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Summary 

 

High-dimensional data, such as those generated using single-cell RNA sequencing, present challenges in 

interpretation and visualization. Numerical and computational methods for dimensionality reduction allow for low-

dimensional representation of genome-scale expression data for downstream clustering, trajectory 

reconstruction, and biological interpretation. However, a comprehensive and quantitative evaluation of the 

performance of these techniques has not been established. We present an unbiased framework that defines 

metrics of global and local structure preservation in dimensionality reduction transformations. Using discrete and 

continuous scRNA-seq datasets, we find that input cell distribution and method parameters are largely 

determinant of global, local, and organizational data structure preservation by eleven published dimensionality 

reduction methods. Code available at github.com/KenLauLab/DR-structure-preservation allows for rapid 

evaluation of further datasets and methods. 
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Introduction 

 

Single-cell RNA sequencing (scRNA-seq) offers parallel, genome-scale measurement of tens of thousands of 

transcripts for thousands of cells (Klein et al., 2015; Macosko et al., 2015). Data of this magnitude provide 

powerful insight toward cell identity and developmental trajectory – states and fates – which are used to 

interrogate tissue heterogeneity and characterize disease progression (Regev et al., 2017; Wagner et al., 2019). 

Yet, extracting meaningful information from such high-dimensional data presents a massive challenge. 

Numerical and computational methods for dimensionality reduction have been developed to reconstruct 

underlying distributions from native “gene space” and provide low-dimensional, latent representations of single-

cell data for more intuitive downstream interpretation. Basic clustering methods and linear transformations such 

as principal component analysis (PCA) have proven to be valuable tools in this field (Sorzano, Vargas and 

Montano, 2014; Levine et al., 2015; Kiselev et al., 2017; Tsuyuzaki et al., 2019). However, given the distribution 
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and sparsity of scRNA-seq data, complex, nonlinear transformations are often required to capture and visualize 

expression patterns. Unsupervised machine learning techniques and, more recently, deep learning methods, are 

being rapidly developed to assist researchers in single-cell transcriptomic analysis (Van der Maaten and Hinton, 

2008; Pierson and Yau, 2015; Linderman et al., 2017; Wang et al., 2017; Becht et al., 2018; Ding, Condon and 

Shah, 2018; Lopez et al., 2018; Risso et al., 2018; Eraslan et al., 2019; Townes et al., 2019). Because these 

techniques condense cell features in the native space to a small number of latent dimensions for visualization, 

lost information can result in exaggerated or dampened cell-cell similarity. Furthermore, depending on input data 

and user-defined parameters, the structure of resulting embeddings can vary greatly, potentially altering 

biological interpretation (Kobak and Berens, 2019).  

With a deluge of computational techniques for dimensionality reduction, the field is lacking a comprehensive 

assessment of native organizational distortion consequential to such methods. Characterization of these tools 

would enable end users to confidently determine the most suitable methods for their application. We present an 

unbiased, quantitative framework for evaluation of data structure preservation by dimensionality reduction 

transformations. We propose three metrics for broad characterization of strengths and weaknesses of these 

methods based on cell-cell distance in native gene space. Initial benchmarking of eleven published software 

tools on discrete and continuous cell distributions shows global, local, and organizational data structure 

conservation under different parameter and input conditions. Interpretation and best practices, as well as 

extensibility of this method to other dimensionality reduction tools, is discussed.  

 

Results 

 

Cell distance distributions describe global structure of high-dimensional datasets 

In order to evaluate dimensionality reduction techniques, Euclidean cell-cell distance in native, high-dimensional 

space is used as a quantitative standard. Counts of unique molecular identifiers (UMI) for each gene make up 

the features, or columns of the dataset, while every observation, or row, represents a single cell (Figure 1A). In 

this way, transcriptomic data can be represented as an m x n matrix (cells x genes).  

The global data structure in the native space can be constructed by first calculating an m x m matrix that contains 

the pairwise distances between all observations in n dimensions (Figure 1B, top). The upper triangle of this 

distance matrix contains all unique cell distances in the dataset, which can then be represented by a probability 

density distribution as in Figure 1D. From these distances, local “neighborhoods” can be defined in the form of 

a K nearest-neighbor (Knn) graph. The Knn graph is represented by a binary m x m matrix that defines the K 

cells with the shortest distances from each cell in the dataset (Figure 1B, bottom). Similarly, a distance matrix, 

distance distribution, and Knn graph can be constructed from a low-dimensional latent space resulting from 

dimensionality reduction (Figure 1C).  

Overall distance preservation following dimensionality reduction is measured by Mantel correlation (Figure 1D, 

right). This method was designed for symmetrical matrices that represent element-wise similarity between two 

vectors, and appropriately accounts for multiple testing of !(!#$)&  distances (Mantel, 1967). Structural alteration 
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of the cell distance distribution – constructed from the upper triangle of the distance matrix – is quantified by the 

Wasserstein metric, or Earth-Mover’s Distance (EMD) (Figure 1D, left). Widely applied to image processing, this 

metric determines the energy associated with shifting one distribution to another, and can also be defined as the 

area between two cumulative probability distributions (Werman, Peleg and Rosenfeld, 1985; Rubner, Tomasi 

and Guibas, 1998, 2000; Levina and Bickel, 2001). Finally, preservation of the Knn graph before and after low-

dimensional embedding can also be quantified as the percentage of total binary matrix elements conserved in 

order to describe maintenance of local substructures in the data. 

 

Discrete and continuous cell distributions exemplify common biological patterns in vivo 

A major consideration for testing dimensionality reduction techniques is the true structure of the input data in 

native, high-dimensional space. For the scope of our evaluation applied to single-cell transcriptomics, we identify 

two overarching classes of scRNA-seq data for proof-of-principal: discrete and continuous. Discrete single-cell 

data are comprised of differentiated cell types with unique, highly discernable gene expression profiles. These 

data include classic PBMC experiments and neuronal datasets which can be easily clustered into distinct cell 

types (Zeisel et al., 2015; Rheaume et al., 2018). Conversely, continuous data represent multi-faceted 

expression gradients present during cell development and differentiation, and are commonly associated with 

dynamic systems such as erythropoiesis or embryonic development (Tusi et al., 2018; Wagner et al., 2019). 

Recently, computational tools for trajectory inference and lineage reconstruction from these data are being 

rapidly developed to query differential expression and gene-regulatory events involved in cell fate decisions (Qiu 

et al., 2017; Herring, Chen, et al., 2018; Saelens et al., 2019; Van den Berge et al., 2019).  

Mouse retina cells, analyzed using Drop-seq by Macosko and coworkers, provide a discrete cell distribution for 

our analysis (Macosko et al., 2015) (GEO accession ID GSM1626793). Counts data from 20,478 genes for 1,326 

cells were analyzed using PhenoGraph to determine “ground-truth” cell clusters by the Louvain algorithm (Figure 

2A) (Levine et al., 2015). We performed relatively coarse clustering, ignoring subtype heterogeneity in favor of 

clusters reflecting principal cell identity amenable to our downstream analyses (see Methods). A t-SNE projection 

primed with 100 principal components (PCs) of all transcript counts allows for visualization of the data structure 

and represented cell types (Figure 2B). As evident from the 2D embedding, these data are highly discrete, and 

constituent cell clusters are easily distinguished by gene expression (Figure 2C, Figure S2A).  

Mouse colon data, representing a continuous distribution of actively differentiating cells along the crypt-villus axis 

of the colonic epithelium, were generated using inDrops scRNA-seq (Herring, Banerjee, et al., 2018) (GEO 

accession ID GSM2743164). Counts data from 25,504 genes for 1,117 cells were similarly analyzed by 

PhenoGraph and t-SNE to visualize continuous data structure (Figure 2D,E). The six clusters form a branching 

continuum of cell states identified by expression markers (Figure 2F, Figure S2B), resolving two major lineages 

in the colon: absorptive colonocytes and secretory goblet cells (Lepourcelet et al., 2005; Tamura et al., 2007; 

Larsson et al., 2012). These clusters are linked together by pseudotemporal trajectories and thus their 

arrangement is expected to be conserved upon low-dimensional embedding into a latent space. 
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Input cell distribution determines performance of global structure preservation 

Using the metrics outlined in Figure 1, we compared eleven published dimensionality reduction techniques 

applied to continuous and discrete datasets. To allow for direct input to dimensionality reduction tools, raw counts 

for both datasets were feature-selected to the 500 most variable genes. This “brute force” feature selection 

technique may not be optimal for enriching rare cell types for higher-level analyses (Chen, Herring and Lau, 

2018). However, for our purpose of proof-of-principal valuation of dimensionality reduction methods, it easily 

provides a high level of differential information for unsupervised algorithms without biasing data input. Calculating 

our metrics on all cells in the dataset, we first assess global structure preservation following transformation to a 

dimension-reduced latent space. Representative examples of two-dimensional projections and their 

corresponding distance distributions and correlations using SIMLR for the retina dataset and UMAP for the colon 

dataset are shown in Figure 3A and Figure 3E, respectively. Notably, the largest discrepancy in structural 

preservation is between the two datasets, highlighting the significance of input cell distribution to overall method 

performance. Intuitively, Knn preservation is higher for all eleven methods when applied to the colon dataset, 

reflecting the notion of continuous neighborhoods – a moving window of expression gradients – connecting all 

cells through developmental pseudotime. Another important observation regarding the dimension-reduced latent 

spaces involves the directionality of the cell distance distribution shift. A compression of distances from native to 

latent space is indicated by a shift left in the cumulative distance distribution (Figure 3B,F, Figure S1A) or below 

the identity line in the unique distance correlation (Figure 3D,H, Figure S1B). Alternatively, a shift right in the 

cumulative distance distribution or above the identity line of the distance correlation signifies an exaggeration of 

native distances (Figure S1). These phenomena are important in the context of global versus local structure 

preservation. For example, UMAP appears to compress small, local distances to a greater extent than t-SNE, 

while both methods maintain relative global structure as indicated by a favorable correlation of large distances 

between clusters. Although this characteristic of UMAP embeddings causes greater information loss reflected in 

less favorable preservation metrics (Figure 3C,G), clusters within the resulting projections tend to be highly 

condensed and perhaps more easily interpreted (Figure S3A,B).  

 

Parameter optimization plays key role in structural preservation 

User-defined parameters for unsupervised algorithms often present themselves as “black-box” knobs with 

unknown consequences. Tuning these parameters can be a daunting task for the single-cell analyst, but is known 

to be crucial to algorithm performance (Belkina et al., 2018; Kobak and Berens, 2019; Tsuyuzaki et al., 2019). 

Using our proposed metrics, we evaluated global structure preservation across a range of perplexity values for 

t-SNE and UMAP algorithms applied to both discrete and continuous data. Through a balance of distance 

correlation, EMD, and Knn preservation, we can identify an initial range of optimal perplexity values between 2 

and 10 % of the total number of cells in the dataset (Figure S3C).  
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Substructure analysis illuminates contribution to global performance 

To corroborate results of global structure preservation and dissect contribution of local (within cluster) and 

organizational (between cluster) distances to overall dimensionality reduction performance, clusters were 

isolated for targeted substructure quantification. Here, we can measure distance preservation of individual 

clusters as well as distances between clusters to emphasize local arrangement (Figure S1C,D).  

Retinal cone cells (Figure 2A, cluster 4, n = 94) were used as an example of local distances in the discrete 

dataset, while mature colonocytes (Figure 2D, cluster 1, n = 273) were isolated in the colon dataset (Figure 

4A,B,E,F). Local distance compression represents the overarching trend for the eleven evaluated tools, indicated 

by a correlation shift below the identity line. The latent spaces from scVI and 10-component PCA are notable 

exceptions, yielding the two lowest EMD values for each dataset (Figure S4A). This most likely results from the 

10-dimensional latent spaces of these methods capturing more cellular variability than 2D projections. Added 

noise in the SIMLR latent space of mouse retina cells indicates a disagreement with Louvain cluster membership, 

and may be attributed to the truncated, 500-feature input used for our analysis (Figure 4B). Moreover, this 

observation suggests that discrete, “on-off” expression patterns are less robust to dropouts that cause mis-

assignment of cell type than continuous gradients of gene expression. 

Besides maintenance of intra-cluster local structure, dimensionality reduction methods are also tasked with 

preserving cellular neighborhoods, or relationships between clusters. By calculating distance distributions from 

cells in one cluster to those in another, we can evaluate these associations. Furthermore, we can analyze 

pairwise cluster-cluster distances to investigate organization of data substructures (Figure S1C). In the mouse 

retina dataset, distances between bipolar cells, rod cells, and amacrine cells (Figure 2A, clusters 0, 1, 2, n = 309, 

281, 258) are marked largely by compression, with some tools altering the arrangement of the three clusters 

(Figure 4D, red boxes). For example, the bipolar and amacrine clusters are closest to one another in the native 

gene space, but the bipolar cell cluster is closer to the rod cell cluster in the UMAP embedding, as indicated by 

the ordering of each distribution on the axes of the 2D histogram plot. Conversely, relative distances between 

three adjacent clusters along the goblet cell lineage (Figure 2D, clusters 0, 3 and 4, n = 274, 140 and 135) are 

more highly conserved by all dimensionality reductions. These results confirm that related cells in continuous 

scRNA-seq data are tethered to their neighbors through intermediate expression states, resulting in improved 

local structure preservation upon latent projection (Figure S4). 

 
Discussion 

 

Single-cell RNA sequencing (scRNA-seq) allows for high-throughput, genome-scale measurement of mRNA 

expression in individual cells. Interpretation, pattern detection, and visualization of such high-dimensional 

observations present major challenges, and current datasets are constantly expanding in breadth and resolution. 

Systems biologists have derived and adapted numerical and computational methods for dimensionality reduction 

to allow for low-dimensional representation of single-cell data and deduction of cell states and fates (Van der 

Maaten and Hinton, 2008; Pierson and Yau, 2015; Linderman et al., 2017; Wang et al., 2017; Becht et al., 2018; 
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Ding, Condon and Shah, 2018; Lopez et al., 2018; Risso et al., 2018; Eraslan et al., 2019; Townes et al., 2019). 

As software tools for single-cell analysis become widely available to lab-based researchers, there is a need to 

thoroughly understand how underlying biological information is maintained or distorted by these techniques. Two 

scRNA-seq datasets, representing discrete, differentiated cell types (Macosko et al., 2015) and continuous, 

hierarchical differentiation states (Herring, Banerjee, et al., 2018) were used to investigate cell distance 

preservation by eleven published dimensionality reduction methods. These dichotomous data offer insight into 

strengths and weaknesses of these tools for different applications. Distance correlation, EMD between distance 

distributions, and nearest-neighbor preservation were assessed to quantify cell dispersion, global data structure 

preservation, and neighborhood maintenance.  

We identified dispersion trends in local and global distance distributions that denote expansion and contraction 

of native cell distances (Figure S1). This allowed us to evaluate general performance of dimensionality reduction 

methods on entire single-cell datasets (Figure 3), and take a deeper dive to examine how local distances – within 

or between clusters – contribute to the global structure of a low-dimensional latent space (Figure 4). With a goal 

of grouping cells by their gene expression profiles, most dimensionality reduction tools evaluated herein 

compressed local distances, embellishing cluster similarity, while maintaining or expanding global distances, 

exaggerating cluster distinction (Figure 3, Figure 4). These characteristics of dimensionality reduction methods 

are desirable for most applications. However, resolution of rare cell types and sub-cluster heterogeneity may be 

lost, stressing the importance of input data quality, feature selection, and user-defined parameters.  

Discrete scRNA-seq data are more susceptible to structural perturbation by downstream dimensionality 

reduction, as indicated by larger EMD values and lower distance correlations in the retina dataset than colonic 

epithelial cells (Figure 3, Figure S4). The possibility of cell type misclassification, or “noisy” cluster membership 

in low-dimensional embeddings compared to consensus Louvain clustering, is exacerbated in discrete data. This 

noise is intensified by gene dropouts, and is therefore sensitive to sequencing depth and capture efficiency. We 

also observed cluster rearrangement within the retina dataset, suggesting that relative substructure organization 

is poorly defined for discrete datasets (Figure 4D, Figure S4). On the other hand, continuous cell distributions 

are more robust to these effects. In a continuum of gene expression, as in the actively differentiating cells along 

the crypt-villus axis of the colonic epithelium, cell clusters are tethered to one another through intermediate 

states. In this way, preservation of local and relative substructures is built-in to dimensionality reduction analysis 

of continuous datasets, and results in more credible representations of native data structure (Figure 4F,H, Figure 

S4). Finally, cursory exploration of the perplexity parameter in t-SNE and UMAP reveals a range of optimal 

values that yield favorable structure preservation metrics, endorsing the need for parameter optimization for 

dimensionality reduction of scRNA-seq datasets (Figure S3C). 

As high-dimensional datasets become increasingly pervasive in systems biology, computational tools for reliable 

and reproducible analysis of these data become tremendous assets to discovery. Dimensionality reduction 

techniques allow for embedding cellular observations with tens of thousands of gene features into a low-

dimensional space for visualization and downstream processing. Many such methods exist, calling on concepts 

from mathematics and computer science to aggregate underlying biological patterns into a latent representation 
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of the data. We present an unbiased, quantitative framework based on native cell distance to evaluate data 

structure preservation by dimensionality reduction tools. All code associated with this project is available at 

github.com/KenLauLab/DR-structure-preservation, and is readily extensible to additional scRNA-seq datasets 

and dimensionality reduction methods.  
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Figures 
 

 
Figure 1. Cell distance distributions describe global structure of high-dimensional datasets. A) Representation of 
gene counts matrix as output by scRNA-seq processing pipeline. B) Cell-cell Euclidean distances in native gene 
space are calculated to generate an m x m matrix, where m is the total number of cells. K nearest-neighbors 
(Knn) graph is constructed from these distances as a binary m x m matrix. C) Upon transformation to low-
dimensional latent space, a distance matrix and Knn graph can be calculated as in B. D) Distance matrices from 
native (B) and latent (C) spaces are used to build cumulative probability density distributions, which can be 
compared to one another by Earth Mover’s Distance (EMD, left). Unique distances from the upper triangle of 
each distance matrix are correlated by Mantel test (right). Knn preservation represents element-wise comparison 
of nearest-neighbor graph matrices in each space. See Methods. 
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Figure 2. Discrete and continuous cell distributions exemplify common biological patterns in vivo. A) Relative expression of top variable genes in each 

Louvain cluster for mouse retina dataset (Macosko et al., 2015). B) t-SNE embedding primed with 100 principal components (PCs) of retina dataset 

with overlay of consensus clusters. C) t-SNE projection from B with overlay of example marker genes used to identify cell types in A. Expression 

represented as arcsinh-normalized raw counts. D-F) Same as in A-C, for mouse colonic epithelium dataset (Herring et al., 2018). See Methods. 
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Figure 3. Global structure preservation analysis of 11 dimensionality reduction methods on discrete and continuous scRNA-seq datasets. A) Example 

2D projection of mouse retina data using SIMLR with Louvain cluster overlay (top). Cumulative distance distributions for native and latent spaces 

(bottom left) and 2D histogram representing Mantel correlation between the two (bottom right). B) Cumulative distance distributions of evaluated latent 

spaces for mouse retina data. C) Summary of structure preservation metrics for 11 dimensionality reduction methods on mouse retina dataset. D) 2D 

histograms of cell distance correlations of evaluated latent spaces for mouse retina data. E) Same as in A, with UMAP projection of mouse colon data. 

F-H) Same as in B-D, for mouse colon data. 10-component PCA is shown for direct comparison to scVI’s 10-dimensional latent space; all other 

methods return 2D embedding. See Methods. 
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Figure 1. Local structure preservation analysis of 11 dimensionality reduction methods on discrete and 

continuous scRNA-seq datasets. A) Example 2D projection of mouse retina data using ZINB-WaVE and overlay 

of cone cells (left). Cumulative distance distributions within cones cluster for native and latent spaces (middle) 

and 2D histogram representing Pearson correlation between the two (right). B) 2D histograms of cell distance 

correlations within cone cell cluster for evaluated latent spaces. C) Same as in A for distances between bipolar, 

amacrine, and rod cell clusters, using scvis projection. D) Same as in B for distances between bipolar, amacrine, 

and rod cells. Methods that rearranged cluster ordering are highlighted in red. E) Example 2D projection of 

mouse colon data using DCA and overlay of mature colonocytes (left). Cumulative distance distributions within 

colonocyte cluster for native and latent spaces (middle) and 2D histogram representing Pearson correlation 

between the two (right). F) 2D histograms of cell distance correlations within mature colonocyte cluster for 

evaluated latent spaces. G) Same as in E for distances between three goblet cell clusters, using ZIFA projection. 

H) Same as in F for distances between three goblet cell clusters. See Methods. 
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Methods 
 

Cell Filtering 
Raw counts expression matrices downloaded from GEO (accession IDs GSM1626793, GSM2743164) were 

filtered for high-quality cells prior to downstream analysis. The cumulative sum of total UMI counts for each cell 

was plotted along with the slope of the secant line to the curve as a function of rank-ordered cell. The distance 

between these two curves was used as a metric for determining the rate of diminishing cell quality. The cell 

number at which this distance was 50 % of its maximum was chosen as a cutoff, with cells contributing less UMI 

counts were removed. Next, a 100-component PCA and UMAP with n_neighbors value of 0.5 % of the total cells 

in the dataset were used to visualize cell populations and manually gate out clusters containing high 

mitochondrial counts, indicating dead cells.  

Process shown in: github.com/KenLauLab/DR-structure-preservation/dev/QC.ipynb 

 

Clustering  
PhenoGraph (Levine et al., 2015) was used to perform Louvain clustering on both datasets in Python. To create 

coarse, ground-truth clusters, the algorithm was run on 100 principal components of all genes in each dataset. 

For the retina data, 100 PCs of 20,478 genes explained 33.5 % of the variance in the dataset. For the colon 

data, 100 PCs of 25,505 genes explained 54.0 % of the variance. k values of 50 and 100 for generating the Knn 

graph to seed the Louvain algorithm for the retina and colon datasets, respectively, were chosen to provide 

coarse clustering of major cell types. Nine resulting clusters for the retina dataset and six resulting clusters in 

the colon dataset were analyzed by Seurat’s FindAllMarkers and DoHeatmap functions (Butler et al., 2018) to 

obtain visualizations of up- and down-regulated genes in each cluster (Figure 2A,D).  

Process shown in: 

• github.com/KenLauLab/DR-structure-preservation/dev/cluster_ID.ipynb  

• github.com/KenLauLab/DR-structure-preservation/dev/consensus_clustering.r 

 

Dimensionality Reduction 

All dimensionality reduction was performed on feature-selected data containing the most variable genes in each 

dataset. Genes were rank-ordered by variance using the Pandas (version 0.22.0) DataFrame.var function in 

Python, and the top 500 were chosen. Each dimensionality reduction technique was run “out-of-the-box” with 

default parameters on the feature-selected data. DCA, scvis, scVI, ZINB-WaVE and GLM-PCA take raw, 

unnormalized counts as input. Developers of ZIFA recommend a log2 transformation of counts, which we first 

normalized to the maximum UMI count within each cell. Arcsinh-transformed counts normalized to the maximum 

UMI count in each cell were used for all other methods (t-SNE, FIt-SNE, UMAP, SIMLR, PCA).  

Process shown in: 

• github.com/KenLauLab/DR-structure-preservation/dev/global_eval.ipynb 

• github.com/KenLauLab/DR-structure-preservation/dev/Rmethods.Rmd 
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• github.com/KenLauLab/DR-structure-preservation/dev/scvis_out/README.md 

 

Distance Metric Calculations 
Mantel test for correlation between symmetric Euclidean distance matrices (Figure 3C,D,G,H) was performed 

using the skbio.stats.distance.mantel function from the scikit-bio package (version 0.5.4). Pearson correlation 

was performed for local distance preservation analysis between clusters, as the resulting cell distance matrices 

are not symmetrical (Figure 3C,D,G,H). The scipy.stats.pearsonr function from the scipy package (version 1.1.0) 

was used. The scipy.stats.wasserstein_distance function from the scipy package (version 1.1.0) was used to 

calculated Earth Mover’s Distance between the flattened vectors containing unique distances between all cells 

in the dataset (upper triangle of distance matrix, Figure 3B,C,F,G), except for local comparisons between 

clusters, where the entire flattened matrix was used as the cell-cell distance matrices are not symmetrical (Figure 

3C,D,G,H). A Knn graph with K = 30 was constructed using sklearn.neighbors.kneighbors_graph function from 

the scikit-learn package (version 0.20.0). Knn preservation was calculated as the percentage of elements in the 

Knn graph matrix that are conserved.  

Functions used for above calculations can be found in: 

• github.com/KenLauLab/DR-structure-preservation/dev/global_eval.ipynb 

• github.com/KenLauLab/DR-structure-preservation/dev/local_eval.ipynb 

• github.com/KenLauLab/DR-structure-preservation/dev/neighborhood_eval.ipynb 

 

Visualization 
Cumulative cell distance distributions were plotted from the upper triangle of symmetrical cell distance matrices 

(using triu_indices function from the numpy Python package (version 1.16.3)). The histogram and cumsum 

functions numpy Python package (version 1.16.3) were used to plot cumulative distribution functions using n/100 

bins, where n is the length of the flattened distance vector. Unique distance correlation was visualized using the 

JointGrid and kdeplot functions from the seaborn package (version 0.9.0), as well as the pyplot.hist2d function 

from the matplotlib package (version 3.0.1).  

Functions used for above visualizations can be found in:  

• github.com/KenLauLab/DR-structure-preservation/fcc_utils.py 

 

Lead Contact and Code Availability 
• Further information and requests for resources and reagents should be directed to and will be fulfilled by the 

Lead Contact, KSL (ken.s.lau@vanderbilt.edu). 

• All code for this project is available at github.com/KenLauLab/DR-structure-preservation. 

• Original data for this project is available on GEO: 

• Accession ID GSM1626793 (mouse retina, Macosko et al., 2015) 

• Accession ID GSM2743164 (mouse colon, Herring, Banerjee, et al., 2018) 
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Supplemental Information 
 

 
 

Figure S1, Related to Figure 1. Interpretation of data structure preservation analysis. A) Small distances in 

cumulative distance distribution represent local cell similarity (within cluster), while large distances represent 

global relationships and arrangement of data (between clusters). A distribution shift left indicates compression 

of distances from native to latent space, while a shift right results from expansion or exaggeration of native 

distances. B) Correlation of latent to native distances; dispersion below identity line (dashed) indicates 

compression of distances from native to latent space, while dispersion above identity results from expansion of 

native distances in low-dimensional space. C) Substructure analysis uses same framework as Figure 1 on 

isolated subset of data to measure intra-cluster distance preservation and determine contribution to global 

structure. D) Distribution of distances from all cells in one cluster to another define relative substructure. Inter-

cluster distances are measured pairwise to interrogate cluster arrangement in latent compared to native space. 
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Figure S2, Related to Figure 2. t-SNE visualizations from Figure 2 with overlay of arcsinh-normalized 

expression of marker genes. Used to assign cell type to Louvain clusters for retina (A) and colon (B) datasets. 
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Figure S3, Related to Figure 3. Low-dimensional projections from 11 evaluated dimensionality reduction methods with overlay of consensus 
Louvain clusters for retina (A) and colon (B) data. These embeddings were generated using the 500 most variable genes in each dataset. C) 
Resulting distance metrics from titration of perplexity parameter in t-SNE and UMAP (n_neighbors) on retina (discrete) and colon (continuous) 
datasets. 
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Figure S4, Related to Figure 4. Summary of substructure analysis of discrete and continuous data. A) Local (within cluster) distance preservation 
metrics for cone cell cluster and mature colonocyte cluster from retina and colon datasets, respectively. B) EMD and distance correlation values for 
pairwise distance distributions between bipolar cells, rod cells, and amacrine cells in retina dataset, and three clusters along developing goblet cell 
lineage in colon dataset. 
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Key Resources Table 
 
RESOURCE SOURCE IDENTIFIER 
Deposited Data 
Mouse retina scRNA-seq 
data Macosko et al., 2015 GEO: GSM1626793 

Mouse colon scRNA-seq 
data Herring, Banerjee, et al., 2018 GEO: GSM2743164 

Software and Algorithms 
Python version 3.6 Python Software Foundation https://www.python.org/downloads/ 
R version 3.5 The R Foundation https://www.r-project.org 
Seurat version 3.0.0 Butler et al., 2018 https://satijalab.org/seurat/ 
numpy version 1.16.3 Oliphant, 2006 http://www.numpy.org 
scipy version 1.1.0 Oliphant, 2007 http://www.scipy.org/ 
pandas version 0.22.0 McKinney et al., 2010 https://pandas.pydata.org 
scikit-learn version 0.20.0 Pedregosa et al., 2011 https://scikit-learn.org 
scikit-bio version 0.5.4 Python Software Foundation http://scikit-bio.org/ 
PhenoGraph 1.5.2 Levine et al., 2015 https://github.com/jacoblevine/PhenoGraph 
umap-learn version 0.3.6 Mcinnes and Healy, 2018 https://github.com/lmcinnes/umap 
scanpy version 1.3.2 Wolf, Angerer and Theis, 2018 https://github.com/theislab/scanpy 
DCA version 0.2.2 Eraslan et al., 2019 https://github.com/theislab/dca 
scVI version 0.2.1 Lopez et al., 2018 https://github.com/YosefLab/scVI 
scvis version  Ding, Condon and Shah, 2018 https://github.com/shahcompbio/scvis 
SIMLR version 1.8.1 Wang et al., 2017 https://github.com/BatzoglouLabSU/SIMLR 
GLM-PCA Townes et al., 2019 https://github.com/willtownes/scrna2019 
ZINB-WaVE version 1.4.2 Risso et al., 2018 https://bioconductor.org/packages/zinbwave 
ZIFA version 0.1 Pierson and Yau, 2015 https://github.com/epierson9/ZIFA 
FIt-SNE Linderman et al., 2019 https://github.com/KlugerLab/FIt-SNE 
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