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Data-Independent Acquisition (DIA) generates comprehensive yet complex mass spectrometric data, 

which imposes the use of data-dependent acquisition (DDA) libraries for deep peptide-centric detection. 

We here show that DIA can be redeemed from this dependency by combining predicted fragment 

intensities and retention times with narrow window DIA. This eliminates variation in library building and 

omits stochastic sampling, finally making the DIA workflow fully deterministic. Especially for clinical 

proteomics, this has the potential to facilitate inter-laboratory comparison. 

 

Significance of the Study 

Data-independent acquisition (DIA) is quickly developing into the most comprehensive strategy to 

analyse a sample on a mass spectrometer. Correspondingly, a wave of data analysis strategies has 

followed suit, improving the yield from DIA experiments with each iteration. As a result, a worldwide 

wave of investments in DIA is already taking place in anticipation of clinical applications. Yet, there is 

considerable confusion about the most useful and efficient way to handle DIA data, given the plethora of 

possible approaches with little regard for compatibility and complementarity. In our manuscript, we 

outline the currently available peptide-centric DIA data analysis strategies in a unified graphic called the 

DIAmond DIAgram. This leads us to an innovative and easily adoptable approach based on predicted 

spectral information. Most importantly, our contribution removes what is arguably the biggest bottleneck 

in the field: the current need for Data Dependent Acquisition (DDA) prior to DIA analysis. Fractionation, 

stochastic data acquisition, processing and identification all introduce bias in the library. By generating 

libraries through data independent, i.e. deterministic acquisition, stochastic sampling in the DIA workflow 

is now fully omitted. This is a crucial step towards increased standardization. Additionally, our results 

demonstrate that a proteome-wide predicted spectral library can surrogate an exhaustive DDA Pan-

Human library that was built based on 331 prior DDA runs.  
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Article 

With DIA, an MS instrument regularly measures precursor ions and continuously cycles through 

predefined mass over charge ratio (m/z) windows to equally regularly measure the intensity of their 

fragment ions throughout a liquid chromatography (LC) gradient. This is both more qualitative and 

quantitative than data-dependent acquisition (DDA), where precursor ions are measured intermittently 

while fragment ions are only measured stochastically. However, the complexity of DIA data has shown to 

be very challenging.  

To date, the most common way to address this complexity is using previously identified peptides from 

DDA as targets in the DIA data. First, DDA peptide identifications are translated into a spectral library with 

Peptide Query Parameters (PQPs), which typically contain the sequence as well as the analytical 

coordinates (m/z, intensity, and retention time or RT) for the observed ions for a given peptide. These 

PQPs are then used to compute an evidence score for each target peptide, based on its fragment traces 

in DIA [1]. Ultimately, these evidence scores are supplemented with additional features, e.g. ppm and RT 

errors, allowing a semi-supervised machine learning algorithm to weigh and re-score the target peptides 

to obtain a maximum of true targets at an empirically determined False Discovery Rate (FDR) using the 

target-decoy approach [2][3][4].  

Unfortunately, deriving PQPs from DDA data intrinsically means transferring its limitations. In fact, 

fractionation, stochastic data acquisition, processing and identification introduce bias in the library and 

require considerable effort. This compromises inter-laboratory comparison and can even alter the 

biological conclusions between labs [5]. However, thanks to the availability of state-of-the-art prediction 

algorithms, these PQPs can now be predicted directly, setting the stage for much easier and much more 

reproducible peptide-centric DIA data extraction [6][7][8]. 

Here, we compare the effect of using libraries from different origins on peptide-centric approaches, by 

assessing their qualitative and quantitative performance on a public wide window (10 - 20 m/z) DIA 

dataset of HeLA cells [9] (Figure 1). Three basic spectral libraries were used here, with PQPs derived from 

(a) an experimental DDA dataset, (b) a protein sequence database (FASTA), and (c) a predicted spectral 

dataset. Each of these three libraries can be used directly as a source library, or can be converted into a 

DIA library by using them first on a narrow window (2 m/z) DIA dataset of the sample. The resulting six 

possible libraries can all be used alike by the EncyclopeDIA software to identify and quantify wide window 

DIA data [9].  

In-house or public DDA source libraries are frequently built by extensive fractionation of samples. With 

adequate statistical control, such proteotypic libraries allow direct peptide detections in wide window 

DIA (Figure 1Aa) [10]. We illustrate this by using the publically available Pan-Human library, which contains 

nearly 10.000 proteins derived from 331 DDA runs on a range of human cell lines and tissues [11] (Figure 

1Ba). To reduce the effort and variability from DDA library building, a library-free peptide-centric data 

analysis workflow was proposed recently [12]. Herein, the PECAN (or Walnut) scoring algorithm allows 

direct detection of peptides derived from a FASTA in wide window DIA data (Figure 1Ab). This is akin to a 

source library that (i) contains only peptide sequences and m/z coordinates, and (ii) lacks prior selection 

of proteotypic peptides. On wide window DIA data this approach thus provides a limited number of PQPs, 

which is not sufficient to differentiate between the high number of false targets, i.e. true negatives, and 

the lower number of true positives in the library [13]. This manifests as indiscernible target and decoy 

score distributions, resulting in a very high False Negative Rate (FNR) (Figure 1Bb).  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 22, 2019. ; https://doi.org/10.1101/681429doi: bioRxiv preprint 

https://doi.org/10.1101/681429
http://creativecommons.org/licenses/by/4.0/


Page 3 of 6 
 

Figure 1. Peptide-centric data extraction from wide window DIA data. (A) DIAmond DIAgram presenting peptide-centric strategies 

for DIA data extraction. Peptide-centric approaches rely on libraries (central column) that contain Peptide Query Parameters 

(PQPs) which are derived from the peptide sequence and can additionally contain the three ion coordinates, i.e. mass to charge 

ratio (m/z), Intensity (Int) and retention time (RT) (three-part pie charts). These can either be experimental (blue), theoretical 

(grey), or predicted (red). PQPs are used to score the evidence of peptide detections in continuous DIA data (boxes). These are 

supplemented with additional features of the match so that a support vector machine can weigh and re-score them to obtain a 

maximum of true targets at an empirically determined FDR using the target-decoy approach (arrow heads). DDA source libraries 

(both in-house and public) only comprise prior proteotypic peptide identifications and contain measured PQPs for all three ion 

coordinates. These are therefore directly applicable to quantify peptides in 10 – 20 m/z wide window DIA (Wide DIA) data (a). 

However, when a proteome FASTA is used as a source library, sensitivity is reduced (dashed arrow), i.e. too many false negatives 

are produced due to the high statistical burden (b). This also holds for libraries with predicted fragment intensities (MS²PIP) and 

RT (Elude), albeit to a lesser extent (c). Prior 2 m/z narrow window DIA (Narrow DIA) provides the specificity to remove false 

targets in the sample first (d)(e)(f). The DIA ion coordinates from these detections can additionally be integrated into new and 

calibrated PQPs (cal). These DIA libraries, called chromatogram libraries, can be derived from any source library (triple arrow). 

(B) Doubly and triply charged peptide detections in wide window DIA following each of the routes depicted in (A). Shading 

highlights the number of peptides that is detected in triplicate wide window DIA runs with at least three transitions, allowing 

robust quantification. (C) Comparison of the identified peptide sequences in Wide DIA for route (d), (e) and (f). The large overlap 

shows that all three approaches detect proteotypic peptides. Only peptides of double and triple charge that are detected in 

triplicate wide window DIA runs with at least three transitions are shown.    

Here we propose a promising way to improve upon the FASTA source library - while still omitting prior 

DDA - by predicting fragment ion intensity and RT in silico (Figure 1Ac and Figures S1-S2). Using a spectral 

dataset with such predicted fragment intensities (MS²PIP) and peptide RTs (Elude) more than doubles 

the number of peptides detected in the wide window DIA (Figure 1Bc) [6][14]. However, considering all 

tryptic peptides in a Human proteome still underperforms compared to the Pan-Human DDA library, 

which is fully contained in the predicted spectral dataset (Figure 1Ba and 1Bc). Notably, this is not due to 

poor prediction because predicting only those peptides present in the Pan-Human library performs very 

similar to using the Pan-Human library directly (Figure S3) and the underperformance can thus only be 

attributed to the many false targets when using the complete database [10]. An elegant way to filter out 

false target peptides upfront, is by measuring a pool from every condition with staggered narrow window 

DIA (Figure 1Ad, 1Ae and 1Af). This reduces MS2 chimericity to DDA-like quality in a DIA setting, allowing 

detection with increased specificity. This accurate prior filtering makes the statistical burden of false 

targets in the wide window DIA surmountable again. Notably, due to instrument limitations this Precursor 
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Acquisition Independent From Ion Count (PAcIFIC) [15] can currently only be performed by means of gas 

phase fractionation (GPF), i.e. sampling different m/z regions separately [9]. Still, the added acquisition 

depth and specificity allows the detection of 88k (DDA), 47k (FASTA) and 95k (predicted) peptides in six 

narrow window GPF DIA runs of a HeLA cell lysate (Figure S4). To assure that this additional filtering is 

accurate, we confirmed the estimated FDR by using an entrapment experiment wherein we included 

Pyrococcus furiosus proteins as false targets alongside the expected human proteins in the respective 

source libraries [16]. Hereby, the measured FDR for narrow window DIA filtering is 2% for the DDA, 1% for 

the FASTA, and 1% for the predicted source library, in accordance with the theoretically estimated FDR 

based on the target-decoy strategy. In the process, we can measure the identification cost of adding false 

targets: adding 3-6% false targets results in an average decrease of 1-2% in detections (see Entrapment 

section in Methods). 

Additionally, the peptide detections in narrow window DIA can be translated into novel and integrated 

PQPs, which are calibrated to the specific LCMS system and are specific to DIA (Figure 1A). This approach 

was recently made readily applicable as chromatogram libraries: DIA libraries of narrow window DIA 

peptide detections comprising their calibrated PQPs [9]. Such chromatogram libraries outperform direct 

wide window DIA extraction for every source library. The modest gain for a DDA source library (~20%) 

derives mainly from PQP calibration, as only 50% of the source peptides was filtered out (Figure 1Ba and 

1Bd). In contrast, in the FASTA source library, 98,5% of the peptides were filtered out, and RT and 

intensity coordinates were generated de novo. Taken together, this resulted in the largest gain (~170%) 

(Figure 1Bb and 1Be). Finally, the chromatogram library derived from a predicted spectral library increases 

the number of detections by ~100% compared to direct wide window DIA data extraction, making it the 

most efficient overall peptide detection strategy of the DIAmond DIAgram (Figure 1Bc and 1Bf). The large 

overlap between the peptide sequences detected by all three chromatogram libraries convincingly shows 

that the Pan-Human library is very exhaustive and that all three chromatogram libraries mainly detect 

proteotypic peptides (Figure 1C). Peptides unique to the Pan-Human library include very high molecular 

masses that were not predicted, high molecular weight peptides that generate many doubly charged 

transitions that are not predicted by default, as well as very small peptides with inherently poor RT or 

fragmentation pattern predictions. Peptides that are unique to the predicted library are mainly peptides 

not present in the Pan-Human source library. Importantly, the PQP requirements of the source library for 

building chromatogram libraries on narrow window DIA are relatively liberal: the measured Pan-Human 

library was acquired on a TripleTOF instrument but allows wide window DIA data peptide detection on 

an Orbitrap instrument. The in silico equivalent is that 95% of the detected peptides overlap when the 

MS²PIP engine is trained on either Orbitrap or TripleTOF data. As a result, other fragment ion intensity 

predictors such as Prosit and Deep Mass [7][8]  perform similarly when combined with narrow window DIA 
[17] (Figure S5).   

We therefore conclude that predicted libraries are highly relevant and performant for wide window DIA 

identification, and that three elements of a spectral library affect its overall performance: (i) the amount 

of false targets included, (ii) the amount of informative PQPs, and (iii) the accuracy of PQPs on the specific 

instrument setup. In this study, we could show that a narrow window DIA acquisition of six GPFs 

combined with a predicted spectral library of the full human proteome was able to surrogate a measured 

DDA Pan-Human library, thus liberating the DIA workflow from any stochastic acquisition. Especially for 

clinical proteomics, this can facilitate inter-laboratory comparison. Importantly, the software tools 

MS²PIP, ELUDE and EncyclopeDIA are all instrument independent, publicly available, and mutually 

compatible, thus making this workflow immediately accessible to everybody interested.  
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Code availability  

MS²PIP, Elude and EncyclopeDIA are open source, licensed under the Apache-2.0 License, and are hosted 

on https://github.com/compomics/ms2pip_c, https://github.com/percolator/percolator and 

https://bitbucket.org/searleb/encyclopedia/wiki/Home. All supporting material is available on 

https://github.com/brvpuyve/MS2PIP-for-DIA/. 
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Introduction 
DIA data has been presented as a permanent record of everything. Thus, applying our novel approach 

can significantly broaden the biological perspective on newly acquired as well as existing data. Using 

predicted spectral libraries to replace measured DDA libraries not only reduces workload and increases 

reproducibility; it will also facilitate the implementation of DIA into more applied fields such as clinical 

proteomics. Since the software tools MS²PIP, Elude and EncyclopeDIA are instrument independent, 

publicly available and mutually compatible, the presented workflow is accessible to everybody and 

directly applicable [1–3]. Therefore, we present this methods section in the form of a systematic tutorial. 

Briefly, both source and DIA libraries can be used in EncyclopeDIA to detect peptides in wide window 

DIA. However, converting source libraries into a DIA library will significantly improve the number of 

peptides that can be detected. This requires an additional narrow window DIA of several gas phase 

fractions (GPF) of a mixture of the samples. When these GPFs are acquired in the same batch as the 

wide window DIA, the benefit of PQP calibration is maximized.   

All external resources are available on GitHub https://github.com/brvpuyve/MS2PIP-for-DIA for 

reproducibility. 

Prediction Models: Elude and MS²PIP 
Elude: Retention Time prediction 
For RT prediction, we employed Elude (version 3.02), which is available from the Percolator GitHub 

repository (https://github.com/percolator/percolator/releases) [2].  

We trained an Elude model on the Pan-Human spectral library [4].  The spectral library was downloaded 

from SWATHAtlas in SpectraST SPTXT file format. The peptide sequences and their respective RTs were 

parsed from the SPTXT file to an MS²PIP PEPREC file using the speclib_to_mgf.py script, which is 
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available in the conversion_tools folder of the MS²PIP GitHub repository. Out of all consensus peptide 

spectra built from five or more identified spectra, 10000 peptides and their mean RTs were randomly 

sampled for training, 10000 were randomly sampled for testing and all remaining were used for final 

validation of the model. The training, test and validation datasets were converted and written to the 

Elude input file format. Through the Elude command line interface, we trained a model with the training 

and test subsets. Subsequently, we used the model to predict RTs for the validation subset of the 

dataset. The median absolute difference in experimental and predicted RTs (DeltaRT) of the validation 

dataset was 3.2 minutes and 95% of the DeltaRTs were less then 12.1 minutes (Figure S1). The model 

predictions have a Spearman rank correlation with the validation RTs of 0.98.  

 

Figure S1. Evaluation of the trained Elude model. Left: Contour plot of all predicted and experimental retention times (RTs) in 

minutes. Right: Boxplot of all absolute differences between experimental and predicted RT (DeltaRT) in minutes. The box 

displays the first (Q1), second (Q2), and third (Q3) quartiles, the whiskers display Q1 - 1.5 times the interquartile range (IQR) 

and Q3 + 1.5 times the IQR, respectively. Outliers are not shown.  

The spectral library contains oxidation and carbamidomethylation peptide modifications. As a result, 

the currently trained Elude model is only able to predict RTs for unmodified peptides and peptides 

containing these modifications. The RTs included in the original Pan-Human SPTXT spectral library are 

normalized to the iRT Kit peptide sequences by SpectraST. All RT values predicted by the Elude model 

therefore take over this normalization. As is the case for experimental RTs, the predicted RTs are aligned 

to the experimental dataset by EncyclopeDIA. The Elude model file is available on our GitHub repository. 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 22, 2019. ; https://doi.org/10.1101/681429doi: bioRxiv preprint 

https://doi.org/10.1101/681429
http://creativecommons.org/licenses/by/4.0/


Page 3 of 10 
 

MS²PIP: intensity Prediction 
MS²PIP, the MS² Peak Intensity Predictor, first published by Degroeve et al., underwent significant 

improvements since its initial release in 2013 [5]. Currently, a broad array of fragmentation models is 

available (e.g. Orbitrap-HCD, iontrap-CID, TripleTOF 5600+, …) [1]. This gives the user the liberty to 

employ a model fit to the experimental setup. As both the narrow and wide window DIA datasets used 

in this project were obtained on a Q Exactive HF instrument (Thermo Fisher Scientific, Massachusetts, 

US), we employed MS²PIPs Orbitrap-HCD model, with the exception of the TT5600 model that was used 

for assessing PQP requirements (see main text). To further validate the application of this model, we 

calculated the correlations between MS²PIP predicted spectra and experimental spectra from the 

EncyclopeDIA DDA runs. 

The Hela DDA dataset of the EncyclopeDIA article (MassIVE MSV000082805) was imported into 

Progenesis QI for Proteomics (Nonlinear Dynamics, Newcastle upon Tyne, UK) with default parameters. 

The peakpicked spectra were exported as .mgf and searched with Mascot 2.6.1 against the 

aforementioned human FASTA. Carbamidomethylation of Cysteine and oxidation of Methionine were 

respectively set as fixed and variable modifications. The precursor tolerance was set to 50 ppm and the 

fragment tolerance was set to 0.02 Da. The search included all 2+ and 3+ precursors, allowing up to 2 

tryptic missed cleavages. Afterwards, the results were reimported into Progenesis QI for Proteomics 

and converted to an .msp spectral library. 

The .msp spectral library was converted back to an .mgf and an MS²PIP PEPREC input format using the 

speclib_to_mgf.py script. Both files were then run through MS²PIP with the Orbitrap-HCD model, after 

which Pearson correlation coefficients (PCCs) were calculated for each experimental spectrum and its 

prediction. This resulted in a median PCC of 0.88 with an interquartile range of {0.795297, 0.938911} 

(Figure S2)  

 

Figure S2. Pearson correlations between intensities of measured DDA and MS²PIP predicted fragments. Violin plot showing the 

distribution of Pearson correlation coefficients between the MS²PIP model predictions and the experimental spectra from 

the EncyclopeDIA article Hela DDA dataset. 

A second experiment was performed to evaluate the performance of predicted libraries.  More 

specifically, as was done in Gessulat et al. [6], a clone of the Pan-Human library was produced using the 

HCD model and this was applied on the narrow-window DIA data, producing a chromatogram library 

containing 82.6k unique peptides. Afterwards, the Pan and Pan Clone chromatogram libraries were used 

in the peptide extraction of triplicate wide-window DIA runs. On average 63k and 62k peptides were 

identified at 1.0% FDR when searching the wide-window DIA data against the Pan-Human and the Pan 

Clone chromatogram library, respectively. The  quantification reports on peptide and protein level were 

saved by EncyclopeDIA as .txt files and eventually imported in excel. Then, we manually filtered out all 

the peptide sequences with less than 3 fragment ions and those having an intensity of zero in at least 

one of the three replicates.  The resulting reproducible peptide sequences were put in a Venn diagram 

to visualize the percentage overlap (Figure S3). The large overlap demonstrates i) the performance of 
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the HCD fragmentation model of MS²PIP and ii) the retention time prediction of ELUDE to accurately 

mimic the fragmentation and retention time pattern of peptide sequences acquired on a TripleTOF 

instrument. 

 

 

Figure S3: Overlap in peptides detected by DDA vs predicted chromatogram libraries. All peptides in a measured Pan-Human 
library were cloned by predicting their fragmentation spectra using MS2PIP and their retention times using ELUDE. A DIA library 
from a predicted library can extract peptides equally well from wide window DIA data compared to a DDA Pan-Human source 
library, a logical consequence of good quality predictions.  

Library Generation 
DDA 
An EncyclopeDIA .dlib version of the Pan-Human spectral library is publicly available on the 

EncyclopeDIA BitBucket homepage [4]. This version contains 211k unique precursors (159k unique 

peptide sequences). Alternatively, EncyclopeDIA accepts Skyline .BLIB, Spectronaut .csv, MaxQuant 

msms.txt, .TraML and .msp files.  

Database (FASTA) 
Using a FASTA database does not require a separate library. More specifically, Walnut (a GUI re-

implementation of the PECAN algorithm) is part of EncyclopeDIA and can directly detect peptides from 

DIA data using a FASTA database[7]. 

Here, we used the human SwissProt proteome (UP000005640 downloaded on 12 February 2019, 20426 

target sequences) downloaded as FASTA. The proteome was concatenated with the iRT FASTA obtained 

from the Biognosys webpage (on 12 February 2019) [8].  

Predicted  
Creating a predicted spectral library requires three steps: (i) creating an MS²PIP input PEPREC (peptide 

record) file from a FASTA, (ii) feeding that file to MS²PIP for predicting intensities and (iii) adding 

predicted retention times (RT) from Elude. For ease-of-use, we wrapped these three steps into a 

pipeline (fasta2speclib), that is included in the MS²PIP GitHub Repository.  
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MS²PIP is accessible either through the web server (https://iomics.ugent.be/MS²PIP/) or via a local 

installation (https://github.com/compomics/MS²PIP_c/). A local installation is required to use the 

fasta2speclib pipeline. Here, MS²PIP (version 20190130) was downloaded and installed from the MS²PIP 

GitHub repository, as described in the extended install instructions. For RT prediction, we employed 

Elude version 3.02, which is available from the Percolator GitHub repository 

(https://github.com/percolator/percolator/ releases). 

Briefly, the fasta2speclib pipeline makes use of Biopython to read the FASTA and uses Pyteomics for the 

in silico digestion of the protein sequences [9,10]. Next, redundant peptides and peptides not meeting the 

peptide length and precursor mass restrictions are removed from the peptide list. Following this step, 

all combinations of the requested charge states and modifications are added. Predicted spectra and RTs 

are then generated for all peptide-charge-modification combinations using MS²PIP and Elude. Finally, 

the results are written to a spectral library file (.msp, .mgf or .csv). Depending on the computational 

resources, a full human proteome can be predicted in just a few hours.  

The fasta2speclib pipeline can be called through the command line interface as follows:  

Python “fasta2speclib.py” [-h] [-o OUTPUT_FILENAME] [-c CONFIG_FILENAME] “fasta_filename” 

The results presented in this manuscript were generated by predicting a spectrum for every 2+ and 3+ 

tryptic peptide in the aforementioned FASTA, using the pre-trained MS²PIP Orbitrap-HCD model and 

the Elude RT. These models are described in more detail under “Prediction models”. Only tryptic 

peptides with a minimum length of 7 amino acid residues and a maximum precursor mass of 5000 Da 

were considered. Carbamidomethylation and oxidation were set as respectively fixed and variable 

modification, and two missed cleavages were allowed. The in silico spectral library was exported to an 

.msp file containing 3.3M precursors (between 400 – 1000 m/z). In the current version of MS²PIP 

(v20190624) the RT from Elude is automatically converted into minutes and written on a separate line 

in the .msp file. These predictions were performed on a Linux operated machine (Intel Xeon CPU X5670, 

24 processors, 40 GB RAM) and took four hours. 

DIA  
DIA libraries, called chromatogram libraries, are generated by interrogating narrow window DIA data 

with any of the above source libraries. Details are described under “DIA data analysis: EncyclopeDIA”. 

RAW file processing 
We used the publicly available dataset of the EncyclopeDIA article (MassIVE MSV000082805) of the 

HeLa S3 lysates to assay the different routes in the DIAmond DIAgram (Figure 1A, boxes). The three wide 

window DIA replicate runs were acquired with 25 overlapping 24 m/z windows and the staggered 4 m/z 

narrow window DIA data comprises six gas phase fractions (GPF) of 100 m/z each, together covering a 

400 - 1000 m/z mass range. Following peak picking, these runs were demultiplexed into 12 m/z (wide 

DIA) and 2 m/z (narrow DIA) windows, respectively, and converted into mzML output files by 

MSConvertGUI with following parameters [11,12]:  

Peak picking: Vendor specific algorithms (algorithms available for all vendors, except Waters) 

Demultiplexing: overlap only with a mass error of 10 ppm 

DIA data analysis: EncyclopeDIA  
We downloaded EncyclopeDIA from bitbucket (https://bitbucket.org/searleb/EncyclopeDIA/ 

downloads/?tab=downloads) (version 0.8.2, 2019-05-21). EncyclopeDIA is a Java application developed 

to perform narrow- and wide window DIA data analysis. The application can be run on all three major 
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operating systems (Windows, Mac and Linux), but in this project it was used on a Windows 7 operating 

system (Lenovo Thinkstation, Intel Xeon E5-2620 24 processors, 128 GB ram). EncyclopeDIA was 

operated through the graphical user interface but also comes with a command-line interface. 

For applying EncyclopeDIA on predicted spectral libraries, the .msp file is first converted into a .dlib file 

using the conversion tool embedded in EncyclopeDIA. EncyclopeDIA also allows the conversion of other 

spectrum library formats into .dlib files. 

General settings in EncyclopeDIA applied to all searches in this project are as follows: 

Background: Human_iRT.fasta 

Target/Decoy approach: Normal Target/Decoy 

Data Acquisition Type: Non-Overlapping DIA (the narrow window DIA was already deconvoluted by MS 

Convert, therefore EncyclopeDIA does not need to perform an extra deconvolution. ) 

Enzyme: Trypsin 

Fragmentation: CID/HCD (b- and y- fragments)  

Precursor/Fragment/Library Mass Tolerance: 10.0 ppm 

Percolator Version: v3-01 

Number of Quantitative Ions: 5 

Minimum number of Quantitative Ions: 3 

Number of Cores: 24 (depending on the number of CPU cores you allow/have available) 

 

To allow direct comparison of all six routes of the DIAmond DIAgram, all libraries were trimmed upfront 

to retain only peptides in the 400 - 1000 m/z mass range. For the Pan-Human DDA library this results in 

194k precursors, all charge states still included. Approximately 95% of the identified peptides on the 

wide window DIA were 2+ and 3+ and the other charge states were manually removed from the result 

file for comparison. The FASTA search was performed using Walnut, considering 2+ and 3+ precursors 

only. Finally, a third library was predicted by MS²PIP using the same FASTA. All three source libraries 

were separately used to detect peptides directly in the triplicate wide window HeLa DIA runs (Figure 

1Aa-c). When the three source libraries were used to search the narrow window DIA data (Figure 1Ad, 

1Ae, 1Af), this resulted in three DIA-based chromatogram libraries (.elib) of size 88k (DDA), 47k (FASTA) 

and the 95k (Predicted) peptides, respectively. In Figure S4, the overlap in peptide sequence is shown 

between the three chromatogram libraries. Subsequently, all three .elibs were used to search the wide 

window DIA data with the above parameters. 
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Figure S4. Overlap in peptide detection between all chromatogram libraries. A Venn-diagram showing the overlap in peptide 

sequence detections between the three DIA-based (DDA, Database and Predicted) chromatogram libraries.  

Figure 1B depicts the number of detected peptides in each replicate as reported by EncyclopeDIA. 

Additionally, the peptide quantification reports were exported as .txt files and peptide sequences with 

at least 3 transitions and non-zero intensities in all three wide window DIA samples were selected. These 

are represented as the shaded portion of the bar chart. Indeed, in most settings, only confident peptides 

that can be quantified with robust statistics and are detected in (almost) all runs, are useful. These 

recurring peptides equally have more robust FDR control. For this reason, we choose to focus only on 

these confident peptides in Figure 1C, as depicted in the figure caption. Note that the portion of unique 

peptides between robust detections in Pan-Human and predicted wide window DIA is considerably 

lower than in the chromatogram libraries that are intrinsically representing single detection. It would 

be interesting to investigate what the contribution of false detections is herein. All log and result files of 

the searches were exported for future reference and are available on our GitHub repository.  

FDR assessment by entrapment 
We validated the theoretical FDR from the target-decoy approach during chromatogram library building 

by performing an entrapment experiment with Pyrococcus furiosus. In short, this is a way to additionally 

validate the target-decoy FDR estimation [13].Only peptides between 400 - 1000 m/z were considered 

and each source library requires a different P. furiosus input: 

• A public P. furiosus dataset acquired on an LTQ-Orbitrap Velos (Thermo Fisher Scientific, 

Massachusetts, US) was used to supplement the Pan-Human DDA library (ProteomeXchange 

with identifier PXD001077)[13]. Database searching was performed on the resulting .mgf file with 

Mascot Daemon (version 2.6.1) using following search parameters: a maximum of one missed 

cleavage, peptide charges 2+ to 4+, peptide mass tolerance of 10 ppm, fragment ion tolerance 

of 0.5 Da, carbamidomethylation of Cysteine as fixed modification and oxidation of Methionine 

as variable modification. The resulting .DAT file was parsed into a .BLIB using the Skyline built-

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 22, 2019. ; https://doi.org/10.1101/681429doi: bioRxiv preprint 

https://doi.org/10.1101/681429
http://creativecommons.org/licenses/by/4.0/


Page 8 of 10 
 

in tool BiblioSpec. The .BLIB file was parsed by EncyclopeDIA into a .dlib file. Finally, the resulting 

.dlib file (5.5k unique precursors) was combined with the already existing Pan-Human .dlib file 

of 194k peptides using EncyclopeDIA. 

• For the FASTA database, we concatenated our FASTA with all 2052 P. furiosus UniProt entries 

(downloaded on June 13, 2018). Walnut parameters for library-free searching were set as 

described above, meaning that only 2+ and 3+ peptides without any variable modifications were 

considered. This translates into 168k P. furiosus precursors. 

• For the predicted library, we converted this FASTA into a predicted P. furiosus spectral library 

using the MS²PIP Orbitrap-HCD model and our Elude RT model. Every 2+ and 3+ tryptic peptide 

in the proteome was predicted, with carbamidomethylation of Cysteine, and oxidation of 

Methionine set as respectively fixed and variable modifications. The P. furiosus .msp (224k 

precursors) was concatenated to the Human predicted .msp in EncyclopeDIA. 

As decoys are generated by EncyclopeDIA, these were also appended for the P. furiosus proteins. All 

three source libraries were employed for searching the narrow window DIA data, i.e. to create a DIA-

based chromatogram library. The P. furiosus fraction of the libraries was 
5.5k

194k + 5.5k
≈ 3%, 

168k

2.4M + 168k
≈

6% and 
224k

3.3M + 224k,
≈ 6% respectively. To account for this differential decoy fraction, the number of P. 

furiosus detections is multiplied by the inverse of their weights, using the following formula: 

𝐹𝐷𝑅 =  
#𝑃𝑦𝑟𝑜𝑐𝑜𝑐𝑐𝑢𝑠𝑃𝑒𝑝𝑡𝑖𝑑𝑒𝑠 

#𝑇𝑎𝑟𝑔𝑒𝑡𝑠
⋅ 𝐷𝑒𝑐𝑜𝑦𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

This corresponds to 
56

90k
⋅  

194k + 5.5k

5.5k
≈ 2% for the DDA source library, 

19

46k
⋅

2.4M + 168k

168k
≈ 1% for the 

FASTA source library and 
64

94k
⋅

3.3M + 224k

224k
≈ 1% for the predicted source library. Note that the number 

of detected peptides (#targets) is slightly lower than the chromatogram libraries created without P. 

furiosus peptides (see main text). This corroborates the fact that increasing the number of false targets 

increases the statistical burden and thus number of false negatives, reducing the sensitivity of detection. 

In the manuscript we claim the applicability of other deep learning predictors (e.g. DeepMass, Prosit) as 

an alternative to MS²PIP predicted libraries. To validate this claim we cloned the publicly available Pan-

Human library using the Prosit webtool which is available from https://www.proteomicsdb.org/prosit/. 

Peptides containing more than 30 amino acids or with a charge state higher than 7 were manually 

removed from the list as this is required by Prosit. Normalized collision energy (NCE) was assumed to 

be 33 for all peptides. A similar clone of the Pan-Human library was made with the MS²PIP webtool using 

the pre-trained HCD model. After MS² peak intensity prediction, measured iRT values were parsed into 

both predicted libraries to remove the effect of retention time. Afterwards, the narrow window HeLa 

DIA data was searched against all three source libraries (Pan-Human, Prosit Clone and MS²PIP clone) 

separately using the settings described earlier in paragraph DIA data analysis: EncyclopeDIA. The results 

of these three searches were exported as the DDA, MS²PIP and Prosit chromatogram library, 

respectively. Next, three wide window HeLa DIA runs were searched with the three chromatogram 

libraries separately using the same settings as earlier. Again, the results were exported for further 

processing. The source and chromatogram libraries were converted to an OpenSWATH tsv by 

EncyclopeDIA, as this simplified parsing of the data. In accordance with the DIAmond DIAgram we 

calculated PCCs for each narrow and wide window DIA experimental spectrum and its DDA, MS²PIP and 

Prosit source and chromatogram spectrum. Only peptides containing at least 5 transitions were 

considered and y1 ions were omitted. 
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Figure S5. Boxplot showing the distribution of Pearson correlation coefficients between the experimental spectra from the 

Narrow and Wide-Window HeLa DIA data of the EncyclopeDIA article and the source libraries from DDA (a) or MS²PIP and 

Prosit (b), as well as the chromatogram libraries derived from DDA (f) or MS²PIP and Prosit (c). Letter annotations refer to the 

pathways in the DIAmond DIAgram (Figure 1). The overlapping boxplots of the three chromatogram libraries in the bottom 

clearly illustrate that calibration through narrow window DIA eliminates prior differences in (predicted) intensities. 
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