

1 **Broadly inhibiting anti-neuraminidase monoclonal antibodies induced by  
2 trivalent influenza vaccine and H7N9 infection in humans**

3  
4 Pramila Rijal<sup>1,2,7</sup>, Bei Bei Wang<sup>3,7</sup>, Tiong Kit Tan<sup>2</sup>, Lisa Schimanski<sup>2</sup>, Philipp Janesch<sup>2</sup>, Tao  
5 Dong<sup>1,2</sup>, John W. McCauley<sup>4</sup>, Rodney S. Daniels<sup>4</sup>, Alain R. Townsend<sup>1,2</sup>, Kuan-Ying A.  
6 Huang<sup>5,6</sup>

7  
8 <sup>1</sup>Center for Translational Immunology, Chinese Academy of Medical Sciences Oxford  
9 Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS,  
10 United Kingdom

11 <sup>2</sup>MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department  
12 of Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom.

13 <sup>3</sup>Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015,  
14 China

15 <sup>4</sup>Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, United Kingdom

16 <sup>5</sup>Division of Infectious Diseases, Department of Paediatrics, Chang Gung Memorial Hospital, Taoyuan  
17 33305, Taiwan

18 <sup>6</sup>School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan

19 <sup>7</sup> Authors contributed equally

20  
21 Corresponding authors: Pramila Rijal ([Pramila.rijal@rdm.ox.ac.uk](mailto:Pramila.rijal@rdm.ox.ac.uk)) and Alain Townsend  
22 ([alain.townsend@imm.ox.ac.uk](mailto:alain.townsend@imm.ox.ac.uk)) and Kuan-Ying A. Huang ([arthur1726@cgmh.org.tw](mailto:arthur1726@cgmh.org.tw))

23  
24 Keywords: Neuraminidase, Monoclonal antibodies, Influenza virus, ELLA Assay, antigenic seniority,  
25 original antigenic sin, H7N9

26  
27 **Highlights of the paper**

- 28 • Antibodies that inhibit influenza viruses with N1 neuraminidase (NA), with broad reactivity  
29 for viruses isolated between 1918-2018, can be isolated from human recipients of  
30 seasonal influenza vaccine
- 31 • Antibodies targeting N1 NA of human seasonal H1N1 viruses can cross-react with a  
32 variety of avian N1 neuraminidases
- 33 • Acute H7N9 infection can recall memory B cells to N1 NA and elicit cross-reactive  
34 antibodies to the group 1 N1 and group 2 N9 NAs
- 35 • Antibodies to N1 NA with this broad reactivity protect against lethal virus challenge

36  
37 **Abstract**

38 The majority of antibodies induced by influenza neuraminidase (NA), like those against  
39 hemagglutinin (HA), are relatively specific to viruses isolated within a limited time-window as  
40 seen in serological studies and the analysis of many murine monoclonal antibodies. We report  
41 three broadly reactive human monoclonal antibodies (mAbs) targeting N1 NA. Two were  
42 isolated from a young adult vaccinated with trivalent influenza vaccine (TIV), which inhibited  
43 N1 NA from viruses isolated from human over a period of a hundred years. The third antibody  
44 isolated from a child with acute mild H7N9 infection inhibited both group 1 N1 and group 2 N9

45 NAs. In addition, the antibodies cross-inhibited the N1 NAs of highly pathogenic avian H5N1  
46 influenza viruses. These antibodies are protective in prophylaxis against seasonal H1N1  
47 viruses in mice. This study demonstrates that human antibodies to N1 NA with exceptional  
48 cross-reactivity can be recalled by vaccination and highlights the importance of standardizing  
49 the NA antigen in seasonal vaccines to offer optimal protection.

50

### 51 **Importance**

52 Antibodies to the influenza NA can provide protection against influenza disease. Analysis of  
53 human antibodies to NA lags behind that for HA. We show that human monoclonal antibodies  
54 against NA induced by vaccination and infection can be very broadly reactive and able to  
55 inhibit a wide spectrum of N1 NAs between 1918 and 2018. This suggests that antibodies to  
56 NA may be a useful therapy, and that efficacy of influenza vaccines could be enhanced by  
57 ensuring appropriate content of NA antigen.

58

### 59 **Background**

60 H1N1 virus entered the human population from birds in 1918. It is thought to have jumped  
61 from humans to pigs in that epoch, and it was from the pig that influenza virus was first isolated  
62 in 1931 (Shope, 1931) and shortly after from humans in 1933 through infection of ferrets  
63 (Smith W, 1933). H1N1 viruses circulated continuously in humans until 1958, when newly  
64 emerged H2N2 viruses replaced them. H1N1 virus reappeared in 1977 and continued to  
65 circulate until 2009. During this whole period, it underwent independent but continuous genetic  
66 and antigenic drift in humans and pigs. In 2009, a novel swine-origin H1N1 virus re-entered  
67 the human population and caused a pandemic. The accumulated sequence disparity between  
68 these independent descendants of the 1918 H1N1 virus had resulted in sufficient loss of cross-  
69 immunity to render most humans susceptible to infection by the porcine H1N1 virus.

70

71 Antibodies to the hemagglutinin (HA) and neuraminidase (NA) can independently provide  
72 protection from influenza disease (Couch et al., 2013, Monto et al., 2015, Memoli et al.,  
73 2016). The study of antibodies targeting NA has been under the shadow of those against HA,  
74 although there exists an extensive amount of evidence in favour of the protective immunity  
75 against NA. Previous work by Schulman, Webster, Kilbourne and colleagues showed the  
76 protective effects of anti-NA antibodies in mice and ferrets. Mice inoculated with virus or  
77 purified NA protein elicited protective immunity against NA (Schulman et al., 1968, Kilbourne  
78 et al., 2004). The anti-NA antibodies were shown to inhibit NA activity *in vitro* and reduce virus  
79 plaque size (Kilbourne et al., 1968b). Anti-NA immunity protected mice from infection,  
80 presumably by abrogating the release of virus from infected cells. Many groups subsequently  
81 elaborated the protective effects of antibodies against NA in animal models (Rockman et al.,  
82 2013, Doyle et al., 2013, Wan et al., 2013) [Reviewed by (Wohlbold and Krammer, 2014,  
83 Krammer et al., 2018, Eichelberger and Monto, 2019)].

84

85 Kilbourne and colleagues also showed that protective anti-NA antibodies are elicited in  
86 humans following natural infection (Kilbourne et al., 1968a, Schild, 1969) and exposure to  
87 inactivated whole-virus vaccine (Couch et al., 1974). Current challenge studies in humans also  
88 confirm the independent protective effect of antibodies against NA (Memoli et al., 2016).  
89 Finally, several groups have recently established the anti-NA antibody titre in human sera to  
90 be a correlate of protection in large clinical trials (Couch et al., 2013, Monto et al., 2015,  
91 Memoli et al., 2016).

92 Compared to a considerable literature on human mAbs against HA, the majority of mAbs  
93 targeting NA described to date are from mouse and rabbits which show relatively limited cross-  
94 reactivity. Among the first murine mAbs against NA - NC10 and NC41, specific to the N9 NA,  
95 were analysed for functional and structural characteristics (Malby et al., 1994, Lee and Air,  
96 2002). The murine antibody CD6, which was protective against a limited range of N1 subtype  
97 viruses including seasonal H1N1, H1N1pdm09 and avian H5N1, was found to make several  
98 contacts with adjacent NA monomers. However, this antigenic epitope underwent amino acid  
99 substitution in recent seasonal H1N1 (post 2014) viruses and prevented CD6 binding (Wan et  
100 al., 2013, Wan et al., 2015).

101  
102 Antibodies against NA act mainly through steric hindrance to block interaction of the active  
103 site of the enzyme with sialic acid templates, but may also invoke Fc-dependent protective  
104 mechanisms *in vivo* (Hashimoto et al., 1983, DiLillo et al., 2016, Jegaskanda et al., 2017).  
105 Antibody HCA-2, which was induced in rabbits by immunisation with a 9-mer conserved  
106 peptide from the NA active site (residues 222-230), is known to bind to the active site (Doyle  
107 et al., 2013). This antibody reacts in western blots with a very wide range of NAs, and cross-  
108 inhibits multiple strains and subtypes from influenza A and B subtypes, but only at high  
109 concentration. HCA-2 offers only partial protection, even at the high antibody dose of 60  
110 mg/kg, and can be affected by amino acid substitutions in the active site that lead to reduced  
111 susceptibility to NA inhibitors (Doyle et al., 2013). The requirement for such a high  
112 concentration of HCA-2 is probably because it reacts with a linear epitope exposed  
113 predominantly after denaturation of NA. Thus, there is scope for potent and broadly reactive  
114 human mAbs against NA that confer better protection and could be used therapeutically.  
115

116 Owing to high sequence diversity in the globular head of HA, humans produced broadly  
117 reactive antibodies to the conserved stalk of HA after exposure to H1N1pdm09 virus, targeting  
118 shared epitopes in the stalks of earlier seasonal H1N1 and H1N1pdm09 viruses. (Wrammert  
119 et al., 2011, Li et al., 2012). Antibodies against NA are less well studied in this context, but  
120 recently broadly reactive anti-NA antibodies have been isolated from humans after  
121 H1N1pdm09 virus infection (Chen et al., 2018). The NA of H1N1pdm09 viruses may have  
122 reactivated B cell memory for rare epitopes shared with the N1 of earlier human seasonal  
123 viruses. The authors could isolate such antibodies only after natural infection, not after  
124 vaccination. They confirmed that the NA antigen is poorly represented in many sub-unit  
125 vaccines, and that the quality and quantity of NA in different vaccines varies [Reviewed by  
126 (Marcelin et al., 2012)].  
127

128 Despite this variability, we report a panel of anti-NA mAbs with exceptional broad reactivity,  
129 isolated from human donors after influenza vaccination or infection. Two broadly reactive  
130 human mAbs to N1 NA, isolated from a vaccinated individual inhibited the enzymatic activity  
131 of N1 NAs from viruses circulating in the course of the last 100 years. In addition, both mAbs  
132 cross-inhibited many N1 NAs from highly pathogenic avian influenza H5N1 viruses. The  
133 antibodies were effective prophylactics protecting mice against the highly lethal Cambridge  
134 variant of H1N1 virus A/PR/8/1934, and in the highly sensitive DBA/2 mouse strain challenged  
135 with a H1N1pdm09 virus. We also describe an antibody induced by acute H7N9 infection that  
136 cross-reacts between the human seasonal and avian N1 (group 1) and avian N9 (group 2)  
137 NAs. These exceptionally broadly reactive anti-NA mAbs may be found rarely but they offer  
138 the hope of developing vaccines that could induce them.

139 **Results**

140 **Anti-neuraminidase mAbs from human donors**

141 Two antibodies AG7C and AF9C were isolated from an adult (aged 23; donor C) vaccinated  
142 with 2014/15 northern hemisphere TIV containing A/California/7/2009 (Reassortant NYMC X-  
143 179A) (H1N1); A/Texas/50/2012 (Reassortant NYMC X-223) (H3N2),  
144 B/Massachusetts/2/2012 (Reassortant NYMC BX-51B); all at 15 µg/0.5 mL (AdimFlu-S  
145 produced by Addimmune Corporation, Taiwan) (Table 1). A third antibody, Z2B3, was isolated  
146 from a Chinese male child (donor Z) with a mild H7N9 infection in 2013; two more antibodies  
147 Z2C2 and Z1A11 were isolated from this donor. Similarly, three more N9 mAbs were isolated  
148 from donors W and K who were hospitalised with H7N9 virus infection (Table 1). Antibodies  
149 to H7 HA from donors Z and K are already reported (Huang et al., 2018).

150

151 **Inhibitory breadth of anti-N1 NA mAbs against human H1N1 viruses**

152 We focused our analysis on three mAbs: AG7C, AF9C and Z2B3 since other antibodies were  
153 either of limited specificity or weaker in inhibition of NA. These three mAbs were tested for the  
154 inhibition of NA activity of H1N1 viruses isolated between 1934 to 2018, in an Enzyme Linked  
155 Lectin Assay (ELLA) (Figures 1, 2), and for inhibition of the enzyme activity of the 1918  
156 pandemic H1N1, and avian N1 and N9 NAs as recombinant proteins (Figure 3).

157

158 The mAbs were titrated by ELLA and the concentrations required to give 50% inhibition ( $IC_{50}$ )  
159 of NA activity were calculated by linear interpolation. The titres yielded by a 1 mg/ml solution  
160 were then calculated and plotted for comparisons to control hyper-immune sheep sera  
161 obtained from the National Institute for Biological Standards and Controls (NIBSC) (Figure 2,  
162 3). On the secondary Y-axis,  $IC_{50}$  titres are shown in ng/ml.

163

164 AF9C inhibited the NA activities of all H1N1 viruses tested which represented the H1N1  
165 viruses that have circulated in humans for over 100 years (Figures 1-3). AG7C showed a  
166 slightly different specificity in that it was weak or failed to inhibit the NAs from  
167 A/Brisbane/59/2007 and A/USSR/90/1977 (Figure 2). mAb Z2B3, cross-reactive with N9 NA,  
168 also showed a broad recognition of N1 NAs but was weak with A/Brisbane/59/2007 and failed  
169 to inhibit A/USSR/90/1977 NAs (Table 1; Figures 1, 2). Unlike AG7C and AF9C, Z2B3 had  
170 greatly reduced activity against recent clade 6B.1 H1N1pdm09 viruses isolated after 2014  
171 (Figure 2).

172

173 Figure 2 shows that AG7C and AF9C titrate predominantly between 1:4,000 and 1:40,000  
174 ( $IC_{50}$  ~250-25 ng/ml) on the set of viruses shown, with the exception that AG7C fails to inhibit  
175 N1 NA from A/Brisbane/59/2007. By contrast Z2B3 gave similar titres on A/PR/8/1934,  
176 A/England/195/2009 and A/England/621/2013 but had drastically reduced titres on  
177 A/USSR/90/1977 and the representative recent clade 6B.1 H1N1pdm09 viruses A/Serbia/NS-  
178 601/2014 and A/Switzerland/3330/2017, indicating that the genetic and associated antigenic  
179 drift in these viruses had resulted in a major alteration in the epitope recognised by Z2B3. The  
180 control hyper-immune sheep serum to A/California/07/2009 N1 showed limited cross-reactivity  
181 on recently drifted or older (former seasonal) viruses with only weak activity against N1 NA  
182 from A/PR/8/1934. The sheep anti-H7N9 (A/Anhui/1/2013) serum contained anti-N9 NA  
183 antibodies that did not cross-react with any NAs expressed by these H1N1 viruses.

184

185 **The inhibitory activity of broadly reactive anti-N1 mAbs against NAs of avian H5N1  
186 viruses**

187 To avoid handling avian influenza viruses, we titrated the mAbs for inhibition of recombinant  
188 N1 NAs from a range of H5N1 viruses isolated from infected humans representing several  
189 HA-clades, from pandemic virus A/Brevig Mission/1/1918 and N9 NA from H7N9 virus  
190 A/Anhui/1/2013, produced in HEK293 cells, with N1 NA from A/California/07/2009 as a  
191 positive control (Figure 3).

192

193 AG7C inhibited all of the N1 NAs representing H5N1 viruses between 2004 and 2015 and the  
194 N1 NA from the 1918 pandemic virus A/Brevig Mission/1/1918. AF9C showed similar activity  
195 on the N1 NAs from A/California/07/2009 and A/Brevig Mission/1918 but was clearly weaker  
196 against the N1 NAs from H5N1 viruses. Neither AG7C nor AF9C inhibited the N9 NA. By  
197 contrast Z2B3 inhibited the H1N1pdm09 NA, the 2013 N9 NA and most of the avian N1 NAs  
198 at moderate IC<sub>50</sub> values that were in general weaker than for mAb AG7C; it inhibited the 1918  
199 N1 NA weakly. The control hyper-immune sheep serum against H1N1pdm09 NA showed a  
200 titre >1:400 with A/California/7/2009 N1 NA, with minimal cross-reactivity with avian N1 NAs,  
201 1918 N1 NA or the 2013 N9 NA. The control sheep serum against N9 NA inhibited N9 but not  
202 N1 NAs.

203

204 **Anti-N9 NA mAbs cross-reactive with N1 NA**

205 Among six anti-N9 NA mAbs isolated from three donors exposed to H7N9 virus and tested by  
206 ELLA, three inhibited recombinant N9 NA (Figure 4). Two N9 NA-inhibiting mAbs were isolated  
207 from donor Z, where Z2B3 was a strong inhibitor and Z2C2 was a weak inhibitor (Figure 2A).  
208 All three mAbs from donor Z were cross-reactive with N1 NA (Figure 4C) and strongly inhibited  
209 the H1N1pdm09 (A/England/195/2009) N1 NA (Figure 4B). This suggests that 6-year old  
210 donor Z may have made a primary antibody response to the H1N1pdm09 N1 NA, and  
211 subsequent infection with H7N9 stimulated the memory B cells to an epitope conserved  
212 between N1 and N9 NAs. Notably, Z2B3 and Z2C2 have longer heavy chain CDR3 domains  
213 than other mAbs and although Z2B3 and AF9C are both encoded by the same VH gene (VH1-  
214 69), the CDR3 amino acid sequences are significantly different.

215

216 Antibodies from donors W (W1C7) and K (P17C, F4C) were found to bind N9 NA in an indirect  
217 immunofluorescence screen (not shown). W1C7 and F4C were specific for N9 NA, and W1C7  
218 had a weak inhibitory effect in ELLA on N9 (Figure 4). P17C cross-reacted with N1 NA with  
219 low level of binding and showed weak inhibition by ELLA (Figure 4B, C).

220

221 Antibodies from donor Z have higher numbers of amino acid substitutions in the variable  
222 regions of heavy and light chains, compared to those in mAbs from other donors (Table 2).  
223 The number of substitutions in VH of mAbs Z2B3, Z2C2 and Z1A11 are 8, 13 and 17  
224 respectively, whereas there are none, 1 and 1 respectively in mAbs W1C7, P17C and F4C.  
225 This suggests the mAbs from donor Z are of memory B cell origin while those from donors W  
226 and K resulted from de-novo responses to acute H7N9 infection.

227

228 **Anti-NA mAbs provide prophylactic protection *in vivo***

229 All three of the anti-N1 NA mAbs, AG7C, AF9C and Z2B3, protected 100% of mice from  
230 challenge with 10<sup>4</sup> TCID<sub>50</sub> of A/PR/8/1934 virus (equivalent to 1000 LD<sub>50</sub>) when given at a  
231 dose of 10 mg/kg 24 hours before infection (p<0.001; Figures 5A, B). They prevented any  
232 weight loss whereas mice that received an anti-N2 NA mAb (M6B12) succumbed to ≈20%

233 weight loss by day 5 and were humanely culled. An antibody to the H1 stem T1-3B (Huang  
234 2015) provided a positive control for protection.

235  
236 In another experiment, DBA/2 mice, that are uniquely susceptible to influenza infection (Pica  
237 et al., 2011) were treated with AG7C and AF9C antibodies 24 h before infection with  $10^4$   
238 TCID<sub>50</sub> of X-179A (equivalent to 150 LD<sub>50</sub>) virus, a reassortant containing the H1N1pdm09  
239 vRNAs from A/California/07/2009 (Figures 5C,D).

240  
241 Treated mice were protected from  $\geq 20\%$  weight loss ( $p < 0.001$ ), whereas mice receiving a  
242 non-specific antibody had to be culled on days 5 or 6. One out of 6 mice in the AG7C group  
243 was sacrificed on day 11 after losing  $> 20\%$  weight. In these prophylactic protection  
244 experiments, anti-NA mAbs were as protective as T1-3B, the positive control anti-HA stalk  
245 mAb (Huang et al., 2015).

246  
247

## 248 **Discussion**

249 We show in this paper that broadly reactive and protective antibodies to N1 NA can be isolated  
250 from vaccinated and infected individuals, presumably due to the conservation in surface  
251 structure between N1 NAs (Figure 6A). The two N1 subtype specific mAbs AG7C and AF9C  
252 were isolated from the same donor who had been vaccinated in 2014 with AdimFlu-S TIV in  
253 Taiwan. AG7C inhibits N1 NAs from H1N1 viruses isolated between 1918-2018. Although  
254 previous investigations of subunit vaccines have found varying and usually low levels of NA  
255 antigen (Chen et al., 2018, Krammer et al., 2018) in this case there was clearly enough to  
256 induce a response.

257  
258 The very broad reactivity of these mAbs with N1 NAs, covering the complete period of H1N1  
259 virus circulation in humans, may have been induced by exposure to the significantly different  
260 NA derived from the H1N1pdm09 virus. Both mAbs show significant sequence divergence  
261 (Table 2) suggesting that they originated from a memory population which went through  
262 multiple rounds of selection in germinal centres following previous exposures to influenza.  
263 Both mAbs provided prophylactic protection in mice against the highly virulent variant of  
264 A/PR/8/1934 (the Cambridge strain) (Grimm et al., 2007) and, in ultra-sensitive DBA/2 mice,  
265 against infection with H1N1pdm09 X-179A (A/California/7/2009). In an earlier paper Chen et  
266 al. described similar anti-N1 NA antibodies that reacted with viruses spanning the period 1918-  
267 2009 (Chen et al., 2018).

268  
269 The third antibody Z2B3 was isolated from a child who experienced a mild infection with H7N9  
270 virus in 2013. It was unusual in being cross-reactive with group 1 (N1) and group 2 (N9) NAs.  
271 Two similar antibodies were isolated from this donor, both of which inhibited N1 NA with some  
272 level of cross-reaction with N9 NA (Figure 4), which we interpret to imply that they were  
273 selected from a subpopulation of memory cells induced previously by N1 NA. Examination of  
274 the structure of the N1 and N9 NAs reveals a region of conserved surface around and within  
275 the active site of the enzyme, as a possible binding site for Z2B3 (Figure 6B).

276  
277 Mab Z2B3 showed good reactivity with the H1N1pdm09 virus A/England/621/2013, but poor  
278 reactivity with a later clade 6B virus, A/Serbia/NS-601/2014. These two viruses showed non-  
279 conservative amino acid substitutions of only N386K and K432E in the head of NA (Figure

280 6C). The former site is similarly substituted in the N9 NA that Z2B3 recognizes, which suggests  
281 that K432 is within the footprint of mAb Z2B3. K432 falls within a known epitope recognized  
282 by anti-N9 NA antibodies (Malby et al., 1994, Tulip et al., 1992). The crystal structure of a N9  
283 NA-mAb complex, N9-NC10, involved a contact between D56 of the antibody H-chain and  
284 K432 of N9 NA (GRPKEDK; PDB 1NMB).

285  
286 K432 was conserved prior to 2013 but underwent substitution in 2014, K432E, which became  
287 dominant thereafter. We suggest that N1 NA has been under strong evolutionary pressure  
288 from broadly cross-reactive antibodies induced by the H1N1pdm09 NA, that were selected  
289 from memory B cells raised against NA(s) of earlier virus(es). Just as the conserved stalk of  
290 HA has shown a capacity for evolution under pressure from antibody selection (Doud et al.,  
291 2018), the NA may similarly be forced to drift antigenically by broadly cross-reactive antibodies  
292 induced by the H1N1pdm09 viruses (Gao et al., 2019).

293  
294 With this in mind we examined the region of the NA surface recognized by broadly reactive  
295 antibodies described by Chen et al. that inhibited or bound N1 NAs of viruses isolated between  
296 1918-2009 but not clade 6B H1N1pdm09 viruses (Gao et al., 2019, Chen et al., 2018). Some  
297 of these antibodies lost binding to N1 NAs with substitutions in a set of site-specific mutants  
298 (Wan et al., 2015, Gao et al., 2019). Many of these antibodies also did not inhibit  
299 A/Br/ Brisbane/59/2007. mAb AG7C showed a similar reactivity profile and may have been  
300 affected by substitutions G249K and Q250P that are common to the non-reactive NAs. These  
301 residues are exposed on the periphery of the catalytic site (Figure 6D). The preceding residue  
302 N248 was substituted (N248D) in the H1N1pdm09 viruses isolated post 2009 and caused a  
303 loss of recognition by one of the antibodies described by Chen et al. However, this substitution  
304 is tolerated by mAb AG7C. There are rare natural isolates that have substituted these residues  
305 (G249E/R and Q250R) indicating that even the broadly reactive mAbs can be thwarted by  
306 virus antigenic drift. Further structural work to define the epitopes recognised by Z2B3, AG7C  
307 and AF9C is in progress.

308  
309 It has become clear that exposure to viruses that differ significantly from those circulating, can  
310 select responses to epitopes in both HA and NA that are shared between the incoming virus  
311 and the seasonal viruses in circulation, derived from the memory B cell population (Henry et  
312 al., 2018). While antibodies against new epitopes can also be generated, even in the elderly  
313 (Huang et al., 2018), it appears that they are initially at a disadvantage but may overtake and  
314 become dominant with time (Lee et al., 2019, Henry et al., 2019). It is these high affinity and  
315 relatively specific antibodies that are mainly detected in serological surveys (Fonville et al.,  
316 2014). It would be wise to assume that all of these epitopes, both new and conserved, can  
317 drift under pressure from antibody selection. The inevitable implication is that updating  
318 influenza vaccines may have to continue but broadening the memory B cell population by  
319 vaccination with as wide a range of groups 1 and 2 HAs and NAs as possible might be a  
320 logical way of preparing the ground for a strong response to an unknown future pandemic  
321 virus.

322  
323 **Materials and Methods**

324  
325 **Media, Reagents and Tissue Culture**

326 MDCK-SIAT1 cells and adherent 293T cells (ECACC) were grown in D10 - DMEM medium  
327 (Sigma D5796) supplemented with 10% v/v foetal calf serum (Sigma F9665), 2 mM glutamine,  
328 100 U/mL penicillin and 100 µg/mL streptomycin (all from Sigma, UK). 293F suspension cells  
329 were grown in Freestyle 293 expression medium (Life Technologies 12338-018) on a shaker  
330 incubator. Cells were grown at 37°C, 5% CO<sub>2</sub> in a humidified incubator. Viruses were diluted  
331 and grown in Virus grown medium (VGM), which is DMEM with 0.1% bovine serum albumin  
332 (Sigma A0336), 10 mM HEPES, and glutamine, Penicillin and Streptomycin as in D10.  
333

### 334 **Influenza Viruses and control sera**

335 H1N1 viruses from the years 1977 - 2018 and H3N2 viruses were obtained from the Worldwide  
336 Influenza Centre at The Crick Institute (London, UK). Other reassortant viruses and control  
337 sheep sera were obtained from NIBSC, UK.  
338

### 339 **Ethics and Study Approval**

340 The study was in compliance with good clinical practice guidelines and the Declaration of  
341 Helsinki. The protocol was approved by the Research and Ethics Committee of Chang Gung  
342 Memorial Hospital, Beijing Ditan Hospital and the Weatherall Institute of Molecular Medicine.  
343 All subjects provided written informed consent. The list of donors with their details and isolated  
344 antibodies are included in Table 1.  
345

### 346 **Isolation of human monoclonal antibodies**

347 Antibodies were isolated from individual humans who either received seasonal influenza  
348 vaccine or were naturally infected with H7N9 virus in China or Taiwan. Antibodies were  
349 isolated using single cell isolation and cloning methods as described in detail previously (Tiller  
350 et al., 2008, Smith et al., 2009, Huang et al., 2015, Rijal et al., 2019). Briefly, plasmablasts in  
351 PBMC were stained (CD3neg, CD19pos, CD20lo/neg, CD27hi, CD38hi) and sorted as single  
352 cells using flow cytometry. mRNA from single plasmablasts was reverse transcribed to DNA  
353 and VH and Vk/λ genes were amplified using gene specific primers, then cloned into  
354 expression vectors containing IgG1 Heavy and Vk and Vλ constant regions. Heavy and light  
355 chain plasmids were co-transfected into 293T or ExpiCHO cells (Life Technologies A29133)  
356 for antibody expression.  
357

### 358 **Antibody Screening**

359 mAbs were initially screened for binding to MDCK-SIAT1 cells infected with either H1N1 or  
360 H3N2 viruses, and for lack of binding to HA protein expressed in stably transfected MDCK-  
361 SIAT1 cells. Binding to NA was confirmed by immuno-precipitation with infected cells or  
362 binding to 293T cells transfected with the NA gene of interest.  
363

### 364 **Production of NA proteins**

365 Tetrameric neuraminidase proteins were expressed from constructs based on the design of  
366 Xu et al. (Xu et al., 2008). In our version the signal sequence from A/PR/8/1934 HA was  
367 followed by the 15 residue tetramerization domain and thrombin site, followed by the NA  
368 sequence amino acids 69-469 (N1 numbering). Sequences were synthesised as human  
369 codon optimised cDNAs by Geneart and cloned into pCDNA3.1/- for transfection. HEK293F  
370 cells were transiently transfected using PEI-pro as a transfection reagent. Protein supernatant  
371 harvested 5-7 days post-transfection was titrated for NA activity in an ELLA and stored in  
372 aliquots at -80°C.

373 N9 NA protein (A/Anhui/1/13) was kindly provided by Donald Benton (The Francis Crick  
374 Institute) (Benton et al., 2017). The expression construct consisted of ectodomain residues  
375 75-465 with and N-terminal 6x His tag, a human vasodilator-stimulated phosphoprotein  
376 tetramerization domain (Xu et al., 2008) and a TEV cleavage site under the control of promoter  
377 with a gp67 secretion signal peptide. The protein was expressed in Sf9 insect cells using a  
378 recombinant baculovirus system (Life Technologies). The protein was purified on a cobalt  
379 resin column and further purified by gel filtration to ensure the removal of monomeric and  
380 aggregated protein.

381  
382 For antibody inhibition measurements a dilution of the NA containing supernatant was chosen  
383 that had just reached plateau activity in an ELLA. The sequences of all the constructs with  
384 their identification numbers are shown in Supplementary Table 1.

385  
386 **NA inhibition assay: Enzyme-Linked Lectin Assay (ELLA)**

387 ELLA assay was adapted from the methods described by Schulman et al. (Schulman et al.,  
388 1968) and Sandbulte et al. (Sandbulte et al., 2009). This assay detects the inhibition of NA  
389 enzymatic activity, cleavage of sialic acid, by anti-NA antibodies (Figure S3). Viruses or  
390 recombinant NA proteins were used as the source of NA. Virus growth medium was used to  
391 dilute antibodies and viruses. A Nunc Immunoassay ELISA plate (Thermo Scientific 439454)  
392 was plated overnight with 25 µg/ml fetuin (Sigma, F3385). Two-fold serial dilutions of sera or  
393 mAbs performed in duplicates were incubated together with a fixed amount of titrated NA  
394 source. Column 11 of a plate was used for NA source only control, and column 12 was used  
395 for medium only control. After 2 h incubation, antibody/NA mix were transferred to the PBS  
396 washed fetuin plate and incubated for 18-20 h at 37 °C buffered by CO<sub>2</sub> as for tissue culture.  
397 Next day, the contents of the plate were discarded, and the plate washed 4 times with PBS.  
398 HRP conjugated peanut agglutinin (PNA-HRP, Sigma, L7759) at 1 µg/ml was added to the  
399 wells. PNA binds to the exposed galactose after cleavage of sialic acid by NA. After 1 h  
400 incubation and PBS wash, signal was developed by adding OPD (o-Phenylenediamine  
401 Dihydrochloride) solution (Sigma, P9187) and the reaction stopped after 5-15 min using 1 M  
402 H<sub>2</sub>SO<sub>4</sub>. Absorbance was read at 492 nm in a Clariostar plate reader (BMG Labtech).

403  
404 ***In vivo* prophylaxis protection**  
405 All animal procedures were approved by an internal University of Oxford Ethics Committee  
406 and the United Kingdom Home Office. The experiments were carried out in accordance with  
407 the 'Guide for the Care and Use of Laboratory Animals', the recommendations of the  
408 Institute for Laboratory Animal Research, and Association for Assessment and  
409 Accreditation of Laboratory Animal Care International standards. Principle of the 3Rs were  
410 applied in design of experiments.

411  
412 Mice used in protection studies, DBA/2OlaHsd mice (n=6/group) for X-179A and  
413 BALB/cOlaHsd (n=6/group) for PR8 viruses were purchased from Envigo, UK and housed in  
414 individually vented cages in a special unit for infectious diseases. Mice were anaesthetised by  
415 isoflurane (Abott) and 50 µl of virus was administrated intranasally 24 hours after the  
416 intraperitoneal administration of 10 mg/kg antibody (500 µl). Mice were under regular  
417 observation and weighed. Mice with weight loss ≈20 percent or morbid clinical scores were  
418 euthanized by rising concentration of CO<sub>2</sub>. Non-specific IgG antibody was used as a negative  
419 control. Known HA-specific antibodies were used as positive controls. Mice were infected

420 intranasally with lethal dose of viruses: X-179A (150 LD<sub>50</sub>, 10<sup>4</sup> TCID<sub>50</sub>) and PR8 (1000 LD<sub>50</sub>,  
421 10<sup>4</sup> TCID<sub>50</sub>).

422

423 **Data and Statistical analysis**

424 Graphs were generated using GraphPad Prism (version 9) and Microsoft Excel 2010.  
425 The ELLA titres were expressed as half maximal effective concentrations (EC<sub>50</sub>: midpoint  
426 between negative and plateau positive controls) derived by linear interpolation from  
427 neighbouring points in the titration curve. Kaplan Maier tests were performed to analyse the  
428 difference in mortality between experimental and control group mice. P values of <0.05 were  
429 considered as significant statistical difference.

430

431

432

433 **Acknowledgements**

434 We acknowledge the flowcytometry services (Craig Waugh) provided by the Weatherall  
435 Institute of Molecular Medicine and the Core Instrument Center of Chang Gung University.  
436 We thank Donald Benton (The Francis Crick Institute) for providing N9 neuraminidase protein.  
437 These studies were funded by the Chinese Academy of Medical Sciences (CAMS) Innovation  
438 Fund for Medical Sciences (CIFMS), China (grant number: 2018-I2M-2-002), Townsend-  
439 Jeantet Prize Charitable Trust (Charity Number 1011770), Chang Gung Medical Research  
440 Program grant (CMRPG3G0921, CMRPG3G0922 and CORPG3J0111) and Ministry of  
441 Science and Technology of Taiwan (MOST 107-2321-B-182A-003-, MOST 108-2321-B-182A-  
442 001-). The work of the Crick Worldwide Influenza Centre, a WHO Collaborating Centre for  
443 Reference and Research on Influenza, was supported by the Francis Crick Institute receiving  
444 core funding from Cancer Research UK (FC001030), the Medical Research Council  
445 (FC001030) and the Wellcome Trust (FC001030). Views are those of the authors and do not  
446 necessarily reflect those of the funding bodies or employing institutes.

447

448 **Author Contributions**

449 Conceptualisation: A.R.T., P.R., K.-Y.A.H.; Methodology: A.R.T., P.R., K.-Y.A.H;  
450 Investigation: P.R., A.R.T., K.-Y.A.H, B.B.Y., L.S., T.K.T., P.J., R.D.; Writing – Original Draft:  
451 P.R. and A.R.T.; Writing – Review & Editing: P.R., A.R.T., K.-Y.A.H., and R.S.D.; Supervision:  
452 A.R.T., K.-Y.A.H., P.R., R.S.D., J.W.M., and T.D.

453

454 **Declaration of interest**

455 Authors declare no conflict of interest.

456

457 **References**

458

459 BENTON, D. J., WHARTON, S. A., MARTIN, S. R. & MCCUALEY, J. W. 2017. Role of  
460 Neuraminidase in Influenza A(H7N9) Virus Receptor Binding. *J Virol*, 91.

461 CHEN, Y. Q., WOHLBOLD, T. J., ZHENG, N. Y., HUANG, M., HUANG, Y., NEU, K. E., LEE, J., WAN,  
462 H., ROJAS, K. T., KIRKPATRICK, E., HENRY, C., PALM, A. E., STAMPER, C. T., LAN, L. Y.,  
463 TOPHAM, D. J., TREANOR, J., WRAMMERT, J., AHMED, R., EICELBERGER, M. C.,  
464 GEORGIOU, G., KRAMMER, F. & WILSON, P. C. 2018. Influenza Infection in Humans  
465 Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies.  
466 *Cell*, 173, 417-429 e10.

467 COUCH, R. B., ATMAR, R. L., FRANCO, L. M., QUARLES, J. M., WELLS, J., ARDEN, N., NINO, D. &  
468 BELMONT, J. W. 2013. Antibody correlates and predictors of immunity to naturally  
469 occurring influenza in humans and the importance of antibody to the neuraminidase.  
470 *J Infect Dis*, 207, 974-81.

471 COUCH, R. B., KASEL, J. A., GERIN, J. L., SCHULMAN, J. L. & KILBOURNE, E. D. 1974. Induction  
472 of partial immunity to influenza by a neuraminidase-specific vaccine. *J Infect Dis*, 129,  
473 411-20.

474 DILILLO, D. J., PALESE, P., WILSON, P. C. & RAVETCH, J. V. 2016. Broadly neutralizing anti-  
475 influenza antibodies require Fc receptor engagement for in vivo protection. *J Clin  
476 Invest*, 126, 605-10.

477 DOUD, M. B., LEE, J. M. & BLOOM, J. D. 2018. How single mutations affect viral escape from  
478 broad and narrow antibodies to H1 influenza hemagglutinin. *Nat Commun*, 9, 1386.

479 DOYLE, T. M., HASHEM, A. M., LI, C., VAN DOMSELAAR, G., LAROCQUE, L., WANG, J., SMITH,  
480 D., CYR, T., FARNSWORTH, A., HE, R., HURT, A. C., BROWN, E. G. & LI, X. 2013. Universal

481 anti-neuraminidase antibody inhibiting all influenza A subtypes. *Antiviral Res*, 100,  
482 567-74.

483 EICHELBERGER, M. C. & MONTO, A. S. 2019. Neuraminidase, the Forgotten Surface Antigen,  
484 Emerges as an Influenza Vaccine Target for Broadened Protection. *J Infect Dis*, 219,  
485 S75-S80.

486 FONVILLE, J. M., WILKS, S. H., JAMES, S. L., FOX, A., VENTRESCA, M., ABAN, M., XUE, L., JONES,  
487 T. C., LE, N. M., PHAM, Q. T., TRAN, N. D., WONG, Y., MOSTERIN, A., KATZELNICK, L. C.,  
488 LABONTE, D., LE, T. T., VAN DER NET, G., SKEPNER, E., RUSSELL, C. A., KAPLAN, T. D.,  
489 RIMMELZWAAN, G. F., MASUREL, N., DE JONG, J. C., PALACHE, A., BEYER, W. E., LE, Q.  
490 M., NGUYEN, T. H., WERTHEIM, H. F., HURT, A. C., OSTERHAUS, A. D., BARR, I. G.,  
491 FOUCHIER, R. A., HORBY, P. W. & SMITH, D. J. 2014. Antibody landscapes after  
492 influenza virus infection or vaccination. *Science*, 346, 996-1000.

493 GAO, J., COUZENS, L., BURKE, D. F., WAN, H., WILSON, P., MEMOLI, M. J., XU, X., HARVEY, R.,  
494 WRAMMERT, J., AHMED, R., TAUBENBERGER, J. K., SMITH, D. J., FOUCHIER, R. A. M. &  
495 EICHELBERGER, M. C. 2019. Antigenic Drift of the Influenza A(H1N1)pdm09 Virus  
496 Neuraminidase Results in Reduced Effectiveness of A/California/7/2009  
497 (H1N1pdm09)-Specific Antibodies. *MBio*, 10.

498 GRIMM, D., STAHELI, P., HUFBAUER, M., KOERNER, I., MARTINEZ-SOBRIDO, L., SOLORZANO,  
499 A., GARCIA-SASTRE, A., HALLER, O. & KOCHS, G. 2007. Replication fitness determines  
500 high virulence of influenza A virus in mice carrying functional Mx1 resistance gene.  
501 *Proc Natl Acad Sci U S A*, 104, 6806-11.

502 HASHIMOTO, G., WRIGHT, P. F. & KARZON, D. T. 1983. Antibody-dependent cell-mediated  
503 cytotoxicity against influenza virus-infected cells. *J Infect Dis*, 148, 785-94.

504 HENRY, C., PALM, A. E., KRAMMER, F. & WILSON, P. C. 2018. From Original Antigenic Sin to  
505 the Universal Influenza Virus Vaccine. *Trends Immunol*, 39, 70-79.

506 HENRY, C., ZHENG, N. Y., HUANG, M., CABANOV, A., ROJAS, K. T., KAUR, K., ANDREWS, S. F.,  
507 PALM, A. E., CHEN, Y. Q., LI, Y., HOSKOVA, K., UTSET, H. A., VIEIRA, M. C., WRAMMERT,  
508 J., AHMED, R., HOLDEN-WILTSE, J., TOPHAM, D. J., TREANOR, J. J., ERTL, H. C.,  
509 SCHMADER, K. E., COBEY, S., KRAMMER, F., HENSLEY, S. E., GREENBERG, H., HE, X. S.  
510 & WILSON, P. C. 2019. Influenza Virus Vaccination Elicits Poorly Adapted B Cell  
511 Responses in Elderly Individuals. *Cell Host Microbe*, 25, 357-366 e6.

512 HUANG, K. A., RIJAL, P., JIANG, H., WANG, B., SCHIMANSKI, L., DONG, T., LIU, Y. M., CHANG,  
513 P., IQBAL, M., WANG, M. C., CHEN, Z., SONG, R., HUANG, C. C., YANG, J. H., QI, J., LIN,  
514 T. Y., LI, A., POWELL, T. J., JAN, J. T., MA, C., GAO, G. F., SHI, Y. & TOWNSEND, A. R.  
515 2018. Structure-function analysis of neutralizing antibodies to H7N9 influenza from  
516 naturally infected humans. *Nat Microbiol*.

517 HUANG, K. Y., RIJAL, P., SCHIMANSKI, L., POWELL, T. J., LIN, T. Y., MCCUALEY, J. W., DANIELS,  
518 R. S. & TOWNSEND, A. R. 2015. Focused antibody response to influenza linked to  
519 antigenic drift. *J Clin Invest*, 125, 2631-45.

520 JEGASKANDA, S., VANDERVEN, H. A., WHEATLEY, A. K. & KENT, S. J. 2017. Fc or not Fc; that is  
521 the question: Antibody Fc-receptor interactions are key to universal influenza vaccine  
522 design. *Hum Vaccin Immunother*, 13, 1-9.

523 KILBOURNE, E. D., CHRISTENSON, W. N. & SANDE, M. 1968a. Antibody response in man to  
524 influenza virus neuraminidase following influenza. *J Virol*, 2, 761-2.

525 KILBOURNE, E. D., LAVER, W. G., SCHULMAN, J. L. & WEBSTER, R. G. 1968b. Antiviral activity  
526 of antiserum specific for an influenza virus neuraminidase. *J Virol*, 2, 281-8.

527 KILBOURNE, E. D., POKORNY, B. A., JOHANSSON, B., BRETT, I., MILEV, Y. & MATTHEWS, J. T.  
528 2004. Protection of mice with recombinant influenza virus neuraminidase. *J Infect Dis*,  
529 189, 459-61.

530 KRAMMER, F., FOUCHIER, R. A. M., EICHELBERGER, M. C., WEBBY, R. J., SHAW-SALIBA, K.,  
531 WAN, H., WILSON, P. C., COMPANS, R. W., SKOUNTZOU, I. & MONTO, A. S. 2018.  
532 NAction! How Can Neuraminidase-Based Immunity Contribute to Better Influenza  
533 Virus Vaccines? *MBio*, 9.

534 LEE, J., PAPARODITIS, P., HORTON, A. P., FRUHWIRTH, A., MCDANIEL, J. R., JUNG, J., BOUTZ,  
535 D. R., HUSSEIN, D. A., TANNO, Y., PAPPAS, L., IPPOLITO, G. C., CORTI, D.,  
536 LANZAVECCHIA, A. & GEORGIOU, G. 2019. Persistent Antibody Clonotypes Dominate  
537 the Serum Response to Influenza over Multiple Years and Repeated Vaccinations. *Cell*  
538 *Host Microbe*, 25, 367-376 e5.

539 LEE, J. T. & AIR, G. M. 2002. Contacts between Influenza Virus N9 Neuraminidase and  
540 Monoclonal Antibody NC10. *Virology*, 300, 255-268.

541 LI, G. M., CHIU, C., WRAMMERT, J., MCCAUSTRAL, M., ANDREWS, S. F., ZHENG, N. Y., LEE, J.  
542 H., HUANG, M., QU, X., EDUPUGANTI, S., MULLIGAN, M., DAS, S. R., YEWDELL, J. W.,  
543 MEHTA, A. K., WILSON, P. C. & AHMED, R. 2012. Pandemic H1N1 influenza vaccine  
544 induces a recall response in humans that favors broadly cross-reactive memory B cells.  
545 *Proc Natl Acad Sci U S A*, 109, 9047-52.

546 MALBY, R. L., TULIP, W. R., HARLEY, V. R., MCKIMM-BRESCHKIN, J. L., LAVER, W. G., WEBSTER,  
547 R. G. & COLMAN, P. M. 1994. The structure of a complex between the NC10 antibody  
548 and influenza virus neuraminidase and comparison with the overlapping binding site  
549 of the NC41 antibody. *Structure*, 2, 733-46.

550 MARCELIN, G., SANDBULTE, M. R. & WEBBY, R. J. 2012. Contribution of antibody production  
551 against neuraminidase to the protection afforded by influenza vaccines. *Rev Med*  
552 *Virol*, 22, 267-79.

553 MEMOLI, M. J., SHAW, P. A., HAN, A., CZAJKOWSKI, L., REED, S., ATHOTA, R., BRISTOL, T.,  
554 FARGIS, S., RISOS, K., POWERS, J. H., DAVEY, R. T., JR. & TAUBENBERGER, J. K. 2016.  
555 Evaluation of Antihemagglutinin and Antineuraminidase Antibodies as Correlates of  
556 Protection in an Influenza A/H1N1 Virus Healthy Human Challenge Model. *MBio*, 7,  
557 e00417-16.

558 MONTO, A. S., PETRIE, J. G., CROSS, R. T., JOHNSON, E., LIU, M., ZHONG, W., LEVINE, M., KATZ,  
559 J. M. & OHMIT, S. E. 2015. Antibody to Influenza Virus Neuraminidase: An Independent  
560 Correlate of Protection. *J Infect Dis*, 212, 1191-9.

561 PICA, N., IYER, A., RAMOS, I., BOUVIER, N. M., FERNANDEZ-SESMA, A., GARCIA-SASTRE, A.,  
562 LOWEN, A. C., PALESE, P. & STEEL, J. 2011. The DBA.2 mouse is susceptible to disease  
563 following infection with a broad, but limited, range of influenza A and B viruses. *J Virol*,  
564 85, 12825-9.

565 RIJAL, P., ELIAS, S. C., MACHADO, S. R., XIAO, J., SCHIMANSKI, L., O'DOWD, V., BAKER, T.,  
566 BARRY, E., MENDELSON, S. C., CHERRY, C. J., JIN, J., LABBE, G. M., DONNELLAN, F. R.,  
567 RAMPLING, T., DOWALL, S., RAYNER, E., FINDLAY-WILSON, S., CARROLL, M., GUO, J.,  
568 XU, X. N., HUANG, K. A., TAKADA, A., BURGESS, G., MCMILLAN, D., POPPLEWELL, A.,  
569 LIGHTWOOD, D. J., DRAPER, S. J. & TOWNSEND, A. R. 2019. Therapeutic Monoclonal  
570 Antibodies for Ebola Virus Infection Derived from Vaccinated Humans. *Cell Rep*, 27,  
571 172-186 e7.

572 ROCKMAN, S., BROWN, L. E., BARR, I. G., GILBERTSON, B., LOWTHER, S., KACHURIN, A.,  
573 KACHURINA, O., KLIPPEL, J., BODLE, J., PEARSE, M. & MIDDLETON, D. 2013.  
574 Neuraminidase-inhibiting antibody is a correlate of cross-protection against lethal

575 H5N1 influenza virus in ferrets immunized with seasonal influenza vaccine. *J Virol*, 87,  
576 3053-61.

577 SANDBULTE, M. R., GAO, J., STRAIGHT, T. M. & EICHELBERGER, M. C. 2009. A miniaturized  
578 assay for influenza neuraminidase-inhibiting antibodies utilizing reverse genetics-  
579 derived antigens. *Influenza and Other Respiratory Viruses*, 3, 233-240.

580 SCHILD, G. C. 1969. Antibody against influenza A2 virus neuraminidase in human sera. *J Hyg  
(Lond)*, 67, 353-65.

582 SCHULMAN, J. L., KHAKPOUR, M. & KILBOURNE, E. D. 1968. Protective effects of specific  
583 immunity to viral neuraminidase on influenza virus infection of mice. *J Virol*, 2, 778-  
584 86.

585 SHOPE, R. E. 1931. The Etiology of Swine Influenza. *Science*, 73, 214-5.

586 SMITH, K., GARMAN, L., WRAMMERT, J., ZHENG, N. Y., CAPRA, J. D., AHMED, R. & WILSON, P.  
587 C. 2009. Rapid generation of fully human monoclonal antibodies specific to a  
588 vaccinating antigen. *Nat Protoc*, 4, 372-84.

589 SMITH W, A. C., LAIDLAW PP 1933. A virus obtained from influenza patients. *Lancet*, 222, 66-  
590 68.

591 TILLER, T., MEFFRE, E., YURASOV, S., TSUIJI, M., NUSSENZWEIG, M. C. & WARDEMANN, H.  
592 2008. Efficient generation of monoclonal antibodies from single human B cells by  
593 single cell RT-PCR and expression vector cloning. *J Immunol Methods*, 329, 112-24.

594 TULIP, W. R., VARGHESE, J. N., LAVER, W. G., WEBSTER, R. G. & COLMAN, P. M. 1992. Refined  
595 crystal structure of the influenza virus N9 neuraminidase-NC41 Fab complex. *J Mol  
596 Biol*, 227, 122-48.

597 WAN, H., GAO, J., XU, K., CHEN, H., COUZENS, L. K., RIVERS, K. H., EASTERBROOK, J. D., YANG,  
598 K., ZHONG, L., RAJABI, M., YE, J., SULTANA, I., WAN, X. F., LIU, X., PEREZ, D. R.,  
599 TAUBENBERGER, J. K. & EICHELBERGER, M. C. 2013. Molecular basis for broad  
600 neuraminidase immunity: conserved epitopes in seasonal and pandemic H1N1 as well  
601 as H5N1 influenza viruses. *J Virol*, 87, 9290-300.

602 WAN, H., YANG, H., SHORE, D. A., GARTEN, R. J., COUZENS, L., GAO, J., JIANG, L., CARNEY, P.  
603 J., VILLANUEVA, J., STEVENS, J. & EICHELBERGER, M. C. 2015. Structural  
604 characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus  
605 neuraminidase monomers. *Nat Commun*, 6, 6114.

606 WOHLBOLD, T. J. & KRAMMER, F. 2014. In the shadow of hemagglutinin: a growing interest  
607 in influenza viral neuraminidase and its role as a vaccine antigen. *Viruses*, 6, 2465-94.

608 WRAMMERT, J., KOUTSONANOS, D., LI, G. M., EDUPUGANTI, S., SUI, J., MORRISSEY, M.,  
609 MCCAUSLAND, M., SKOUNTZOU, I., HORNING, M., LIPKIN, W. I., MEHTA, A., RAZAVI, B.,  
610 DEL RIO, C., ZHENG, N. Y., LEE, J. H., HUANG, M., ALI, Z., KAUR, K., ANDREWS, S.,  
611 AMARA, R. R., WANG, Y., DAS, S. R., O'DONNELL, C. D., YEWDELL, J. W., SUBBARAO,  
612 K., MARASCO, W. A., MULLIGAN, M. J., COMPANS, R., AHMED, R. & WILSON, P. C.  
613 2011. Broadly cross-reactive antibodies dominate the human B cell response against  
614 2009 pandemic H1N1 influenza virus infection. *J Exp Med*, 208, 181-93.

615 XU, X., ZHU, X., DWEK, R. A., STEVENS, J. & WILSON, I. A. 2008. Structural characterization of  
616 the 1918 influenza virus H1N1 neuraminidase. *J Virol*, 82, 10493-501.

617

618

619 **TABLES**

620 *Table 1. List of donors and anti-NA antibodies isolated*

621

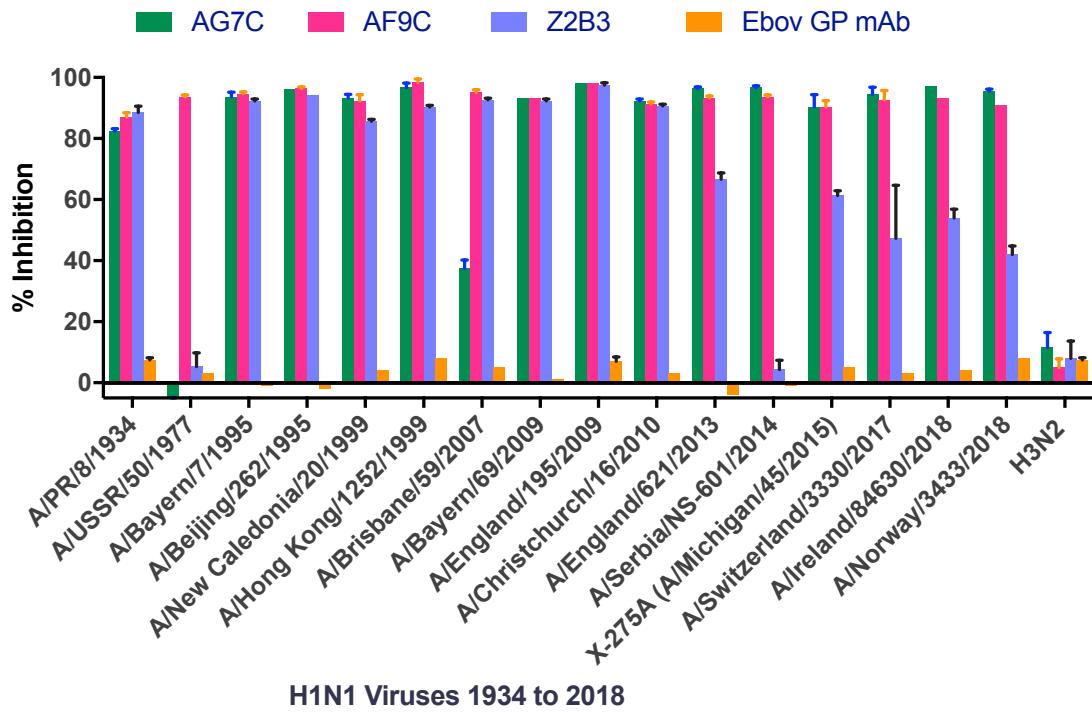
| Donor   | Age, Gender & Collection year | Antigen exposure                    | Antibodies isolated | mAbs Specificity                |
|---------|-------------------------------|-------------------------------------|---------------------|---------------------------------|
| Donor C | 23, Male, 2014                | 2014/15 inactivated TIV (AdimFlu-S) | AG7C, AF9C          | Specific to N1 NA               |
| Donor Z | 6, Male, 2013                 | Mild H7N9 infection                 | Z2B3, Z2C2, Z1A11   | Cross-reactive to N1 and N9 NAs |
| Donor W | 7, Female, 2013               | Severe H7N9 infection 2013          | W1C7                | N9 NA                           |
| Donor K | 39, Male, 2014                | Severe H7N9 infection 2013          | P17C, F4C           | N9 NA, Weak N1                  |

622

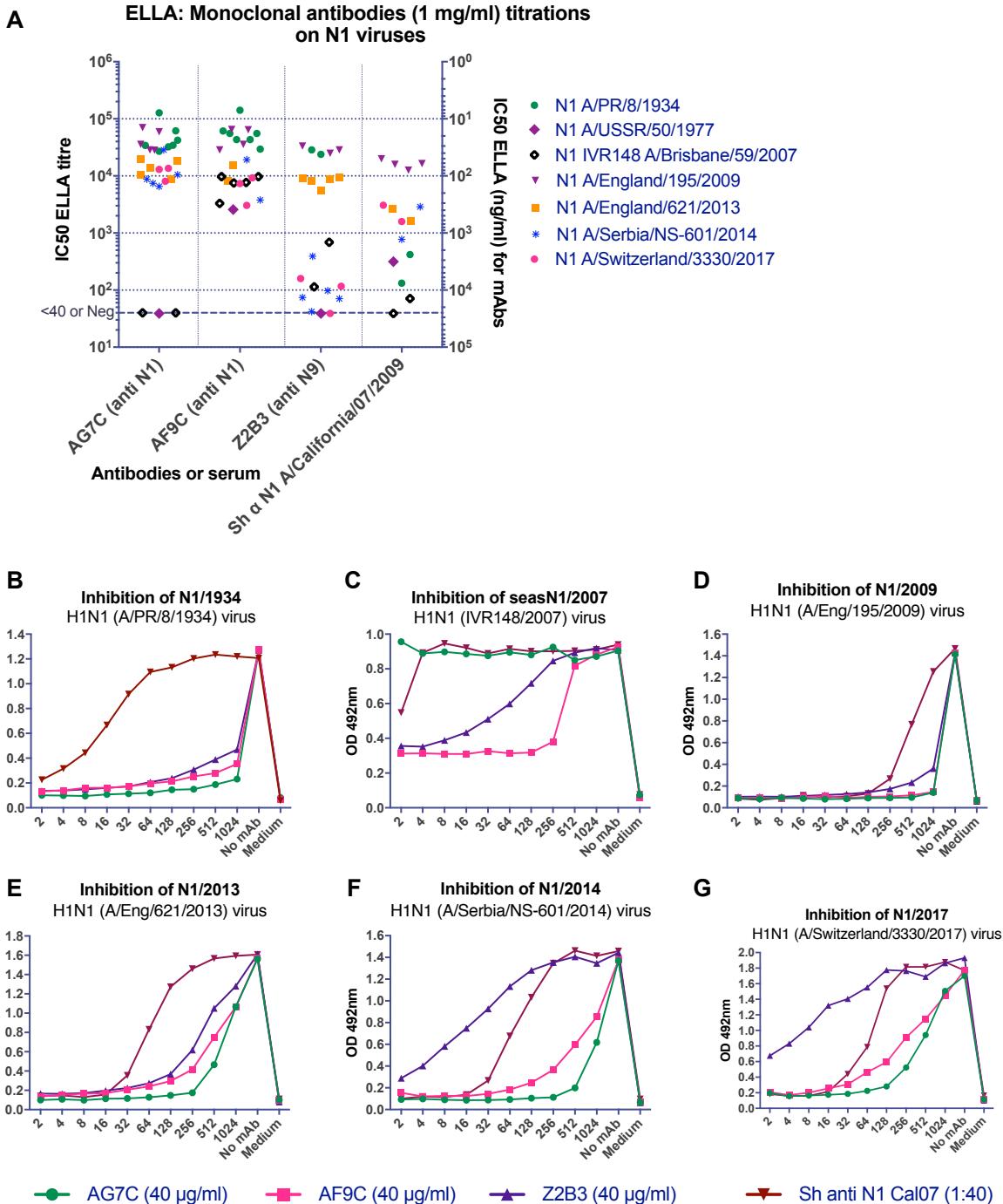
623

624 *Table 2. Encoding gene analysis of antibodies*

| Mab   | Donor; Age | Heavy Chain                    |                   |                   |                     |                           |                  |                                 | Light Chain       |                      |                     |                           |                  |             |              |
|-------|------------|--------------------------------|-------------------|-------------------|---------------------|---------------------------|------------------|---------------------------------|-------------------|----------------------|---------------------|---------------------------|------------------|-------------|--------------|
|       |            | V-GENE and allele              | J-GENE and allele | D-GENE and allele | V-REGION identity % | V-REGION Nb of AA changes | CDR-IMGT lengths | AA JUNCTION                     | V-GENE and allele | J-GENE and allele    | V-REGION identity % | V-REGION Nb of AA changes | CDR-IMGT lengths | AA JUNCTION |              |
| AG7C  | C; 23      | 4-31*03, or 4-31*06            | 4*01, or 4*02     | 5-24*01           | 89.0                | 15                        | 10.7.11          | CARDLEGHTFHDW                   | $\kappa$          | 1-39*01, or 1D-39*01 | 2*01                | 88.5                      | 17               | 6.3.9       | CQQSHSAPYTF  |
| AF9C  | C; 23      | 1-69*01, or 1-69D*01           | 6*02              | 4-17*01           | 91.7                | 16                        | 8.8.19           | CARDLAPYGDRFYFH YGMDVW          | $\kappa$          | 1-9*01               | 5*01                | 94.6                      | 9                | 6.3.9       | CQQLNNTYPFTF |
| Z2B3  | Z; 6       | 1-69*01, or 1-69D*01           | 6*02              | 5-18*01           | 96.5                | 8                         | 8.8.25           | CARDLQDTPMVDRIG SYYYYNGLDVW     | $\lambda$         | 2-14*01              | 2*01, or 3*01       | 96.9                      | 8                | 9.3.10      | CSSYTRSSSVVF |
| Z2C2  | Z; 6       | 3-66*01, or 3-66*04            | 6*02              | 2-21*02           | 93.3                | 13                        | 8.7.27           | CASWSFCGGDCYPD RMQEKFHYSYGMDV W | $\kappa$          | 1D-12*01             | 4*01                | 95.7                      | 9                | 6.3.9       | CQQAYSFPLTF  |
| Z1A11 | Z; 6       | 1-46*01, or 1-46*02 or 1-46*03 | 6*02              | 3-22*01           | 92.7                | 17                        | 8.8.19           | CARNSYYDTRPYY NGMDVW            | $\kappa$          | 2-28*01, or 2D-28*01 | 5*01                | 96.9                      | 5                | 11.3.9      | CMQAVQTPTTF  |
| W1C7  | W; 7       | 3-9*01                         | 3*02              | 4-17*01           | 99.7                | 0                         | 8.8.13           | CAKDVGGDYHAFDIW                 | $\kappa$          | 3-15*01              | 4*01                | 99.6                      | 1                | 6.3.10      | CQQYNNWPPLTF |
| P17C  | K; 39      | 3-23*04                        | 5*02              | 2-15*01           | 99.3                | 1                         | 8.8.14           | CAKDGRWLLGNWFDP                 | $\lambda$         | 2-14*01              | 1*01                | 99.3                      | 2                | 9.3.10      | CSSYTSSSTFVF |
| F4C   | K; 39      | 4-59*01                        | 4*02              | 4-17*01           | 99.7                | 1                         | 8.7.10           | CARGYYGDYDYW                    | $\lambda$         | 1-40*01              | 2*01, or 3*01       | 100.0                     | 0                | 9.3.11      | CQSYDSSLGVVF |


625

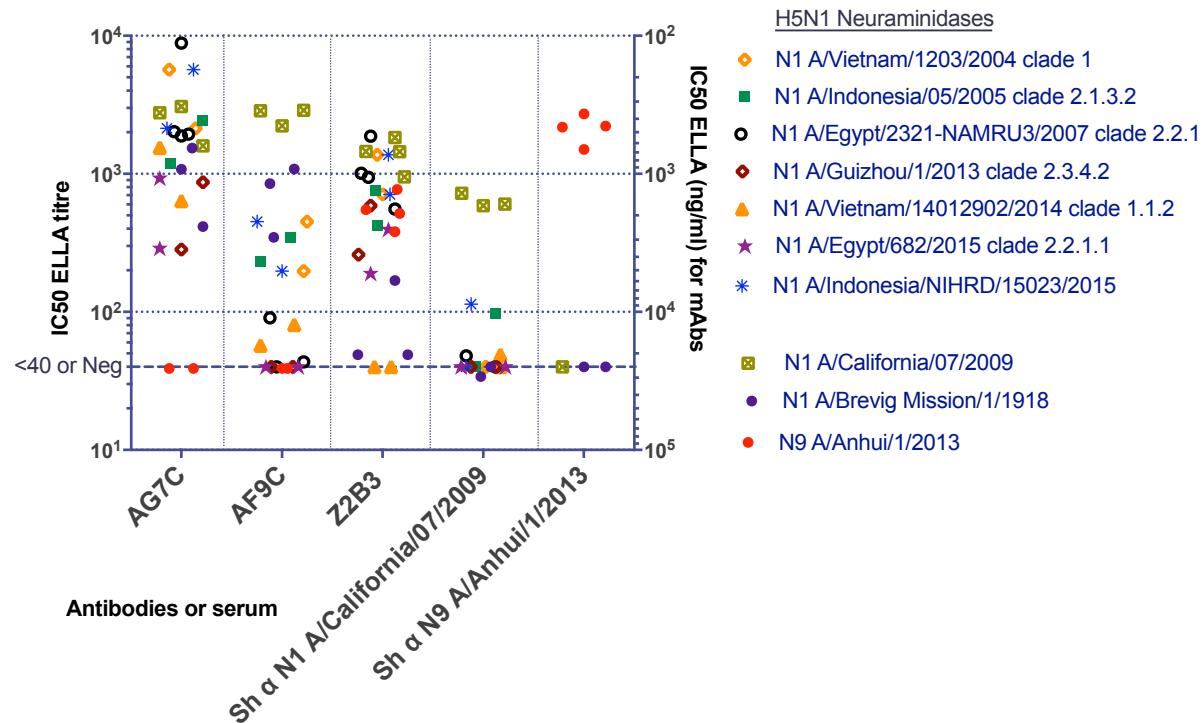
626


627

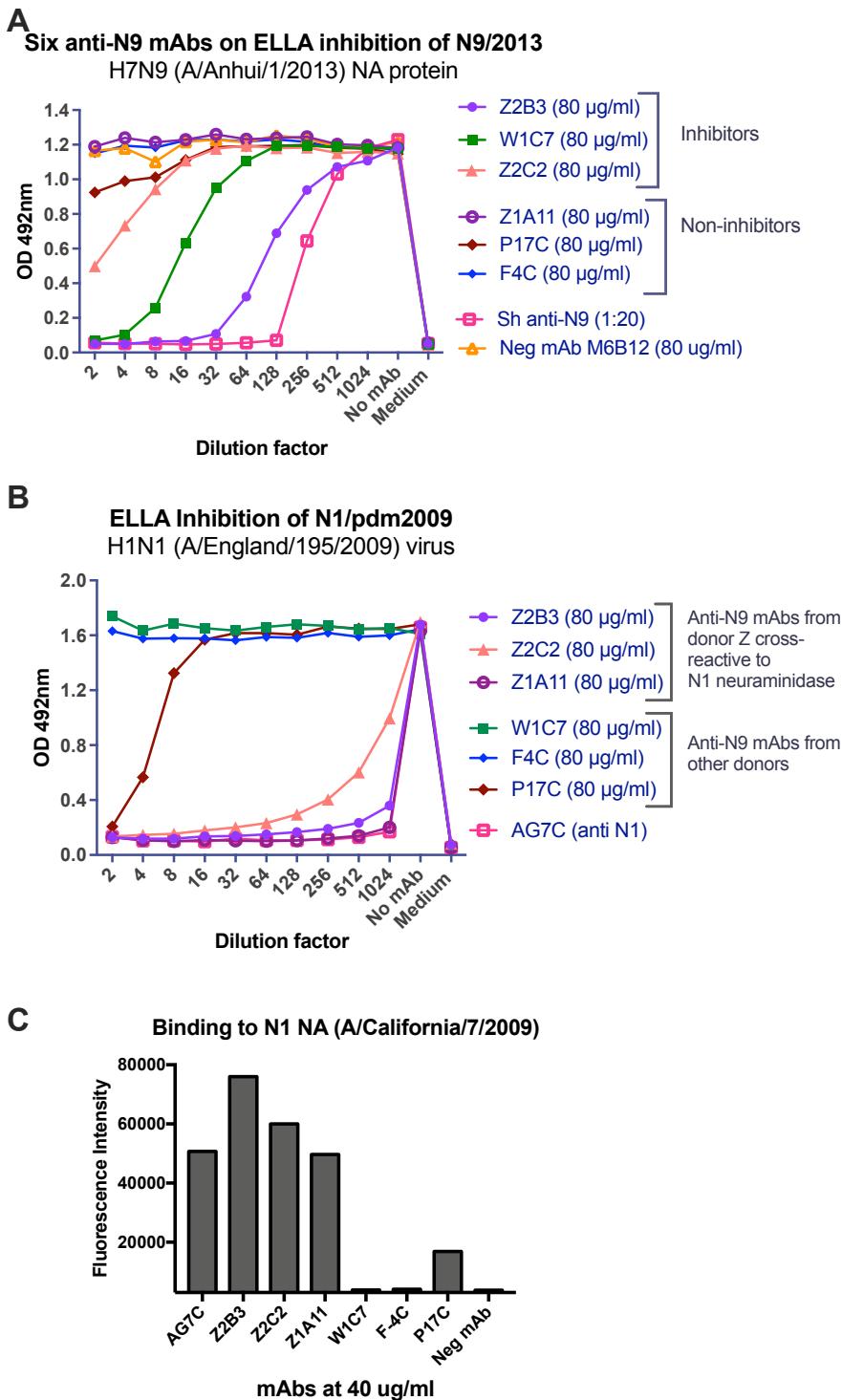
628 **FIGURES**  
629

### Inhibition of H1N1 viruses by anti-N1 NA mAbs




630  
631  
632 *Figure 1. Inhibition of H1N1 viruses by mAbs targeting N1 NAs.* Percentage inhibition of  
633 activity by mAbs, at 20  $\mu$ g/ml, targeting N1 NAs are shown. H3N2 virus (X-31) was used as a  
634 negative control virus and a mAb targeting Ebolavirus glycoprotein was used as a negative  
635 control antibody.  
636  
637

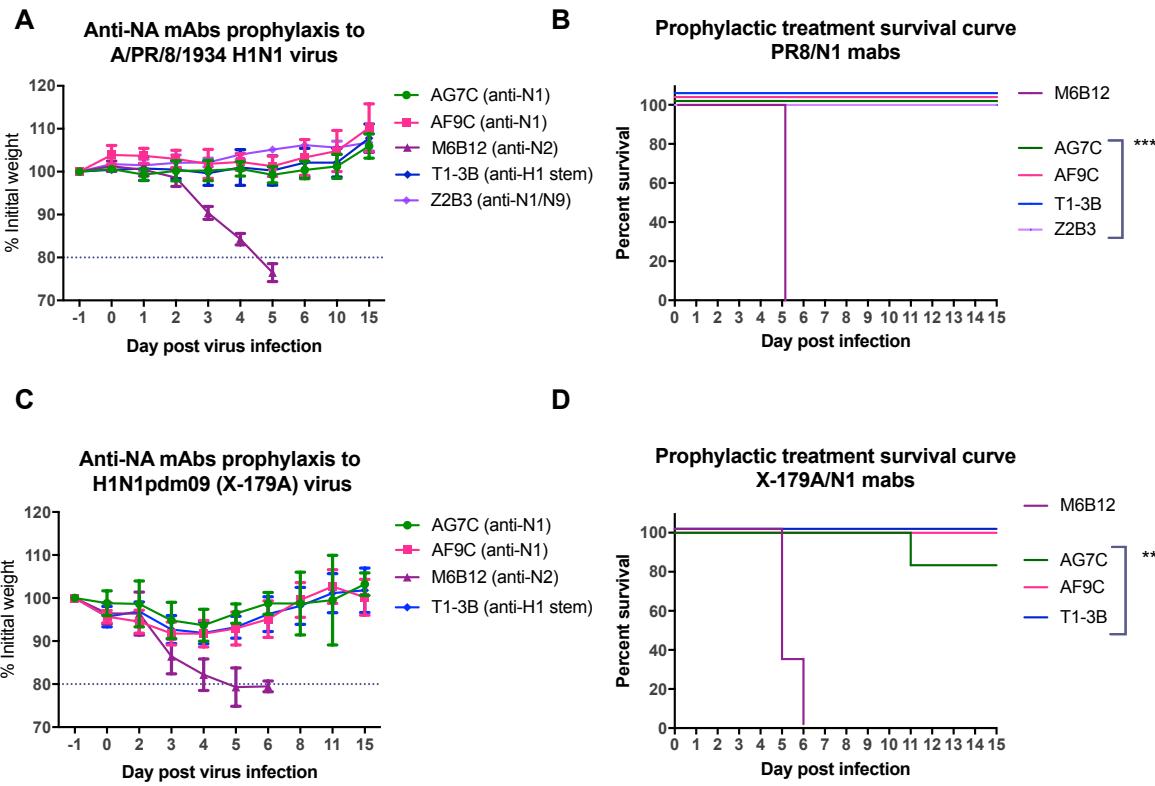



638  
639

640 **Figure 2. ELLA titrations of mAbs against selected H1N1 viruses.** AG7C and AF9C are  
641 N1 NA-specific antibodies. Z2B3 is a N9 and N1 NA-cross-reactive antibody. Sheep anti-  
642 H1N1pdm09 N1 (A/California/07/2009) serum was used as a positive anti-N1 NA control.  
643 A) ELLA IC<sub>50</sub> values of anti-N1 mAbs shown as titrating from 1 mg/ml on left Y-axis to compare  
644 with sheep sera and the 50% inhibiting concentration as ng/ml shown on right Y-axis. Each  
645 point represents an independent measurement.  
646 B-G) NA Inhibition curves for H1N1 viruses from year 1934 to 2017. Note the loss of titre of  
647 mAb Z2B3 on viruses isolated after 2014 (F, G). Experiments were done at least three times.  
648 Representative graphs are shown.

### ELLA: Monoclonal antibodies (1 mg/ml) titrations on NA recombinant proteins




649  
650  
651  
652 **Figure 3. Antibodies (1mg/ml) titrated against recombinant NA proteins by ELLA.** Sheep  
653 sera raised against H1N1pdm09 (A/California/07/2009) and H7N9 (A/Anhui/1/2013) viruses  
654 were used as controls. Each point represents an independent measurement.  
655

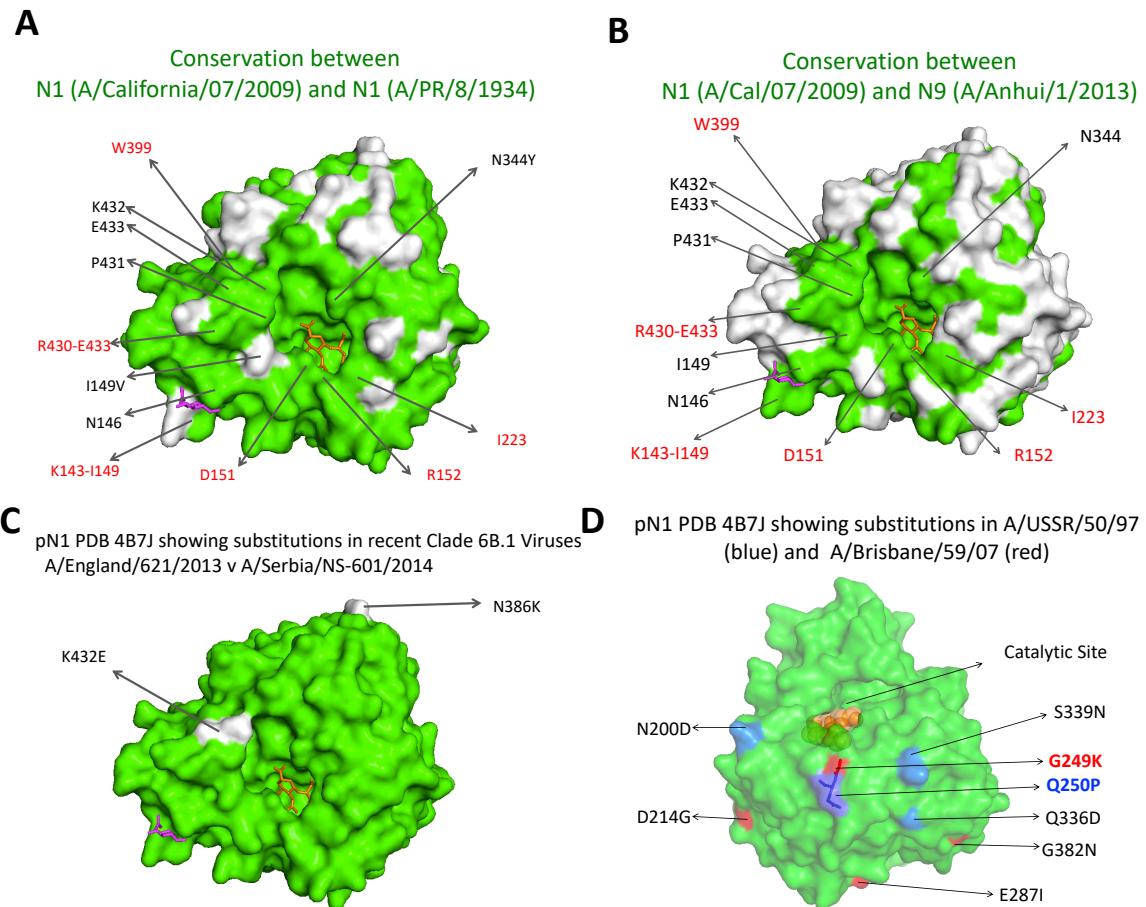


656  
657

658 **Figure 4. Inhibition of NA activity by mAbs isolated from donors exposed to H7N9 virus.**  
659 A) ELLA activity of six anti-N9 antibodies on N9 NA (A/Anhui/1/2013). Sheep sera raised  
660 against H7N9 virus (A/Anhui/1/2013) acts as a positive control. Anti-N2 NA mAb M6B12 was  
661 used as a negative control.  
662 B) Cross-inhibition of N1 NA by some anti-N9 NA mAbs. Anti N1-NA mAb (AG7C) is a positive  
663 control.  
664 C) Binding of anti-N9 NA mAbs to H1N1 (X-179A A/California/7/2009) infected MDCK-SIAT  
665 cells.  
666 Experiments were performed at least twice, and representative graphs are shown.

667




668

669

670 **Figure 5. In vivo prophylactic protection by anti-N1 NA mAbs.** Mice ( $n=6$ /group) were  
671 administered AG7C and AF9C mAbs at 10 mg/Kg. Weight loss following infection was  
672 measured and  $\geq 20\%$  loss was considered as the predefined endpoint. Anti-H1 HA mAb (T1-  
673 3B) cross-reactive with X-179A and A/PR/8/1934 viruses, is a positive control and an anti-N2  
674 NA specific mAb (M6B12) a negative control. Experiments were performed at least twice and  
675 representative data from individual experiments are shown here.

676 (A, B) Anti-N1 NA mAbs protect Balb/C female mice completely against  $10^4$  TCID<sub>50</sub> of  
677 A/PR/8/1934 virus, without any weight loss ( $p<0.001$ ).

678 (C,D) Anti-N1 NA mAbs protect DBA/2 female mice completely against a lethal dose ( $\sim 150$   
679 LD<sub>50</sub>) of X-179A virus (A/California/7/2009), with only 5-10% weight loss ( $p<0.001$ ). One  
680 mouse treated with AG7C relapsed on day 7 and was culled after losing  $>20\%$  weight; it is  
681 possible that a mAb-escape influenza variant may have emerged in this mouse.



682  
683  
684

**Figure 6. Comparisons of conserved and variable surface residues between NA subtypes.**

685 A) Conserved molecular surface shown in green between H1N1pdm09 A/California/07/2009  
686 and H1N1 A/PR/8/1934 (PDB 4B7J).  
687 B) Conserved molecular surface shown in green between H1N1pdm09 (A/California/07/2009)  
688 and H7N9 (A/Anhui/1/2013) (PDB 4B7J).  
689 C) Difference in molecular surface (shown in white) between H1N1pdm09 viruses  
690 A/England/621/2013 and A/Serbia/NS-601/2014  
691 D) Key amino acid substitutions in two H1N1 viruses NAs that mAb AG7C inhibits poorly -  
692 A/USSR/50/1997 (shown in blue) and A/Brisbane/59/2007 (shown in red) compared to NA of  
693 H1N1pdm09. These amino acid positions were inferred from the NA sequences alignment in  
694 Figure S2. G249 and Q250P are likely to form part of the binding footprint of mAb AG7C.

## Supporting Information

Table S1. Sequences of secreted NA proteins

| Virus Identifier                             | Neuraminidase sequence [Signal sequence - 6x His tag - Tetramerisation domain - Thrombin cleavage site - ectodomain (69 - 469, N1 numbering)]                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A/Vietnam/1203/2004 N1<br>HM006761.1         | <b>MKANLLVLLCALAAAADAADPHHHHHHSSSDYSDLQRVKQELLEEVKKELQKVKEEIIIAFVQELRKRGSLV</b><br><b>PRGSPRS</b> ISNTNFLTEKAVASVLAGNSSLCPINGWAVYSKDNSIRIGSKGDVFVIREPFISCSHLCRTFF<br>LTQGALLNDKHSNGTVKDRSPHRTLMSCPVGEAPSPYNSRFESVAWSASACHDTSWLTIGISGPDNGAV<br>AVLKNGIITDTIKSWRNNILRTQESECACVNGSCFTVMTDGPSSNGQASHKIFKMEKGKVVKSVELDAPNYH<br>YEECSCYPNAGEITCVCRDNWHSNRPWSFNQNLEYQIGYICSGVFGDNPRPNDGTGSCGPVSSNGAY<br>GVKGFSFKYGNVWIGRTKSTNSRSGFEMIWDPNGWTETDSSFSVKQDIVAITDWSGYSGSFVQHPELTG<br>LDCIRPCFWELIRGRPKESTIWTGSSISFCGVNSDTVSWSPDGAELPFTIDK*         |
| A/Indonesia/05/2005 N1<br>EU146623.1         | <b>MKANLLVLLCALAAAADAADPHHHHHHSSSDYSDLQRVKQELLEEVKKELQKVKEEIIIAFVQELRKRGSLV</b><br><b>PRGSPRS</b> ISNTNPLTEKAVASVTLAGNSSLCPIRGVAVHSKDNNSIRIGSKGDVFVIREPFISCSHLCRTFF<br>LTQGALLNDKHSNGTVKDRSPHRTLMSCPVGEAPSPYNSRFESVAWSASACHDTSWLTIGISGPDNEAV<br>AVLKNGIITDTIKSWRNDILRTQESECACVNGSCFTVMTDGPSSNGQASYKIFKMEKGKVVKSVELDAPNYH<br>YEECSCYPDAGEITCVCRDNWHSNRPWSFNQNLEYQIGYICSGVFGDNPRPNDGTGSCGPVSPNGAY<br>GVKGFSFKYGNVWIGRTKSTNSRSGFEMIWDPNGWTETDSSFSVKQDIVAITDWSGYSGSFVQHPELTG<br>LDCIRPCFWELIRGRPKESTIWTGSSISFCGVNSDTVSWSPDGAELPFTIDK*       |
| A/Egypt/2321-NAMRU3/2007<br>N1 EF535822.1    | <b>MKANLLVLLCALAAAADAADPHHHHHHSSSDYSDLQRVKQELLEEVKKELQKVKEEIIIAFVQELRKRGSLV</b><br><b>PRGSPRS</b> ISNTKFLTEKAVASVTLAGNSSLCPISGVAVHSKDNNSIRIGSKGDVFVIREPFISCSHLCRTFF<br>LTQGALLNDKHSNGTVKDRSPHRTLMSCPVGEAPSPYNSRFESVAWSASACHDTSWLTIGISGPDNGAV<br>AVLKNGIITDTIKSWRNNILRTQESECACVNGSCFTVMTDGPSSNGQASYKIFKMEKGKVVKSVELDAPNYH<br>YEECSCYPDAGEITCVCRDNWHSNRPWSFNQNLEYQIGYICSGVFGDNPRPNDGTGSCGPVFPNGAY<br>GVKGFSFKYGNVWIGRTKSTNSRSGFEMIWDPNGWTETDSSFSVKQDIVAITDWSGYSGSFVQHPELTG<br>LDCIRPCFWELIRGRPKESTIWTGSSISFCGVNSDTVSWSPDGAELPFTIDK*       |
| A/Guizhou/1/2013 N1<br>EPI420387             | <b>MKANLLVLLCALAAAADAADPHHHHHHSSSDYSDLQRVKQELLEEVKKELQKVKEEIIIAFVQELRKRGSLV</b><br><b>PRGSPRS</b> IRNTNFLTEAVASVTLAGNSSLCPIRGVAVHSKDNNSIRIGSKGDVFVIREPFISCSHLCRTFF<br>LTQGALLNDKHSNGTVKDRSPHRTLMSCPVGEAPSPYNSRFESVAWSASACHDTSWLTIGISGPDNGAV<br>AVLKNGIITDTIKSWRNNILRTQESECACVNGSCFTVMTDGPSSNGQASYKIFKMEKGKVVKSVELNAPNYH<br>YEECSCYPDAGEIIICVCRDNWHGSNRPWSFNQNLEYQIGYICSGVFGDNPRPNDGTGSCGPVSPNGAY<br>IKGFSFKYGNVWIGRTKSTNSRSGFEMIWDPNGWTETDSSFSVKQDIVAITDWSGYSGSFVQHPELTG<br>DCIRPCFWELIRGRPKESTIWTGSSISFCGVNSDTVSWSPDGAELPFTIDK*        |
| A/Vietnam/14012902/2014 N1<br>EPI624924      | <b>MKANLLVLLCALAAAADAADPHHHHHHSSSDYSDLQRVKQELLEEVKKELQKVKEEIIIAFVQELRKRGSLV</b><br><b>PRGSPRS</b> ISNTNFHTEKAVVSAKLAGNSSLCPINGWAVYSKDNSIRIGSKGDVFVIREPFISCSHLCRTFF<br>LTQGALLNDKHSNGTAKDRSPHRTLMSCPVGEAPSPYNSRFESVAWSASACHDTSWLTIGISGPDNGAV<br>AVLKNGIITDTIKSWRNNILRTQESECACVNGSCFTVMTDGPSSNGQASHKIFKMEKGKVVKSVELDAPNYH<br>YEECSCYPDAGEITCVCRDNWHSNRPWSFNQNLEYQIGYICSGVFGDNPRPNDGTGSCGPVSSNGAY<br>VKGFSFKYGNVWIGRTKSTNSRSGFEMIWDPNGWTETDSSFSVKQDIVAITDWSGYSGSFVQHPELTG<br>DCIRPCFWELIRGRPKESTIWTGSSISFCGVNGDTVSWSPDGAELPFTIDK*          |
| A/Egypt/682/2015 N1<br>EPI642538             | <b>MKANLLVLLCALAAAADAADPHHHHHHSSSDYSDLQRVKQELLEEVKKELQKVKEEIIIAFVQELRKRGSLV</b><br><b>PRGSPRS</b> ISNTKFLAEKAVASVTLAGNSSLCPVSGWAVYSKDNNSIRIGSKGDVFVIREPFISCSHLCRTFF<br>LTQGALLNDKHSNGTVKDRSPHRTLMSCPVGEAPSPYNSRFESVAWSASACHDTSWLTIGISGPDSGV<br>AVLKNGIITDTIKSWRNNIMRTQESECACVNGSCFTIMTDGPSSNGQASYKIFKMEKGKVIKSVELDAPNYH<br>EECSCYPDAGEITCVCRDNWHSNRPWSFNQNLEYQIGYICSGVFGDNPRPNDGTGSCGPVFPNGAYGV<br>KGFSFKYGNVWIGRTKSTNSRSGFEMIWDPNGWTETDSSFSVKQDIVAITEWSGYSGSFVQHPELTG<br>CIRPCFWELIRGRPKESTIWTGSSISFCGVNGDTVSWSPDGAELPFTIDK*           |
| A/Indonesia/NIHRD/15023/2015 N1<br>EPI643070 | <b>MKANLLVLLCALAAAADAADPHHHHHHSSSDYSDLQRVKQELLEEVKKELQKVKEEIIIAFVQELRKRGSLV</b><br><b>PRGSPRS</b> TSNNNPLTEKTVASVTLAGNSSLCHTRGWAHSKDNNSIRIGSKGDVFVIREPFISCSHLCRTF<br>FLTHGALLNDKHSNGTVKDRSPHRTLMSCPLGEAPSPYNSRFESVAWSASACHDTSWLTIGISGPDNEA<br>VAVLKYNGIITDTIKSWRNNIMRTQESECACVNGSCFTVMTDGPSSNGQASYKIFKMKKGKVVKSVELDAPN<br>YHEEYCSCYPDAGEITCVCRDNWHSNRPWSFNQNLEYQIGYICSGVFGDNPRPNDGTGSCGPVSSNGANGV<br>AYVGKGFSFKYGNVWIGRTKSTNSRSGFEMIWDPNGWTETDSSFSVKQDIVAITDWSGYSGSFVQHPELTG<br>TGLDCIRPCFWELIRGRPKESTIWTGSSISFCGVNSDTVSWSPDGAELPFTIDK* |
| A/Cal/07/2009 N1 FJ981613.1                  | <b>MKANLLVLLCALAAAADAADPHHHHHHSSSDYSDLQRVKQELLEEVKKELQKVKEEIIIAFVQELRKRGSLV</b><br><b>PRGSPRS</b> ISNTNFAAGQSVSVKLAGNSSLCPVSGWAIYSKDNNSIRIGSKGDVFVIREPFISCSPLECRTF<br>LTQGALLNDKHSNGTIKDRSPYRTLMSCPLGEAPSPYNSRFESVAWSASACHDTGIVNLTIGISGPDNGAV<br>VLKYNGIITDTIKSWRNNILRTQESECACVNGSCFTVMTDGPSSNGQASYKIFKMEKGKVIKSVELNAPNYHY<br>ECSCYPDSSEITCVCRDNWHSNRPWSFNQNLEYQIGYICSGVFGDNPRPNDGTGSCGPVSSNGANGV<br>GFSFKYGNVWIGRTKSTNSRSGFEMIWDPNGWTETDSSFSVKQDIVAITDWSGYSGSFVQHPELTG<br>RPCFWELIRGRPKENTIWTGSSISFCGVNSDTVSWSPDGAELPFTIDK*            |
| A/Brevig Mission/1/2018 N1<br>AF250356.2     | <b>MKANLLVLLCALAAAADAADPHHHHHHSSSDYSDLQRVKQELLEEVKKELQKVKEEIIIAFVQELRKRGSLV</b><br><b>PRGSPRS</b> ISNTNVAGQDATSVLITGNSSLCPISGVWAIYSKDNNSIRIGSKGDVFVIREPFISCSHLCRTFF<br>TQGALLNDKHSNGTVKDRSPYRTLMSCPVGEAPSPYNSRFESVAWSASACHDTGIVNLTIGISGPDNGAV<br>AVLKNGIITDTIKSWRNNILRTQESECACVNGSCFTIMTDGPSSNGQASYKILKIEKGKVTKSIELNAPNYHY<br>ECSCYPDTGKVMCVCRDNWHSNRPWSFDQNLDYQIGYICSGVFGDNPRPNDGTGSCGPVSSNGANGI<br>KGFSFRYDNGVWIGRTKSTSSRSGFEMIWDPNGWTETDSSFSVRQDIVAITDWSGYSGSFVQHPELTG<br>CMRPCFWELIRGQPKENTIWTGSSISFCGVNSDTVSWSPDGAELPFSIDK*        |
| A/Anhui/1/2013 N9                            | The protein was kindly provided by Donald Benton (Benton et al., 2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

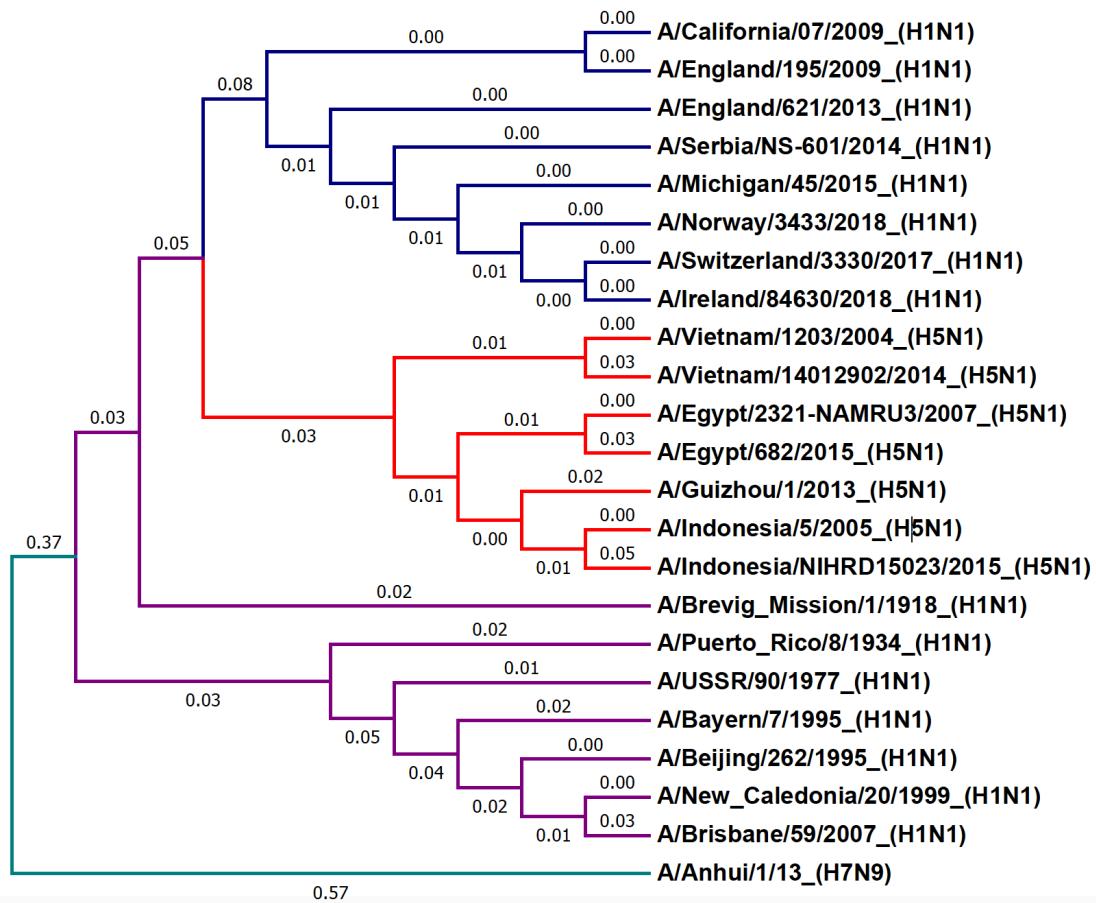



Figure S1. The phylogenetic tree of N1 and N9 neuraminidases used in this paper. The values on branches shows the evolutionary distances between neuraminidases. Made using MEGA7 software, muscle alignment and neighbour-joining tree settings.

10 20 30 40 50 60 70 80 90 100

A/California/07/2009\_H1N1  
A/Brevig/Mission/1/1918\_H1N1  
A/Puerto Rico/8/1934\_H1N1  
A/USSR/90/1977\_H1N1  
A/Bayern/7/1995\_H1N1  
A/Beijing/262/1995\_H1N1  
A/New Caledonia/20/1999\_H1N1  
A/Brisbane/59/2007\_H1N1  
A/England/195/2009\_H1N1  
A/England/621/2013\_H1N1  
A/Serbia/NS-601/2014\_H1N1  
A/Michigan/45/2015\_H1N1  
A/Switzerland/3330/2017\_H1N1  
A/Ireland/84630/2018\_H1N1  
A/Norway/3433/2018\_H1N1  
A/Vietnam/1203/2004\_H5N1  
A/Indonesia/5/2005\_H5N1  
A/Egypt/2321-NAMRU3/2007\_H5N1  
A/Guizhou/1/2013\_H5N1  
A/Vietnam/14012902/2014\_H5N1  
A/Egypt/682/2015\_H5N1  
A/Indonesia/NIHRD15023/2015\_H5N1  
A/Anhui/1/13/1-465\_H7N9

110 120 130 140 150 160 170 180 190 200

A/California/07/2009\_H1N1  
A/Brevig/Mission/1/1918\_H1N1  
A/Puerto Rico/8/1934\_H1N1  
A/USSR/90/1977\_H1N1  
A/Bayern/7/1995\_H1N1  
A/Beijing/262/1995\_H1N1  
A/New Caledonia/20/1999\_H1N1  
A/Brisbane/59/2007\_H1N1  
A/England/195/2009\_H1N1  
A/England/621/2013\_H1N1  
A/Serbia/NS-601/2014\_H1N1  
A/Michigan/45/2015\_H1N1  
A/Switzerland/3330/2017\_H1N1  
A/Ireland/84630/2018\_H1N1  
A/Norway/3433/2018\_H1N1  
A/Vietnam/1203/2004\_H5N1  
A/Indonesia/5/2005\_H5N1  
A/Egypt/2321-NAMRU3/2007\_H5N1  
A/Guizhou/1/2013\_H5N1  
A/Vietnam/14012902/2014\_H5N1  
A/Egypt/682/2015\_H5N1  
A/Indonesia/NIHRD15023/2015\_H5N1  
A/Anhui/1/13/1-465\_H7N9

210 220 230 240 250 260 270 280 290 300

A/California/07/2009\_H1N1  
A/Brevig/Mission/1/1918\_H1N1  
A/Puerto Rico/8/1934\_H1N1  
A/USSR/90/1977\_H1N1  
A/Bayern/7/1995\_H1N1  
A/Beijing/262/1995\_H1N1  
A/New Caledonia/20/1999\_H1N1  
A/Brisbane/59/2007\_H1N1  
A/England/195/2009\_H1N1  
A/England/621/2013\_H1N1  
A/Serbia/NS-601/2014\_H1N1  
A/Michigan/45/2015\_H1N1  
A/Switzerland/3330/2017\_H1N1  
A/Ireland/84630/2018\_H1N1  
A/Norway/3433/2018\_H1N1  
A/Vietnam/1203/2004\_H5N1  
A/Indonesia/5/2005\_H5N1  
A/Egypt/2321-NAMRU3/2007\_H5N1  
A/Guizhou/1/2013\_H5N1  
A/Vietnam/14012902/2014\_H5N1  
A/Egypt/682/2015\_H5N1  
A/Indonesia/NIHRD15023/2015\_H5N1  
A/Anhui/1/13/1-465\_H7N9

310 320 330 340 350 360 370 380 390 400

A/California/07/2009\_H1N1  
A/Brevig/Mission/1/1918\_H1N1  
A/Puerto Rico/8/1934\_H1N1  
A/USSR/90/1977\_H1N1  
A/Bayern/7/1995\_H1N1  
A/Beijing/262/1995\_H1N1  
A/New Caledonia/20/1999\_H1N1  
A/Brisbane/59/2007\_H1N1  
A/England/195/2009\_H1N1  
A/England/621/2013\_H1N1  
A/Serbia/NS-601/2014\_H1N1  
A/Michigan/45/2015\_H1N1  
A/Switzerland/3330/2017\_H1N1  
A/Ireland/84630/2018\_H1N1  
A/Norway/3433/2018\_H1N1  
A/Vietnam/1203/2004\_H5N1  
A/Indonesia/5/2005\_H5N1  
A/Egypt/2321-NAMRU3/2007\_H5N1  
A/Guizhou/1/2013\_H5N1  
A/Vietnam/14012902/2014\_H5N1  
A/Egypt/682/2015\_H5N1  
A/Indonesia/NIHRD15023/2015\_H5N1  
A/Anhui/1/13/1-465\_H7N9

Sequence alignment showing the amino acid sequence of various influenza A viruses. The alignment is color-coded by residue: green for hydrophobic, yellow for hydrophilic, and black for polar. The sequences are grouped by country and year of isolation. The alignment spans from position 10 to 400.

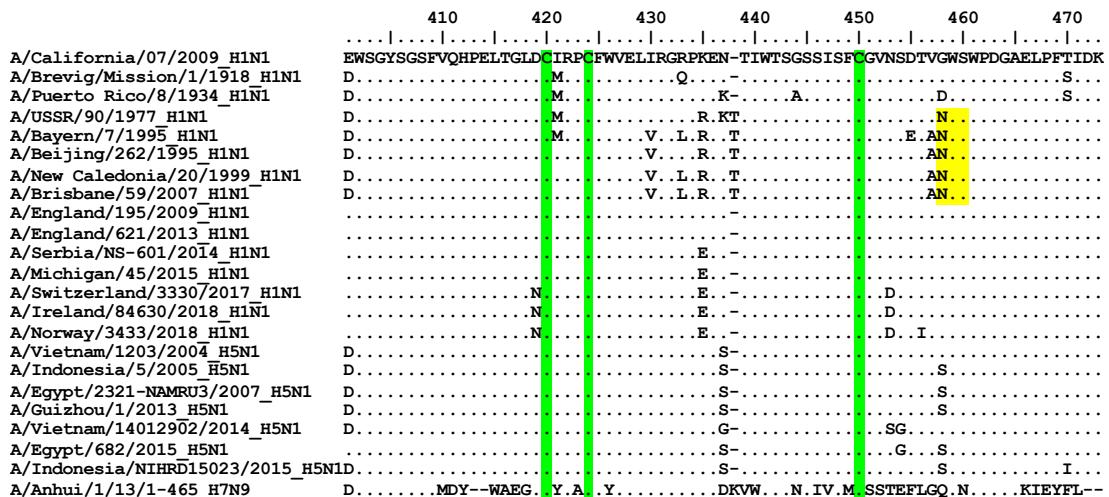



Figure S2. Amino acid sequence alignment of the neuraminidases used in this paper. The numbering is not NA numbering and is only for alignment purpose. The alignment was done using BioEdit software.

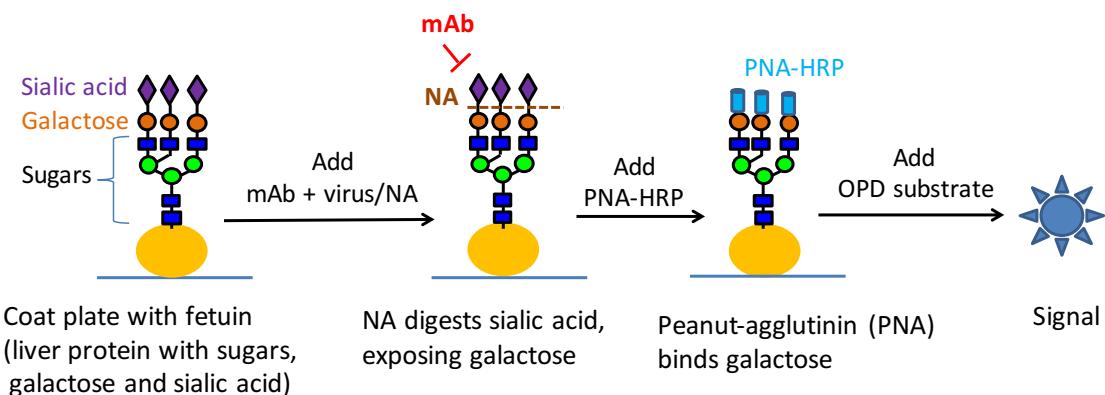



Figure S3. Schematic figure of ELLA assay