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Avian influenza viruses (AIVs) periodically cross species barriers and infect humans. The 26 

likelihood that an AIV will evolve mammalian transmissibility depends on acquiring and selecting 27 

mutations during spillover, but data from natural infection is limited. We analyze deep 28 

sequencing data from infected humans and domestic ducks in Cambodia to examine how H5N1 29 

viruses evolve during spillover. Overall, viral populations in both species are predominated by 30 

low-frequency (<10%) variation shaped by purifying selection and genetic drift, and half of the 31 

variants detected within-host are never detected on the H5N1 virus phylogeny. However, we do 32 

detect a subset of mutations linked to human receptor binding and replication (PB2 E627K, HA 33 

A150V, and HA Q238L) that arose in multiple, independent humans. PB2 E627K and HA A150V 34 

were also enriched along phylogenetic branches leading to human infections, suggesting that 35 

they are likely human-adaptive. Our data show that H5N1 viruses generate putative human-36 

adapting mutations during natural spillover infection, many of which are detected at >5% 37 

frequency within-host. However, short infection times, genetic drift, and purifying selection likely 38 

restrict their ability to evolve extensively during a single infection. Applying evolutionary methods 39 

to sequence data, we reveal a detailed view of H5N1 virus adaptive potential, and develop a 40 

foundation for studying host-adaptation in other zoonotic viruses. 41 

Author summary 42 

H5N1 avian influenza viruses can cross species barriers and cause severe disease in humans. 43 

H5N1 viruses currently cannot replicate and transmit efficiently among humans, but animal 44 

infection studies and modeling experiments have suggested that human adaptation may require 45 

only a few mutations. However, data from natural spillover infection has been limited, posing a 46 

challenge for risk assessment. Here, we analyze a unique dataset of deep sequence data from 47 

H5N1 virus-infected humans and domestic ducks in Cambodia. We find that well-known 48 

markers of human receptor binding and replication arise in multiple, independent humans. We 49 

also find that 3 mutations detected within-host are enriched along phylogenetic branches 50 
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leading to human infections, suggesting that they are likely human-adapting. However, we also 51 

show that within-host evolution in both humans and ducks are shaped heavily by purifying 52 

selection and genetic drift, and that a large fraction of within-host variation is never detected on 53 

the H5N1 phylogeny. Taken together, our data show that H5N1 viruses do generate human-54 

adapting mutations during natural infection. However, short infection times, purifying selection, 55 

and genetic drift may severely limit how much H5N1 viruses can evolve during the course of a 56 

single infection.  57 

  58 

Introduction 59 

Influenza virus cross-species transmission poses a continual threat to human health. Since 60 

emerging in 1997, H5N1 avian influenza viruses (AIVs) have caused 860 confirmed infections 61 

and 454 deaths in humans[1]. H5N1 viruses naturally circulate in aquatic birds, but some 62 

lineages have integrated into poultry populations. H5N1 viruses are now endemic in domestic 63 

birds in some countries[2–4], and concern remains that continued human infection may one day 64 

facilitate human adaptation. 65 

  66 

The likelihood that an AIV will adapt to replicate and transmit among humans depends on 67 

generating and selecting human-adaptive mutations during spillover. Influenza viruses have 68 

high mutation rates[5–8], short generation times[9], and large populations, and rapidly generate 69 

diversity within-host. Laboratory studies using animal models[10–12] show that only 3-5 amino 70 

acid substitutions may be required to render H5N1 viruses mammalian-transmissible[10–12], 71 

and that viral variants present at frequencies as low as 5% may be transmitted by respiratory 72 

droplets[13]. Subsequent modeling studies suggest that within-host dynamics are conducive to 73 

generating human-transmissible viruses, but that these viruses may remain at frequencies too 74 

low for transmission[14,15]. Although these studies offer critical insight for H5N1 virus risk 75 
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assessment, it is unclear whether they adequately describe how cross-species transmission 76 

proceeds in nature. 77 

 78 

H5N1 virus outbreaks offer rare opportunities to study natural cross-species transmission, but 79 

data are limited. One study of H5N1 virus-infected humans in Vietnam identified mutations 80 

affecting receptor binding, polymerase activity, and interferon antagonism; however, they 81 

remained at low frequencies throughout infection[16]. Recent characterization of H5N1 virus-82 

infected humans in Indonesia identified novel mutations within-host that enhance polymerase 83 

activity in human cells[17]. Unfortunately, neither of these studies include data from naturally 84 

infected poultry, which would provide a critical comparison for assessing whether infected 85 

humans exhibit signs of adaptive evolution. A small number of studies have examined within-86 

host diversity in experimentally infected poultry[18–20], but these may not recapitulate the 87 

dynamics of natural infection. 88 

 89 

As part of ongoing diagnostic and surveillance effort, the Institut Pasteur du Cambodge collects 90 

and confirms samples from AIV-infected poultry during routine market surveillance, and from 91 

human cases and poultry during AIV outbreaks. Since H5N1 was first detected in Cambodia in 92 

2004, 56 human cases and 58 poultry outbreaks have been confirmed and many more have 93 

gone undetected[21]. Here we analyze previously generated deep sequence data[22] from 8 94 

infected humans and 5 infected domestic ducks collected in Cambodia between 2010 and 2014. 95 

We find that viral populations in both species are dominated by low-frequency variation shaped 96 

by population expansion, purifying selection, and genetic drift. We identify a handful of 97 

mutations in humans linked to improved mammalian replication and transmissibility, two of 98 

which were detected in multiple samples, suggesting that adaptive mutations arise during 99 

natural spillover infection. Although most within-host mutations are not linked to human 100 

infections on the H5N1 virus phylogeny, three mutations identified within-host are enriched on 101 
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phylogenetic branches leading to human infections. Our data suggest that known adaptive 102 

mutations do occur in natural H5N1 virus infection, but that a short duration of infection, 103 

randomness, and purifying selection may together limit the evolutionary capacity of these 104 

viruses to evolve extensively during any individual spillover event.  105 

  106 

Methods 107 

Viral sample collection 108 

The Institute Pasteur in Cambodia is a World Health Organization H5 Reference Laboratory 109 

(H5RL) and has a mandate to assist the Cambodian Ministry of Health and the Ministry of 110 

Agriculture, Forestry, and Fisheries in conducting investigations into human cases and poultry 111 

outbreaks of H5N1 virus, respectively. Surveillance for human cases of H5N1 virus infection is 112 

conducted through influenza-like-illness, severe acute respiratory illness, and event-based 113 

surveillance in a network of hospitals throughout the country [23]. Poultry outbreaks of H5N1 114 

virus are detected through passive surveillance following reports from farmers and villagers of 115 

livestock illness or death. The H5RL conducts confirmation of H5N1 virus detection and further 116 

characterization (genetic and antigenic) of H5N1 virus strains.  117 

Human subjects and IRB approval 118 

The Cambodian influenza surveillance system is a public health activity managed by the 119 

Ministry of Health in Cambodia and has a standing authorization from the National Ethics 120 

Committee for Human Research. The deep sequence analysis of H5N1 influenza virus from 121 

human samples was approved for this study by the National Ethics Committee for Human 122 

Research (#266NECHR). 123 

RNA isolation and RT-qPCR 124 

RNA was extracted from swab samples using the QIAmp Viral RNA Mini Kit (Qiagen, Valencia, 125 

CA, USA), following manufacturer’s guidelines and eluted in buffer AVE. Extracts were tested 126 
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for influenza A virus (M-gene)[24] and subtypes H5 (primer sets H5a and H5b), N1, H7, and H9 127 

by using quantitative RT-PCR (qRT-PCR) using assays sourced from the International Reagent 128 

Resource (https://www.internationalreagentresource.org/Home.aspx), as previously 129 

outlined[25]. Only samples with high viral load (≥103 copies/μl of extracted viral RNA in buffer 130 

AVE), as assessed by RT-qPCR, were selected for sequence analysis. All samples were 131 

sequenced directly from the original specimen, without passaging in cell culture or eggs. 132 

Information on the samples included in the present analyses are presented in Table 1. 133 

cDNA generation and PCR 134 

cDNA was generated using Superscript IV Reverse Transcriptase (Invitrogen, Carlsbad, CA, 135 

USA) and custom influenza primers targeting the conserved ends for whole genome 136 

amplification[26]. The following primers were pooled together in a 1.5 : 0.5 : 2.0 : 1.0 ratio: Uni-137 

1.5: ACGCGTGATCAGCAAAAGCAGG, Uni-0.5: ACGCGTGATCAGCGAAAGCAGG, Uni-2.0: 138 

ACGCGTGATCAGTAGAAACAAGG, and Uni-1.0: AGCAAAAGCAGG. 1 μl of this primer pool 139 

was added to 1 μl of 10 mM dNTP mix (Invitrogen) and 11 μl of RNA. Contents were briefly 140 

mixed and heated for 5 minutes at 65°C, followed by immediate incubation on ice for at least 1 141 

minute. Next, a second mastermix was made with 4 μl of 5X Superscript IV Buffer, 1 μl of 100 142 

mM DTT, 1 μl of RNaseOut Recombinant RNase Inhibitor, and 1 μl of SuperScript IV Reverse 143 

Transcriptase (200 U/μl) (Invitrogen). 7 μl of mastermix was added to each sample, for a total 144 

volume of 20 μl. This mixture was briefly mixed, incubated at 55°C for 20 minutes, then 145 

inactivated by incubating at 80°C for 10 minutes. Whole genomic amplification of the influenza 146 

virus was conducted using Ex Taq™ Hot Start Version (TaKaRa). Forward primers were Uni-1.5 147 

and Uni-0.5 mixed in a ratio of 3:2, and reverse primer was Uni-2.0. The temperature cycle 148 

parameters were 98°C for 2 min, and then 5 cycles (98°C for 30 seconds, 45°C for 30 seconds, 149 

and 72°C for 3 minutes), followed by 25 cycles (98°C for 30 seconds, 55°C for 30 seconds, and 150 

72°C for 3 minutes).  151 
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Library preparation and sequencing 152 

For each sample, amplicons were quantified using the QubitTM dsDNA BR Assay Kit 153 

(Invitrogen), pooled in equimolar concentrations, and fragmented using the NEBNext dsDNA 154 

Fragmentase (New England BioLabs, Ipswich, MA). DNA fragments with the size of 350-700 bp 155 

were separated on an agarose gel during electrophoresis and purified for input into the 156 

NEBNext Ultra DNA Library Prep Kit for Illumina® (New England BioLabs). Prepared libraries 157 

were quantified using KAPA Library Quantification Kits for Illumina® platforms (KAPA 158 

Biosystems) and pooled in equimolar concentrations to a final concentration of 4 nM, and run 159 

using an MiSeq Reagent Kit v2 (Illumina, San Diego, CA) for 500 cycles (2 x 250 bp). 160 

Demultiplexed files were output in FASTQ format.  161 

Processing of raw sequence data, mapping, and variant calling 162 

Human reads were removed from raw FASTQ files by mapping to the human reference genome 163 

GRCH38 with bowtie2[27] version 2.3.2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml). 164 

Reads that did not map to human genome were output to separate FASTQ files and used for all 165 

subsequent analyses. Illumina data was analyzed using the pipeline described in detail at 166 

https://github.com/lmoncla/illumina_pipeline. Briefly, raw FASTQ files were trimmed using 167 

Trimmomatic[28] (http://www.usadellab.org/cms/?page=trimmomatic), trimming in sliding 168 

windows of 5 base pairs and requiring a minimum Q-score of 30. Reads that were trimmed to a 169 

length of <100 base pairs were discarded. Trimming was performed with the following 170 

command: java -jar Trimmomatic-0.36/trimmomatic-0.36.jar SE input.fastq output.fastq 171 

SLIDINGWINDOW:5:30 MINLEN:100. Trimmed reads were mapped to consensus sequences 172 

previously derived[22] using bowtie2[27] version 2.3.2 (http://bowtie-173 

bio.sourceforge.net/bowtie2/index.shtml), using the following command: bowtie2 -x 174 

reference_sequence.fasta -U read1.trimmed.fastq,read2.trimmed.fastq -S output.sam --local. 175 

Duplicate reads were removed with Picard (http://broadinstitute.github.io/picard/) with: java -jar 176 

picard.jar MarkDuplicates I=input.sam O=output.sam REMOVE_DUPLICATES=true. Mapped 177 
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reads were imported into Geneious (https://www.geneious.com/) for visual inspection and 178 

consensus calling. Consensus sequences were called by reporting the majority base at each 179 

site. For nucleotide sites with <100x coverage, a consensus base was not reported, and was 180 

instead reported as an “N”. To avoid issues with mapping to an improper reference sequence, 181 

we then remapped each sample's trimmed FASTQ files to its own consensus sequence. These 182 

bam files were again manually inspected in Geneious, and a final consensus sequence was 183 

called. We were able to generate full-genome data for all samples except for 184 

A/Cambodia/X0128304/2013, for which we were lacked data for PB1. These BAM files were 185 

then exported and converted to mpileup files with samtools[29] 186 

(http://samtools.sourceforge.net/), and within-host variants were called using VarScan[30,31] 187 

(http://varscan.sourceforge.net/). For a variant to be reported, we required the variant site to be 188 

sequenced to a depth of at least 100x with a minimum, mean PHRED quality score of 30, and 189 

for the variant to be detected in both forward and reverse reads at a frequency of at least 1%. 190 

We called variants using the following command: java -jar VarScan.v2.3.9.jar mpileup2snp 191 

input.pileup --min-coverage 100 --min-avg-qual 30 --min-var-freq 0.01 --strand-filter 1 --output-192 

vcf 1 > output.vcf. VCF files were parsed and annotated with coding region changes using 193 

custom software available here (https://github.com/blab/h5n1-194 

cambodia/blob/master/scripts/H5N1_vcf_parser.py). All amino acid changes for HA are reported 195 

and plotted using native H5 numbering, including the signal peptide, which is 16 amino acids in 196 

length. For ease of comparison, some amino acid changes are also reported with mature H5 197 

peptide numbering in the manuscript when indicated.  198 

Phylogenetic reconstruction 199 

We downloaded all currently available H5N1 virus genomes from the EpiFlu Database of the 200 

Global Initiative for Sharing All Influenza Data[32,33] (GISAID, https://www.gisaid.org/) and all 201 

currently available full H5N1 virus genomes from the Influenza Research Database (IRD, 202 

http://www.fludb.org)[34] and added consensus genomes from our 5 duck samples and 8 203 
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human samples. Sequences and metadata were cleaned and organized using fauna 204 

(https://github.com/nextstrain/fauna), a database system part of the Nextstrain platform. 205 

Sequences were then processed using Nextstrain’s augur software[35] 206 

(https://github.com/nextstrain/augur). Sequences were filtered by length to remove short 207 

sequences using the following length filters: PB2: 2100 bp, PB1: 2100 bp, PA: 2000 bp, HA: 208 

1600 bp, NP: 1400 bp, NA: 1270 bp, MP: 900 bp, and NS: 800 bp. We excluded sequences with 209 

sample collection dates prior to 1996, and those for which the host was annotated as laboratory 210 

derived, ferret, or unknown. We also excluded sequences for which the country or geographic 211 

region was unknown. Sequences for each gene were aligned using MAFFT[36], and then 212 

trimmed to the reference sequence. We chose the A/Goose/Guangdong/1/96(H5N1) genome 213 

(GenBank accession numbers: AF144300-AF144307) as the reference genome. 214 

IQTREE[37,38] was then used to infer a maximum likelihood phylogeny, and TreeTime[39] was 215 

used to infer a molecular clock and temporally-resolved phylogeny. Tips which fell outside of 4 216 

standard deviations away from the inferred molecular clock were removed. Finally, 217 

TreeTime[39] was used to infer ancestral sequence states at internal nodes and the geographic 218 

migration history across the phylogeny. We inferred migration among 9 defined geographic 219 

regions, China, Southeast Asia, South Asia, Japan and Korea, West Asia, Africa, Europe, South 220 

America, and North America, as shown by color in Fig. 1 and Fig. S2. Our final trees are 221 

available at https://github.com/blab/h5n1-cambodia/tree/master/data/tree-jsons, and include the 222 

following number of sequences: PB2: 4063, PB1: 3867, PA: 4082, HA: 6431, NP: 4070, NA: 223 

5357, MP: 3940, NS: 3678. Plotting was performed using baltic 224 

(https://github.com/evogytis/baltic). 225 

Tajima’s D calculation 226 

Tajima’s D was calculated with the following equation:  227 

� �  
�

����� 
�  

� � �
��

�	�
 � 	�
�
���
   228 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/683151doi: bioRxiv preprint 

https://doi.org/10.1101/683151
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

where: 229 
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π = πN  or πS as calculated below in “Diversity (π) calculation”, and S is the number of 234 

segregating sites, i.e., the number of within-host single nucleotide variants called for a given 235 

sample and coding region. Within-host variants were called as described above, requiring a 236 

minimum coverage of 100x, a minimum frequency of 1%, a minimal base quality score of Q30, 237 

and detection on both forward and reverse reads. For each sample, we treated synonymous 238 

variants and nonsynonymous variants separately, calculating D for nonsynonymous variation as 239 

the difference between πN and SN, and D for synonymous variation as the difference between 240 

πS and SS. For n, we used the average coverage across the coding region. Values shown in 241 

Fig. 2c represent mean D when values were combined across all human or duck samples. To 242 

calculate the 95% confidence interval, we performed a bootstrap. We resampled our D values 243 

with replacement, 10,000 times, and calculated the mean of the resampled values in each 244 

iteration. We then calculated the 2.5% and 97.5% percentile of these bootstrapped means and 245 

report this as the 95% confidence interval.  246 

Diversity (π) calculation 247 

Within-host variants were called as described above, requiring a minimum coverage of 100x, a 248 

minimum frequency of 1%, a minimal base quality score of Q30, and detection on both forward 249 

and reverse reads. Variants were annotated as nonsynonymous or synonymous. For each 250 

sample and coding region, we computed the average number of pairwise nonsynonymous 251 
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pairwise differences per nonsynonymous site (πN) and the average number of pairwise 252 

synonymous differences per synonymous site and (πS) with SNPGenie[40,41] 253 

(https://github.com/chasewnelson/SNPGenie). We used the same set of within-host variants as 254 

reported throughout the manuscript (minimum frequency of 1%) for these diversity calculations. 255 

In both Fig. 3 and Table 2, we present the mean πN (dark colors) or πS (light colors) when 256 

values were combined across all humans (red bars) or ducks (blue bars). To calculate the 257 

standard error of these estimates, we performed a bootstrap. We resampled our diversity values 258 

with replacement, 10,000 times, and calculated the mean of the resampled values in each 259 

iteration. We then calculated the standard deviation among our sampled means, and report this 260 

as the standard error. Error bars in Fig. 3 reflect this calculated standard error. 261 

Comparison to functional sites 262 

We used the Sequence Feature Variant Types tool from the Influenza Research 263 

Database[34] to download all currently available annotations for H5 hemagglutinins, N1 264 

neuraminidases, and all subtypes for the remaining gene segments. We then annotated each 265 

within-host SNV identified in our dataset that fell within an annotated region or site. The 266 

complete results of this annotation are available in Table S1. We next filtered our annotated 267 

SNVs to include only those located in sites involved in “host-specific” functions or interactions, 268 

i.e., those that are distinct between human and avian hosts. We defined host-specific 269 

functions/interactions as receptor binding, interaction with host cellular machinery, nuclear 270 

import and export, immune antagonism, 5’ cap binding, temperature sensitivity, and 271 

glycosylation. We also included sites that have been phenotypically identified as determinants of 272 

transmissibility and virulence. Sites that participate in binding interactions with other viral 273 

subunits or vRNP, conserved active site domains, drug resistance mutations, and epitope sites 274 

were not categorized as host-specific for this analysis. We annotated both synonymous and 275 

nonsynonymous mutations in our dataset, but only highlight nonsynonymous changes in Fig. 4 276 

and Table 3. 277 
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Shared sites permutation test 278 

To test whether human or duck samples shared more polymorphisms than expected by chance, 279 

we performed a permutation test. We first counted the number of variable amino acid sites, n, in 280 

which an SNV altered the coded amino acid, across coding regions and samples. For example, 281 

if two SNVs occurred in the same codon site, we counted this as 1 variable amino acid site. 282 

Next, for each gene and sample, we calculated the number of amino acid sites that were 283 

covered with sufficient sequencing depth that a mutation could have been called using our SNV 284 

calling criteria. To do this, we calculated the length in amino acids of each coding region, L, that 285 

was covered by at least 100 reads. Non-coding regions were not included. For each coding 286 

region and sample, we then simulated the effect of having n variable amino acid sites placed 287 

randomly along the coding region between sites 1 to L, and recorded the site where the 288 

polymorphism was placed. After simulating this for each gene and sample, we counted the 289 

number of sites that were shared between at least 2 human or at least 2 duck samples. This 290 

process was repeated 100,000 times. The number of shared polymorphisms at each iteration 291 

was used to generate a null distribution, as shown in Fig. 5b. We calculated p-values as the 292 

number of iterations for which there were at least as many shared sites as observed in our 293 

actual data, divided by 100,000. For the simulations displayed in Fig. 5c and Fig. 5d, we 294 

wanted to simulate the effect of genomic constraint, meaning that only some fraction of the 295 

genome could tolerate mutation. For these analyses, simulations were done exactly the same, 296 

except that the number of sites at which a mutation could occur was reduced to 70% (Fig. 5c) 297 

or 60% (Fig. 5d). Code for performing the shared sites permutation test is freely available at 298 

https://github.com/blab/h5n1-cambodia/blob/master/figures/figure-5b-shared-sites-permutation-299 

test.ipynb. 300 

Reconstruction of host transitions along the phylogeny 301 

We used the phylogenetic trees in Fig. S2 to infer host transitions along each gene’s phylogeny. 302 

As described above, we used TreeTime[39] to reconstruct ancestral nucleotide states at each 303 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/683151doi: bioRxiv preprint 

https://doi.org/10.1101/683151
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

internal node and infer amino acid mutations along each branch along these phylogenetic trees. 304 

We then classified host transition mutations along branches that lead to human or avian tips as 305 

follows (Fig. 6a). For each branch in the phylogeny, we enumerated all tips descending from 306 

that branch. If all descendent tips were human, we considered this a monophyletic human 307 

clade. If the current branch’s ancestral node also led to only human descendants, we labelled 308 

the current branch a “to-human” branch. If a branch leading to a monophyletic human clade had 309 

an ancestral node that included avian and human descendants, then we considered the current 310 

branch an “avian-to-human” branch, and also labelled it as “to-human”. All other branches were 311 

considered “to-avian” branches. We did not explicitly allow for human-to-avian branches in this 312 

analysis. Because avian sampling is poor relative to human sampling, and because H5N1 virus 313 

circulation is thought to be maintained by transmission in birds, we chose to only label branches 314 

explicitly leading to human infections as to-human branches. We also reasoned that for 315 

instances in which a human tip appears to be ancestral to an avian clade, this more likely 316 

results from poor avian sampling than from true human-to-avian transmission. Using these 317 

criteria, we then gathered the inferred amino acid mutations that occurred along each branch in 318 

the phylogeny, and counted the number of times they were associated with each type of host 319 

transition. We then queried each SNV detected within-host in our dataset, in both human and 320 

duck samples, to determine the number of host transitions that they occurred on in the 321 

phylogeny, as shown in Fig. 6b. To test whether individual mutations were enriched along 322 

branches leading to human infections, we performed Fisher’s exact tests comparing the number 323 

of to-avian and to-human transitions along which the mutation was detected vs. the overall 324 

number of to-avian and to-human transitions that were observed along the tree. Mutations that 325 

showed statistically significant enrichment are annotated in Fig. 6b. 326 

General availability of analysis software and data 327 

All code used to analyze data and generate figures for this manuscript are publicly available at 328 

https://github.com/blab/h5n1-cambodia. Raw FASTQ files with human reads removed are 329 
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available under SRA accession number PRJNA547644, and accessions SRX5984186-330 

SRX5984198. All reported variant calls and phylogenetic trees are available at 331 

https://github.com/blab/h5n1-cambodia/tree/master/data.  332 

  333 

Results 334 

Sample selection and dataset information 335 

We analyzed full-genome sequence data from primary, influenza virus-confirmed samples from 336 

infected humans and domestic ducks from Cambodia (Table 1). Four domestic duck samples 337 

(pooled organs) were collected as part of poultry outbreak investigations, while one was 338 

collected during live bird market surveillance (pooled throat and cloacal swab)[4]. All human 339 

samples (throat swabs) were collected via event-based surveillance upon admittance to various 340 

hospitals throughout Cambodia[22].  Because of limited sample availability and long storage 341 

times, generating duplicate sequence data for each sample was not possible. We therefore 342 

focused on samples whose viral RNA copy numbers after viral RNA extraction were ≥103 343 

copies/μl of buffer as assessed by RT-qPCR (Table 1), and whose mean coverage depth 344 

exceeded 100x (Fig. S1). We analyzed full genome data for 7 human and 5 duck samples, and 345 

near complete genome data for A/Cambodia/X0128304/2013, for which we lack data from the 346 

PB1 gene.  347 

  348 

H5 viruses circulating in Cambodia were exclusively clade 1.1.2[4] until 2013, when a novel 349 

reassortant virus emerged[42]. This reassortant virus expressed a hemagglutinin (HA) and 350 

neuraminidase (NA) from clade 1.1.2, with internal genes from clade 2.3.2.1a[22]. All 2013/2014 351 

samples in our dataset come from this outbreak, while samples collected prior to 2013 are clade 352 

1.1.2 (Table 1, Fig. 1, and Fig. S2). All HA sequences (with the exception of 353 
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A/duck/Cambodia/Y0224304/2014, which expresses a divergent HA) derive from the same 354 

lineage that has been circulating in southeast Asia for years (Fig. 1). For the internal gene 355 

segments, samples collected between 2010-2012 and samples collected between 2013-2014 356 

fall into distinct parts of the tree, each nested within the diversity of other southeast Asian 357 

viruses (Fig. S2). The 2013 reassortant viruses share 4 amino acid substitutions in HA, S123P, 358 

S133A, S155N, and K266R[22] (H5, mature peptide numbering). S133A and S155N have been 359 

linked to improved α-2,6 linked sialic acid binding, independently and in combination with 360 

S123P[43–45]. All samples encode a polybasic cleavage site in HA (XRRKRR) between amino 361 

acids 325-330 (H5, mature peptide numbering), a virulence determinant for H5N1 AIVs[46,47], 362 

and a 20 amino acid deletion in NA. This NA deletion is a well-documented host range 363 

determinant[48–51].  364 

  365 

Duck samples are not immediately ancestral to the human samples in our dataset, and they 366 

therefore are unlikely to represent transmission pairs. We therefore treat these samples as 367 

examples of within-host diversity in naturally infected humans and ducks, rather than direct 368 

transmission pairs. With this caveat, we aimed to use this subset of 8 human and 5 duck 369 

samples to determine whether positive selection would promote adaptation in humans. Positive 370 

selection increases the frequency of beneficial variants, and is often identified by tracking 371 

mutations’ frequencies over time. While multiple time points were not available in our dataset, all 372 

human samples were collected 5-12 days after reported symptom onset[22]. Animal infection 373 

studies have observed drastic changes in within-host variant frequencies in 3-7 days[11,13], 374 

suggesting that 5-12 days post symptom onset may provide sufficient time for transmitted 375 

diversity to be altered within-host. We reasoned that while we expect positive selection to 376 

promote the emergence of human-adapting mutation in humans, H5N1 viruses should be well-377 

adapted for replication in ducks, which are a natural host species. We therefore hypothesize to 378 

observe the following patterns: (1) During replication in humans, positive selection should 379 
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increase the frequencies of human-adaptive mutations, resulting in elevated rates of 380 

nonsynonymous diversity and a higher proportion of high-frequency variants. In contrast, 381 

viruses in ducks should be fit for replication and be shaped by purifying selection, leading to an 382 

excess of synonymous variation and an excess of low-frequency variants. (2) Viruses in 383 

humans should harbor mutations phenotypically linked to mammalian adaptation. (3) If selection 384 

is strong at a particular site, then viruses in humans should exhibit evidence for convergent 385 

evolution, i.e., the same mutation arising across multiple samples. (4) If human-adaptive 386 

variants arising within humans are present on the H5N1 phylogeny, then they should be more 387 

likely to occur on branches leading to human infections than on branches leading to bird 388 

infections. 389 

  390 

Within-host diversity in humans and ducks is dominated by low-frequency variation 391 

We called within-host variants across the genome that were present in ≥1% of sequencing 392 

reads and occurred at a site with a minimum read depth of 100x and a minimum PHRED quality 393 

score of 30 (see Methods for details). All coding region changes are reported using native H5 394 

numbering, including the signal peptide, unless otherwise noted. Most single nucleotide variants 395 

(SNVs) were present at low frequencies (Fig. 2a). We identified a total of 206 SNVs in humans 396 

(111 nonsynonymous, 91 synonymous, 4 missense) and 40 in ducks (16 nonsynonymous, 23 397 

synonymous, 1 missense). Human samples had more SNVs than duck samples on average 398 

(mean SNVs per sample: humans = 26 ± 19, ducks = 8 ± 3, p = 2.79 x 10-17, Fisher’s exact test), 399 

although the number of SNVs per sample was variable among samples in both species (Fig. 400 

S3).  401 

 402 
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To determine whether humans had more high-frequency variants than ducks, we generated a 403 

site frequency spectrum (Fig. 2b). Purifying selection removes new variants from the 404 

population, generating an excess of low-frequency variants, while positive selection promotes 405 

accumulation of high-frequency polymorphisms. Exponential population expansion also leads to 406 

an excess of low-frequency variation. In both humans and ducks, over 80% of variants (both 407 

synonymous and nonsynonymous) were present in <10% of the population, and the distribution 408 

of SNV frequencies were strikingly similar (Fig. 2b). In both host species, there is an excess of 409 

low-frequency variation compared to the expectation under a neutral model (no population size 410 

changes or selection), and a deficiency of intermediate and high-frequency variants (Fig. 2b, 411 

grey dots and connecting line). Overall, the frequencies of SNVs in humans and ducks were not 412 

statistically different (p=0.11, Mann Whitney U test), and mean SNV frequencies were similar 413 

(mean SNV frequency in human samples = 5.8%, mean in duck samples = 6.6%).  414 

 415 

To determine whether the excess of low-frequency variation we observed was better explained 416 

by purifying selection or demography, we summarized the frequency spectrum by calculating 417 

Tajima’s D (Fig. 2c). Tajima’s D measures the difference between the average number of 418 

pairwise differences between a set of sequences (π) with the number of variable sites (S). π is 419 

weighted by variant frequencies, and will be largest when the population has a large number of 420 

high-frequency variants, while S is simply a count of the number of variable sites, and is not 421 

impacted by variant frequencies. Both population expansion and purifying selection should lead 422 

to an excess of low-frequency variation and negative Tajima’s D. However, while population 423 

expansion should impact nonsynonymous and synonymous sites equally, purifying selection 424 

should have a greater effect on nonsynonymous variants. If the excess of low-frequency 425 

variation we observed was driven solely by demographic factors, then we expect synonymous 426 

and nonsynonymous sites to have similar Tajima’s D values, while purifying selection should 427 

lead to more negative Tajima’s D values at nonsynonymous sites. When calculated across the 428 
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full genome, Tajima’s D was similar between humans and ducks, and was comparable when 429 

calculated for synonymous and nonsynonymous sites. Taken together, these data suggest that 430 

in both humans and ducks, viral populations are dominated by low-frequency variation. 431 

Furthermore, this excess of low-frequency variation can be explained by within-host population 432 

expansion.  433 

 434 

Purifying selection and genetic drift shape within-host diversity 435 

Comparing nonsynonymous (πN) and synonymous (πS) polymorphism in a population is another 436 

common measure for selection that is robust to differences in sequencing coverage depth[52]. 437 

An excess of synonymous polymorphism (πN/πS < 1) indicates purifying selection, an excess of 438 

nonsynonymous variation (πN/πS > 1) suggests positive selection, and approximately equal 439 

rates (πN/πS ~ 1) suggest that genetic drift is the predominant force shaping diversity. We 440 

calculated the average number of nonsynonymous and synonymous pairwise differences 441 

between DNA sequences, and normalized these values to the number of synonymous and 442 

nonsynonymous sites. In both species, most genes exhibited πN < πS, although there was 443 

substantial variation among samples (Table 2 and Fig. 3). The difference between πs and πN 444 

was generally not statistically significant (Table 2), with the exception of human M2 (πN = 445 

0.00017, πS = 0, p = 0.042, paired t-test) and PB1 (πN = 0.000083,  πS = 0.00038, p = 0.049, 446 

paired t-test), which exhibited weak evidence of purifying selection. When diversity estimates 447 

across all genes were combined, both species exhibited πN/πS < 1 (Fig. 3) (human πN/πS= 0.36, 448 

p = 0.0059, unpaired t-test; duck πN/πS= 0.21, p = 0.038, unpaired t-test). Genome-wide 449 

diversity was not correlated with days post symptom onset (Fig. S4a). Taken together, these 450 

data suggest that H5N1 within-host populations in both humans and ducks are broadly shaped 451 

by weak purifying selection and genetic drift. We do not find evidence for widespread positive 452 

selection in any individual coding region.  453 

  454 
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SNVs are identified in humans at functionally relevant sites 455 

Influenza phenotypes can be drastically altered by single amino acid changes. We took 456 

advantage of the Influenza Research Database29 Sequence Feature Variant Types tool, a 457 

catalogue of amino acids that are critical to protein structure and function, and that have been 458 

experimentally linked to functional alteration. We downloaded all available annotations for H5 459 

HAs, N1 NAs, and all subtypes for the remaining proteins, and annotated each mutation in our 460 

dataset that fell within an annotated region (Table S1). We then filtered these annotated amino 461 

acids to include only those located in sites involved in host-specific functions (see Methods for 462 

details). 463 

  464 

Of the 218 unique, polymorphic amino acid sites in our dataset (including both human and duck 465 

samples), we identified 34 nonsynonymous mutations at sites involved in viral replication, 466 

receptor binding, virulence, and interaction with host cell machinery (Fig. 4). Some sites are 467 

explicitly linked to H5N1 virus mammalian adaptation (Table 3). PB2 E627K was detected as a 468 

minor variant in A/Cambodia/W0112303/2012, and in A/Cambodia/V0417301/2011 at 469 

consensus. A lysine at position 627 is a conserved marker of human adaptation[51,53] that 470 

enhances H5N1 replication in mammals[11,12,51,54]. A/Cambodia/W0112303/2012 also 471 

encoded PB2 D701N at consensus. Curiously, this patient also harbored the reversion mutation, 472 

N701D, at low-frequency within-host. An asparagine (N) at PB2 701 enhances viral replication 473 

and transmission in mammals[55,56], while an aspartate (D) is commonly identified in birds. We 474 

cannot distinguish whether the founding virus harbored an asparagine or aspartate, so our data 475 

are consistent with two possibilities: transmission of a virus harboring asparagine and within-476 

host generation of aspartate; or, transmission of a virus with asparate followed by within-host 477 

selection but incomplete fixation of asparagine. All other human and avian samples in our 478 

dataset encoded the “avian-like” amino acids, glutamate at PB2 627, and aspartate at PB2 701. 479 

None of the adaptive polymerase mutations that were recently identified by Welkers et al.[17] in 480 
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H5N1 virus-infected humans in Indonesia were present in our samples, nor were any of the 481 

human-adaptive mutations identified in a recent deep mutational scan of PB2[57]. 482 

  483 

We also identified HA mutations linked to human receptor binding. Two human samples 484 

encoded an HA A150V mutation (134 in mature, H5 peptide numbering, Fig. 4). A valine at HA 485 

150 improves α-2,6 linked sialic acid binding in H5N1 viruses[58,59], and was also identified in 486 

H5N1 virus-infected humans in Vietnam[16]. Finally, HA Q238L was detected in 487 

A/Cambodia/V0417301/2011 and A/Cambodia/V0401301/2011. HA 238L (222 in mature, H5 488 

peptide numbering) was shown in H5N1 virus transmission studies to confer a switch from α-2,3 489 

to α-2,6 linked sialic acid binding[11] and mediate transmission[11,12]. An HA Q238R mutation 490 

was identified in A/Cambodia/X0125302/2013, although nothing is known regarding an arganine 491 

(R) at this site. 492 

  493 

Mutations annotated as host-specific were not detected at higher frequencies than non-host-494 

specific mutations (mean frequency for host-specific mutations = 8.2% ± 8.8%, mean frequency 495 

for non-host-specific mutations = 5.2% ± 4.7%, p-value = 0.084, unpaired t-test). Additionally, 496 

the proportion of mutations that were host-specific was not higher in samples from longer 497 

infections (p-value = 0.72, Fisher’s exact test, Fig. S4b). All 8 human samples harbored at least 498 

1 mutant in a host-specific site. Critically though, the functional impacts of influenza virus 499 

mutations strongly depend on sequence context[60], and we did not phenotypically test these 500 

mutations. We caution that confirming functional impacts for these mutations would require 501 

further study. Still, our data show that putative human-adapting mutations are generated during 502 

natural spillover. Our results also highlight that even mutations that have been predicted to be 503 

strongly beneficial (e.g., PB2 627K and HA 238L) may remain at low frequencies in vivo. 504 

  505 
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Shared diversity is limited 506 

Each human H5N1 infection is thought to represent a unique avian spillover event. If selection is 507 

strong at a given site in the genome, then mutations may arise at that site independently across 508 

multiple patients. We identified 13 amino acid sites in our dataset that were polymorphic in at 509 

least 2 samples, 4 of which were detected in both species (PB1 371, PA 307, HA 265 and NP 510 

201). Of the 34 unique polymorphic amino acid sites in ducks, 3 sites were shared by at least 2 511 

duck samples; of the 188 unique polymorphic amino acid sites in humans, 9 were shared by at 512 

least 2 human samples (Fig. 5a). Two of these shared sites, HA 150 and HA 238, are linked to 513 

human-adapting phenotypes (Table 3). To determine whether the number of shared sites we 514 

observe is more or less than expected by chance, we performed a permutation test. For each 515 

species, we simulated datasets with the same number of sequences and amino acid 516 

polymorphisms as our actual dataset, but assigned each polymorphism to a random amino acid 517 

site. For each iteration, we then counted the number of polymorphic sites that were shared by 518 

≥2 samples. We ran this simulation for 100,000 iterations for each species, and used the 519 

number of shared sites per iteration to generate a null distribution (Fig. 5b, colored bars). 520 

Comparison to the observed number of shared sites (3 and 9, dashed lines in Fig. 5b), 521 

confirmed that humans share slightly more polymorphisms than expected by chance (p = 522 

0.046), while ducks share significantly more (p = 0.00006). 523 

 524 

Viral genomes are highly constrained [61], which could account for the convergence we 525 

observe. Experimental measurements of the distribution of fitness effects in influenza A virus 526 

have estimated that approximately 30% of genome mutations are lethal [61], while estimates 527 
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from other RNA viruses suggest that lethal percentage ranges from 20-40% [62]. We repeated 528 

our simulations to restrict the number of amino acid sites that could tolerate a mutation to 70% 529 

or 60%, representing a lethal fraction of 30% or 40%. When 70% of the coding region was 530 

permitted to mutate, ~23% of simulations resulted in ≥9 shared sites in humans (p = 0.23)(Fig. 531 

5c), and when 60% of the genome was permitted to mutate, ~39% of simulations resulted in ≥9 532 

shared sites (p = 0.39)(Fig. 5d). In contrast, the probability of observing 3 shared sites among 533 

duck samples remained low regardless of genome constraint (70% of genome tolerates 534 

mutation: p = 0.00014; 60% of genome tolerates mutation: p = 0.00028), suggesting a 535 

significant, although low, level of convergence (Fig. 5c, d). Taken together, our results suggest 536 

that duck samples share significantly more variants than expected by chance. In humans, 537 

despite the presence of shared polymorphisms with known human-adaptive phenotypes, the 538 

degree of convergence we observe is no more than expected given genome constraint.  539 

   540 

Within-host SNVs are not enriched on spillover branches 541 

If within-host mutations are human-adapting, then those mutations should be enriched among 542 

H5N1 viruses that have caused human infections in the past. To test this hypothesis, we 543 

inferred full genome phylogenies using all available full-genome H5N1 viruses from the 544 

EpiFlu[32,33] and IRD[34] databases (Fig. 1 and Fig. S2), reconstructed ancestral nucleotide 545 

states at each internal node, and inferred amino acid mutations along each branch. We then 546 

classified host transition mutations along branches that led to human or avian tips (Fig. 6a). If a 547 

branch fell within a clade that included only human tips, that branch was labelled as a “to-548 

human” transition. If a branch led to a human-only clade but its ancestral branch included avian 549 
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descendants, this was inferred to be an avian-to-human transition, and was also labelled as “to-550 

human”. All other transitions were labelled “to-avian” (Fig. 6a, see Methods for more details). 551 

We then curated the mutations that occurred on each type of host transition, and compared 552 

these counts to the mutations identified within-host in our dataset. 553 

 554 

Of the 120 nonsynonymous within-host SNVs we identified in our dataset, 60 (50%)  were not 555 

detected on the phylogeny at all. This suggests that many of the mutations generated within-556 

host are purged from the H5N1 viral population over time. Additionally, because humans are 557 

generally dead-end hosts for H5N1 viruses, even human-adapting variants arising within-host 558 

are likely to be lost due to lack of onward transmission. Of the within-host mutations that were 559 

detected on the phylogeny, most occurred on branches leading to avian infections (Fig 6b, blue 560 

bars). However, there were a few exceptions (Fig 6b, red bars). Across the phylogeny, we 561 

enumerated a total of 31,939 to-avian transitions, and 2,787 to-human transitions, so that we 562 

expect a 11.46:1 ratio of to-avian transitions relative to to-human transitions. In contrast, PB2 563 

E627K was heavily enriched among human infections, detected on 15 to-avian transitions and 564 

36 to-human transitions (p = 4.21 x 10-28, Fisher’s exact test). HA A150V was detected in only 565 

one to-avian transition, but in 8 to-human transitions (p = 1.46 x 10-8, Fisher’s exact test), and 566 

HA N198S was detected on 4 to-avian transitions and 3 to-human transitions (p = 0.014, 567 

Fisher’s exact test). Although nothing is known regarding a serine at HA 198, a lysine at that site 568 

can confer α-2,6-linked sialic acid binding[43,63]. Taken together, these data suggest that the 569 

majority of mutations detected within-host are not associated with human spillover. However, 570 

they agree with selection for human-adapting phenotypes at a small subset of sites (PB2 571 

E627K, HA A150V, HA N198S). 572 

  573 

Discussion 574 
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Our study utilizes a unique dataset of to quantify H5N1 virus diversity in natural spillover 575 

infections. We establish a set of hypotheses to interrogate whether H5N1 viruses adapt to 576 

humans during natural spillover, and find support for two of them. We detect putative human-577 

adapting mutations (PB2 E627K, HA A150V, and HA Q238L) during human infection, two of 578 

which arose multiple times (supporting hypothesis 2). PB2 E627K and HA A150V are enriched 579 

along phylogenetic branches leading to human infections, supporting their potential role in 580 

human adaptation (supporting hypothesis 4). However, we also find that population growth, 581 

genetic drift, and weak purifying selection broadly shape viral diversity in both hosts (rejecting 582 

hypothesis 1), and that convergent evolution in human viruses can be explained by genomic 583 

constraint (rejecting hypothesis 3). Together, our data show that during spillover, H5N1 viruses 584 

have the capacity to generate well-known markers of mammalian adaptation in multiple, 585 

independent hosts. However, none of these markers reached high-frequencies within-host. We 586 

speculate that during spillover, short infection times, genetic drift, demography, and purifying 587 

selection may together limit the capacity of H5N1 viruses to evolve extensively during a single 588 

human infection. 589 

 590 

Although data from spillovers are limited, our results align with data from Vietnam[16] and 591 

Indonesia[17]. Welkers et al.[17] identified markers of mammalian replication (PB2 627K) and 592 

transmission (HA 220K) in humans, but found that adaptive markers were not widespread. 593 

Welkers et al. also characterized new mutations that improved human replication, suggesting 594 

that there are yet undiscovered pathways for adaptation. Imai et al.[16] characterized SNVs in 595 

H5N1-infected humans that altered viral replication, receptor binding, and interferon 596 

antagonism, but these mutations stayed at low frequencies. Imai et al. also showed that most 597 

within-host variants elicited neutral or deleterious effects on protein function in humans, aligning 598 

with the purifying selection we detect within-host, and the absence of ~50% of within-host 599 

variants in the phylogeny. These findings also agree with predictions by Russell et al.[14], who 600 
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hypothesized that H5N1 viruses would generate human-adapting mutations during infection, but 601 

that these mutations would remain at low frequencies and fail to be transmitted. 602 

 603 

One unexpected result is that mutations hypothesized to be strongly beneficial, like PB2 627K 604 

and HA 238L, remained low-frequency during infection. These mutations could have arisen late 605 

in infection or been linked to deleterious mutations. Additionally, epistasis is crucial to influenza 606 

virus evolution, and mutations that promote human adaptation in one background may not be 607 

well-tolerated in others. PB2 E627K is widespread among clade 2.2.1 H5N1 viruses, but only 608 

sparsely detected in other H5N1 clades. Soh et al.[57] recently uncovered strongly human-609 

adapting PB2 mutations that are rare in nature, likely because they are inaccessible via single 610 

site mutations. Genetic background plays a vital role in determining how AIVs evolve, and may 611 

at least partially explain our findings. Importantly, our study involves a small number of samples 612 

from a single geographic location, and two H5N1 virus clades. Continued characterization of 613 

H5N1 virus spillover in other clades is necessary to define whether our observations are 614 

generalizable across H5N1 virus outbreaks.  615 

 616 

An important caveat of our study is that the human and duck samples described likely do not 617 

represent transmission pairs. Although the samples analyzed in this study descend from the 618 

same HA lineage (with the exception of A/duck/Cambodia/Y0224304/2014), the duck samples 619 

are not phylogenetically ancestral to the human samples in this dataset (Fig. 1 and Fig. S2), 620 

and most likely were not the source of the human infections. We therefore caution that each 621 

sample in this dataset merely represents an example of within-host diversity in a naturally 622 

infected host, rather than a before and after snapshot of individual cross-species transmission 623 

events.  624 

 625 
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Assessing zoonotic risk is critical but challenging. By quantifying patterns of within-host 626 

diversity, identifying mutations at adaptive sites, measuring convergent evolution, and 627 

comparing within-host diversity to long-term evolution, we can assemble a nuanced 628 

understanding of AIV evolution. These methods provide a foundation for understanding cross-629 

species transmission that can readily be applied to other avian influenza virus datasets, as well 630 

as newly emerging zoonotic viruses.  631 
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 860 

Figure legends 861 

Figure 1: Phylogenetic placement of H5N1 samples from Cambodia 862 

All currently available H5N1 sequences were downloaded from the Influenza Research 863 

Database and the Global Initiative on Sharing All Influenza Data and used to generate full 864 

genome phylogenies using Nextstrain’s augur pipeline as shown in the trees on the left. 865 

Phylogenies for the full genome are shown in Figure S2. Colors represent the geographic region 866 

in which the sample was collected (for tips) or the inferred geographic location (for internal 867 

nodes). The x-axis position indicates the date of sample collection (for tips) or the inferred time 868 

to the most recent common ancestor (for internal nodes). In the full phylogeny (left), H5N1 869 

viruses from Cambodia selected for within-host analysis are indicated by tan circles with black 870 

outlines. The subtrees containing the Cambodian samples selected for within-host analysis are 871 

shown to the right and are indicated with grey, dashed arrows. In these trees, human tips are 872 

marked with a tan circle with a black outline, while duck tips are denoted with a tan square with 873 

a black outline. All samples from our within-host dataset are labelled in the subtrees with their 874 

strain name. Internal genes from samples collected prior to 2013 belong to clade 1.1.2, while 875 

internal genes from samples collected in 2013 or later belong to clade 2.3.2.1a. All HA and NA 876 

sequences in this dataset, besides A/duck/Cambodia/Y0224304/2014, belong to clade 1.1.2.  877 
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Figure 2: Within-host diversity in humans and ducks is dominated by low-frequency 879 

variation  880 

(a) Within-host polymorphisms present in at least 1% of sequencing reads were called in all 881 

human (red) and duck (blue) samples. Each dot represents one unique single nucleotide variant 882 

(SNV), the x-axis represents the nucleotide site of the SNV, and the y-axis represents its 883 

frequency within-host. (b) For each sample in our dataset, we calculated the proportion of its 884 

synonymous (light blue and light red) and nonsynonymous (dark blue and dark red) within-host 885 

variants present at frequencies of 1-10%, 10-20%, 20-30%, 30-40%, and 40-50%. We then took 886 

the mean across all human (red) or duck (blue) samples. Bars represent the mean proportion of 887 

variants present in a particular frequency bin and error bars represent standard error. Grey dots 888 

and connecting lines represent the expected proportion of variants in each bin under a neutral 889 

model. (c) We calculated Tajima’s D across the full genomes of humans and ducks, separately 890 

for synonymous and nonsynonymous sites. Values represent the mean Tajima’s D across all 891 

humans or ducks, and values in parentheses represent the 95% confidence interval.  892 

 893 

Figure 3: Purifying selection and genetic drift shape within-host diversity 894 

For each sample and gene, we computed the average number of pairwise nonsynonymous 895 

differences per nonsynonymous site (πN) and the average number of pairwise synonymous 896 

differences per synonymous site (πS). We then calculated the mean for each gene and species. 897 

Each bar represents the mean and error bars represent the standard error calculated by 898 

performing 10,000 bootstrap resamplings. Human values are shown in red and duck values are 899 

shown in blue.  900 

 901 

Figure 4: Mutations are present at functionally relevant sites 902 

We queried each amino acid changing mutation identified in our dataset against all known 903 

annotations present in the Influenza Research Database Sequence Feature Variant Types tool. 904 
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Each mutation is colored according to its function. Shape represents whether the mutation was 905 

identified in a human (circle) or duck (square) sample. Mutations shown here were detected in 906 

at least 1 human or duck sample. Filled in shapes represent nonsynonymous changes and open 907 

shapes represent synonymous mutations. Grey, transparent dots represent mutations for which 908 

no host-related function was known. Each nonsynonymous colored mutation, its frequency, and 909 

its phenotypic effect is shown in Table 3, and a full list of all mutations and their annotations are 910 

available in Table S1.   911 

 912 

Figure 5: Ducks share more polymorphisms than expected by chance  913 

(a) All amino acid sites that were polymorphic in at least 2 samples are shown. This includes 914 

sites at which each sample had a polymorphism at the same site, but encoded different variant 915 

amino acids. There are 3 amino acid sites that are shared by at least 2 duck samples, and 9 916 

polymorphic sites shared by at least 2 human samples. 3 synonymous changes are detected in 917 

both human and duck samples (PB1 371, PA 397, and NP 201). Frequency is shown on the y-918 

axis. (b) To test whether the level of sharing we observed was more or less than expected by 919 

chance, we performed a permutation test. The x-axis represents the number of sites shared by 920 

at least 2 ducks (blue) or at least 2 humans (red), and the bar height represents the number of 921 

simulations in which that number of shared sites occurred. Actual observed number of shared 922 

sites (3 and 9) are shown with a dashed line. (c) The same permutation test as shown in (b), 923 

except that only 70% of amino acid sites were permitted to mutate. (d) The same permutation 924 

test as shown in (b), except that only 60% of amino acid sites were permitted to mutate.    925 

 926 

Figure 6: A small subset of within-host variants are enriched on spillover branches 927 

(a) A schematic for how we classified host transitions along the phylogeny. Branches within 928 

monophyletic human clades were labelled “to-human” (red branches). Branches leading to a 929 

monophyletic human clade, whose parent node had avian children were also labelled as “to-930 
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human” (half red, half blue branches), and all other branches were labelled “to-avian” (blue 931 

branches). (b) Each amino acid-changing SNV we detected within-host in either ducks (left) or 932 

humans (right) that was present in the H5N1 phylogeny is displayed. Each bar represents an 933 

amino acid mutation, and its height represents the number of to-avian (blue) or to-human (red) 934 

transitions in which this mutation was present along the H5N1 phylogeny. Significance was 935 

assessed with a Fisher’s exact test. * indicates p < 0.05, **** indicates p < 0.0001.  936 

 937 

Supporting information legends 938 

Figure S1: Genome coverage 939 

The mean coverage depth at each nucleotide site (x-axis) for each gene across our 8 human 940 

and 5 duck samples is shown. Solid black lines represent the mean coverage across samples, 941 

and the grey shaded area represents the standard deviation of coverage depth across samples.  942 

 943 

Figure S2: Full genome phylogenetic placement of H5N1 virus samples from Cambodia 944 

All currently available H5N1 virus sequences were downloaded from the Influenza Research 945 

Database and the Global Initiative on Sharing All Influenza Data and used to generate full 946 

genome phylogenies using Nextstrain’s augur pipeline. Colors represent the geographic region 947 

in which the sample was collected (for tips) or the inferred geographic location (for internal 948 

nodes). The x-axis position indicates the date of sample collection (for tips) or the inferred time 949 

to the most recent common ancestor (for internal nodes). In the full phylogenies (left), H5N1 950 

viruses from Cambodia selected for within-host analysis are indicated by tan circles with black 951 

outlines. The subtrees containing the Cambodian samples selected for within-host analysis are 952 

shown to the right in the order that they appear in the full tree. In these trees, human tips are 953 

marked with a tan circle with a black outline, while duck tips are denoted with a tan square with 954 

a black outline. Both human and duck tips are labelled with their strain names. Internal genes 955 

from samples collected prior to 2013 belong to clade 1.1.2, while internal genes from samples 956 
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collected in 2013 or later belong to clade 2.3.2.1a. All HA and NA sequences in this dataset, 957 

besides A/duck/Cambodia/Y0224304/2014, belong to clade 1.1.2.  958 

 959 

Figure S3: All within-host variants detected in our dataset 960 

All within-host variants detected in our study are shown. Each row represents one sample and 961 

each column represents one gene. The x-axis shows the nucleotide site and the y-axis shows 962 

the frequency that the variant was detected within-host. Filled circles represent nonsynonymous 963 

changes, while open circles represent synonymous changes. Blue dots represent variants 964 

identified within duck samples, while red dots represent variants identified in human samples. 965 

Blank plots indicate that no variants were identified in that sample and gene.  966 

 967 

Figure S4: Neither diversity nor host-specific mutations increase over time 968 
 969 
(a) For each human sample, the full genome nucleotide diversity (πΝ or πS) is plotted vs. the 970 

days post-symptom onset. Dark red dots represent the mean, full-genome nonsynonymous 971 

diversity for a given sample (πΝ), and light red dots represent the mean, full-genome 972 

synonymous diversity for that same sample (πS). Neither nonsynonymous nor synonymous 973 

diversity are correlated with days post symptom onset (nonsynonymous: r2 = -0.17, p = 0.69; 974 

synonymous: r2 = -0.22, p = -0.61). (b) To compare whether the number of putative host-975 

adapting mutations increased over time in humans, we compared the number of host-specific 976 

and non-host specific mutations in humans sampled either in “early infection” (5-8 days post 977 

symptom onset), or in “late infection” (9-12 days post symptom onset). We divided the data into 978 

these categories by splitting on the mean days post symptom onset for human samples, which 979 

was 8 days. We then compared the proportion of host-specific variants during early and late 980 

infections with a Fisher’s exact test. The proportion of variants that are host-specific is not 981 

different in early vs. late infections (p = 0.72).  982 
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 983 

Table S1: All within-host SNVs with annotations 984 

Every SNV identified in humans and ducks within-host are displayed with their frequency, 985 

coding region change, and functional annotation. All annotations for H5 HAs, N1 NAs, and all 986 

subtypes for all other genes were downloaded from the Influenza Research Database 987 

Sequence Feature Variant Types tool. Each SNV was then annotated as shown in the 988 

“description” column. These descriptions are paraphrased from annotations presented in the 989 

Influenza Research Database. We then manually curated annotated mutations to determine 990 

whether they were involved in “host-specific” functions or not, as shown in the “host-specific?” 991 

column. We defined host-specific functions/interactions as receptor binding, interaction with host 992 

cellular machinery, nuclear import and export, immune antagonism, 5’ cap binding, temperature 993 

sensitivity, and glycosylation. We also included sites that have been phenotypically identified as 994 

determinants of transmissibility and virulence. Sites that participate in binding interactions with 995 

other viral subunits or vRNP, conserved active site domains, drug resistance mutations, and 996 

epitope sites were not categorized as host-specific for this analysis. We annotated both 997 

synonymous and nonsynonymous mutations in our dataset. 998 

 999 

 1000 

 1001 

 1002 

 1003 

  1004 
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Tables 

Table 1: Sample information 

Sample ID Host Sample 
type 

Collection Date Days 
post-
sympto
m onset 

vRNA 
copies/μl 
(after vRNA 
extraction) 

Clade 

A/duck/Cambodia/PV027D1/2010 Domestic 
duck 

Pooled 
organs 

Poultry 
outbreak 
investigation 

April 2010 NA 5.45 x 106 1.1.2 

A/duck/Cambodia/083D1/2011 Domestic 
duck 

Pooled 
organs 

Poultry 
outbreak 
investigation 

September 
2011 

NA 3.74 x 107 1.1.2 

A/duck/Cambodia/381W11M4/2013 Domestic 
duck 

Pooled 
throat and 
cloacal 
swab 

Live bird 
market 
surveillance 

March 2013 NA 7.37 x 105 1.1.2/2.3.2.1a 
reassortant 

A/duck/Cambodia/Y0224301/2014 Domestic 
duck 

Pooled 
organs 

Poultry 
outbreak 
investigation 

February 
2014 

NA 2.0 x 105 1.1.2/2.3.2.1a 
reassortant 

A/duck/Cambodia/Y0224304/2014 Domestic 
duck 

Pooled 
organs 

Poultry 
outbreak 
investigation 

February 
2014 

NA 5.0 x 106 1.1.2/2.3.2.1a 
reassortant 

A/Cambodia/V0401301/2011 Human 
(10F, 
died) 

Throat 
swab 

Event-based 
surveillance 

April 2011 9 5.02 x 103 1.1.2 
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A/Cambodia/V0417301/2011 Human 
(5F, died) 

Throat 
swab 

Event-based 
surveillance 

April 2011 5 8.98 x 104 1.1.2 

A/Cambodia/W0112303/2012 Human 
(2M, 
died) 

Throat 
swab 

Event-based 
surveillance 

January 
2012 

7 2.05 x 103 1.1.2 

A/Cambodia/X0125302/2013 Human 
(1F, died) 

Throat 
swab 

Event-based 
surveillance 

January 
2013 

12 6.84 x 104 1.1.2/2.3.2.1a 
reassortant 

A/Cambodia/X0128304/2013 Human 
(9F, died) 

Throat 
swab 

Event-based 
surveillance 

January 
2013 

8 5.09 x 103 1.1.2/2.3.2.1a 
reassortant 

A/Cambodia/X0207301/2013 Human 
(5F, died) 

Throat 
swab 

Event-based 
surveillance 

February 
2013 

12 1.73 x 105 1.1.2/2.3.2.1a 
reassortant 

A/Cambodia/X0219301/2013 Human 
(2M, 
died) 

Throat 
swab 

Event-based 
surveillance 

February 
2013 

12 1.66 x 103 1.1.2/2.3.2.1a 
reassortant 

A/Cambodia/X1030304/2013 Human 
(2F, died) 

Throat 
swab 

Event-based 
surveillance 

October 
2013 

8 1.08 x 104 1.1.2/2.3.2.1a 
reassortant 
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Table 2: Mean πN and πS values per gene 

Gene Species Mean πN Mean πS πN/πS p-value 

PB2 Human 0.00015 0.00023 0.65 0.50 

PB2 Duck 0.00 0.00031 0.00 0.27 

PB1 Human 0.000083 0.00038 0.22 0.049 

PB1 Duck 0.000009 0.000066 0.14 0.31 

PA Human 0.00012 0.00044 0.27 0.083 

PA Duck 0.000037 0.00016 0.23 0.094 

HA Human 0.00044 0.00035 1.26 0.61 

HA Duck 0.000054 0.00025 0.22 0.40 

NP Human 0.000050 0.00050 0.10 0.12 

NP Duck 0.00011 0.00028 0.39 0.49 

NA Human 0.000078 0.0005 0.16 0.064 

NA Duck 0.000056 0.00023 0.24 0.27 

M1 Human 0.00010 0.00063 0.14 0.23 

M1 Duck 0.000068 0.00 NA 0.18 

M2 Human 0.00017 0.00 NA 0.042 

M2 Duck 0.00 0.00 NA NA 

NS1 Human 0.000014 0.00056 0.03 0.20 

NS1 Duck 0.000036 0.00 NA 0.37 
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NEP Human 0.000064 0.00 NA 0.18 

NEP Duck 0.000030 0.00013 0.23 0.37 

Full genome Human 0.000139 0.000381 0.36 0.0059 

Full genome Duck 0.000039 0.00018 0.22 0.038 

For each gene and sample, we computed nonsynonymous (πN), and and synonymous (πS) 

diversity as the average number of pairwise differences between a set of DNA sequences. 

Values of 0.00 indicate that there were no SNPs identified in that gene for that host species and 

mutation type. We then combined values from each sample to generate a diversity estimate for 

each gene and host species. Significance was assessed by a paired t-test testing the null 

hypothesis that πN = πS. Bold values of p < 0.05. 
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Table 3: Mutations identified at functionally relevant sites 

Sample Gene Nt 
site 

Ref 
base 

Variant 
base 

Coding 
region 
change 

Freq. Description Type 

A/Cambodia/X0128304/2013 PB2 1069 A T N348Y 6.15% Putative m7GTP cap binding site[64]. replication 

A/Cambodia/V0401301/2011 PB2 1202 A C N392H 3.61% Putative m7GTP cap binding site[64]. replication 

A/Cambodia/W0112303/2012 PB2 1891 G A E627K 6.63% A Lys at 627 enhances mammalian 
replication[51,53]. 

replication 

A/Cambodia/X0125302/2013 PB2 2022 G A V667I 2.99% An Ile at 667 was associated with human-
infecting H5N1 virus strains[65]. 

replication 

A/Cambodia/W0112303/2012 PB2 2113 A G N701D 16.49% An Asn at 701 enhances mammalian 
replication[55,56]. 

replication 

A/Cambodia/X0125302/2013 PB2 2163 A G S714G 9.59% An Arg at 714 enhances mammalian 
replication[55]. 

replication 

A/Cambodia/X1030304/2013 PB1 631 A G R211G 2.34% Nuclear localization motif. interaction 
with host 
machinery 
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A/Cambodia/X0125302/2013 PB1 1078 A G K353R 2.94% An Arg at 353 is associated with higher 
replication and pathogenicity of an H1N1 
pandemic strain[66]. 

replication 

A/Cambodia/X0125302/2013 PB1 1716 A T T566S 5.20% An Ala at 566 is associated with higher 
replication and pathogenicity of an H1N1 
pandemic virus[66]. 

replication 

A/Cambodia/X0219301/2013 PA 265 A G T85A 2.84% An Ile at 85 enhances polymerase activity of 
pandemic H1N1 in mammalian cells[67]. 

replication 

A/Cambodia/X0128304/2013 PA 186
8 

A G K615R 2.47% An Asn at PA 615 has been associated with 
adaptation of avian influenza polymerases to 
humans[55]. 

replication 

A/Cambodia/X0207301/2013 PA 1903 A G S631G 1.79% A Ser at 631 enhances virulence of H5N1 
viruses in mice[68]. 

virulence 

A/Cambodia/X0128304/2013 HA 299 A G E91G 6.33% A Lys at 91 enhances α-2,6 binding[43]. (H5 
mature: 75) 

receptor 
binding 

A/Cambodia/V0417301/2011 HA 425 A G E142G 3.20% Putative glycosylation site[69]. (H5 mature: 
126) 

virulence 

A/Cambodia/V0401301/2011 HA 449 C T A150V 20.24% A Val at 150 confers enhanced α-2,6 sialic 
acid binding in H5N1 viruses[58,59]. (H5 
mature: 134) 

receptor 
binding 
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A/Cambodia/X0125302/2013 HA 449 C T A150V 15.09% A Val at 150 confers enhanced α-2,6 sialic 
acid binding in H5N1 viruses[58,59]. (H5 
mature: 134) 

receptor 
binding 

A/Cambodia/X0128304/2013 HA 542 A C K172T 11.50% Part of putative glycosylation motif that 
improves α-2,6 binding[70–72]. (H5 mature: 
156) 

receptor 
binding 

A/Cambodia/V0401301/2011 HA 517 T C Y173H 5.04% Residue involved in sialic acid recognition[45]. 
(H5 mature: 157) 

receptor 
binding 

A/Cambodia/V0401301/2011 HA 593 A G N198S 3.32% A Lys at 198 confers α-2,6 sialic acid binding 
[43,73](H5 mature: 182) 

receptor 
binding 

A/Cambodia/X0128304/2013 HA 703 A G T226A 28.91% An Ile at 226 enhanced α-2,6 sialic acid 
binding[63]. (H5 mature: 210) 

receptor 
binding 

A/Cambodia/V0401301/2011 HA 713 A T Q238L 2.80% A Leu at 238 confers a switch from α-2,3 to α-
2,6 sialic acid binding and is a determinant of 
mammalian transmission[11,12,73–76]. (H5 
mature: 222) 

receptor 
binding 

A/Cambodia/V0417301/2011 HA 713 A T Q238L 8.45% A Leu at 238 confers a switch from α-2,3 to α-
2,6 sialic acid binding and is a determinant of 
mammalian transmission[11,12,73–76]. (H5 
mature: 222) 

receptor 
binding 

A/Cambodia/X0125302/2013 HA 713 A G Q238R 40.30% A Leu at 238 confers a switch from α-2,3 to α-
2,6 sialic acid binding and is a determinant of 
mammalian transmission[11,12,73–76]. (H5 
mature: 222) 

receptor 
binding 
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A/duck/Cambodia/Y0224304/2014 NP 674 C T T215I 3.69% Nuclear targeting motif[77]. interaction 
with host 
machinery 

A/Cambodia/X1030304/2013 M2 861 G A C50Y 2.03% A Cys at position 50 is a palmitoylation site 
that enhances virulence[78,79]. 

virulence 

A/Cambodia/X0128304/2013 NS1 502 C T P159L 2.8% Part of the NS1 nuclear export signal 
mask[80]. 

interaction 
with host 
machinery 

A/duck/Cambodia/Y0224301/2014 NS1 646 T C L207P 2.22% NS1 flexible tail, which interacts with host 
machinery[81]. 

interaction 
with host 
machinery 

A/duck/Cambodia/Y0224301/2014 NS1 654 C T P210S 2.55% NS1 flexible tail, which interacts with host 
machinery[81]. 

interaction 
with host 
machinery 

A/Cambodia/X0207301/2013 NEP 609 A G E47G 4.59% This site was implicated in enhanced virulence 
of H5N1 viruses in ferrets[82]. 

virulence 

All nonsynonymous mutations that were identified in sites with putative links to host-specific phenotypes are shown. We identify a 

handful of amino acid mutations that have been explicitly linked to mammalian adaptation of avian influenza viruses. For HA 

mutations, all mutations use native H5 numbering, including the signal peptide. For ease of comparison, the corresponding amino 

acid number in mature, H5 peptide numbering is also provided in parentheses in the description column. Full annotations for all 

mutations in our data are shown in Table S1.  

 

 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted N
ovem

ber 14, 2019. 
; 

https://doi.org/10.1101/683151
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/683151
http://creativecommons.org/licenses/by-nc-nd/4.0/


1990 2000 2010 2020

HA

2006 2010 2014 2018

A/Cambodia/V0401301/2011

A/duck/Cambodia/PV027D1/2010

A/Cambodia/W0112303/2012

A/duck/Cambodia/083D1/2011

A/Cambodia/X0128304/2013
A/Cambodia/X0219301/2013
A/Cambodia/X0125302/2013

A/duck/Cambodia/381W11M4/2013

A/duck/Cambodia/Y0224301/2014

A/Cambodia/X1030304/2013

A/Cambodia/X0207301/2013

A/duck/Cambodia/Y0224304/2014

China

Southeast Asia

South Asia

Japan Korea

West Asia

Africa

Europe

North America

Human

Duck

A/Cambodia/V0417301/2011

Figure 1: Phylogenetic placement of H5N1 samples from Cambodia

All currently available H5N1 sequences were downloaded from the Influenza Research Database and the 

Global Initiative on Sharing All Influenza Data and used to generate full genome phylogenies using 

Nextstrain’s augur pipeline as shown in the trees on the left. Phylogenies for the full genome are shown in 
Figure S2. Colors represent the geographic region in which the sample was collected (for tips) or the inferred 
geographic location (for internal nodes). The x-axis position indicates the date of sample collection (for tips) or 
the inferred time to the most recent common ancestor (for internal nodes). In the full phylogeny (left), H5N1 
viruses from Cambodia selected for within-host analysis are indicated by tan circles with black outlines. The 
subtrees containing the Cambodian samples selected for within-host analysis are shown to the right and are 
indicated with grey, dashed arrows. In these trees, human tips are marked with a circles, while duck tips are 
denoted with squares, and are labelled with their strain name. All HA and NA sequences in this dataset, 
besides A/duck/Cambodia/Y0224304/2014, belong to clade 1.1.2. Internal genes from samples collected prior 
to 2013 belong to clade 1.1.2, while internal genes from samples collected in 2013 or later belong to clade 
2.3.2.1a. 
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Figure 2: Within-host diversity in humans and ducks is dominated by low-frequency variation
(a) Within-host polymorphisms present in at least 1% of sequencing reads were called in all human (red) and 

duck (blue) samples. Each dot represents one unique single nucleotide variant (SNV), the x-axis represents the 

nucleotide site of the SNV, and the y-axis represents its frequency within-host. (b) For each sample in our 

dataset, we calculated the proportion of its synonymous (light blue and light red) and nonsynonymous (dark 

blue and dark red) within-host variants present at frequencies of 1-10%, 10-20%, 20-30%, 30-40%, and 

40-50%. We then took the mean across all human (red) or duck (blue) samples. Bars represent the mean 

proportion of variants present in a particular frequency bin and error bars represent standard error. Grey dots 

and connecting lines represent the expected proportion of variants in each bin under a neutral model. (c) We 

calculated Tajima’s D across the full genomes of humans and ducks, separately for synonymous and 

nonsynonymous sites. Values represent the mean Tajima’s D across all humans or ducks, and values in 

parentheses represent the 95% confidence interval. 

a.

●● ●●

●●

●●

●●
●● ●●

●●

●●

●●
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1−10% 10−20% 20−30% 30−40% 40−50%

within−host SNV frequency

p
ro

p
o

r
ti
o

n
 o

f 
S

N
V

s

●

●

●

●

 human nonsynonymous

 human synonymous

 duck nonsynonymous

 duck synonymous

b.

● ● ●
● ● ● ●● ● ●

●●

●

●

●

●

0

10

20

30

40

50

0 500 1000 1500 2000

PB2

●

●
●

●● ●
●●

● ● ●

0 500 1000 1500 2000

PB1

●
●

● ●
●● ●

●
● ● ● ● ●●

●

● ●●●●●

0 500 1000 1500 2000

PA

● ●
●

●

●
●

●
●

●

●

●●●●●●●●●●

●

● ●
●

●

●

●

●

0 500 1000 1500

● human nonsynonymous

human synonymous

human missense

duck nonsynonymous

duck synonymous

duck missense

HA

●●●● ● ● ●●● ●
0

10

20

30

40

50

0 500 1000 1500

NP

● ●● ● ● ●●

●
●

0 500 1000 1500

NA

●
● ●● ●●● ●

0 300 600 900

M1

● ●●● ●

0 300 600 900

M2

●

0 250 500 750

NS1

●●

0 250 500 750

NEP

nucleotide site

S
N

V
 f
re

q
u
e
n
c
y
 (

%
)

 

 
 
 
 
  

! !"!#$!"!$%"&#'
#()*#'

#$!"!$%"&#'
#()*#'

+&%,!' !"#$%&&
'!(#(")&!"#*+,&

!"#-"&&
'!(#($)&!"#+%,&

-&./' !"#*.&&
'!"#%%)&"#"/+,&

!"#+%&&
'!"#%*)&!"#./,&

c.
Tajima’s D

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/683151doi: bioRxiv preprint 

https://doi.org/10.1101/683151
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Purifying selection and genetic drift shape within-host diversity
For each sample and gene, we computed the average number of pairwise nonsynonymous differences per 

nonsynonymous site (πN) and the average number of pairwise synonymous differences per synonymous site πS). 
We then calculated the mean for each gene and species. Each bar represents the mean and error bars represent 

the standard error calculated by performing 10,000 bootstrap resamplings. Human values are shown in red and 

duck values are shown in blue. 
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Figure 4: Mutations are present at functionally relevant sites
We queried each amino acid changing mutation identified in our dataset against all known annotations present 

in the Influenza Research Database Sequence Feature Variant Types tool. Each mutation is colored according 

to its function. Shape represents whether the mutation was identified in a human (circle) or duck (square) 

sample. Mutations shown here were detected in at least 1 human or duck sample. Filled in shapes represent 

nonsynonymous changes and open shapes represent synonymous mutations. Grey, transparent dots represent 

mutations for which no host-related function was known. Each nonsynonymous colored mutation, its frequency, 

and its phenotypic effect is shown in Table 3, and a full list of all mutations and their annotations are available in 

Table S1.  
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Figure 5: Ducks share more polymorphisms than expected by chance 
(a) All amino acid sites that were polymorphic in at least 2 samples are shown. This includes sites at which 

each sample had a polymorphism at the same site, but encoded different variant amino acids. There are 3 

amino acid sites that are shared by at least 2 duck samples, and 9 polymorphic sites shared by at least 2 

human samples. 3 synonymous changes are detected in both human and duck samples (PB1 371, PA 397, and 

NP 201). Frequency is shown on the y-axis. (b) To test whether the level of sharing we observed was more or 

less than expected by chance, we performed a permutation test. The x-axis represents the number of sites 

shared by at least 2 ducks (blue) or at least 2 humans (red), and the bar height represents the number of 

simulations in which that number of shared sites occurred. Actual observed number of shared sites (3 and 9) 

are shown with a dashed line. (c) The same permutation test as shown in (b), except that only 70% of amino 

acid sites were permitted to mutate. (d) The same permutation test as shown in (b), except that only 60% of 

amino acid sites were permitted to mutate.  

a. b.

c. d.
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Figure 6: A small subset of within-host variants are enriched on spillover branches
(a) A schematic for how we classified host transitions along the phylogeny. Branches within monophyletic 

human clades were labelled “to-human” (red branches). Branches leading to a monophyletic human clade, 

whose parent node had avian children were also labelled as “to-human” (half red, half blue branches), and all 

other branches were labelled “to-avian” (blue branches). (b) Each amino acid-changing SNV we detected 

within-host in either ducks (left) or humans (right) that was present in the H5N1 phylogeny is displayed. Each 

bar represents an amino acid mutation, and its height represents the number of to-avian (blue) or to-human 

(red) transitions in which this mutation was present along the H5N1 phylogeny. Significance was assessed with 

a Fisher’s exact test. * indicates p < 0.05, **** indicates p < 0.0001. 
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