparison
of nearest-neighbor graph matrices in each space. See Methods.
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Figure 2. Discrete and continuous cell distributions exemplify common biological patterns in vivo. A) Relative expression of top variable genes in each
Louvain cluster for mouse retina dataset (Macosko et al., 2015). B) t-SNE embedding primed with 100 principal components (PCs) of retina dataset
with overlay of consensus clusters. C) t-SNE projection from B with overlay of example marker genes used to identify cell types in A. Expression

represented as arcsinh-normalized raw counts. D-F) Same as in A-C, for mouse colonic epithelium dataset (Herring et al., 2018). See Methods.
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Figure 1. Local structure preservation analysis of 11 dimensionality reduction methods on discrete and
continuous scRNA-seq datasets. A) Example 2D projection of mouse retina data using ZINB-WaVE and overlay
of cone cells (left). Cumulative distance distributions within cones cluster for native and latent spaces (middle)
and 2D histogram representing Pearson correlation between the two (right). B) 2D histograms of cell distance
correlations within cone cell cluster for evaluated latent spaces. C) Same as in A for distances between bipolar,
amacrine, and rod cell clusters, using scvis projection. D) Same as in B for distances between bipolar, amacrine,
and rod cells. Methods that rearranged cluster ordering are highlighted in red. E) Example 2D projection of
mouse colon data using DCA and overlay of mature colonocytes (left). Cumulative distance distributions within
colonocyte cluster for native and latent spaces (middle) and 2D histogram representing Pearson correlation
between the two (right). F) 2D histograms of cell distance correlations within mature colonocyte cluster for
evaluated latent spaces. G) Same as in E for distances between three goblet cell clusters, using ZIFA projection.

Native Distance

Native Distance

H) Same as in F for distances between three goblet cell clusters. See Methods.
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Methods

Cell Filtering

Raw counts expression matrices downloaded from GEO (accession IDs GSM1626793, GSM2743164) were
filtered for high-quality cells prior to downstream analysis. The cumulative sum of total UMI counts for each cell
was plotted along with the slope of the secant line to the curve as a function of rank-ordered cell. The distance
between these two curves was used as a metric for determining the rate of diminishing cell quality. The cell
number at which this distance was 50 % of its maximum was chosen as a cutoff, with cells contributing less UMI
counts were removed. Next, a 100-component PCA and UMAP with n_neighbors value of 0.5 % of the total cells
in the dataset were used to visualize cell populations and manually gate out clusters containing high
mitochondrial counts, indicating dead cells.

Process shown in: github.com/KenLaulLab/DR-structure-preservation/dev/QC.ipynb

Clustering

PhenoGraph (Levine et al., 2015) was used to perform Louvain clustering on both datasets in Python. To create
coarse, ground-truth clusters, the algorithm was run on 100 principal components of all genes in each dataset.
For the retina data, 100 PCs of 20,478 genes explained 33.5 % of the variance in the dataset. For the colon
data, 100 PCs of 25,505 genes explained 54.0 % of the variance. k values of 50 and 100 for generating the Knn
graph to seed the Louvain algorithm for the retina and colon datasets, respectively, were chosen to provide
coarse clustering of major cell types. Nine resulting clusters for the retina dataset and six resulting clusters in
the colon dataset were analyzed by Seurat’s FindAlIMarkers and DoHeatmap functions (Butler et al., 2018) to
obtain visualizations of up- and down-regulated genes in each cluster (Figure 2A,D).

Process shown in:

e github.com/KenLaulLab/DR-structure-preservation/dev/cluster_ID.ipynb

e github.com/KenLaulLab/DR-structure-preservation/dev/consensus_clustering.r

Dimensionality Reduction
All dimensionality reduction was performed on feature-selected data containing the most variable genes in each
dataset. Genes were rank-ordered by variance using the Pandas (version 0.22.0) DataFrame.var function in
Python, and the top 500 were chosen. Each dimensionality reduction technique was run “out-of-the-box” with
default parameters on the feature-selected data. DCA, scvis, scVI, ZINB-WaVE and GLM-PCA take raw,
unnormalized counts as input. Developers of ZIFA recommend a log2 transformation of counts, which we first
normalized to the maximum UMI count within each cell. Arcsinh-transformed counts normalized to the maximum
UMI count in each cell were used for all other methods (t-SNE, FIt-SNE, UMAP, SIMLR, PCA).
Process shown in:
e github.com/KenLaulLab/DR-structure-preservation/dev/global_eval.ipynb
e github.com/KenLaulLab/DR-structure-preservation/dev/Rmethods.Rmd
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e github.com/KenLaulLab/DR-structure-preservation/dev/scvis_out/README.md

Distance Metric Calculations

Mantel test for correlation between symmetric Euclidean distance matrices (Figure 3C,D,G,H) was performed
using the skbio.stats.distance.mantel function from the scikit-bio package (version 0.5.4). Pearson correlation
was performed for local distance preservation analysis between clusters, as the resulting cell distance matrices
are not symmetrical (Figure 3C,D,G,H). The scipy.stats.pearsonr function from the scipy package (version 1.1.0)
was used. The scipy.stats.wasserstein_distance function from the scipy package (version 1.1.0) was used to
calculated Earth Mover’s Distance between the flattened vectors containing unique distances between all cells
in the dataset (upper triangle of distance matrix, Figure 3B,C,F,G), except for local comparisons between
clusters, where the entire flattened matrix was used as the cell-cell distance matrices are not symmetrical (Figure
3C,D,G,H). A Knn graph with K = 30 was constructed using sklearn.neighbors.kneighbors_graph function from
the scikit-learn package (version 0.20.0). Knn preservation was calculated as the percentage of elements in the
Knn graph matrix that are conserved.

Functions used for above calculations can be found in:

e github.com/KenLaulLab/DR-structure-preservation/dev/global_eval.ipynb

e github.com/KenLaulLab/DR-structure-preservation/dev/local_eval.ipynb

e github.com/KenLaulLab/DR-structure-preservation/dev/neighborhood_eval.ipynb

Visualization

Cumulative cell distance distributions were plotted from the upper triangle of symmetrical cell distance matrices
(using triu_indices function from the numpy Python package (version 1.16.3)). The histogram and cumsum
functions numpy Python package (version 1.16.3) were used to plot cumulative distribution functions using n/100
bins, where n is the length of the flattened distance vector. Unique distance correlation was visualized using the
JointGrid and kdeplot functions from the seaborn package (version 0.9.0), as well as the pyplot.hist2d function
from the matplotlib package (version 3.0.1).

Functions used for above visualizations can be found in:

e github.com/KenLaulLab/DR-structure-preservation/fcc_utils.py

Lead Contact and Code Availability
o Further information and requests for resources and reagents should be directed to and will be fulfilled by the
Lead Contact, KSL (ken.s.lau@vanderbilt.edu).
e All code for this project is available at github.com/KenLauLab/DR-structure-preservation.
¢ Original data for this project is available on GEO:
e Accession ID GSM1626793 (mouse retina, Macosko et al., 2015)
e Accession ID GSM2743164 (mouse colon, Herring, Banerjee, et al., 2018)
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Figure S1, Related to Figure 1. Interpretation of data structure preservation analysis. A) Small distances in
cumulative distance distribution represent local cell similarity (within cluster), while large distances represent
global relationships and arrangement of data (between clusters). A distribution shift left indicates compression
of distances from native to latent space, while a shift right results from expansion or exaggeration of native
distances. B) Correlation of latent to native distances; dispersion below identity line (dashed) indicates
compression of distances from native to latent space, while dispersion above identity results from expansion of
native distances in low-dimensional space. C) Substructure analysis uses same framework as Figure 1 on
isolated subset of data to measure intra-cluster distance preservation and determine contribution to global
structure. D) Distribution of distances from all cells in one cluster to another define relative substructure. Inter-
cluster distances are measured pairwise to interrogate cluster arrangement in latent compared to native space.
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Key Resources Table

RESOURCE

| SOURCE

| IDENTIFIER

Deposited Data

Mouse retina scRNA-seq
data

Macosko et al., 2015

GEO: GSM1626793

Mouse colon scRNA-seq
data

Herring, Banerjee, et al., 2018

GEO: GSM2743164

Software and Algorithms

Python version 3.6

Python Software Foundation

https://www.python.org/downloads/

R version 3.5

The R Foundation

https://www.r-project.org

Seurat version 3.0.0

Butler et al., 2018

https://satijalab.org/seurat/

numpy version 1.16.3

Oliphant, 2006

http://www.numpy.org

scipy version 1.1.0

Oliphant, 2007

http://www.scipy.org/

pandas version 0.22.0

McKinney et al., 2010

https://pandas.pydata.org

scikit-learn version 0.20.0

Pedregosa et al., 2011

https://scikit-learn.org

scikit-bio version 0.5.4

Python Software Foundation

http://scikit-bio.org/

PhenoGraph 1.5.2

Levine et al., 2015

https://github.com/jacoblevine/PhenoGraph

umap-learn version 0.3.6

Mcinnes and Healy, 2018

https://github.com/Imcinnes/umap

scanpy version 1.3.2

Wolf, Angerer and Theis, 2018

https://github.com/theislab/scanpy

DCA version 0.2.2

Eraslan et al., 2019

https://github.com/theislab/dca

scVI version 0.2.1

Lopez et al., 2018

https://github.com/YosefLab/scVI

SCVis version

Ding, Condon and Shah, 2018

https://github.com/shahcompbio/scvis

SIMLR version 1.8.1

Wang et al., 2017

https://github.com/BatzoglouLabSU/SIMLR

GLM-PCA

Townes et al., 2019

https://github.com/willtownes/scrna2019

ZINB-WaVE version 1.4.2

Risso et al., 2018

https://bioconductor.org/packages/zinbwave

ZIFA version 0.1

Pierson and Yau, 2015

https://github.com/epierson9/ZIFA

FIt-SNE

Linderman et al., 2019

https://github.com/KlugerLab/FIt-SNE
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