

1 **Reflexive gaze following in common marmoset monkeys**

2 Silvia Spadacenta^{1,*}, Peter W. Dicke¹ and Peter Thier^{1,*}

3 ¹Hertie Institute for Clinical Brain Research, Department of Cognitive Neurology, Otfried-Müller-
4 Str. 27, 72076, Tübingen, Germany

5 *Correspondence: silvia.spadacenta@uni-tuebingen.de

6 thier@uni-tuebingen.de

7

8 **HIGHLIGHTS**

9 • Common marmosets follow the head gaze of conspecifics in order to establish joint
10 attention.

11 • Brief exposures to head gaze are sufficient to reallocate an animal's attention.

12 • The tendency to follow the other's gaze competes with the attractional binding of the
13 conspecific's face

14

15

16

17 **KEYWORDS**

18 Marmoset, Face, Gaze following, Joint Attention

19

20

21

22

23

24

25

26 ABSTRACT

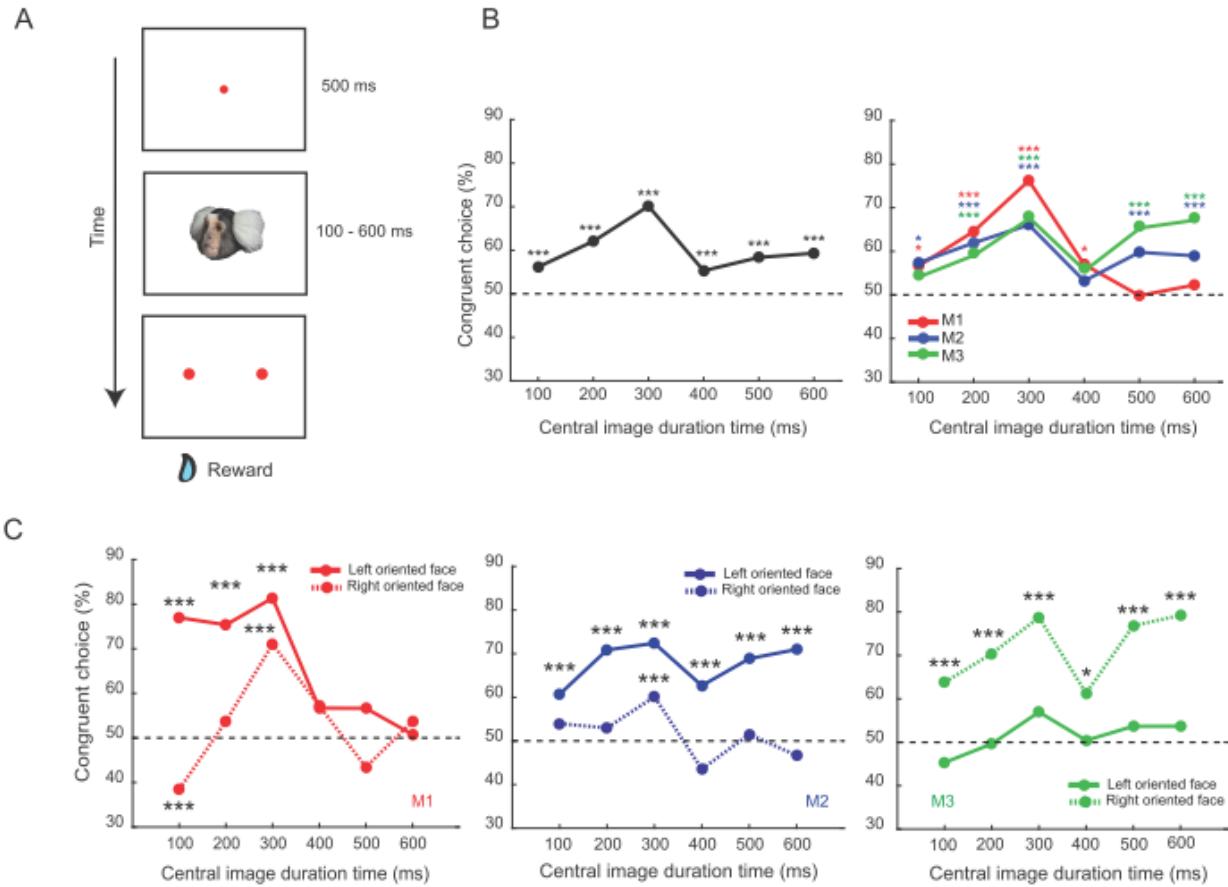
27 The ability to extract the direction of the other's gaze allows us to shift our attention to an object
28 of interest to the other and to establish joint attention. By mapping one's own expectations,
29 desires and intentions on the object of joint attention, humans develop a Theory of (the other's)
30 Mind (TOM), a functional sequence possibly disrupted in autism. Although old world monkeys
31 probably do not possess a TOM, they follow the other's gaze and they establish joint attention.
32 Gaze following of both humans and old world monkeys fulfills Fodor's criteria of a domain specific
33 function and is orchestrated by very similar cortical architectures, strongly suggesting homology.
34 Also new world monkeys, a primate suborder that split from the old world monkey line about 35
35 million years ago, have complex social structures. One member of this group, the common
36 marmoset (*Callithrix jacchus*), has received increasing interest as a potential model in studies of
37 normal and disturbed human social cognition. Marmosets are known to follow human head-gaze.
38 However, the question is if they use gaze following to establish joint attention with conspecifics.
39 Here we show that this is indeed the case. In a free choice task, head-restrained marmosets
40 prefer objects gazed at by a conspecific and, moreover, they exhibit considerably shorter choice
41 reaction times for the same objects. These findings support the assumption of an evolutionary old
42 domain specific faculty shared within the primate order and they underline the potential value of
43 marmosets in studies of normal and disturbed joint attention.

44

45 RESULTS AND DISCUSSION

46 Common marmosets are well known for having a peculiar interest in faces [1,2]. Unlike macaques,
47 the species of old world primates studied best, and other non-human primate species, they often
48 engage in mutual gaze, for example in the context of joint action tasks [3]. Many individuals even
49 seek eye contact with their human caretakers (personal observations). Common marmosets also
50 care about the orientation of a human face as demonstrated by the fact that human head-gaze
51 biases choices in an object selection task [4]. While this latter behavior may indicate an inherent
52 capacity for gaze following, it remains to be shown that it can also be triggered by conspecifics.
53 By the same token the lack of high resolution behavioral data has as yet precluded well-founded
54 inferences about the relationship of marmoset gaze following to gaze following exhibited by
55 humans and rhesus monkeys, the two species of old world primates for which detailed behavioral
56 and neuronal data are available [5,6]. Gaze following of macaques and humans is reflex-like in
57 the sense that it is fast and hard to suppress, two features that have contributed to the assumption

58 of a domain specific faculty [7-12] based on a dedicated neural system [13]. Do marmosets follow
59 the gaze of conspecifics in the same reflex-like manner? An affirmative response would support
60 the notion that gaze following in extant primate lines is homologous, i.e. a reflection of shared
61 ancestry.


62 In order to address these questions, we trained 3 common marmosets (2 females, 1 male) to
63 execute a free choice task in a well-controlled experimental setup that allowed us to head-restrain
64 the animals to precisely track eye movements. A conspecific's face, oriented either to the left or
65 to the right, was presented on a monitor for a variable time ranging between 100 and 600 ms in
66 steps of 100 ms (see figure 1A) and the observing animal was allowed to scrutinize the face with
67 eye movements confined by the boundaries of the portrait. The facial portrait was followed by the
68 appearance of two targets placed at -5° and +5° from the center on the horizontal axis. The
69 animals had to freely choose one of the two targets, a human face (2°x 3°extension), by making
70 an indicative saccade into a window of 2° centered on the target within 500 ms. Independent of
71 the orientation of the conspecific's face, both possible choices were rewarded, provided that the
72 eyes had met the fixation requirements.

73 **Common marmosets follow the gaze of a conspecific in a quasi-reflexive manner**

74 Figure 1B, left panel, plots the percentage of target choices in the direction of the face orientation
75 ("congruent choices") as function of the duration of the availability of the portrait. The graph
76 depicts data pooled over all three animals and the two possible face orientations: congruent
77 choices exceeded chance level significantly (binomial probability test, $p < 0.05$), indicating that
78 the observing monkey tended to follow the gaze of the portrayed monkey. This preference was
79 already apparent after a presentation duration of the portrait of only 100 ms and got stronger for
80 longer presentation durations peaking at 300 ms exposure time (see also S1). This dependence
81 on exposure duration is similar to the one exhibited by human observers when exposed to
82 symbolic central cues such as pointing arrows. They typically demonstrate a gradual buildup of
83 their spatial target preferences cued by central stimuli, reaching an optimum at 300 ms [14,15].
84 As shown in the right panel of figure 1B, the dependence of the choice bias on presentation
85 duration was the same in all three animals for up to 300 ms. Only later, the individual plots start
86 to diverge: interestingly, two of our animals (M2 and M3) showed a clear second peak, overall
87 conveying the impression of an oscillatory pattern with a period of about 250 - 300 ms. Periodic
88 fluctuations of attention between two locations with a period of 4 HZ have also been described for
89 human and macaque spatial vision [16,17]. Yet, given the fact that the third animal exhibited a

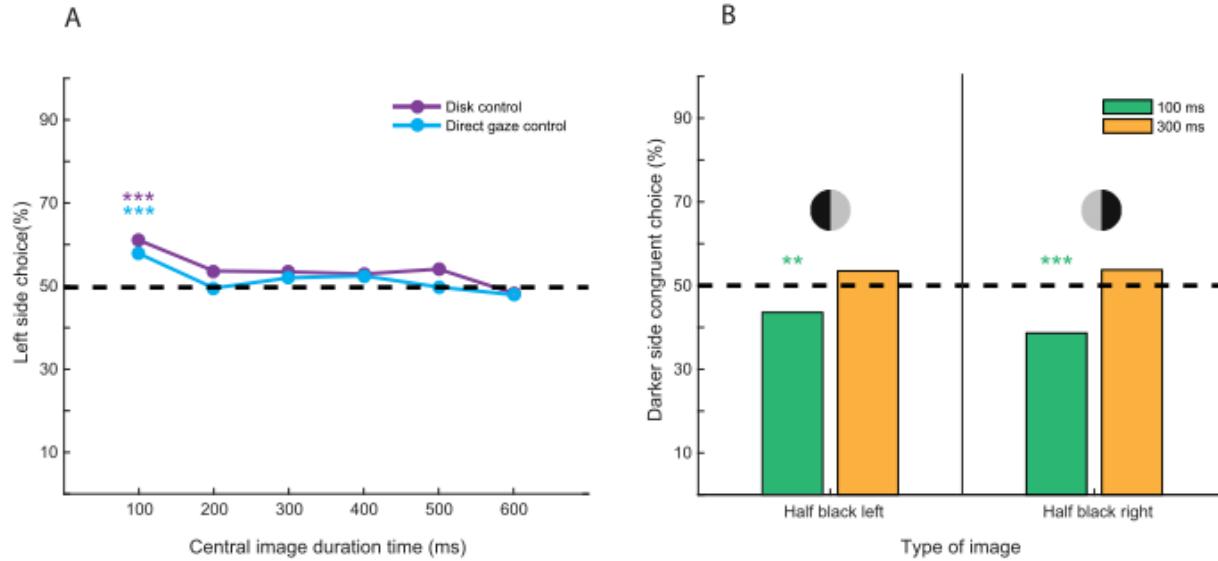
90 different pattern, characterized by an absence of a second gaze following peak and a constant
91 choice at chance level after 300 ms, further studies will be needed to critically assess the
92 possibility of periodicity.

93 All three animals exhibited individually different directional biases for the left and the right
94 respectively, modifying their choice behavior on top of the influence of directional information
95 provided by facial orientation. Directional biases became apparent when plotting the dependence
96 of choice preference on head gaze direction for the three individual animals independently for
97 head gaze to the left and to the right (Figure 1C). For example, a bias to the left side boosted the
98 correct responses for the left oriented head gaze portraits (M1 and M2, left and central panel
99 respectively), and for the right oriented when the bias fell on the other side (M3, right panel).
100 Nonetheless, the bias never altered the overall response curve shape with a peak for congruent
101 choices at around 300 ms. A significant dominance of congruent choices peaking at 300 ms could
102 be seen in M1 and M2 even for congruent choices prompted by portraits oriented towards the
103 animal's non preferred side (binomial probability, $p < 0.001$). A comparable tendency in M3 did
104 not reach significance (binomial probability, $p = 0.1$). The basis of the directional bias remains
105 unclear. The fact that it differs between individuals indicates that hidden imbalances in the setup
106 that might bind attention can hardly matter.

107 **Figure 1. Oriented faces bias the animal's choices to targets congruent with gaze direction**

108 (A) Behavioral paradigm. The trial started with the presentation of a central fixation dot. Once fixation was
109 established, the oriented face of a conspecific (replaced by other stimuli in control experiments) appeared
110 for a variable time (100 – 600 ms in steps of 100 ms). The disappearance of the conspecific's face or the
111 control stimuli and the simultaneous appearance of two peripheral targets was the go signal for the animals
112 to freely choose one of two peripheral targets presented on the horizontal axis at 5° right and left of the
113 center respectively, by means of a saccade. The animal received a reward if the fixation requirements were
114 met. The fixation window for the central dot had a size of 2°x2°, a size of 2°x3° for the peripheral targets
115 portraits of a human (represented in figure as red dots) and for the central portraits/control stimuli it
116 corresponded to the extent the centrally presented image (7° x 6°).

117 (B) Left panel: plot of the percentage of target choices congruent with portrait orientation as function of the
118 duration of presentation. Pooled data (monkeys M1, M2, M3). Binomial probability: *** p < 0.001


119 Right panel: plot of the percentage of target choices congruent with portrait orientation for the individual
120 animals M1, M2 and M3. Binomial probability: * $p < 0.05$, *** $p < 0.001$

121 (C) Monkey specific plots of the percentage of target choices congruent with portrait orientation, separating
122 portraits oriented to the left and right respectively. In each panel (left, M1; center, M2; right, M3) the solid
123 line stands for left oriented portraits and the dashed one for right oriented portraits.

124 When the animals were confronted with direct gaze of a conspecific with the face turned straight
125 or alternatively, with black or grey disks of a similar size, likewise lacking directional information,
126 target choices of all three animals did not differ significantly from chance level at most exposure
127 times with the exception of the shortest one (Figure 2A, pooled data). In particular the choice
128 peaks for 300 and 600 ms could no longer been seen. For 100 ms exposure, overall pooled
129 choices to the left were significantly more frequent than to the right. Two of the individual monkeys
130 (M1, M2) exhibited this preference for the left, whereas the third one (monkey M3) a preference
131 for the right. The individual directional preferences for the left and the right corresponded to the
132 direction of the biases seen in the responses to oriented gaze (Figure 1C), yet, now confined to
133 the shortest exposure only. We think that the disappearance of the directional bias for longer
134 exposure times might be a consequence of increasing attraction towards the central object,
135 overriding the bias, no matter if the central object is the neutral disk or the portrait of a conspecific
136 looking straight. This interpretation has interesting implications for the experiments with oriented
137 faces, which showed a persistence of the directional biases independent of exposure time. Here
138 the directional gaze seems to suppress the buildup of attraction to the central object, facilitating
139 the readiness to look elsewhere as determined by the resultant of the other's gaze direction and
140 an internal directional bias.

141 The white ear tufts on the left and right of the darker central face of a straight ahead marmoset
142 offer a symmetric luminance profile. Once the animal turns the head to the side, symmetry is lost
143 as the visible area of the ear tuft on the side of the head turn will decrease, whereas the area of
144 the other one will increase (see figure S3). Hence, gauging the extent of the luminance asymmetry
145 may be a simple way to determine the other's head gaze direction without the need to process
146 other aspects of the face. To test whether left-right differences in the luminance of an object
147 prompt an orienting response of the observer, we exposed all 3 animals to bipartite disks replacing
148 the marmoset portraits. The disks were black on the left and light grey on the right or vice versa.
149 These two versions of the bipartite disks were presented randomly interleaved for 100 ms or 300
150 ms, two portrait exposure times that had prompted clear gaze following in the main experiment.
151 Against the backdrop of the preceding considerations, we had hypothesized that the animals
152 might prefer the target on the side of the darker half of the bipartite disk for both exposure times.
153 However, contrary to our expectation, the animal preferred the target on the side of the brighter
154 half of the disk, independently if positioned on the right or left side and, moreover, only for 100
155 ms exposure time. For 300 ms choices did not exhibit any preference (Figure 2B). This result
156 does not support the hypothesis that marmoset gaze following is determined by a simple

157 mechanism, confined to the comparison of the two ear tuft areas. It rather suggests that additional
158 features such as the orientation dependent position and shape of the paler center parts of the
159 face may matter as well.

160 **Figure 2. Direct gaze and disk stimuli attract the animals' attention towards the center.**

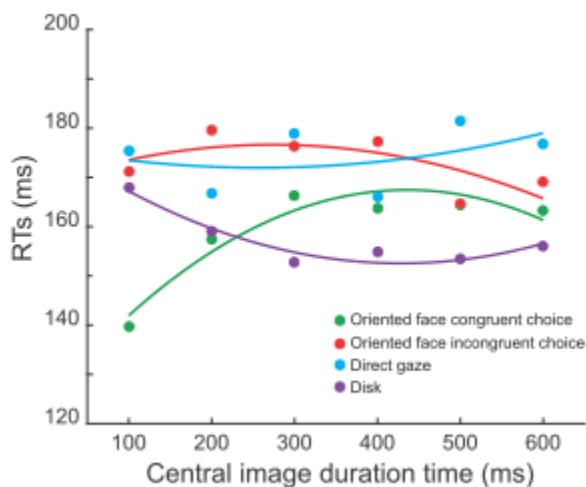
161 (A) Plot of left target choice as function of the duration of a central stimulus, either a conspecific's face
162 looking straight at the observer (direct gaze) or a circular grey or black disk of similar size. Data pooled
163 over the three animals (monkeys M1, M2, M3). A choice bias is evident at the shortest duration time,
164 whereas for longer exposures the animals chose the targets on the right and left at random. Binomial
165 probability: *** p < 0.001.

166 (B) Bar plot of percentage of choices congruent with the darker half of a bipartite disk. Data pooled over the
167 three animals (monkeys M1, M2, M3) and choice direction. For 100 ms presentation duration, the animals
168 exhibited a significant preference for the target on the brighter side, i.e. opposite to the side preference to
169 be expected based on a mechanism exploiting the luminance asymmetry associated with face orientation.
170 At 300 ms the choices did not indicate a preference. Binomial probability: ** p < 0.01; *** p < 0.001.

171

172

173 **Congruent choices are accompanied by faster reaction times already at short exposure
174 times**


175 In the main experiment, the latencies of saccades indicating congruent choices were shorter than
176 the ones for incongruent choices for exposure times up to 400 ms duration (Figure 3). Actually,

177 this facilitation effect was strongest for the shortest exposure time, gradually decreased with
178 exposure time and no longer reached significance for the longest durations tested (500 and 600
179 ms; see figure 3 legend for statistics), consistent with a time course of reflexive rather than
180 volitional orienting. A similar facilitation effect for comparably short exposure durations has been
181 seen in studies of macaque monkeys [11] and humans [8]. However, these studies did not report
182 a gradual increase of reaction times with the time of exposure seen in our experiments on
183 marmosets. This difference might be a consequence of the specific paradigm we used. In our
184 experiments, the animals had to choose between two targets of equal appearance, rather than to
185 follow the other's gaze to a specific target as in the work on macaque monkeys and humans.
186 Hence, our animals may have tended to extract additional information from the other's face
187 beyond gaze direction in an attempt to facilitate their choices, provided that this portrait was
188 available long enough. This increased interest in the other's face, gated by longer exposure times,
189 can be expected to compromise the ability to quickly disengage attention at the time of the go-
190 signal. This interpretation is supported by the experiments with control stimuli and the eye
191 movements prompted by the appearance of the portraits we discuss below.

192 Saccades associated with the straight ahead face ("direct gaze") exhibited latencies that were not
193 different from the ones associated with incongruent choices to oriented faces. Interestingly,
194 latencies of saccades associated with neutral disks showed an influence of exposure time that
195 was qualitatively opposite to the influence on saccades for congruent choices: while being similar
196 to saccades for straight faces for short presentation durations, they became shorter with
197 increasing exposure time (see figure 3). The same held for the bicolor disk control stimuli (see
198 figure S2). These results indicate that for marmosets, the attraction of the other's face and not to
199 non-biological stimuli increases with exposure time and correspondingly attentional
200 disengagement is delayed.

201 Neutral objects were associated with relatively long saccadic reaction times when presented
202 briefly, probably because of the need to scrutinize the object in order to assess its significance.
203 Once its irrelevance is established after some 200 ms of presentation, the observer disengages
204 his attention in order to prepare a fast saccadic choice. A short exposure to the oriented face can
205 cause a profound shortening of saccadic reaction time, because the drive to follow gaze direction
206 is already fully expressed whereas facial attraction is still building up. The idea that the
207 development of facial attraction and in general the perception of faces may need much longer is
208 also supported by a consideration of the pattern of saccadic exploration of the portraits (see
209 supplementary figure S3 for details) whose complexity keeps growing with exposure time. Hence,

210 the question is why the drive to follow gaze is fully expressed in saccadic reaction times for short
211 exposure times, arguably too short to allow a detailed scrutiny of the face whereas the choice
212 bias increases further with exposure time for up to 300 ms. We think that this dissociation between
213 reaction times and choice probabilities might reflect the concerted action of two systems
214 controlling gaze following. The first is fast, probably subcortical, controlling gaze following based
215 on a rough and potentially error prone analysis of the other's face, too limited to provide
216 information on other aspects of the face like the identity or mood of the agent. With longer
217 exposure and concomitantly processing time, this information becomes available, on the one
218 hand binding attention but, on the other hand, also improving the directional precision of
219 decisions.

220 **Figure 3. Oriented faces speed up reaction times for congruent choices.**

221 Plots of saccadic reaction times as function of the duration of presentation of the central stimuli. Data pooled
222 over the three animals (monkeys M1, M2, M3) and choice direction. Saccadic reaction times indicating
223 congruent choices were significantly shorter compared to the incongruent ones up to 400 ms of presentation
224 duration (Wilcoxon rank-sum test, 100 ms: zval = -4.8221, p < 0.001; 200 ms: zval = -3.8449, p < 0.001;
225 300 ms: zval = -2.0341, p = 0.04; 400 ms: zval = -2.4745, p = 0.01). The individual plots are fitted with 2nd
226 degree polynomial functions in an attempt to improve the visibility. The two fit that showed a significant
227 dependence of saccade latency on the presentation duration of the central stimulus were the one for
228 congruent choices prompted by oriented faces and the one for neural disk stimuli. The former exhibited a
229 gradual increase with duration from a substantially shorted reaction time for a duration of 100ms (adjusted
230 $r^2 = 0.86$).The latter, on the other hand, a gradual decrease with duration (adjusted $r^2 = 0.89$).

231

232 **Concluding remarks**

233 Gaze following is prevalent among numerous species but its strength and flexibility varies
234 substantially between them [18]. As shown here, gaze following is also well developed in common
235 marmosets, a new world monkey species. Marmoset gaze following is characterized by strong
236 similarities with the gaze following behavior of the two old world primate species studied
237 extensively, macaques and humans. The strongest argument for correspondence is the similar
238 dependence on the time of exposure to the other's gaze direction. In all three species the other's
239 gaze biases decisions on potential targets already after only 100 ms of exposure to the other's
240 gaze, too short to accommodate a more detailed scrutiny of the other's face. However, given
241 more time to explore the other's face, the bias gets stronger in all three, in line with the assumption
242 that primate gaze following is a faculty, consisting of an early reflex-line component that is
243 complemented by a later, more flexible component, arguably also responsible for the more
244 sophisticated emotional and cognitive control known to modulate gaze following [19-21]. The
245 behavioral similarities between the gaze following behavior of marmosets, macaque monkeys
246 and humans are in principle in line with the assumption of a homologous faculty, already available
247 before the split of the new and old world monkey primate lines. This conclusion may strengthen
248 the view that the marmoset may indeed become a useful model system for research into the
249 underpinnings of disturbed human social interactions like autism, related to deficient gaze
250 following and joint attention [22]. However, although compelling, the behavioral similarities
251 established in our study may as well reflect behavioral convergence. Hence, comparative
252 physiological and genetic studies of the underlying neural systems will be needed to strengthen
253 the case for homology.

254

255 **Acknowledgments:** This work was supported by a grant from the Deutsche
256 Forschungsgemeinschaft (TH 425/12-2).

257

258

259

260

261

262

263 **SUPPLEMENTARY MATERIAL**

264 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

265

266 **Common Marmosets**

267 We trained 3 adult common marmoset monkeys (*Callithrix jacchus*; two females and one male,
268 aged 7 years) to voluntarily enter a custom made monkey chair by means of positive
269 reinforcement training and to accept the restriction of head movements through a head holder.
270 Animals were all born in captivity and kept in a marmoset husbandry at approximately 26°C, 40%-
271 60% relative humidity and a 12h:12h light-dark cycle. Access to water was always ad libitum,
272 while food intake was controlled according to body weight (weight loss never less than 10% of
273 the ad libitum weight) and amount of reward received in the experiment. Food consisted in fresh
274 fruits and vegetables and standard commercial chow. As additional treats the animals received
275 mealworms and locusts on days of good performance in the behavioral training and experiments.
276 Reward given in the experimental setup consisted in self prepared marshmallow juice (1:2 marsh-
277 mallows/water) with the addition of a small amount of gum arabic, or only gum arabic diluted in
278 water, according to the individual animal's preference. Experimental procedures were approved
279 and supervised by the regional state authorities (Regierungspräsidium Tübingen and
280 Landratsamt Tübingen, TVG N16/14) and are in agreement with the guidelines of the European
281 Community for the care of laboratory animals.

282

283 **Surgical and training procedure**

284 All the animals underwent the surgical implantation of a titanium headpost under general
285 anesthesia with sevofluran (2.5-5%), propofol (0.05-2 mg/kg/min), remifentanil (0.06-0.1
286 mcg/kg/min) and tight control of vital parameters. The headpost was fixed with three upside down
287 T-shaped anchors, whose arms were placed between the skull and the dura. This was achieved
288 by cutting a small slit into the bone using an ultrasound bone-knife (Mectron, Piezosurgery),
289 allowing the insertion of the arms that were then rotated 90° under the bone. Two-component UV
290 curing cement (ESPE Rely X Unicem 2) was used to close the bone slit and Super Bond C & B
291 to glue the head post to the profiles protruding a few mm from the bone. After full recovery from
292 surgery, the animals were gradually accustomed to head restraint through daily sessions of
293 increasing duration, up to a maximum of 2 hours.

294

295 **Experimental setup**

296 The experiments were performed in a small sound proof room in daily sessions lasting between
297 30 min and 2 hours. The number of trials per session ranged from 50 (usually at the start of a
298 session block after a few days break) up to 500 trials per session. The animals were sitting in a
299 comfortable monkey chair that was placed on a table facing a computer screen (Beetronics, 10
300 Inch Monitor, 220 x 134 mm, 1920 x 1080 Hz resolution, framerate 60 Hz), at a distance of 32
301 cm. Eye movements were tracked with the EyeScan System ETL-200, through a camera placed
302 on the right side of the screen, and resampled at 1 kHz. Reward was delivered by means of a
303 small cannula placed in front of the animals' mouth, on or very close to the upper lip, depending
304 on the animals' preference. The delivery of rewards was controlled via a pump, set to release one
305 drop of fluid for each correct answer or more (2-3 drops), depending on the animal's motivation.

306 **Eye Position Calibration**

307 Eye position was calibrated by asking the animal to pursue a human face (4x5°) that was slowly
308 moving on a circular trajectory on the screen (circle diameter 5°) at a speed of 6 °/s. In order to
309 prevent that the animal would lose interest in the face, we replaced it every 4 trials by another
310 one, differing in identity and/ or expression. The animals followed a novel moving face
311 spontaneously with smooth pursuit eye movements with interspersed catch up saccades allowing
312 us to calibrate the eye position records by fitting the target trajectory to the eye trace.

313 **Behavioral paradigm**

314 Each trial started with the appearance of a small red dot (0.2°) in the center of the screen on a
315 white background, available for a maximum of 500 ms to start fixation (fixation window (2°x 2°).
316 Otherwise it disappeared and the trial was discarded. However, if fixation was acquired and
317 maintained for 500 ms, the dot was replaced by the portrait of a conspecific portrait, in the main
318 experiment randomly oriented towards a position at -5° or 5° on the horizontal, in 50% of the trials
319 to the left side and in 50 % to the right side. In the control experiments the oriented faces were
320 replaced by a face of a marmoset looking straight at the experimental animal, a monochromous
321 disk (black or grey), or a bipartite-monochromous disk (left half black/right half grey or viceversa)
322 respectively. Animals could freely explore the central images, as long as they kept the eye within
323 the fixation window, which whose size corresponded to the image. Central images were presented
324 for a variable duration of 100, 200, 300, 400, 500 or 600 ms. At the end of the image presentation
325 time, the central image disappeared while at the same time a pair of 2 peripheral targets, human

326 faces, looking straight and exhibiting a neutral expression (size 2 x 3°) appeared at +5° and -5°
327 from the center. The identity of the animal presented in the center and the identity of the pairs of
328 human faces serving as targets were kept constant. The appearance of the targets served as go
329 signal, telling the animals to perform a saccade to one of the two targets. All choices were
330 rewarded, as long as the indicative saccade landed within a window of 2°x 3°centered on the
331 targets and was not carried out later than 500 ms after the go signal. Intertrial interval were kept
332 constant at 1 second.

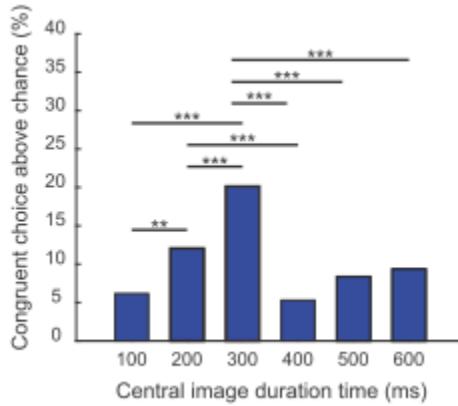
333 **STIMULI**

334 The face stimuli used were based on photographs of the faces of marmoset conspecifics and
335 humans that had been taken with a digital camera (Canon, Legria HFS30) and manually
336 processed in Adobe Photoshop to unify their size and luminance. For the oriented face condition
337 we used two different portraits of the same animal. The direct gaze stimuli were generated
338 removing the peripheral white ear-tufts. The inner face feature were maintained and the resulting
339 image was rescaled such as to match the spatial dimensions of the disk control stimuli.

340 **SACCADE IDENTIFICATION PROCEDURE**

341 Saccades were identified by a Matlab routine as events characterized by an increase in
342 instantaneous eye velocity above a threshold of 20 °/s. The performance of the algorithm was
343 double checked by eye in order to discard false hits. As expected selected saccades respected
344 the main sequence, i.e. relationship between amplitude and velocity / duration.

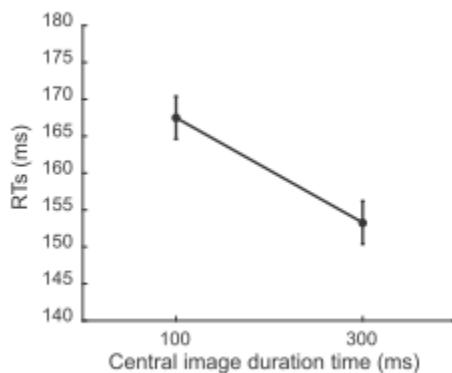
345 **STATISTICAL ANALYSIS**


346 **Binomial distributions of choice behavior and reaction times**

347 For the statistical analysis of the binary decisions of the experiments animals, all sessions per
348 animal and condition were pooled, yielding a binomial distribution allowing the detection of
349 significant deviations from chance level (50%). The pairwise comparison of the binomial
350 distributions for individual animals was based on chi-square tests which were carried without
351 Yates correction, given that the number of trials per condition was large (>200). Pooled reactions
352 times were compared between the various conditions by Wilcoxon-test with Bonferroni correction.

353

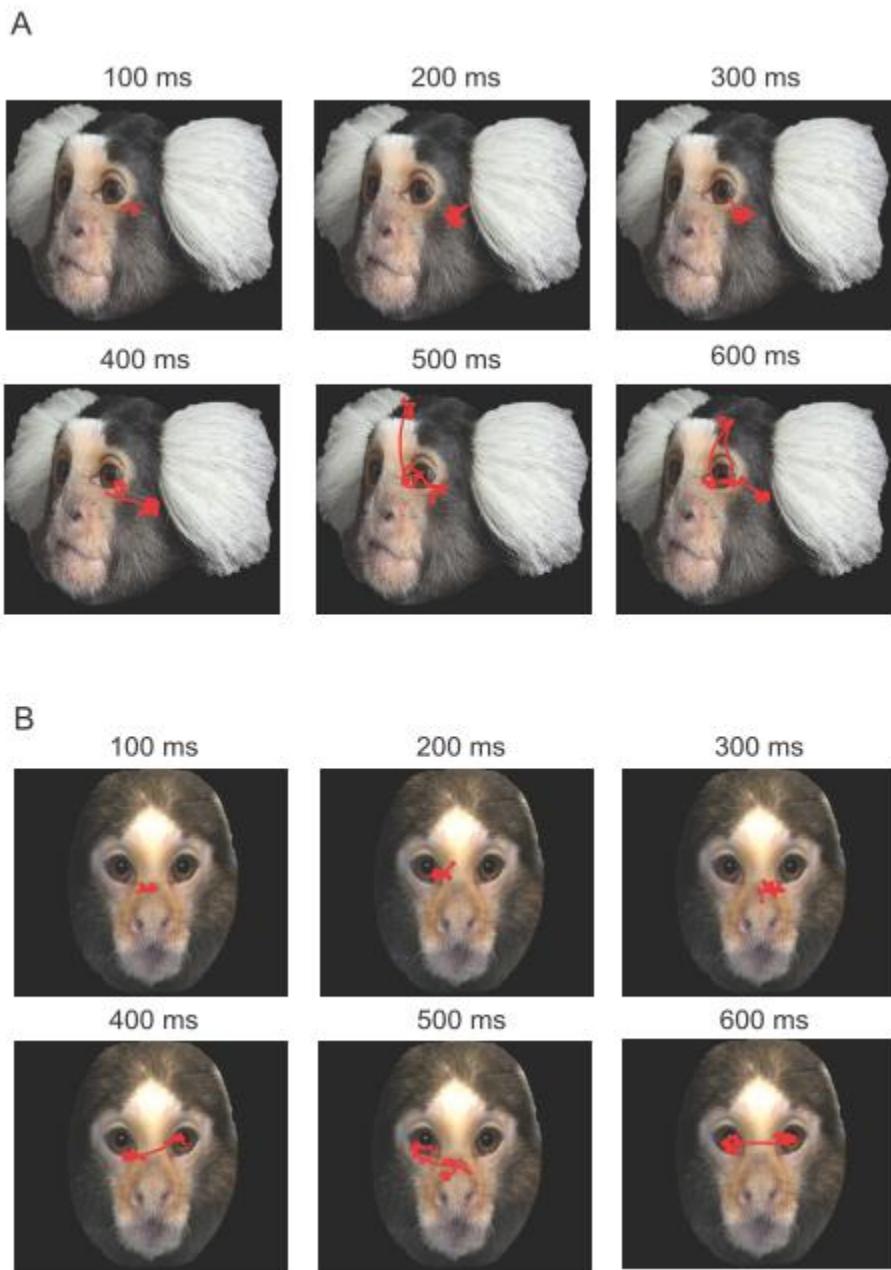
354


355 **SUPPLEMENTARY FIGURES**

356 **Figure S1. An exposure duration of 300 ms to the oriented face prompts the maximal gaze following**

357 Bar chart of the number of congruent choices above chance level for the data shown in the left panel of
358 figure 1B with statistical comparisons between presentation durations time view based on chi square tests
359 without Yates correction, *** $p < 0.001$; ** $p < 0.01$; only significant comparisons shown). The percentage
360 of congruent choices at 300 ms is significantly larger than for shorter or longer presentation durations.

361



362 **Figure S2. Saccadic reaction times for choices prompted by the bicolor disk control stimuli**

363 No differences in saccadic reaction times (RT) were registered between choices towards the brighter and
364 darker side (Wilcoxon rank-sum test, 100 ms: $p = 0.8$, $zval = 0.235$; 300 ms: $p = 0.06$, $zval = -1.876$). Hence,
365 we pooled the both in order to assess the influence of presentation duration. As for the monochromous disk
366 (see figure 3), RTs decreased with longer exposure to the stimulus (Wilcoxon rank-sum test, $p < 0.001$,
367 $zval = 3.776$).

368

369

370 **Figure S3. Only longer exposures to the other's face allow the scrutiny of relevant facial features**

371 Exemplary patterns of eye movement made by the observers when exposed to the oriented face of a
372 conspecific (A) or alternatively to the frontal face of a conspecific lacking the white ear tufts (B) for different
373 durations. Up to 300 ms the eyes of the observer stayed in a small, region of the face corresponding to the
374 center of the image, arguably behaviorally not particularly relevant. Only exposure durations of 400 ms and
375 longer allowed exploratory saccades, in these and most other cases aiming at the eye region and only
376 rarely oriented towards the white ear-tufts. The data are from individual sessions with monkey M2.

377

378 **REFERENCES**

379

380 1) Miller, C.T., Freiwald, W.A., Leopold D.A., Mitchell J.F., Silva A.C., and Wang X. (2016).
381 Marmosets: a neuroscientific model of human social behavior. *Neuron*. 90(2), 219-233.

382

383 2) Nummela, S.U., Jutras, M.J., Wixted, J.T., Buffalo, E.A., and Miller, C.T. (2018).
384 Recognition memory in marmoset and macaque monkeys: a comparison of active vision.
385 *J. Cogn. Neurosci.* 4, 1-11.

386

387 3) Miss, F.M., and Burkart, J.M. (2018). Corepresentation during joint action in marmoset
388 monkeys (*Callithrix jacchus*). *Psychol Sci.* 29(6), 984-995.

389

390 4) Burkart, J., and Heschl, A. (2006). Geometrical gaze following in common marmosets
391 (*Callithrix jacchus*). *J. Comp. Psychol.* 120(2), 120-130.

392

393 5) Shepherd, S.V. (2010). Following Gaze: Gaze-Following Behavior as a Window into Social
394 Cognition. *Front. Integr. Neurosci.* 19, 4-5.

395

396 6) Emery, N.J., Lorincz, E.N., Perrett, D. I., Oram, M.W., and Baker C.I. (1997). Gaze
397 following and joint attention in rhesus monkeys (*Macaca mulatta*). *J. Comp. Psychol.*
398 111(3), 286-93.

399 7) Friesen, C.K., and Kingston A. (1998). The eyes have it! Reflexive orienting is triggered
400 by nonpredictive gaze. *Psychon. Bull. Rev.* 5 (3), 490-495

401

402 8) Driver, J., Davis, G., Ricciardelli, P., Kidd, P., Maxwell, E., and Baron-Cohen, S. (1999).
403 Gaze perception triggers reflexive visuospatial orienting. *Vis. Cogn.* 6 (5), 509–540.

404

405 9) Langton, S.R.H., and Bruce V. (1999). Reflexive visual orienting in response to the social
406 attention of the others. *Vis. Cogn.* 6, 541-568.

407

408 10) Deaner, R.O., and Platt, M.L. (2003). Reflexive social attention in monkeys and humans.
409 *Curr. Biol.* 13(18), 1609-1613.

410

411 11) Shepherd, S.V., Klein, J.T., Deaner, R.O., and Platt, M.L. (2009). Mirroring of attention by
412 neurons in macaque parietal cortex. *Proc. Natl. Acad. Sci. USA.* 106(23), 9489-9494.

413

414 12) Marciniak, K., Dicke, P.W., and Thier, P. (2015). Monkeys head-gaze following is fast,
415 precise and not fully suppressible. *Proc. Biol. Sci. R. Soc.* 282.

416

417 13) Carlin, J.D., and Calder, A.J. (2013). The neural basis of eye gaze processing. *Curr. Opin.*
418 *Neurobiol.* 23(3), 450-455.

419

420 14) Müller, H.J., and Rabbitt, P.M. (1989). Reflexive and voluntary orienting of visual attention:
421 time course of activation and resistance to interruption. *J. Exp. Psychol. Hum. Percept.*
422 *Perform.* 15(2), 315-330.

423 15)Cheal, M., and Lyon, D.R. (1991). Central and peripheral precuing of forced-choice
424 discrimination. *Q. J. Exp. Psychol. A.* 43(4), 859-880.

425

426 16)Busch, N.A., and VanRullen, R. (2010). Spontaneous EEG oscillations reveal periodic
427 sampling of visual attention. *Proc. Natl. Acad. Sci. U S A.* 107(37), 16048-16053.

428

429 17)Landau, A.N., Schreyer, H.M., van Pelt, S., and Fries, P. (2015). Distributed Attention Is
430 Implemented through Theta-Rhythmic Gamma Modulation. *Curr. Biol.* 25(17), 2332-2337.

431

432 18)Kano, F., and Josep, C. (2014). Cross-species variation in gaze following and conspecific
433 preference among great apes, human infants and adults. *Anim. Behav.* 91, 137-150.

434

435 19)Hill, J.L., Patel, S., Gu, X., Seyedali, N.S., Bachevalier, J., and Sereno, A.B. (2010). Social
436 orienting: reflexive versus voluntary control. *Vis. Res.* 50, 2080–2092.

437

438 20)Teufel, C., Gutmann, A., Pirow, R., and Fischer, J. (2010). Facial expressions modulate
439 the ontogenetic trajectory of gaze-following among monkeys. *Dev. Sci.* 13, 913–922.

440

441 21)Shepherd, S.V., Deaner, R.O., and Platt, M.L. (2006). Social status gates social attention
442 in monkeys. *Curr. Biol.* 16, R119–R120.

443

444 22)Baron-Cohen, S., Leslie, A.M., and Frith, U. (1985). Does the autistic child have a “theory
445 of mind”? *Cognition.* 21, 37-46.