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Abstract
The Karnaphuli, a major river of Bangladesh, located off the coast of Chittagong in the Bay of

Bengal is largely exposed to the heavy metal pollutants, which may be toxic to humans and
aquatic fauna. The estuary is a striking example of a site where human pressure and ecological
values collide with each other. In spite of being a major supplier of fish food for local
community, there has been no study carried out to date to assess the potential human health risk

due to heavy metal contamination in the fish species from this estuary. Therefore, the aim of
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present study was to assess bioaccumulation status and the potential human health risk
evaluation for local consumers. Six commercially important fish species, Apocryptes bato,
Pampus chinensis, Hyporhamphus limbatus, Liza parsia, Mugil cephalus, and Tenualosa toil
from the Karnaphuli River estuary were collected to analyze heavy metals concentration level.
Heavy metals As, Pb, Cd, Cr and Cu were detected from the samples using inductively coupled
plasma mass spectrometry (Model: ELAN9000, Perkin-Elmer, Germany). The hierarchy of the
measured concentration level of the metals was as follows: Pb (mean: 13.88, range: 3.19 - 6.19)
> Cu (mean: 12.10, range: 10.27 - 16.41) > As (mean: 4.89, range: 3.19 — 6.19) > Cr (mean:
3.36, range: 2.46 — 4.17) > Cd (mean: 0.39, range: 0.21 - 0.74). The Fulton’s condition factor
denoted that organisms were particularly in better ‘condition’ and most of the species were in
positive allometric growth. The Bioaccumulation factors (BAFs) observed in the species of the
contaminants were organized in the following ranks: Cu (1971.42) > As (1042.93) > Pb (913.66)
> Cr (864.99) > Cd (252.03), and among all the specimens, demersal fish, 4. bato corresponded
to the maximum bio-accumulative organism. Estimated daily intake (EDI), target hazard quotient
(THQ) and carcinogenic risk (CR) assessed for human health risk implications suggest that the
values are within the acceptable threshold for all sorts of consumers. Hence none of them would
experience non-carcinogenic and carcinogenic health effect for the ingestion of the fishes.
However, children are shown to be largely susceptible than adults to non-carcinogenic and
carcinogenic health effect due to the consumption of fish. Therefore, an appropriate guidlines
and robust management measures needed to be taken to restore the estuarine health condition for
greater benefit of the quality of fish products for local consumption.

Graphical abstract
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Introduction

All living organisms including fish require heavy metals (e.g. Fe, Mn, Cu, Zn, and Cr) within
an acceptable trace amount to function and survive [1]. An excessive amount of Hg, As, Pb, and
Cd elements could be detrimental to the living cells, and a prolonged exposure to the body can
lead to illness or death [2]. Consequently, metals that were widely used to promote food
production caused severe pollution worldwide, and thus had become a global concern in the past
century [3-6]. Within the aquatic environment, such metals are considered as significant
pollutants due to their intrinsic persistence, toxicities, non-biodegradable properties, and
propensity to bioaccumulate up the food web [7-10]. At the end point, the intake of the metals
will be a menace for anyone when heavy metals are consumed at a rate higher than the safe limit
[11].

In the human body, alongside with a higher concentration, ineffective catharsis process
can also make the heavy metals harmful even with a lower concentration [12]. For example,
prostatic proliferative lesions, lung cancer, bone fractures, kidney failures are to be due to
chronic exposure to Cd, even at a low concentration of ~ 1 mg/kg [6, 13]. Cd is also deemed as a
causative agent for long time exposure of skin, vascular, nervous system dysfunction,
reproductive problems, and finally lead to cancer [14, 15]. Pb is termed as a non-essential
element and can have detrimental health effect on human organ [16] including the nervous
system, mental retardation, skeletal hematopoietic function disorder caused to even death [8].
Though Cr is crucial content for diet in terms of lipid metabolism and insulin activation [17], it

can cause carcinogenic effects on human health [18, 19]. Cu plays essential role for enzyme
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functioning and hemoglobin synthesis [20, 21], however could also be a causative agent for
toxicity accelerating nausea, bowel pain, diarrhea along with fever [22].

The aquatic organisms are directly or indirectly affected by these contaminants largely
sourced from industrialization and urbanization [23-25]. Fish occupies higher trophic level in the
food chain and are one of the most common bioindicators for pollutants [26, 27]. For many
years, fishes are considered as a major protein supplier in human food consumption. Thus, the
human body is largely susceptible to be enriched by a higher level of heavy metal concentration
[28].

Generally, biomagnification occurs due to longstanding anthropogenic activities within a
coastal ecosystem [29]. The accumulation of heavy metals in fish organs could also be driven by
physiochemical and biological variables such as pH, temperature, hardness, exposure duration,
feeding habits of species and habitat complexity [30]. While terrestrial species exhibit a strong
pattern of biomagnification, marine and estuarine organisms show less clear pattern [31].
Condition factor, based on length-weight relationship, is one of the most common tools that is
widely used in stock measurement model and to assess the life condition, reproduction records,
health condition, and life cycle of a fish species [32]. Along with that, condition factor also
suggest the food availability and quality, breeding duration, and process for distinct populations
[1, 33]. In addition, this tool indicates the status of fish health due to stress in the population
within an ecosystem [34].

The Karnaphuli river estuary is one of the potential fish population habitats along the
southeast coast of Bay of Bengal known to be an important breeding, feeding and nursery ground
for many aquatic species. At present, the ecosystem is receiving untreated effluents from several

industries including textile crafts, dying industries, and others as it passes through the industrial
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100  zone [35]. A number of studies attempted to assess the contamination status from river and
101  estuarine environment from Bangladesh [3, 36-39], from China [40], from Turkey [41].
102  However, to date there has been no proper investigation carried out on the potential human
103 health risk evaluation due to heavy metal contamination in the fish species harvested and
104  consumed from the Karnaphuli estuarine water body. The present study therefore aims to fill this
105  knowledge gap by assessing the concentration of heavy metals in some selective fish species and
106  their bioaccumulation status in relation to length-weight relationship and condition factor, and
107  the human health risk evaluation for local adult and children consumers.

108

109 Materials and methods

110
111 Ethical statement

112 Live specimens from wild populations were collected from local fishermen. None of the
113 sampled species were endangered or protected. No permit was required to conduct the study on
114  invertebrates. There were no ethical considerations linked to the experiment.

115

116  Sampling
117
118  The Karnaphuli River estuary was selected as the study area located from 22.234008 N and

119  91.821105 E to 22.289695 N and 91.794403 E (Fig. 1). A total of six commercial species (i.e. A.
120 bato, P. chinensis, L. parsia, M. cephalus, H. limbatus, and T. toil) were collected from
121  fishermen for a period of seven months (February 2018 to August 2018) using seine net. The
122 collected samples were kept in plastic ice container and immediately stored in —12° C.

123 Afterwards in the lab, total length (cm) and weights (gm) were measured carefully to the nearest
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124 0.1 cm using a vernier caliper; total weight was determined with an electronic balance to 0.01 g
125  accuracy. Muscles of each specimen were dissected with stainless steel scissors. The dissected
126  samples were then set for further chemical analysis using inductively coupled plasma mass
127  spectrometry (ICP-MS, Model: ELAN9000, Perkin-Elmer, Germany) for metal detection. Data
128  were analyzed statistically by fitting a straight line adopting the least square method.

129

130 Figure 1 Lacation of the six sampling areas along with the source of introduction
131  of the metal into the Karnaphuli river estuary.

132

133 Chemical analysis procedures

134 A 1.5g of dissected muscle portion was dried in an oven at 150° C and then cooled. Afterwards,
135 3 ml of high concentrated H,SO, and NHO; was added and thoroughly mixed with the samples.
136  The solution was heated on an oil bath adding % drops of H,O,, repeated until the mixture was
137  clear. The solution was mineralized using microwave digester (WX-6000, China). A standard
138  reagent (Mark VI; Germany) was used to analyze the prepared samples in triplicate and the
139  accuracy was obtained between 0—4% and 15%. Herein, the analytical accuracy was established
140  at less than 10%.

141

142 Metal pollution index (MPI)

143 To assess the metal pollution, the Metal pollution index (MPI) was adopted following [42] and
144  [43]. The equation is as follows:

145
146 MPI = (CM, x CM, x CM; X ...... x CM,)!/
147
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148  where, CM, is the concentration value of first concerned metal, CM, is the concentration value of
149  second concerned metal, CM; is the concentration of third concerned metal, CM, is the
150  concentration of n, metal (mg/kg dry wt) in the tissue sample of a certain species.

151
152  Statistical analysis

153  The mean and standard deviation of metal concentrations were calculated. The Kolmogorov-
154  Smirnov, Shapiro-Wilk and Kruskal-Wallis tests were performed using SPSS 23. Kolmogorov-
155 Smirnov and Shapiro-Wilk tests were performed to identify the data dispersion avoiding the
156  problems like normal/non-normal of data distribution in the aquatic ecosystem [44]. The
157  Kruskal-Wallis test was carried out to identify significant variance of the targeted elements in the
158  specimens of the studied area where p < 0.05 was used as the cutoff for significance (confidence
159  level in 95%). The employed correlation among the metals was classified in two groups [16],
160  some correlations are positive and some were negative [45-48]. To identify the similar groups of
161  the elements at the sampling sites, cluster analysis was executed with special variability [3, 49].
162  Resemble metals were in line in one cluster, while the dissimilar group of elements was plotted
163 in another cluster to identify the term of contamination status [50-52].

164

165  Bioaccumulation factor

166  Bioaccumulation factors (BAFs) were calculated as a ratio between the concentration level of
167  biota (those in water) and the living environment of the specimens and was expressed as follows
168  [53-55]:

CnBiota
169 BAF = —
CnWater

170  where Cngjyq 1s the concentration of metal in the tissues (mg/kg) and Cnyygeer 1S the metal

171  concentration in the aquatic environment (mg/l). BAF is categorized as follows: BAF < 1000: no
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172 probability of accumulation; 1000 < BAF < 5000: bioaccumulative; BAF > 5000: extremely
173  bioaccumulative [56].

174  Length-weight relationship and condition factor

175  The length-weight relationship of the fish samples were calculated using Fulton condition factor

176  following the equation [57-60]:

177 Q =100 X W/L3

178  Where W is the total body weight of fish (gm), L is the total length of fish (cm). Fulton's Q is
179  categorized as follows: Q = 1: Condition is poor, Q = 1.2: condition is moderate, Q > 1.40:
180  condition is proportionally good [61]. The equation can be expressed by the following formula
181 [1,62]:

182 W= alb

183  The equation can be estimated using the least-square formula adopted with the logarithm form of
184  the equation is shown as [63]:

185 log W =loga + blogL

186  where, ‘a' is the calculated intercept of the regression line, and ‘b’ is the coefficient of that
187  regression. The ‘b’ values signify the growth pattern of an organism which can be classified as
188  follows: b < 3: negative allometric, b = 3: Isometric and b > 3: positive allometric [57, 64].

189 As Fulton’s Q is substantially correlated with the length-weight relationship, exponent ‘b’
190  acts an identical role of determining the well-being of the organisms [57]. The deviation of the
191  condition, further, depends on the food availability and the divergence of reproductive organ
192 development [65].

193
194 Human health risk

195  Estimated daily intake (EDI)
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196  Estimated daily intake (EDI) was calculated by the following equation [19, 66, 67]:

(Cn x IGT)

197 EDI Bt

198
199  Where, Cn is the concentration level of metal in the selected fish tissues (mg/kg dry-wt); IGr is

200  the acceptable ingestion rate, which is 55.5 g/day for adults and 52.5 g/day for children [68, 69];
201  Bwt is the body weight: 70 kg for adults and 15 kg for children [68§].

202

203  Target hazard quotient (THQ) for non-carcinogenic risk assessment

204 THQ was estimated by the ratio of EDI and oral reference dose (RfD). RfDs of the different
205  metals for example As, Pb, Cd, Cr, and Cu are 0.0003, 0.002, 0.001, 0.003 and 0.3, respectively
206  [68, 70]. The value of ratio < 1 implies a non-significant risk effects [71]. The THQ formula is

207  expressed as follows [69, 72-74]:

Eq X E, X EDI

-3
A¢ X RfD x 10

208 THQs =

209  Where E; is exposure duration (65 years) (USEPA, 2008); E, is exposure frequency (365
210  days/year) [18]; A; is the average time for the non-carcinogenic element (Eg X E,,).

211
212  Hazard index (HI)
213 Hazard index (HI) was calculated for the multiple elements (Hg, As, Mn, and Cr) found in the

214  fish samples and the equation is as follows [3, 16, 75, 76]:

n
215 HI = ZTHQS
i=k

216  where, THQs is the estimated risk value for individual metal [77]. When HI value is higher than

217 10, the non-carcinogenic risk effect is considered high for exposed consumers [78-80].
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218
219  Carcinogenic risk (CR)

220  To assess the probability of developing cancer over a lifetime, the carcinogenic risk is evaluated
221  for the consequence of exposure to the substantial carcinogens [81, 82]. The acceptable range of
222 the risk limit is 10 to 10 [83-86]. CRs higher than 10 are likely to increase the probability of
223 carcinogenic risk effect [87, 88]. The established equation to assess the CR is as follows [69, 70,
224 89, 90]:

Eq X Ep X EDI X CSf

— -3
225 CR= A, x 10

226  Where CSf is oral slope factor of particular carcinogen (mg/kg-day) [83]. Available CSf values
227  (mg/kg-day) are: As (1.5), Pb (0.0085) and Cd (6.3) [83].

228
229  Results

230  The concentration of heavy metals and source identification

231 The average concentration of Pb, Cu, As, Cr, and Cd from the fish tissues were 13.88
232 (range: 3.19 — 6.19); 12.10 (range: 10.27 — 16.41); 4.89 (range: 3.19 — 6.19); 3.36 (range: 2.46 —
233 4.17), and 0.39 (range: 0.21 — 0.74) respectively. The maximum mean concentration was Pb and
234  minimum was Cd (please see Table 1).

235
236
237
238
239
240
241
242

10


https://doi.org/10.1101/681478
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/681478; this version posted June 26, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

243
244
245
246
247
248
249

11


https://doi.org/10.1101/681478
http://creativecommons.org/licenses/by/4.0/

250

Table 1. Concentration of heavy metals of different species and their feeding nature, length and weight and a comparison of other

251  relevant studies along with various standard guideline values.
252
Species Feeding  Amounts Length Weight Heavy metals (mean + std) MPI References
nature (cm) (gm) mg/kg
As Pb Cd Cr Cu
A. bato Demersal 18 13.26£1.35 72.64+6.39 4.65+1.06 15.2241.32  0.60+0.13 3.54+0.54 15.2943.82 4.70
P. chinensis Demersal 18 6.96+:0.90  166.58+21.68  5.03+0.86 14+1.79 0.44+0.14 3.59+0.55 13.10£2.49  4.29
L. parsia Demersal 18 7.34+1.17  25.2043.12 4.36+0.93 13.98+1.93  0.34+0.09 3.30+0.40 9.50+1.16 3.65
M. cephalus Pelagic 18 27174230 711.44+111.03 4.89+0.48 12.70£1.72  0.31£0.09 3.14+0.36 11.48+1.27  3.69
H. limbatus Pelagic 18 10.97+0.80 26.77+4.39 5.14+0.86 13.7741.54  0.35+0.08 3.5240.48 12.5241.40  4.05
T. toli Pelagic 18 30.68+2.54 646.82+41.16  5.26+0.49 13.61£0.82  0.31+0.07 3.11+0.54 10.72+1.47  3.75
0.006+0.003  0.017+0.006 0.002+0.001  0.006+0.002 0.006+0.001
Water(ml/l)
Guidelines
FAO 1 2.5 0.2 1 10 FAO, 1983
WHO 0.01 2 - 0.15 3 WHO, (1985)
EU - 0.1 0.05 1 3 EU, (2001)
Bangladesh (fish) 5 0.30 0.25 - 5.00 MOFL (2014)
Literature
Coastal area, 0.08-13 0.07-0.63 0.03-0.09 0.15-2.2 1.3-14 Raknuzzaman et al., 2016
Bangladesh
Arasalar River, India - 0.23 6.13 0.3 - Lakshmanasenthil et al., 2013
North east coast, India 0.64 - 0.33 - 39 Kumar et al., 2012
Ganga River, India - 3-6 0.1-2.9 - 10-100 Mitra et al., 2012
Pearl River, China - 8.64 8.55 8.73 2.48 Kwok et al., 2014
Meiliang Bay, China - 0.636 0.173 0.118 0.336 Rajeshkumar et al., 2018
Iskenderun Bay, Turkey - 0.09-6.95 0.01-4.16 0.07-6.46 0.04-5.43 Tiirkmen et al., 2005

12
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254  The evaluated MPIs ranged from 3.65 mg/kg to 4.70 mg/kg with the mean of 4.02 mg/kg (Table
255 1). Due to higher concentration level, the maximum MPI value (4.70 mg/kg) was corresponded
256  to A. bato, followed by P. chinensis (4.2 mg/kg) H. limbatus (4.05 mg/kg), T. toli (3.75 mg/kg),
257 M. cephalus (3.69 mg/kg), and L. parsia (3.65 mg/kg).

258

259 Kolmogorov-Smirnov and Shapiro-Walk test revealed that the metals in the targeted fish
260  species were non-normally distributed along the study area. The adopted Levene tests adopted
261  and resulted that metals were non-homogenouosly distributed. Kruskal-Wallis test identified that
262  the distribution of metal was significantly different (p < 0.05) in the fish species along the
263  sampling stations. From Table 2, among the species, L. parsia and H. limbatus exhibited
264  significant relationship (regression line) with As, while 4s, T. toil was with As and Pb. None of
265  the other metals showed a significant linear relationship with the organisms. Among the species,
266  T. toil showed the maximum response for Pb (R?=99.5%), followed by L. parsia for As
267  (R*=83.7%).

268

269

13
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270

Table 2: A regression analysis between metal distributions in the selected specimens.

Species and metals Regression equation Standard error (b) Pearson’s r P values R? values (%)
A. bato

As y = 8.66+0.99x 0.404 0.774 0.070 58.1
Pb y = 11.88+0.09x 0.511 0.088 0.867 0.7
Cd y =13.44-0.31x 5.166 -0.029 0.955 0.01
Cr y = 12.70+0.16x 1.25 0.063 0.904 0.4
Cu y=11.56+0.11x 0.168 0.313 0.545 7.5
P. chinensis

As y=4.19 + 0.55x 0.449 0.522 0.287 13.3
Pb y=5.14+0.13x 0.243 0.257 0.621 2.6
Cd y=5.72+2.81x 2.993 0.425 0.4 5.8
Cr y=5.75+ 0.34x 0.8 0.205 0.695 4.2
Cu y =458+ 0.18x 0.157 0.502 0.309 253
L. parsia

As y=-0.96 + 0.73x 0.16 0.914 0.01 83.7
Pb y=7.79 + 0.84x 0.711 0.51 0.301 26.0
Cd y=0.12 + 0.03x 0.036 0.378 0.459 14.3
Cr y=1.86+0.2x 0.139 0.580 0.227 0.1
Cu y=4.24+ 0.72x 0.346 0.719 0.107 51.7
M. cephalus

As y=2.08+0.11x 0.09 0.5 0.311 25.0
Pb y =23.98-0.42x 0.309 -0.557 -0.557 31.0
Cd y =0.87-0.02x 0.016 -0.547 0.26 30.0
Cr y =4.04-0.03x 0.075 -0.216 0.68 4.7
Cu y=16.95-0.21x 0.257 -0.364 0.477 133
H. limbatus

As y = -4.63+0.89x 0.309 0.821 0.045 67.5
Pb y = 1.09+1.156x 0.778 0.596 0.211 35.6
Cd y =0.36-0.01x 0.048 -0.014 0.978 0.01
Cr y =-0.6+0.38x 0.238 0.620 0.189 38.5
Cu y=2.54+0.91x 0.749 0.519 0.291 26.9
T. toli

As y=0.48+0.16x 0.059 0.799 0.05 63.9
Pb y=3.74+0.32x 0.012 0.997 1.11E-5 99.5
Cd y=0.35-0.01x 0.013 -0.042 0.936 0.2
Cr y=-1.22+0.14x 0.08 0.661 0.152 43.8
Cu y=0.37 + 0.34x 0.236 0.580 0.227 33.7

14
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272 The Pearson correlation among the metals in different species was presented in Table 3.
273 In our study, Cd and Pb were found significantly correlated with each other (r = 0.88). Also, Cr
274  was significantly and positively correlated with Pb (0.664) and Cd (0.698). Cu also showed a
275  significant positive association with Cr (r = 0.704).

276
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293  Table 3. Pearson’s correlation matrix among the metals.

As Pb Cd Cr Cu
As 1
Pb -0.358 1
Cd -0.300 0.880 1
Cr -0.089 0.664 0.698 1
Cu 0.103 0.633 0.873 0.704 1
294 Significant values are bolded (p < 0.05)

295

296 In the present study, Ward-Linkage method was employed with Euclidean distance, which resulted in three distinct clusters, presented
297  in Fig 2. Cluster 1 included As, whereas, Pb, Cd, and Cu confined in cluster 2, whereas Cr was found in cluster 3.

298
299
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300 Figure 2. Hierarchical cluster (dendrogram) using Ward linkage method among the
301  experimented metals in fish species.

302

303

304

305 Length-weight Relationship and condition factor evaluation

306 Higher ‘b’ value reflected the appetite state and reproductive organ development of the
307  species [64]. The identified b value of L. parsia from the length weight relatioship was close to
308 3, hence, it represented isometric growth pattern that was considered as ideal shape. Meanwhile,
309 among all, species, P. chinensis exhibited the highest positive allometric growth, which was 37
310  times higher, than average value and 14 folds, on average, higher than other species.
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321

Table 4: Length-weight relationship, growth pattern and Fulton condition factor for the targeted fishes

Species a (intercept) + SE b (slope regression)  Group (Growth W = alb Fulton's Q + std Fish Condition
+ SE pattern)
A. bato 19.62 £16.63 3.99+1.24 Positive allometric =~ W = 19.62xL3° 3.22+0.78 Good
P. chinensis 7.23+25.94 22.88+3.7 Positive allometric W =7.23x[2238 51.77+15.26 Good
L. parsia 7.13+£3.8 2.76+0.51 Isometric W =7.13x1246 7.10+3.44 Good
M. cephalus 0.002+0.0008 10.85+4.98 Positive allometric W = 0.002xL 1085 3.56+0.45 Good
H. limbatus 0.01£0.002 2.43+0.41 Negative W=0.01xL24 2.03+0.23 Good
T. toli 164.30+60.97 15.72+1.98 Positive allometric W = 164xL1572 2.294+0.46 Good
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323  Bioaccumulation (BAF) status of targeted species
324 The estimated BAFs were depicted in Fig 3. The BAFs were ranged from 110.53 for Cd

325  observed in S4 to 3353.7 for Cu as well. The minimum value was found for Tenualosa toil, on
326  the other hand, Apocryptes bato showed maximum bioaccumulation result. Moreover, the mean
327  BAFs of the metals were observed in the species as follows: Cu (1971.42) > As (1042.93) > Pb
328 (913.66) > Cr (864.99) > Cd (252.03).

329

330 Figure 3. Bioaccumulation factor among the species that were varied from
331  particular metals and species.

332
333  Health risk evaluation

334  Estimated daily intake (EDI)

335 The explored EDI of two concerned age groups, adults and children, was presented and
336  summarized in Table 5. The study noted that adults and children showed comparably higher
337  EDIs for demersal species than pelagic ones. In the consequence, high doses of demersal species
338  were exposed to the consumers through consuming metal affected fish species as the food items.
339  The EDIs for both groups were organized in the following order: Pb > Cu > As > Cr > Cd.

340
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344
345

346  Table 5: A comparison between recommended daily allowance (RDA) and estimated daily intake (EDI) for adults and children.

Elements Mean concentration RDA (mg/kg/person) * EDIs (mg/day/person)
(mg/kg) Ad Ch
As 4.89 0.15 0.005 0.029
Pb 13.88 0.25 0.011 0.049
Cd 0.39 0.07 0.001 0.001
Cr 3.36 0.23 0.003 0.012
Cu 12.10 35 0.010 0.042
347  *WHO, 2000

348
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350 Target hazard quotient (THQ) for non-carcinogenic risk

351  The assessed target hazard quotient (THQ) for the studied fish species were displayed in Table 6.
352  THQs from the study area in the adult group induced to As, Pb, Cd, Cr, and Cu were 0.016,
353 0.003, 3.0E-04, 0.001 and 2.38E-04, respectively, where for children were 0.097, 0.014, 0.001,
354  0.004 and 0.001, respectively. Moreover, the rank of the THQs of the elements was as follows:
355 As > Pb > Cr > Cd > Cu. While, for the cumulative scenario of HI, children were 5.83 times
356  more susceptible than adults. However, the investigated HI was not surpass the recommended
357  limit (Table 6).

358
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375

376  Table 6. Calculated THQ, HI and CR for the selected two aged groups.

Species THQ (As) THQ (Pb) THQ (Cd) THQ (Cr) THQ (Cu) HI CR (As) CR (Pb) CR (Cd)
Ad Ch Ad Ch Ad Ch Ad Ch Ad Ch Ad Ch Ad Ch Ad Ch Ad Ch
A. bato 0.012 0.054 0.003 0.015 0.000 0.002 0.001 0.004 0.000 0.001 0.017 0.077 547E-06 244E-05 179E-05 8.00E-05 2.99E-06 1.30E-05
P. chinensis  0.013  0.059 0.003 0.014 0.000 0.002 0.001 0.004 0.000 0.001 0.018 0.08 593E-06 2.64E-05 9.35E-08 7.40E-05 2.18E-06 9.70E-06
L. parsia 0.011 0.051 0.003 0.014 0.000 0.001 0.001 0.004 0.000 0.001 0.016 0.071 5.14B-06 229E-05 9.33E-08 4.20E-07 1.68E-06 7.50E-06
M. cephalus  0.013  0.057 0.003 0.013 0.000 0.001 0.001 0.004 0.000 0.001 0.017 0.076 5.77E-06 2.57E-05 848E-08 3.80E-07 1.52E-06 6.80E-06
H. limbatus  0.013 0.06  0.003 0.014 0.000 0.001 0.001 0.004 0.000 0.001 0.018 0.08 6.06E-06 2.7E-05 92E-08  4.10E-07 1.72E-06 7.70E-06
T. toli 0.030 0.3 0.003 0.014 0.000 0.001 0.001 0.004 0.000 0.001 0.034 0319 135E-05 1.35E-04 9.09E-08 4.00E-07 1.54E-06 6.90E-06
Mean 0.016 0.097 0.003 0.014 0.000 0.001 0.001 0.004 0.000 0.001 0.015 0.079 698E-06 4.36E-05 3.07E-06 2.58E-05 1.94E-06 8.64E-06
377
378
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379  Carcinogenic risk (CR)

380 Exposure of CR was estimated for a particular element and summarized in Table 6. The
381 measured CR values of As, Pb and Cd were ranged from 5.14E-06- 1.35E-05, 8.48E-08- 1.79E-
382 05 and 1.52E-06- 2.99E-06 respectively in adults and 2.29E-05- 1.35E-04, 3.78E-07- 7.99E-05
383  and 6.76E-06- 1.33E-05 in children. The result showed that children were exposed to higher CRs
384  than adults. But, calculated CR values for both aged groups were noted far from the risk
385  acceptable range (10°to 10-4).

386

387 Discussion

388  The concentration of heavy metals and source identification

389 In the present study area, 7. toil showed the highest concentration of As, whereas A. bato
390  exhibited the maximum concentration for Pb, Cd, and Cu, and metal, Cr was belonged to at the
391  highest concentration in P. chinensis. The concentrations of the metal in the editable tissues were
392 ranked in the following order: 4. bato > P. chinensis > H. limbatus > T. toli > M. cephalus > L.
393  parsia. In terms of MPI, the fact is that, the demersal organisms are closely related to the
394  sediment that is to be indirect and long-term source for contamination assessment [91]. Present
395  study showed that, demersal species had comparatively higher concentration level of metals than
396  pelagic ones. The value of MPI for the present study were ranged from 3.65 to 4.70, whereas
397 MPI values for Tilapia, Sarotherodon melanotheron and Silver catfish, Chrysichthys
398  nigrodigitatus were found much higher (8.1 to 17.76) from Okrika Estuary, Nigeria. This is most
399  likely due to the oil bunkering and transportation activities along the study sites [92]. The
400 findings of MPI of the present study were almost similar to that of Rutilus rutilus in Pluszne
401  Lake [1]. The metal accumulation in fishes could be highly influenced by sampling locations and

402 habitats [93, 94].
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403 In terms of source identification, industrial operation and antifungal wood preservative
404  frequently use As in production, which could deteriorate the water and sediment quality [95]. In
405  the study area, there are several manufactures industries largely use alloy, sheep, leather
406  technologies, paints, poisonous chemicals contains As. Modern day microelectronic and optical
407  industries use heavy metals for their commercial aspect which is termed as notable sources for
408  As intrusion in the aquatic environment [96]. Nonessential element, Pb comes from extreme
409  agriculture, poultry forms, industries, and textile mills to the aquatic ecosystem [97] which was
410  the source of the metal in the study area. Thus the benthic feeders are to be greatly affected by
411  the deposited Pb in the ecosystem [22]. Cd metal was typically found at a low concentration in
412  the aquatic environment, however, incognizant use of phosphate fertilizer and industries are two
413  primary sources of Cd introduction [98]. In the study area, largely operated nickel-cadmium
414  battery manufactories along with industries engaged with Cd metal incineration and production
415  may increase the Cd concentration level in the aquatic environment [99, 100]. Beside Cd and Pb,
416  Cr is also widely introduced in textile industries [101]. Near to the bank of the Karnaphuli
417  estuary, such commercial textile industries produce color pigment and thus become a common
418  contaminant for the aquatic ecosystem [102]. Notably, a considerable level of Cu become
419  swelled up in the study area due to oil droppings from ships and boats, recurrent usage of
420  antifouling paints and other boating interferes [20].

421 The concentration level of As and Pb from our study was higher than all other findings and
422 recommended guidelines. Although Cd concentration was at lower level comparing Northeast
423  coast, Ganga river, and Pearl river, it surpassed the all guideline values along with other coastal
424  environments, Meiliang Bay, Iskenderun Bay, Arasalar river and Coastal area of Bangladesh.

425  Similar findings were observed for Cr that crossed the recommended limit and other comparable
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426  studies except for Pearl river. On the other hand, the Ganga river showed a higher concentration
427  for Cu, while specimens showed almost 4 times deviation from the accepted limits except for L.
428  parsia.

429

430  Bioaccumulation (BAF) status of targeted species

431  Bioaccumulation potential of metals was assessed in muscles of various fish species, which were
432  varied from species to species. The hierarchy suggest that most of the species were tend to be
433  bioaccumulative as the value approaches near to 1000. A. bato exhibited the highest
434  concentration of bioaccumulation in the studied area. The accumulation of the metal elements in
435  an aquatic organism depends upon the classification of species, invasion pathways, metabolic
436  characters of the sampled tissues and finally, the surrounding the environmental status of the
437  species living in [103]. In our result, it was observed that, the BAFs of As, Cd, Cr, Pb, and Cu
438  were relatively higher than that of Pearl river estuary [104], where the BAFs in tilapia were
439  reported in the following order: Cd > Cu > Pb > Cr. Such reports were mostly in line with our
440  results. The fact is that, Cu is left persisted actively in muscles due to being an essential element
441  of living tissue [69, 105]. Notably, the capability of bioaccumulation of Cd takes a long time to
442  spare that makes it relatively infirm [8].

443

444  Human Health risk evaluation

445  EDI, based on the oral reference dose (RfD) for an individual element [106] reflects the daily
446  exposure to the toxic element and is executed to avoid any harmful effect on human health [72].
447  The records of EDI of the people were compared with recommended daily allowance (RDA),

448  provided by WHO, and introduced that, mean EDI values of the metals were still lower than
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449  RDAs. Values, which were lower than RDA guidelines, revealed a lower possible health effect
450  to the consumers for those elements. But, it would be unwise to take it as a permanent
451 measurement to reach a final conclusion describing as ‘acceptable value’ and ‘unacceptable
452  value’ when the doses were lower than RDAs or Rfds [70, 72].

453 The value found for THQs for both adult and childen were below 1, revealing that
454  adverse effect on human health might not occur. Similarly, HI result also followed the THQ
455  trend. Hence, there is no such potential non-carcinogenic effect for the consumers due to intake
456  of the fish species. Studies carried out by several authors in similar condition were in line with
457  our results [43, 78, 107-109]. In general, the assessment of THQ for human health risk
458  evaluation has no dose-response relation of the examined elements [110]. However, human can
459  be suffered in the long run dramatically by the multiple pollutants simultaneously [86].

460 The CRs value lower than 10 indicated a negligible health risk. The CRs value found in
461  this study suggested an acceptable limit and therefore, consumers are less prone to carcinogenic.
462  In fact, 90% of the carcinogenic risk is observed for the As contaminated aquatic food items. The
463  inorganic state of As is lethal than organic one [8, 111] and only 10% of total As can be assessed
464  as inorganic form [72]. Present study was compared to [112] which found the carcinogenic risk
465  value was in acceptable range (10 to 10-4), except for the metal of Cr which surpassed the CR
466  limits. The reason was the rapid increase of metal pollution for the last 10 years, that phenomena
467  support the study area. Again, in the Persian Gulf, consumers were at threshold limit for As in
468  concern for carcinogenic risk [113]. For this reason, carcinogenic risk should be given more
469  attention due to intake of aquatic products, especially for the study area.

470

471  Conclusions

26


https://doi.org/10.1101/681478
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/681478; this version posted June 26, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

472 In the present study, the high concentration of metal was observed in 4. bato for relatively high
473  concentration level of Cu. Moreover, in most cases, metals concentration exceeded the
474  recommended guideline limits. The maximum metal accumulation was recorded 4. bato and
475  species A. bato, P. chinensis, H. limbatus were observed as extreme bio-accumulative species in
476  cumulative aspects. Lastly, CR assessment was also in acceptable threshold indicating that, local
477  consumers were free from the sabotage of cancer risk for the time being but they might affected
478  in future if still they consume fish from studied region. Finally, children were more vulnerable
479  for health risk than adults. Nonetheless, further study required ensuring the same conclusions are
480  reached.
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