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23 Abstract
24 The Karnaphuli, a major river of Bangladesh, located off the coast of Chittagong in the Bay of 

25 Bengal is largely exposed to the heavy metal pollutants, which may be toxic to humans and 

26 aquatic fauna. The estuary is a striking example of a site where human pressure and ecological 

27 values collide with each other. In spite of being a major supplier of fish food for local 

28 community, there has been no study carried out to date to assess the potential human health risk 

29 due to heavy metal contamination in the fish species from this estuary. Therefore, the aim of 
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30 present study was to assess bioaccumulation status and the potential human health risk 

31 evaluation for local consumers. Six commercially important fish species, Apocryptes bato, 

32 Pampus chinensis, Hyporhamphus limbatus, Liza parsia, Mugil cephalus, and Tenualosa toil 

33 from the Karnaphuli River estuary were collected to analyze heavy metals concentration level. 

34 Heavy metals As, Pb, Cd, Cr and Cu were detected from the samples using inductively coupled 

35 plasma mass spectrometry (Model: ELAN9000, Perkin-Elmer, Germany). The hierarchy of the 

36 measured concentration level of the metals was as follows: Pb (mean: 13.88,  range: 3.19 - 6.19) 

37 > Cu (mean: 12.10, range: 10.27 - 16.41) > As (mean: 4.89, range: 3.19 – 6.19) > Cr (mean: 

38 3.36,  range: 2.46 – 4.17) > Cd (mean: 0.39, range: 0.21 - 0.74). The Fulton’s condition factor 

39 denoted that organisms were particularly in better ‘condition’ and most of the species were in 

40 positive allometric growth. The Bioaccumulation factors (BAFs) observed in the species of the 

41 contaminants were organized in the following ranks: Cu (1971.42) > As (1042.93) > Pb (913.66) 

42 > Cr (864.99) > Cd (252.03), and among all the specimens, demersal fish, A. bato corresponded 

43 to the maximum bio-accumulative organism. Estimated daily intake (EDI), target hazard quotient 

44 (THQ) and carcinogenic risk (CR) assessed for human health risk implications suggest that the 

45 values are within the acceptable threshold for all sorts of consumers. Hence none of them would 

46 experience non-carcinogenic and carcinogenic health effect for the ingestion of the fishes. 

47 However, children are shown to be largely susceptible than adults to non-carcinogenic and 

48 carcinogenic health effect due to the consumption of fish. Therefore, an appropriate guidlines 

49 and robust management measures needed to be taken to restore the estuarine health condition for 

50 greater benefit of the quality of fish products for local consumption.  

51 Graphical abstract 

52
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56 Introduction
57     All living organisms including fish require heavy metals (e.g. Fe, Mn, Cu, Zn, and Cr) within 

58 an acceptable trace amount to function and survive [1]. An excessive amount of Hg, As, Pb, and 

59 Cd elements could be detrimental to the living cells, and a prolonged exposure to the body can 

60 lead to illness or death [2]. Consequently, metals that were widely used to promote food 

61 production caused severe pollution worldwide, and thus had become a global concern in the past 

62 century [3-6]. Within the aquatic environment, such metals are considered as significant 

63 pollutants due to their intrinsic persistence, toxicities, non-biodegradable properties, and 

64 propensity to bioaccumulate up the food web [7-10]. At the end point, the intake of the metals 

65 will be a menace for anyone when heavy metals are consumed at a rate higher than the safe limit 

66 [11].

67 In the human body, alongside with a higher concentration, ineffective catharsis process 

68 can also make the heavy metals harmful even with a lower concentration [12]. For example, 

69 prostatic proliferative lesions, lung cancer, bone fractures, kidney failures are to be due to 

70 chronic exposure to Cd, even at a low concentration of ~ 1 mg/kg [6, 13]. Cd is also deemed as a 

71 causative agent for long time exposure of skin, vascular, nervous system dysfunction, 

72 reproductive problems, and finally lead to cancer [14, 15]. Pb is termed as a non-essential 

73 element and can have detrimental health effect on human organ [16] including the nervous 

74 system, mental retardation, skeletal hematopoietic function disorder caused to even death [8]. 

75 Though Cr is crucial content for diet in terms of lipid metabolism and insulin activation [17], it 

76 can cause carcinogenic effects on human health [18, 19]. Cu plays essential role for enzyme 
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77 functioning and hemoglobin synthesis [20, 21], however could also be a causative agent for 

78 toxicity accelerating nausea, bowel pain, diarrhea along with fever [22]. 

79 The aquatic organisms are directly or indirectly affected by these contaminants largely 

80 sourced from industrialization and urbanization [23-25]. Fish occupies higher trophic level in the 

81 food chain and are one of the most common bioindicators for pollutants [26, 27]. For many 

82 years, fishes are considered as a major protein supplier in human food consumption. Thus, the 

83 human body is largely susceptible to be enriched by a higher level of heavy metal concentration 

84 [28].

85 Generally, biomagnification occurs due to longstanding anthropogenic activities within a 

86 coastal ecosystem [29]. The accumulation of heavy metals in fish organs could also be driven by 

87 physiochemical and biological variables such as pH, temperature, hardness, exposure duration, 

88 feeding habits of species and habitat complexity [30]. While terrestrial species exhibit a strong 

89 pattern of biomagnification, marine and estuarine organisms show less clear pattern [31]. 

90 Condition factor, based on length-weight relationship, is one of the most common tools that is 

91 widely used in stock measurement model and to assess the life condition, reproduction records, 

92 health condition, and life cycle of a fish species [32]. Along with that, condition factor also 

93 suggest the food availability and quality, breeding duration, and process for distinct populations 

94 [1, 33]. In addition, this tool indicates the status of fish health due to stress in the population 

95 within an ecosystem [34]. 

96 The Karnaphuli river estuary is one of the potential fish population habitats along the 

97 southeast coast of Bay of Bengal known to be an important breeding, feeding and nursery ground 

98 for many aquatic species. At present, the ecosystem is receiving untreated effluents from several 

99 industries including textile crafts, dying industries, and others as it passes through the industrial 
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100 zone [35]. A number of studies attempted to assess the contamination status from river and 

101 estuarine environment from Bangladesh [3, 36-39], from China [40], from Turkey [41]. 

102 However, to date there has been no proper investigation carried out on the potential human 

103 health risk evaluation due to heavy metal contamination in the fish species harvested and 

104 consumed from the Karnaphuli estuarine water body. The present study therefore aims to fill this 

105 knowledge gap by assessing the concentration of heavy metals in some selective fish species and 

106 their bioaccumulation status in relation to length-weight relationship and condition factor, and 

107 the human health risk evaluation for local adult and children consumers.

108

109 Materials and methods
110

111 Ethical statement

112 Live specimens from wild populations were collected from local fishermen. None of the 

113 sampled species were endangered or protected. No permit was required to conduct the study on 

114 invertebrates. There were no ethical considerations linked to the experiment. 

115

116 Sampling

117

118 The Karnaphuli River estuary was selected as the study area located from 22.234008 N and 

119 91.821105 E to 22.289695 N and 91.794403 E (Fig. 1). A total of six commercial species (i.e. A. 

120 bato, P. chinensis, L. parsia, M. cephalus, H. limbatus, and T. toil) were collected from 

121 fishermen for a period of seven months (February 2018 to August 2018) using seine net. The 

122 collected samples were kept in plastic ice container and immediately stored in –120 C. 

123 Afterwards in the lab, total length (cm) and weights (gm) were measured carefully to the nearest 
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124 0.1 cm using a vernier caliper; total weight was determined with an electronic balance to 0.01 g 

125 accuracy. Muscles of each specimen were dissected with stainless steel scissors. The dissected 

126 samples were then set for further chemical analysis using inductively coupled plasma mass 

127 spectrometry (ICP-MS, Model: ELAN9000, Perkin-Elmer, Germany) for metal detection. Data 

128 were analyzed statistically by fitting a straight line adopting the least square method.

129

130                          Figure 1 Lacation of the six sampling areas along with the source of introduction 

131 of the metal into the Karnaphuli river estuary.

132

133 Chemical analysis procedures 

134 A 1.5g of dissected muscle portion was dried in an oven at 1500 C and then cooled.  Afterwards, 

135 3 ml of high concentrated H2SO4 and NHO3 was added and thoroughly mixed with the samples. 

136 The solution was heated on an oil bath adding ¾ drops of H2O2, repeated until the mixture was 

137 clear. The solution was mineralized using microwave digester (WX-6000, China). A standard 

138 reagent (Mark VI; Germany) was used to analyze the prepared samples in triplicate and the 

139 accuracy was obtained between 0–4% and 15%. Herein, the analytical accuracy was established 

140 at less than 10%. 

141

142  Metal pollution index (MPI)

143 To assess the metal pollution, the Metal pollution index (MPI) was adopted following [42] and 

144 [43]. The equation is as follows: 

145

146 MPI = (CM1 × CM2 × CM3 × …… × CMn)1/n

147
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148 where, CM1 is the concentration value of first concerned metal, CM2 is the concentration value of 

149 second concerned metal, CM3 is the concentration of third concerned metal, CMn is the 

150 concentration of nth metal (mg/kg dry wt) in the tissue sample of a certain species. 

151

152 Statistical analysis

153 The mean and standard deviation of metal concentrations were calculated. The Kolmogorov-

154 Smirnov, Shapiro-Wilk and Kruskal-Wallis tests were performed using SPSS 23. Kolmogorov-

155 Smirnov and Shapiro-Wilk tests were performed to identify the data dispersion avoiding the 

156 problems like normal/non-normal of data distribution in the aquatic ecosystem [44]. The 

157 Kruskal-Wallis test was carried out to identify significant variance of the targeted elements in the 

158 specimens of the studied area where p ≤ 0.05 was used as the cutoff for significance (confidence 

159 level in 95%). The employed correlation among the metals was classified in two groups [16], 

160 some correlations are positive and some were negative [45-48]. To identify the similar groups of 

161 the elements at the sampling sites, cluster analysis was executed with special variability [3, 49]. 

162 Resemble metals were in line in one cluster, while the dissimilar group of elements was plotted 

163 in another cluster to identify the term of contamination status [50-52]. 

164

165 Bioaccumulation factor

166 Bioaccumulation factors (BAFs) were calculated as a ratio between the concentration level of 

167 biota (those in water) and the living environment of the specimens and was expressed as follows 

168 [53-55]:

169 𝐵𝐴𝐹 =  
𝐶𝑛𝐵𝑖𝑜𝑡𝑎

𝐶𝑛𝑊𝑎𝑡𝑒𝑟

170 where  is the concentration of metal in the tissues (mg/kg) and  is the metal 𝐶𝑛𝐵𝑖𝑜𝑡𝑎 𝐶𝑛𝑊𝑎𝑡𝑒𝑟

171 concentration in the aquatic environment (mg/l). BAF is categorized as follows: BAF < 1000: no 
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172 probability of accumulation; 1000 < BAF < 5000: bioaccumulative; BAF > 5000: extremely 

173 bioaccumulative [56].

174 Length-weight relationship and condition factor

175 The length-weight relationship of the fish samples were calculated using Fulton condition factor 

176 following the equation [57-60]: 

177 𝑄 = 100 ×  𝑊 𝐿3

178 Where W is the total body weight of fish (gm), L is the total length of fish (cm). Fulton`s Q is 

179 categorized as follows: Q = 1: Condition is poor, Q = 1.2: condition is moderate, Q ≥ 1.40: 

180 condition is proportionally good [61]. The equation can be expressed by the following formula 

181 [1, 62]:

182 𝑊 =  𝑎𝐿𝑏

183 The equation can be estimated using the least-square formula adopted with the logarithm form of 

184 the equation is shown as [63]:

185 𝑙𝑜𝑔 𝑊 = log 𝑎 + 𝑏log 𝐿

186 where, ‘a' is the calculated intercept of the regression line, and ‘b’ is the coefficient of that 

187 regression. The ‘b’ values signify the growth pattern of an organism which can be classified as 

188 follows: b < 3: negative allometric, b = 3: Isometric and b > 3: positive allometric [57, 64].

189 As Fulton’s Q is substantially correlated with the length-weight relationship, exponent ‘b’ 

190 acts an identical role of determining the well-being of the organisms [57]. The deviation of the 

191 condition, further, depends on the food availability and the divergence of reproductive organ 

192 development [65].  

193

194 Human health risk

195 Estimated daily intake (EDI)

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2019. ; https://doi.org/10.1101/681478doi: bioRxiv preprint 

https://doi.org/10.1101/681478
http://creativecommons.org/licenses/by/4.0/


9

196 Estimated daily intake (EDI) was calculated by the following equation [19, 66, 67]:

197 𝐸𝐷𝐼 =  
(𝐶𝑛 × 𝐼𝐺𝑟)

𝐵𝑤𝑡

198

199 Where, Cn is the concentration level of metal in the selected fish tissues (mg/kg dry-wt);  is 𝐼𝐺𝑟

200 the acceptable ingestion rate, which is 55.5 g/day for adults and 52.5 g/day for children [68, 69]; 

201  is the body weight: 70 kg for adults and 15 kg for children [68].𝐵𝑤𝑡

202

203 Target hazard quotient (THQ) for non-carcinogenic risk assessment

204 THQ was estimated by the ratio of EDI and oral reference dose (RfD). RfDs of the different 

205 metals for example As, Pb, Cd, Cr, and Cu are 0.0003, 0.002, 0.001, 0.003 and 0.3, respectively 

206 [68, 70]. The value of ratio < 1 implies a non-significant risk effects [71]. The THQ formula is 

207 expressed as follows [69, 72-74]:

208 THQs =  
Ed ×  Ep × EDI

At × RfD  ×  10 ‒ 3

209 Where  is exposure duration (65 years) (USEPA, 2008);  is exposure frequency (365 𝐸𝑑 𝐸𝑝

210 days/year) [18];  is the average time for the non-carcinogenic element ( ).𝐴𝑡 𝐸𝑑 ×  𝐸𝑝

211

212 Hazard index (HI)

213 Hazard index (HI) was calculated for the multiple elements (Hg, As, Mn, and Cr) found in the 

214 fish samples and the equation is as follows [3, 16, 75, 76]: 

215 HI =  
n

∑
i = k

THQs

216 where, THQs is the estimated risk value for individual metal [77]. When HI value is higher than 

217 10, the non-carcinogenic risk effect is considered high for exposed consumers [78-80].
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218

219 Carcinogenic risk (CR)

220 To assess the probability of developing cancer over a lifetime, the carcinogenic risk is evaluated 

221 for the consequence of exposure to the substantial carcinogens [81, 82]. The acceptable range of 

222 the risk limit is 10-6 to 10-4 [83-86]. CRs higher than 10-4 are likely to increase the probability of 

223 carcinogenic risk effect [87, 88]. The established equation to assess the CR is as follows [69, 70, 

224 89, 90]:

225 CR =  
Ed ×  Ep × EDI × CSf

At
 ×  10 ‒ 3

226 Where CSf is oral slope factor of particular carcinogen (mg/kg-day) [83]. Available CSf values 

227 (mg/kg-day) are: As (1.5), Pb (0.0085) and Cd (6.3) [83].

228

229 Results

230 The concentration of heavy metals and source identification

231 The average concentration of Pb, Cu, As, Cr, and Cd from the fish tissues were 13.88 

232 (range: 3.19 – 6.19); 12.10 (range: 10.27 – 16.41); 4.89 (range: 3.19 – 6.19); 3.36 (range: 2.46 – 

233 4.17), and 0.39 (range: 0.21 – 0.74) respectively. The maximum mean concentration was Pb and 

234 minimum was Cd (please see Table 1). 

235                     

236

237

238

239

240

241

242
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243
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245

246
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250 Table 1. Concentration of heavy metals of different species and their feeding nature, length and weight and a comparison of other 

251 relevant studies along with various standard guideline values.

252

Heavy metals (mean ± std) 
mg/kg

  Species Feeding 
nature

Amounts Length
 (cm)

Weight 
(gm)

As Pb Cd Cr Cu

MPI References

A. bato Demersal 18 13.26±1.35 72.64±6.39 4.65±1.06 15.22±1.32 0.60±0.13 3.54±0.54 15.29±3.82 4.70
P. chinensis Demersal 18 6.96±0.90 166.58±21.68 5.03±0.86 14±1.79 0.44±0.14 3.59±0.55 13.10±2.49 4.29
L. parsia Demersal 18 7.34±1.17 25.20±3.12 4.36±0.93 13.98±1.93 0.34±0.09 3.30±0.40 9.50±1.16 3.65
M. cephalus Pelagic 18 27.17±2.30 711.44±111.03 4.89±0.48 12.70±1.72 0.31±0.09 3.14±0.36 11.48±1.27 3.69
H. limbatus Pelagic 18 10.97±0.80 26.77±4.39 5.14±0.86 13.77±1.54 0.35±0.08 3.52±0.48 12.52±1.40 4.05
T. toli Pelagic 18 30.68±2.54 646.82±41.16 5.26±0.49 13.61±0.82 0.31±0.07 3.11±0.54 10.72±1.47 3.75

Water(ml/l)
0.006±0.003 0.017±0.006 0.002±0.001 0.006±0.002 0.006±0.001

Guidelines
FAO 1 2.5 0.2 1 10 FAO, 1983
WHO 0.01 2 - 0.15 3 WHO, (1985)
EU - 0.1 0.05 1 3 EU, (2001)
Bangladesh (fish) 5 0.30 0.25 - 5.00 MOFL (2014)
Literature
Coastal area, 
Bangladesh

0.08-13 0.07–0.63 0.03–0.09 0.15–2.2 1.3-14 Raknuzzaman et al., 2016

Arasalar River, India - 0.23 6.13 0.3 - Lakshmanasenthil et al., 2013
North east coast, India 0.64 - 0.33 - 3.9 Kumar et al., 2012
Ganga River, India - 3-6 0.1-2.9 - 10-100 Mitra et al., 2012
Pearl River, China - 8.64 8.55 8.73 2.48 Kwok et al., 2014
Meiliang Bay, China - 0.636 0.173 0.118 0.336 Rajeshkumar et al., 2018
Iskenderun Bay, Turkey - 0.09–6.95 0.01–4.16 0.07–6.46 0.04–5.43 Türkmen et al., 2005
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254 The evaluated MPIs ranged from 3.65 mg/kg to 4.70 mg/kg with the mean of 4.02 mg/kg (Table 

255 1).  Due to higher concentration level, the maximum MPI value (4.70 mg/kg) was corresponded 

256 to A. bato, followed by P. chinensis (4.2 mg/kg) H. limbatus (4.05 mg/kg), T. toli (3.75 mg/kg), 

257 M. cephalus (3.69 mg/kg), and L. parsia (3.65 mg/kg). 

258

259 Kolmogorov-Smirnov and Shapiro-Walk test revealed that the metals in the targeted fish 

260 species were non-normally distributed along the study area. The adopted Levene tests adopted 

261 and resulted that metals were non-homogenouosly distributed. Kruskal-Wallis test identified that 

262 the distribution of metal was significantly different (p ≤ 0.05) in the fish species along the 

263 sampling stations. From Table 2, among the species, L. parsia and H. limbatus exhibited 

264 significant relationship (regression line) with As, while As, T. toil was with As and Pb. None of 

265 the other metals showed a significant linear relationship with the organisms. Among the species, 

266 T. toil showed the maximum response for Pb (R2=99.5%), followed by L. parsia for As 

267 (R2=83.7%).

268

269
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270 Table 2: A regression analysis between metal distributions in the selected specimens.
Species and metals Regression equation Standard error (b) Pearson’s r P values R2 values (%)
A. bato
As y = 8.66+0.99x 0.404 0.774 0.070 58.1
Pb y = 11.88+0.09x 0.511 0.088 0.867 0.7
Cd y = 13.44-0.31x 5.166 -0.029 0.955 0.01
Cr y = 12.70+0.16x 1.25 0.063 0.904 0.4
Cu y =11.56+0.11x 0.168 0.313 0.545 7.5
P. chinensis
As y = 4.19 + 0.55x 0.449 0.522 0.287 13.3
Pb y = 5.14 + 0.13x 0.243 0.257 0.621 2.6
Cd y = 5.72 + 2.81x 2.993 0.425 0.4 5.8
Cr y = 5.75 + 0.34x 0.8 0.205 0.695 4.2
Cu y = 4.58 + 0.18x 0.157 0.502 0.309 25.3  
L. parsia
As y = -0.96 + 0.73x 0.16 0.914 0.01 83.7
Pb y = 7.79 + 0.84x 0.711 0.51 0.301 26.0
Cd y = 0.12 + 0.03x 0.036 0.378 0.459 14.3
Cr y = 1.86 + 0.2x 0.139 0.580 0.227 0.1
Cu y = 4.24 + 0.72x 0.346 0.719 0.107 51.7
M. cephalus
As y = 2.08+0.11x 0.09 0.5 0.311 25.0
Pb y = 23.98-0.42x 0.309 -0.557 -0.557 31.0
Cd y = 0.87-0.02x 0.016 -0.547 0.26 30.0
Cr y = 4.04-0.03x 0.075 -0.216 0.68 4.7
Cu y = 16.95-0.21x 0.257 -0.364 0.477 13.3
H. limbatus
As y = -4.63+0.89x 0.309 0.821 0.045 67.5
Pb y = 1.09+1.156x 0.778 0.596 0.211 35.6
Cd y = 0.36-0.01x 0.048 -0.014 0.978 0.01
Cr y = -0.6+0.38x 0.238 0.620 0.189 38.5
Cu y = 2.54+0.91x 0.749 0.519 0.291 26.9
T. toli
As y= 0.48+ 0.16x 0.059 0.799 0.05 63.9
Pb y= 3.74+0.32x 0.012 0.997 1.11E-5 99.5
Cd y= 0.35-0.01x 0.013 -0.042 0.936 0.2
Cr y= -1.22+ 0.14x 0.08 0.661 0.152 43.8
Cu y= 0.37 + 0.34x 0.236 0.580 0.227 33.7
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272 The Pearson correlation among the metals in different species was presented in Table 3. 

273 In our study, Cd and Pb were found significantly correlated with each other (r = 0.88). Also, Cr 

274 was significantly and positively correlated with Pb (0.664) and Cd (0.698).  Cu also showed a 

275 significant positive association with Cr (r = 0.704).  

276

277

278

279

280

281

282
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284
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286
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293 Table 3. Pearson’s correlation matrix among the metals.

 As Pb Cd Cr Cu
As 1
Pb -0.358 1
Cd -0.300 0.880 1
Cr -0.089 0.664 0.698 1
Cu 0.103 0.633 0.873 0.704 1

294 Significant values are bolded (p ≤ 0.05)

295

296 In the present study, Ward-Linkage method was employed with Euclidean distance, which resulted in three distinct clusters, presented 

297 in Fig 2. Cluster 1 included As, whereas, Pb, Cd, and Cu confined in cluster 2, whereas Cr was found in cluster 3. 

298

299

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2019. ; https://doi.org/10.1101/681478doi: bioRxiv preprint 

https://doi.org/10.1101/681478
http://creativecommons.org/licenses/by/4.0/


17

300                       Figure 2. Hierarchical cluster (dendrogram) using Ward linkage method among the 

301 experimented metals in fish species. 

302

303

304

305 Length-weight Relationship and condition factor evaluation

306 Higher ‘b’ value reflected the appetite state and reproductive organ development of the 

307 species [64]. The identified b value of L. parsia from the length weight relatioship was close to 

308 3, hence, it represented isometric growth pattern that was considered as ideal shape. Meanwhile, 

309 among all, species, P. chinensis exhibited the highest positive allometric growth, which was 37 

310 times higher, than average value and 14 folds, on average, higher than other species. 

311

312
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321 Table 4: Length-weight relationship, growth pattern and Fulton condition factor for the targeted fishes

Species a (intercept) ± SE b (slope regression) 
± SE

Group (Growth 
pattern)

𝑊 =  𝑎𝐿𝑏 Fulton`s Q ± std Fish Condition

A. bato 19.62 ±16.63 3.99±1.24 Positive allometric W = 19.62×L3.99 3.22±0.78 Good
P. chinensis 7.23±25.94 22.88±3.7 Positive allometric W = 7.23×L22.88 51.77±15.26 Good
L. parsia 7.13±3.8 2.76±0.51 Isometric W = 7.13×L2.46 7.10±3.44 Good
M. cephalus 0.002±0.0008 10.85± 4.98 Positive allometric W = 0.002×L10.85 3.56±0.45 Good
H. limbatus 0.01±0.002 2.43±0.41 Negative W = 0.01×L2.43 2.03±0.23 Good
T. toli 164.30±60.97 15.72±1.98 Positive allometric W = 164×L15.72 2.29±0.46 Good
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323 Bioaccumulation (BAF) status of targeted species

324 The estimated BAFs were depicted in Fig 3. The BAFs were ranged from 110.53 for Cd 

325 observed in S4 to 3353.7 for Cu as well. The minimum value was found  for Tenualosa toil, on 

326 the other hand, Apocryptes bato showed maximum bioaccumulation result. Moreover, the mean 

327 BAFs of the metals were observed in the species as follows: Cu (1971.42) > As (1042.93) > Pb 

328 (913.66) > Cr (864.99) > Cd (252.03). 

329

330                      Figure 3. Bioaccumulation factor among the species that were varied from 

331 particular metals and species.

332

333 Health risk evaluation

334 Estimated daily intake (EDI)

335 The explored EDI of two concerned age groups, adults and children, was presented and 

336 summarized in Table 5. The study noted that adults and children showed comparably higher 

337 EDIs for demersal species than pelagic ones. In the consequence, high doses of demersal species 

338 were exposed to the consumers through consuming metal affected fish species as the food items. 

339 The EDIs for both groups were organized in the following order: Pb > Cu > As > Cr > Cd. 

340                  

341                

342

343
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344

345

346 Table 5: A comparison between recommended daily allowance (RDA) and estimated daily intake (EDI) for adults and children.

EDIs (mg/day/person)Elements Mean concentration
(mg/kg)

RDA (mg/kg/person) *
Ad Ch

As 4.89 0.15 0.005 0.029
Pb 13.88 0.25 0.011 0.049
Cd 0.39 0.07 0.001 0.001
Cr 3.36 0.23 0.003 0.012
Cu 12.10 35 0.010 0.042

347 *WHO, 2000

348

349
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350 Target hazard quotient (THQ) for non-carcinogenic risk 

351 The assessed target hazard quotient (THQ) for the studied fish species were displayed in Table 6. 

352 THQs from the study area in the adult group induced to As, Pb, Cd, Cr, and Cu were 0.016, 

353 0.003, 3.0E-04, 0.001 and 2.38E-04, respectively, where for children were 0.097, 0.014, 0.001, 

354 0.004 and 0.001, respectively. Moreover, the rank of the THQs of the elements was as follows: 

355 As > Pb > Cr > Cd > Cu. While, for the cumulative scenario of HI, children were 5.83 times 

356 more susceptible than adults. However, the investigated HI was not surpass the recommended 

357 limit  (Table 6). 
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375

376  Table 6. Calculated THQ, HI and CR for the selected two aged groups.

377

378

THQ (As) THQ (Pb) THQ (Cd) THQ (Cr) THQ (Cu) HI CR (As) CR (Pb) CR (Cd)Species
Ad Ch Ad Ch Ad Ch Ad Ch Ad Ch Ad Ch Ad Ch Ad Ch Ad Ch

A. bato 0.012 0.054 0.003 0.015 0.000 0.002 0.001 0.004 0.000 0.001 0.017 0.077 5.47E-06 2.44E-05 1.79E-05 8.00E-05 2.99E-06 1.30E-05
P. chinensis 0.013 0.059 0.003 0.014 0.000 0.002 0.001 0.004 0.000 0.001 0.018 0.08 5.93E-06 2.64E-05 9.35E-08 7.40E-05 2.18E-06 9.70E-06
L. parsia 0.011 0.051 0.003 0.014 0.000 0.001 0.001 0.004 0.000 0.001 0.016 0.071 5.14E-06 2.29E-05 9.33E-08 4.20E-07 1.68E-06 7.50E-06
M. cephalus 0.013 0.057 0.003 0.013 0.000 0.001 0.001 0.004 0.000 0.001 0.017 0.076 5.77E-06 2.57E-05 8.48E-08 3.80E-07 1.52E-06 6.80E-06
H. limbatus 0.013 0.06 0.003 0.014 0.000 0.001 0.001 0.004 0.000 0.001 0.018 0.08 6.06E-06 2.7E-05 9.2E-08 4.10E-07 1.72E-06 7.70E-06
T. toli 0.030 0.3 0.003 0.014 0.000 0.001 0.001 0.004 0.000 0.001 0.034 0.319 1.35E-05 1.35E-04 9.09E-08 4.00E-07 1.54E-06 6.90E-06
Mean 0.016 0.097 0.003 0.014 0.000 0.001 0.001 0.004 0.000 0.001 0.015 0.079 6.98E-06 4.36E-05 3.07E-06 2.58E-05 1.94E-06 8.64E-06
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379 Carcinogenic risk (CR)

380 Exposure of CR was estimated for a particular element and summarized in Table 6. The 

381 measured CR values of As, Pb and Cd were ranged from 5.14E-06- 1.35E-05, 8.48E-08- 1.79E-

382 05 and 1.52E-06- 2.99E-06 respectively in adults and 2.29E-05- 1.35E-04, 3.78E-07- 7.99E-05 

383 and 6.76E-06- 1.33E-05 in children. The result showed that children were exposed to higher CRs 

384 than adults. But, calculated CR values for both aged groups were noted far from the risk 

385 acceptable range (10-6 to 10-4). 

386

387 Discussion

388 The concentration of heavy metals and source identification

389 In the present study area, T. toil showed the highest concentration of As, whereas A. bato 

390 exhibited the maximum concentration for Pb, Cd, and Cu, and metal, Cr was belonged to at the 

391 highest concentration in P. chinensis. The concentrations of the metal in the editable tissues were 

392 ranked in the following order: A. bato > P. chinensis > H. limbatus > T. toli > M. cephalus > L. 

393 parsia. In terms of MPI, the fact is that, the demersal organisms are closely related to the 

394 sediment that is to be indirect and long-term source for contamination assessment [91]. Present 

395 study showed that, demersal species had comparatively higher concentration level of metals than 

396 pelagic ones. The value of MPI for the present study were ranged from 3.65 to 4.70, whereas 

397 MPI values for Tilapia, Sarotherodon melanotheron and Silver catfish, Chrysichthys 

398 nigrodigitatus were found much higher (8.1 to 17.76) from Okrika Estuary, Nigeria. This is most 

399 likely due to the oil bunkering and transportation activities along the study sites [92]. The 

400 findings of MPI of the present study were almost similar to that of Rutilus rutilus in Pluszne 

401 Lake [1]. The metal accumulation in fishes could be highly influenced by sampling locations and 

402 habitats [93, 94]. 
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403 In terms of source identification, industrial operation and antifungal wood preservative 

404 frequently use As in production, which could deteriorate the water and sediment quality [95]. In 

405 the study area, there are several manufactures industries largely use alloy, sheep, leather 

406 technologies, paints, poisonous chemicals contains As. Modern day microelectronic and optical 

407 industries use heavy metals for their commercial aspect which is termed as notable sources for 

408 As intrusion in the aquatic environment [96]. Nonessential element, Pb comes from extreme 

409 agriculture, poultry forms, industries, and textile mills to the aquatic ecosystem [97] which was 

410 the source of the metal in the study area. Thus the benthic feeders are to be greatly affected by 

411 the deposited Pb in the ecosystem [22]. Cd metal was typically found at a low concentration in 

412 the aquatic environment, however, incognizant use of phosphate fertilizer and industries are two 

413 primary sources of Cd introduction [98]. In the study area, largely operated nickel-cadmium 

414 battery manufactories along with industries engaged with Cd metal incineration and production 

415 may increase the Cd concentration level in the aquatic environment [99, 100]. Beside Cd and Pb, 

416 Cr is also widely introduced in textile industries [101]. Near to the bank of the Karnaphuli 

417 estuary, such commercial textile industries produce color pigment and thus become a common 

418 contaminant for the aquatic ecosystem [102]. Notably, a considerable level of Cu become 

419 swelled up in the study area due to oil droppings from ships and boats, recurrent usage of 

420 antifouling paints and other boating interferes [20].

421           The concentration level of As and Pb from our study was higher than all other findings and 

422 recommended guidelines. Although Cd concentration was at lower level comparing Northeast 

423 coast, Ganga river, and Pearl river, it surpassed the all guideline values along with other coastal 

424 environments, Meiliang Bay, Iskenderun Bay, Arasalar river and Coastal area of Bangladesh. 

425 Similar findings were observed for Cr that crossed the recommended limit and other comparable 
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426 studies except for Pearl river. On the other hand, the Ganga river showed a higher concentration 

427 for Cu, while specimens showed almost 4 times deviation from the accepted limits except for L. 

428 parsia.

429

430 Bioaccumulation (BAF) status of targeted species

431 Bioaccumulation potential of metals was assessed in muscles of various fish species, which were 

432 varied from species to species. The hierarchy suggest that most of the species were tend to be 

433 bioaccumulative as the value approaches near to 1000. A. bato exhibited the highest 

434 concentration of bioaccumulation in the studied area. The accumulation of the metal elements in 

435 an aquatic organism depends upon the classification of species, invasion pathways, metabolic 

436 characters of the sampled tissues and finally, the surrounding the environmental status of the 

437 species living in [103]. In our result, it was observed that, the BAFs of As, Cd, Cr, Pb, and Cu 

438 were relatively higher than that of Pearl river estuary [104], where the BAFs in tilapia were 

439 reported in the following order: Cd > Cu > Pb > Cr. Such reports were mostly in line with our 

440 results. The fact is that, Cu is left persisted actively in muscles due to being an essential element 

441 of living tissue [69, 105]. Notably, the capability of bioaccumulation of Cd takes a long time to 

442 spare that makes it relatively infirm [8].

443

444 Human Health risk evaluation 

445 EDI, based on the oral reference dose (RfD) for an individual element [106] reflects the daily 

446 exposure to the toxic element and is executed to avoid any harmful effect on human health [72]. 

447 The records of EDI of the people were compared with recommended daily allowance (RDA), 

448 provided by WHO, and introduced that, mean EDI values of the metals were still lower than 
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449 RDAs. Values, which were lower than RDA guidelines, revealed a lower possible health effect 

450 to the consumers for those elements. But, it would be unwise to take it as a permanent 

451 measurement to reach a final conclusion describing as ‘acceptable value’ and ‘unacceptable 

452 value’ when the doses were lower than RDAs or Rfds [70, 72].

453 The value found for THQs for both adult and childen were below 1, revealing that 

454 adverse effect on human health might not occur. Similarly, HI result also followed the THQ 

455 trend. Hence, there is no such potential non-carcinogenic effect for the consumers due to intake 

456 of the fish species. Studies carried out by several authors in similar condition were in line with 

457 our results [43, 78, 107-109]. In general, the assessment of THQ for human health risk 

458 evaluation has no dose-response relation of the examined elements [110]. However, human can 

459 be suffered in the long run dramatically by the multiple pollutants simultaneously [86]. 

460 The CRs value lower than 10-4 indicated a negligible health risk.  The CRs value found in 

461 this study suggested an acceptable limit and therefore, consumers are less prone to carcinogenic. 

462 In fact, 90% of the carcinogenic risk is observed for the As contaminated aquatic food items. The 

463 inorganic state of As is lethal than organic one [8, 111] and only 10% of total As can be assessed 

464 as inorganic form [72]. Present study was compared to [112] which found the carcinogenic risk 

465 value was in acceptable range (10-6 to 10-4), except for the metal of Cr which surpassed the CR 

466 limits. The reason was the rapid increase of metal pollution for the last 10 years, that phenomena 

467 support the study area. Again, in the Persian Gulf, consumers were at threshold limit for As in 

468 concern for carcinogenic risk [113]. For this reason, carcinogenic risk should be given more 

469 attention due to intake of aquatic products, especially for the study area.

470

471 Conclusions

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2019. ; https://doi.org/10.1101/681478doi: bioRxiv preprint 

https://doi.org/10.1101/681478
http://creativecommons.org/licenses/by/4.0/


27

472 In the present study, the high concentration of metal was observed in A. bato for relatively high 

473 concentration level of Cu. Moreover, in most cases, metals concentration exceeded the 

474 recommended guideline limits. The maximum metal accumulation was recorded A. bato and 

475 species A. bato, P. chinensis, H. limbatus were observed as extreme bio-accumulative species in 

476 cumulative aspects. Lastly, CR assessment was also in acceptable threshold indicating that, local 

477 consumers were free from the sabotage of cancer risk for the time being but they might affected 

478 in future if still they consume fish from studied region. Finally, children were more vulnerable 

479 for health risk than adults. Nonetheless, further study required ensuring the same conclusions are 

480 reached. 
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