

Adaptation to life on land at 21% O₂ via transition from ferredoxin- to NADH-dependent redox balance

SB Gould¹, SG Garg¹, M Handrich¹, S Nelson-Sathi², N Gruenheit¹, AGM Tielens^{3,4}, WF Martin¹

¹Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany

²Interdisciplinary Biology, Computational Biology Laboratory Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India

³Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands

⁴Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands

Author of correspondence: gould@bhu.de, bill@bhu.de

Author of correspondence: gould@imrn.de, bml@imrn.de

Abstract

Pyruvate:ferredoxin oxidoreductase (PFO) and iron only hydrogenase ([Fe]-HYD) are common enzymes among eukaryotic microbes that inhabit anaerobic niches. Their function is to maintain redox balance by donating electrons from food oxidation via ferredoxin (Fd) to protons, generating H₂ as a waste product. Operating in series, they constitute a soluble electron transport chain of one-electron transfers between FeS clusters. They fulfill the same function — redox balance — served by two electron-transfers in the NADH- and O₂-dependent respiratory chains of mitochondria. Although they possess O₂-sensitive FeS clusters, PFO, Fd and [Fe]-HYD are also present among numerous algae that produce O₂. The evolutionary persistence of these enzymes among eukaryotic aerobes is traditionally explained as enabling facultative anaerobic growth. Here we show that algae express enzymes of anaerobic energy metabolism at ambient O₂ levels (21% v/v), *Chlamydomonas reinhardtii* expresses them with diurnal regulation. High O₂ environments arose on Earth only some ~450 million years ago. Gene presence absence and gene expression data indicate that during the transition to high O₂ environments and terrestrialization, diverse algal lineages retained enzymes of Fd-dependent one-electron based redox balance, while the land plant and land animal lineages underwent irreversible specialization to redox balance involving the O₂-insensitive two-electron carrier NADH.

41 **Highlights**

42

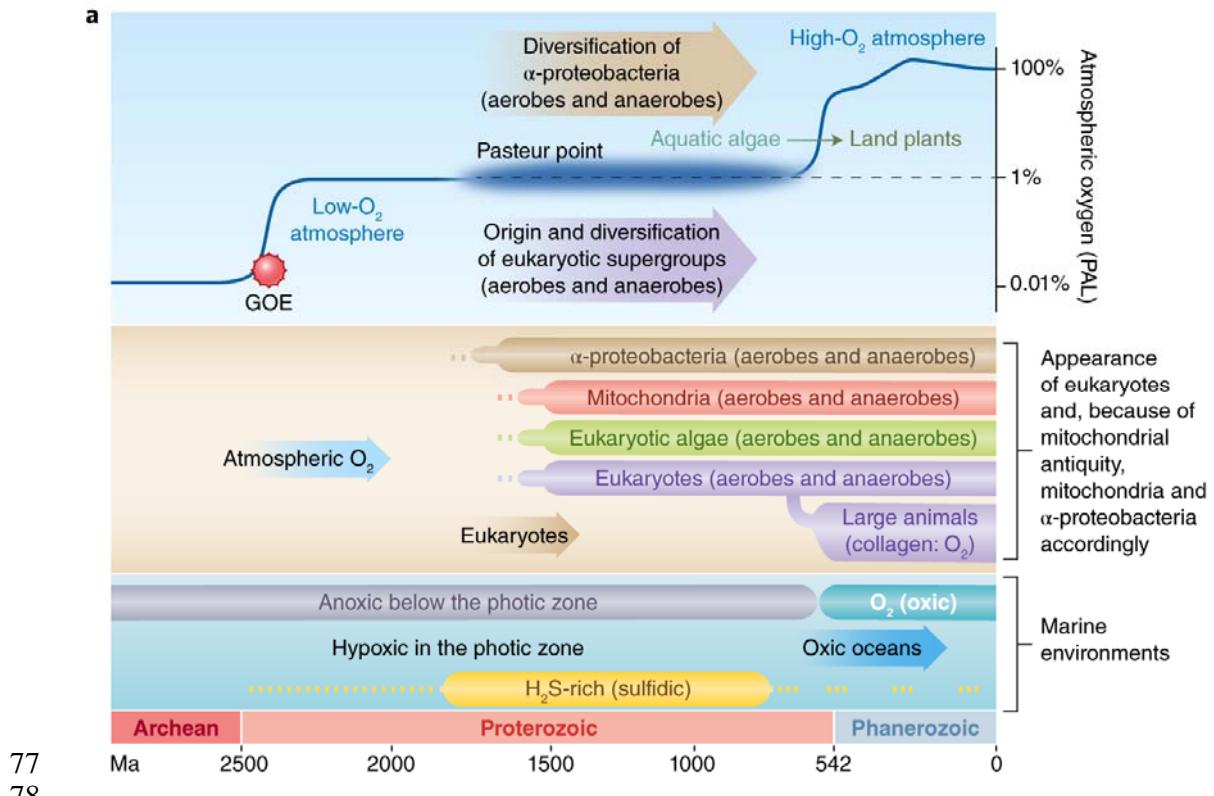
43 - Algae express enzymes of anaerobic metabolism in 21% [v/v] O₂ atmosphere, independent
44 of anaerobiosis

45 - Retention of a plastid-encoded NADH dehydrogenase-like (NDH) was likely a
46 prerequisite for the transition to life on land

47 - Terrestrialization and adaption to high O₂ is accompanied by a shift to redox balance at
48 higher midpoint potentials

49 - Eukaryotes adapted to high O₂ life on land via specialization to two-electron based redox
50 balance

51


52 **Introduction**

53

54 Molecular oxygen (O₂) had far reaching impact on evolution. From about 2.7–2.5 billion
55 years ago onwards, cyanobacteria started using H₂O as the electron donor for a
56 photosynthetic electron transport chain consisting of two photosystems connected in series
57 (Allen 2005; Fischer et al. 2016), generating O₂ as a waste product of primary production.
58 Before that, all life was anaerobic (Bekker et al. 2004, Rasmussen et al. 2013). Yet
59 oxygenation of the planet did not occur quickly, as atmospheric oxygen concentrations
60 remained low for almost 2 billion years (Lyons et al. 2014) (Fig. 1).

61

62 Current findings have it that the monophyletic origin of land plants, which occurred some
63 450 million years ago (Wickett et al. 2014; de Vries et al. 2016), boosted O₂ accumulation to
64 modern levels through massive carbon burial (Lenton et al. 2016; Stolper and Keller 2018).
65 Eukaryotes arose roughly 1.8 billion years ago (Parfrey et al., 2011; Betts et al. 2018), from
66 which it follows that the first 1.3 billion years of eukaryote evolution took place in low
67 oxygen conditions (Müller et al. 2012) at atmospheric and marine O₂ levels comprising only
68 a fraction — 0.001 to 10% — of today's O₂ levels (Lyons et al. 2014; Lenton et al. 2016;
69 Stolper and Keller 2018). Because eukaryotes arose and diversified over a billion years
70 before atmospheric O₂ reached the current value of 21% [v/v], it is hardly surprising that all
71 major lineages (or supergroups) of eukaryotes possess enzymes of anaerobic energy
72 metabolism (Fig. 2). In diverse eukaryotic lineages, these enzymes afford redox balance
73 during ATP synthesis in mitochondria, anaerobic mitochondria (Tielens et al., 2002),
74 hydrogenosomes (Lindmark and Müller 1973; Boxma et al., 2004), and the cytosol (Martin
75 and Müller 1998) without requiring the presence of O₂ as the terminal acceptor (Müller et al.
76 2012; Martin and Mentel 2008).

Fig. 1. Overview over the changes in Earth's biochemistry and the rise and diversification of major groups with respect to oxygen concentration. After the great oxidation event (GOE) about 2.45 billion years ago, oxygen concentrations likely fluctuated somewhere around the Pasteur point, as indicated by the cloudy line, with details uncertain and a matter of active debate. What is more certain is the rise of oxygen concentration to extant levels due to a streptophyte alga conquering land some 500 million years ago and the beginning of massive terrestrial carbon burial. Ma, million years ago.

The enzymatic backbone of redox balance in anaerobic energy metabolism in unicellular eukaryotes are pyruvate:ferredoxin oxidoreductase (PFO) and [Fe-Fe] hydrogenase ([Fe]-HYD), which were first described for eukaryotes in studies of carbon and energy metabolism in trichomonad hydrogenosomes (Lindmark and Müller, 1973). The ecophysiological function of these enzymes, together with a larger set of proteins widely distributed across eukaryotes (Fig. 2), is generally interpreted as affording growth without oxygen. Hence, they are typically designated as enzymes of anaerobic metabolism. Like the pyruvate dehydrogenase complex of human or yeast mitochondria, PFO performs oxidative decarboxylation of pyruvate, generating acetyl-CoA and transferring electrons to the 4Fe4S cluster of the one electron carrier ferredoxin (Fd). To maintain redox balance from growth substrate oxidation, reduced Fd (Fd_{red}) is re-oxidized by [Fe]-HYD, which donates the electrons to protons, generating H_2 gas that leaves the cell as a waste product. Fd_{red} generated by PFO is a low potential one electron carrier (E_0' ca. -400 to -500 mV) that can readily transfer a single electron to O_2 generating the superoxide radical, O_2^- , and reactive oxygen species (ROS). ROS are potent cytotoxins, a reason why organisms that employ the soluble

102 PFO-Fd-[Fe]-HYD electron transport chain avoid high O₂ environments. In addition, PFO
 103 and [Fe]-HYD are irreversibly inactivated by O₂. Accordingly, eukaryotes that employ PFO
 104 and [Fe]-HYD in energy metabolism typically inhabit low oxygen environments, with their
 105 possession of these enzymes being interpreted as niche specialization (Martin and Müller
 106 1998, Hug et al., 2010, Stairs et al., 2015).

107

108

109 **Fig. 2. Presence-absence pattern of enzymes associated with anaerobic metabolism**
 110 **across the eukaryotic tree of life.** The presence of each enzyme in eukaryotes scored as a
 111 dark blue square. An additional BLAST-based search (at least 30% identity and e-value of
 112 less than 10⁻⁷) identifies additional homologs (shown in magenta) that are not represented in
 113 the eukaryote-prokaryote clusters (EPCs) from Ku et al. (2015) that is based e.g. on 40%
 114 global sequence identity for eukaryote proteins. Enzymes of anaerobic metabolism are
 115 present among all eukaryotic supergroups recognized, including all groups of algae, that is
 116 those carrying plastids of primary (e.g. *Chlamydomonas reinhardtii*, *Cyanaphora paradoxa*,
 117 *Volvox carteri*) and secondary origin (e.g. *Bigelowiella natans*). For the enzymes that are
 118 identified as EPCs, phylogenetic trees (see supplementary information) indicate that 36/43
 119 (80%) of the genes show a single origin that traces to the eukaryotic common ancestor.
 120 Eukaryote monophyly as observed in phylogenetic trees constructed from protein sequences
 121 present in each cluster is shown with a dark red (far right column). For an extended PAP
 122 including prokaryotes, see supplementary figure 1.

123

124 However, PFO, [Fe]-HYD, and a larger suite of enzymes associated with anaerobic energy
 125 metabolism are also present in algae (Ginger et al. 2010; Kruse and Hankamer 2010; Müller
 126 et al., 2012; Atteia et al. 2013), phototrophic eukaryotes with plastids that generate O₂. Their

127 presence in algae is known to enable facultative anaerobic growth in low oxygen
128 environments (Atteia et al. 2013; Müller et al., 2012), and their expression is observed to be
129 upregulated in response to anoxia in algae (Hemschemeier and Happe 2005; Nguyen et al.
130 2008), in the same way that fermentation enzymes are hypoxia-induced in higher plants
131 (Loreti et al., 2018). However, the expression in O₂-producing algae of enzymes associated
132 with anaerobic redox balance has not been studied under normoxic conditions. Here, we
133 investigated gene expression data from eukaryotic algae grown at ambient O₂ levels (21%
134 v/v) to better understand the physiology, function and evolutionary persistence of Fd-
135 dependent enzymes for one electron based redox balance in algae.

136

137

138 **Distribution of enzymes for anaerobic metabolism in eukaryotes**

139

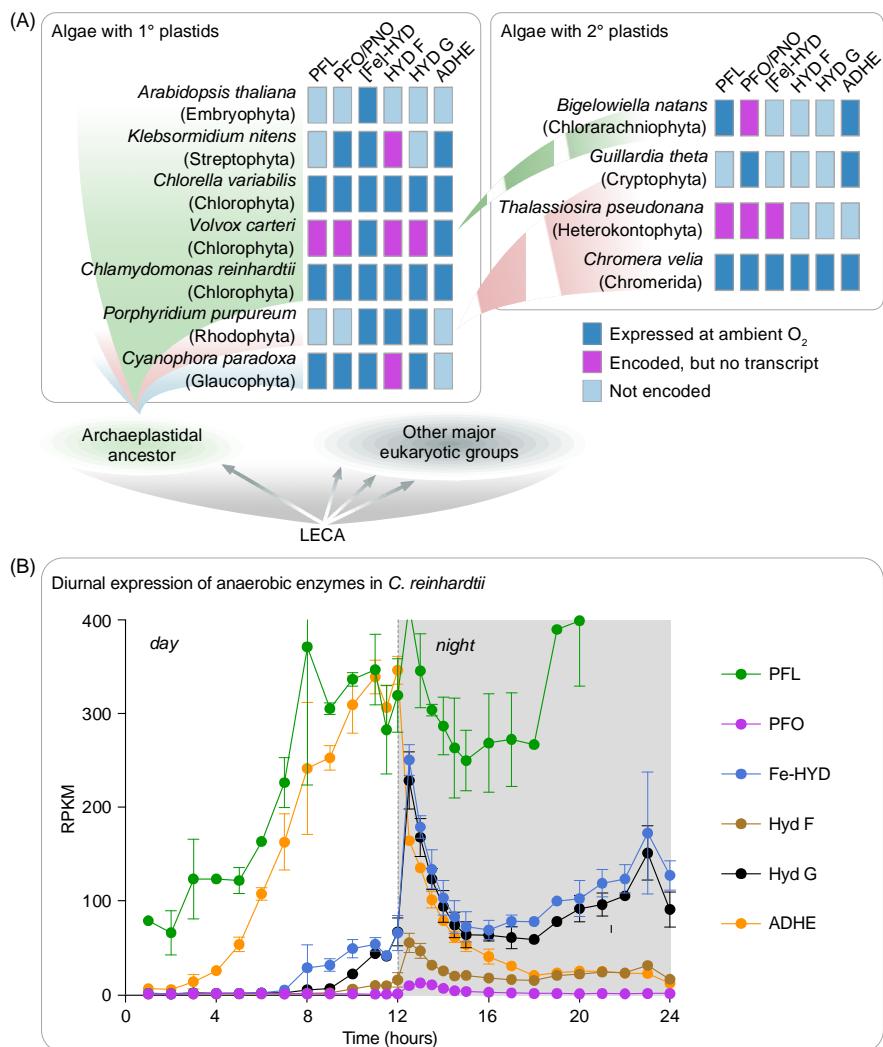
140 The distribution of 47 genes for enzymes involved in anaerobic energy metabolism (Müller et
141 al. 2012) in 56 eukaryotes spanning the diversity of known lineages is summarized in Fig. 2.
142 The enzymes are widely distributed across diverse eukaryotic lineages, although missing in
143 some, consistent with a standard process of ecological specialization to aerobic and anaerobic
144 habitats entailing the process of differential loss (Ku et al. 2015). Some enzymes of one
145 electron based redox balance have undergone lineage specific functional specialization that
146 entail altered functional constraints in the protein. For example, [Fe]-HYD has lost its H₂
147 producing enzymatic activity in several eukaryotic lineages and has assumed different
148 functions. The [Fe]-HYD homologues IOP1/NAR1 repress the hypoxia inducible factor-1 α
149 subunit (HIF1- α) in humans (Huang et al. 2007), and furthermore possess conserved
150 functions in cytosolic FeS cluster assembly in human and yeast (Song and Lee 2011; Seki et
151 al. 2013). Prokaryotes employ O₂-labile FeS clusters for O₂-sensing and signaling (Barth et
152 al. 2018). In land plants, the [Fe]-HYD homologue has relinquished enzymatic activity to
153 become the oxygen sensor *GOLLUM* (Mondy et al. 2014).

154

155 Prokaryotic [Fe]-HYD enzymes can be trimeric (Schut and Adams, 2009), with 24 and 51
156 kDa subunits associated with the catalytic 64 kDa subunit, which contains the H₂ producing
157 site, the H cluster. The 24 and 51 kDa subunits allow the enzyme to accept electrons
158 simultaneously from both NADH and Fd via electron conurcation (Schut and Adams, 2009),
159 affording redox balance for both Fd and NADH pools. Some eukaryotic [Fe]-HYD enzymes,
160 including the one from *Trichomonas* hydrogenosomes, also possess the 24 and 51 kDa
161 subunits (Hrdy et al., 2004), which are related to mitochondrial complex I subunits. They are
162 thought to allow the eukaryotes in question to perform electron conurcation, facilitating
163 redox balance via NADH-dependent H₂ production (Müller et al., 2012), which would be
164 thermodynamically unfavorable in the absence of Fd_{red} (Schut and Adams 2009; Buckel and
165 Thauer 2018).

166

167 Intermediate states in the evolutionary transition from Fd-dependent, one-electron based
168 redox balance to NADH dependent redox balance are observed. In various eukaryotic
169 lineages, PFO has become fused to an FAD-FMN-NAD binding domain that converts the
170 ancestrally Fd-dependent enzyme (one electron transport) into an NAD(P)⁺-dependent


171 enzyme that transfers hydride (two electron transport) to generate NADPH. This fusion,
172 called PNO (Rotte et al., 2001), is now known to be widespread among eukaryotes (Fig. 2)
173 (Müller et al., 2012; Stairs et al., 2015), and represents an evolutionary intermediate in the
174 transition from Fd-dependent to NADH dependent redox balance, in that electrons from the
175 FeS clusters of the PFO domain are channeled directly to NAD(P)H, bypassing the
176 generation of soluble Fd_{red}.

177

178 **Algae express enzymes for anaerobic metabolism at ambient O₂**

179 The presence of the genes in representatives of the major algal groups (Fig. 2) raises the
180 question of whether and when they are expressed. This is important, because genes for
181 anaerobic energy metabolism have been retained in some eukaryotes with strictly O₂-
182 dependent energy metabolism (Bexkens et al., 2018). To determine whether enzymes of
183 anaerobic redox balance are expressed independent of anaerobic culturing conditions, we
184 generated transcriptome data for several algal lineages with sequenced genomes: the red alga
185 *Porphyridium purpureum*, the glaucophyte *Cyanophora paradoxa*, the chlorarachniophyte
186 *Bigelowiella natans* with a plastid of secondary green origin, and the cryptophyte *Guillardia*
187 *theta* with a plastid of secondary red origin. All algae were grown under the same culturing
188 conditions and at ambient O₂ levels of 21% [v/v]. In all algae, including algae with secondary
189 plastids (Fig. 3a), we were able to detect the expression of at least a subset of the
190 corresponding genes. It is well known that other algae such as *Vitrella brassicaformis* and
191 *Chromera velia* encode a set of anaerobic enzymes that is as complete as that of
192 *C. reinhardtii* (Stairs et al. 2015). We therefore screened available transcriptome data for
193 aerobically grown *Chromera velia* (Woehle et al. 2011; Woo et al. 2015), *Volvox carteri*
194 (Matt et al. 2018), *Chlorella variabilis* (Rowe et al. 2014; Cecchin et al. 2018) and
195 *Thalassiosira pseudonana* (Maheswari et al. 2005) and *Klebsormidium nitens* (de Vries et al.
196 2018), and find that e.g. the chlorophyte *C. variabilis* and the chromerid *C. velia* (carrying a
197 secondary plastid of red algal origin), express PFL, PNO, HydA/F/G and ADHE in the same
198 way as *C. reinhardtii* for which we generated RNA-Seq data (Fig. 3a).

199

201 **Fig 3. Expression of enzymes of anaerobic metabolism under aerobic conditions in algae**
202 **and in a diurnal manner in *Chlamydomonas reinhardtii*.** (a) Representative algae of all
203 major groups, both with plastids of primary (Glaucoophyta, Rhodophyta and Chlorophyta) and
204 secondary origin (Cryptophyta and Chlorarachniophyta), are known to encode enzymes
205 associated with anaerobic metabolism (Fig. 2). We found that those genes for enzymes of
206 anaerobic redox balance are not only encoded in the algae, but are also expressed under
207 ambient O₂ concentrations and independent of anaerobic growth conditions (except for
208 *T. pseudonana*). (b) High-resolution RNA-Seq data of the chlorophyte alga *C. reinhardtii*
209 shows that the enzymes are mostly expressed in a diurnal manner under aerobic growth
210 conditions. PFL is again seen to be expressed at high levels throughout (to the extent of a
211 house-keeping gene), but with a peak early on during the dark phase that matches that of the
212 other genes in question.

213

214 The high-resolution RNA-Seq data available for *C. reinhardtii* (Zones et al. 2015) provided
215 detailed insights into expression of enzymes for redox balance over the time course of 24h.
216 *Chlamydomonas* is among the algae that has preserved the most complete repertoire of O₂-
217 sensitive enzymes involved in redox balance among eukaryotes studied so far (Fig. 2); it

218 expresses them in the presence of 21% oxygen and in a diurnal fashion (Fig. 3b). PFL is
219 found to be constantly expressed, but more so during the dark phase and in particular towards
220 the end of the night (consistent with our RNA-Seq data). The same pattern is observed for its
221 activating enzyme, although at much lower levels, similar to what is observed in prokaryotes
222 (Crain and Broderick 2014). Other genes in question, including both genes for the [Fe]-HYD
223 catalytic subunit, HydA1 and HydA2, are upregulated with the onset of night (Fig. 3b).
224 Importantly, this induction is observed independent of anaerobic culturing conditions, the
225 standard method employed to induce [Fe]-HYD expression, typically in the context of
226 biohydrogen applications (Vignais et al. 2001; Forestier et al. 2003; Mus et al. 2007;
227 Hemschemeier et al. 2008). The *Chlamydomonas* relatives *Chlorella* and *Volvox* display
228 similar induction of enzymes involved in H₂ production and dark fermentation (Meuser 2011;
229 Cornish et al. 2015), hence anaerobiosis-independent expression is conserved and
230 *Chlamydomonas* is the rule, not an exception.

231

232 The main finding from Figure 3 is that the expression of the enzymes for anaerobic redox
233 balance in eukaryotes does not correspond to any form of adaptation to anaerobic niches, as
234 ambient O₂ does not change during the 24-hour cycle. Instead, their expression in *C. reinhardtii*
235 corresponds to the onset and end of illumination, where electron flux to and from
236 the photosynthetic electron transport chain undergoes transient changes. In *Chlamydomonas*,
237 PFO and [Fe]-HYD are localized in the plastid (Hemschemeier et al. 2008), not the
238 mitochondrion or the cytosol, they help to buffer electron flow into and out of the thylakoid
239 membrane. This function does not preclude the existence of other functions under other
240 conditions. For example, the same genes are expressed in *C. reinhardtii* during anaerobiosis
241 (Hemschemeier and Happe 2005; Nguyen et al. 2008). Yet for most of the algae surveyed in
242 Figure 3a, extended anaerobic growth phases are unknown, and the main habitat is the photic
243 zone, where daily diurnal light conditions are encountered.

244

245 Some might view *C. reinhardtii* as an extreme case among algae, as it appears to mimic true
246 anaerobic protists such as *Trichomonas* or soil-dwelling anaerobic bacteria when
247 experiencing hypoxia. But *Chlamydomonas* can only endure anaerobic conditions for a
248 limited amount of time, not thrive under them. Sustained hydrogen production by
249 *Chlamydomonas* for an elongated period of time is only feasible when PSII provides the main
250 source of reducing power (Scoma et al. 2014). This underscores our point that photosynthetic
251 redox balance and one electron based redox balance conferred by the soluble PFO-Fd-[Fe]-
252 HYD electron transport chain operate independent of anaerobiosis, because PSII activity
253 entails O₂ production. Finally, *C. reinhardtii* is not the only alga encoding such a complete
254 set of anaerobic enzymes (Atteia et al., 2013; Stairs et al. 2015), but the only one that has
255 been extensively studied in this respect.

256

257

258

259 **Discussion**

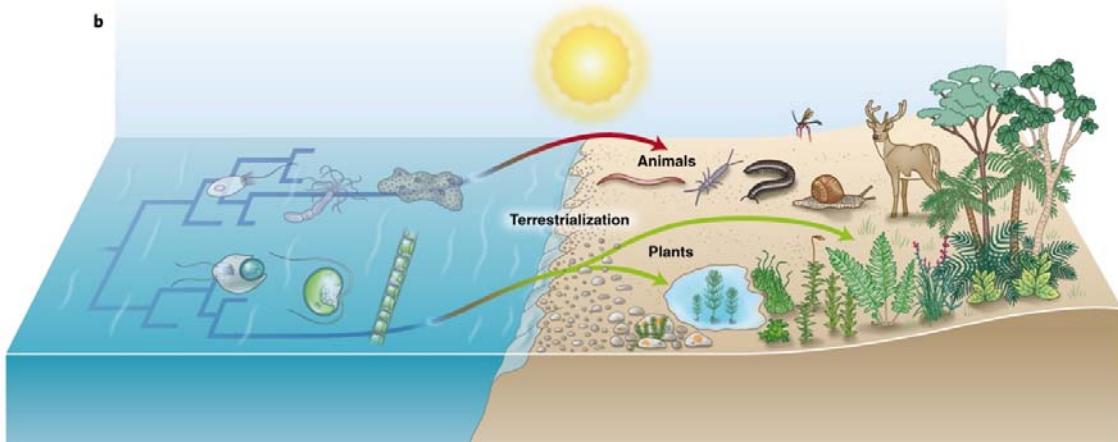
260

261 The retention and anaerobiosis-independent expression of Fd-dependent enzymes in algae,
262 together with their localization to plastids in cases studied to date, indicates that the enzymes
263 have been retained during algal evolution as the result of selection for redox balance in cells
264 with one electron transport. In terms of gene distribution (Fig. 2) and phylogeny
265 (Supplementary Information Fig 1), the enzymes of anaerobic energy metabolism in
266 eukaryotes trace to the eukaryote common ancestor (Ginger et al. 2010; Atteia et al. 2013)
267 (Fig. 2), hence the archaeplastidan founder lineage that acquired the cyanobacterial ancestor
268 of plastids already possessed them.

269

270 Eukaryotic enzymes involved in Fd-based redox balance have been the subject of many
271 evolutionary investigations. There are two alternative hypotheses to account for their
272 presence in eukaryotes. One has it that the Fd-dependent enzymes were present in the
273 eukaryote common ancestor, which was a facultative anaerobe that was able to survive with
274 or without O₂ as terminal acceptor, and were involved in its energy metabolism and redox
275 balance (Martin Müller 1998, Tielens et al 2002; Müller et al., 2012; Degli Esposti 2014).
276 The alternative lateral gene transfer (LGT) hypothesis has it that the ancestral eukaryote was
277 a strict aerobe, unable to survive under anaerobic conditions, the presence of the Fd-
278 dependent enzymes in eukaryotes resulting from multiple lateral gene transfers during
279 eukaryote evolution to confer the ability to colonize anaerobic niches (Stairs et al. 2011;
280 Stairs et al. 2015; Eme et al. 2017). Directly at odds with the LGT theory is the observation
281 that the archaeoplastidal ancestor, whose PFL and PFL-activating enzyme are of monophyletic
282 origin (Stairs et al. 2011), did not adapt to an anaerobic niche, rather it acquired a
283 cyanobacterial endosymbiont that became an O₂-producing plastid. The archaeoplastidal
284 lineage diversified into three main groups, representatives of which have retained the
285 enzymes (Atteia et al. 2013; Stairs et al. 2015) (Fig. 2).

286


287 Though various formulations of the LGT hypothesis for enzymes of anaerobic redox energy
288 metabolism in eukaryotes differ with respect to the number, nature and direction of LGTs
289 (Stairs et al. 2015), the underlying evolutionary rationale of the LGT hypothesis has remained
290 constant: the lateral acquisition of Fd-dependent enzymes supposedly allowed eukaryotes to
291 colonize oxygen poor niches (Leger et al. 2018). Notwithstanding the circumstance that the
292 majority of eukaryote evolution occurred in oxygen poor environments (Martin and Mentel,
293 2008; Müller et al., 2012; Lyons et al., 2014; Lenton et al. 2016) (Fig. 1), the diurnal
294 expression of Fd-dependent enzymes in algae at 21% [v/v] O₂ (Fig. 3) and independent of
295 anaerobic growth conditions is incompatible with the view that the presence of these genes
296 has anything to do with lateral acquisitions for adaptation to anaerobiosis. Rather, the data
297 indicate that the genes for Fd-dependent redox balance were present in the eukaryote
298 common ancestor, lost in some lineages during specialization to permanently oxic habitats
299 (Fig. 4), and retained in lineages that did not undergo the irreversible adaptation to complete
300 O₂ dependence and NADH dependent redox balance (Fig. 1).

301

302 Evolutionary responses to redox balance in eukaryotes can include recompartmentalization of
303 pathways (Martin 2010) to the cytosol, to plastids (Schnarrenberger et al., 1995), to
304 glycosomes (Opperdoes and Borst 1977), or to mitochondria (Rio Bartulos et al., 2018).

305 Based upon their presence in the eukaryote common ancestor and their current localization
306 within plastids in algae studied to date, the Fd-dependent enzymes PFO and [Fe]-HYD were
307 recompartmentalized to the plastid during algal evolution. In the plastid they assumed
308 essential roles in light-dependent redox balance in an organelle that, upon contact with light,
309 has no choice but to commence photosystem I dependent Fd reduction, rapidly depleting the
310 available Fd_{ox} pool. In land plants, Fd_{red} is mainly reoxidized by ferredoxin:NADP⁺
311 oxidoreductase (FNR), NADPH being reoxidized in turn by NADP⁺-dependent
312 glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Cerff 1982) in the Calvin cycle. In
313 aquatic environments, CO₂ is more limiting than in air, for which reason algae have evolved
314 diverse CO₂ concentrating mechanisms (Giordano et al., 2005). Algae thus require a means in
315 addition to CO₂ fixation for redox balance at the onset of illumination, Fd-dependent
316 enzymes of anaerobic energy metabolism fulfill that role. That functional aspect, redox
317 balance in the plastid rather than anaerobiosis, accounts for diurnal expression and retention
318 of enzymes for anaerobic redox balance among many independent algal lineages (Fig 1). The
319 expression of ferredoxin dependent enzymes thus enables redox balance in the presence of O₂
320 in plastids and in the absence of O₂ as it occurs in *C. reinhardtii* (Hemschemeier and Happe
321 2005) and many lineages of anaerobic protists that arose and diversified before the origin of
322 plastids (Martin and Müller 1998; Müller et al., 2012).
323

324 The transition to life on land ~450 million years ago marked the advent of life in very high
325 O₂ conditions (Lenton et al. 2016; Stolper and Keller 2018). Plants were the first major
326 colonizers of land (Nishiyama et al. 2018). Massive carbon burial by land plants precipitated
327 the high O₂ environment into which the first land animals followed (Fig. 4). The colonization
328 of land was, physiologically, an adaptation to high O₂ air. That adaptation to high O₂
329 witnessed the loss of Fd-dependent redox balance independently in both the land plant and
330 land animal lineages (Fig. 4) in response to the O₂ sensitivity of FeS clusters in PFO and
331 [Fe]-HYD and in response to the ROS generating potential PFO of Fd_{red} . Once on land, both
332 the plant and animal lineages were subsequently confronted again with hypoxic environments
333 in adaptations to aquatic environments. The corresponding adaptations did not, however,
334 involve gene acquisitions via LGT, merely novel expression regulation for NADH dependent
335 enzymes involved in redox balance during hypoxic response. In plants, these responses
336 include mainly ethanol fermentations in waterlogged roots (Perata and Alpi, 1993, Licausi et
337 al., 2010; Loret et al 2018). In animals, the evolutionary responses include various pathways
338 regulated by the hypoxia induced factor HIF (Semenza 2001; Kim et al. 2006), and secondary
339 adaptations to the aquatic lifestyle among various vertebrates (Hochachka and Somero, 2002;
340 Darveau et al., 2002). In addition, many marine and soil dwelling invertebrates independently
341 evolved their own specialized strategies for redox balance (Müller et al. 2012), from opine
342 accumulation in mussels (Grieshaber and Völkel 1998) to rhodoquinone dependent short
343 chain fatty acid excretion in worms (Komuniecki et al., 1998). The land plant and land
344 animal anaerobiosis adaptation pathways are, however, always NADH dependent.

345
346

347 **Fig. 4. Animal and plant terrestrialization.** The major eukaryotic groups emerged in
348 aquatic environments, including the Archaeplastida that stem from the endosymbiotic
349 integration of a cyanobacterium into a heterotrophic protist. The conquer of land by a
350 streptophyte alga preceded that of animals. The rise in oxygen concentration fostered the
351 evolution of macroscopic life adapted to high oxygen concentrations, which includes NADH-
352 (two electron) based redox balance.

353

354 The retention of the chloroplast encoded NADH dehydrogenase complex (cpNDH)
355 specifically in the land plant lineage (Fig. 1) is noteworthy. The functional cpNDH complex
356 is localized close to complex I in thylakoids, both in the cyanobacterium *Synechocystis* (Mi et
357 al. 1995) as well as in land plants, where it supports the cyclic flow of electrons essential for
358 PSI to properly perform photosynthesis (Munekage et al. 2004; Yamori et al. 2011). Among
359 genes in plastid DNA, the cpNDH genes have undergone the highest number of independent
360 losses (Martin et al. 2002). Their retention in the plastid was likely a prerequisite for the
361 transition to life on land (de Vries et al. 2016; Nishiyama et al. 2018), because they have been
362 retained by the plastid in all land plant lineages, indicating a strong functional constraint for
363 maintaining redox balance in the organelle (Allen 2015). Land plants have recruited a
364 cytosolic NADH dependent GAPDH (Petersen et al. 2003) and a cytosolic malate
365 dehydrogenase (Selinski et al. 2014) to plastids for NADH-based redox balance. Even the
366 origin of photorespiration, a process central to NAD(P)H dependent redox balance, can be
367 understood as an evolutionary response to high O₂ in the transition to life on land (Hanawa et
368 al. 2017). Land plant thylakoids cannot, however, relinquish Fd-dependent one electron
369 transport altogether, because the structure and function of photosystem I strictly require a
370 steady flow of single electrons from the FeS clusters of PSI to generate soluble Fd_{red}, the
371 stromal levels of which are monitored in some photosynthetic lineages by the flavodiiron
372 (FLV) proteins (Gerotto et al. 2016). Our findings indicate that in the plant and animal
373 lineages, terrestrialization entailed an irreversible physiological transition away from one
374 electron based Fd-dependent redox balance towards NAD(P)H-dependent redox balance
375 involving two electron transfers. The underlying evolutionary mechanisms were gene
376 expression changes, enzyme recompartmentalization and gene loss in adaptation to high O₂

377 levels. Algae retained the Fd-dependent pathway for Fd-dependent, one-electron based redox
378 balance in plastids, not for anaerobic growth.

379

380

381 **Material and Methods**

382

383 *Identification of homologous proteins.*

384

385 As part of a larger study (Ku et al., 2015) sequences from 55 eukaryotes and 1,981
386 prokaryotes (1,847 bacteria and 134 archaea) were clustered into protein families in order to
387 identify eukaryotic proteins with prokaryotic homologs. This approach resulted in 2,585
388 disjunct clusters that contain at least two eukaryotes and no less than five prokaryotes. Within
389 these 2,585 eukaryote-prokaryote clusters (EPCs) using existing annotations we identified 42
390 clusters containing proteins involved in anaerobic energy metabolism, which were relevant
391 for the current analysis (Supplementary Table 1). Phylogenetic trees and results from the tests
392 on eukaryote monophyly were taken directly from the analysis performed in Ku et al., 2015
393 (shown in Supplementary Table 1). For proteins that did not have an EPC in Ku et al., 2015
394 the same dataset was used to perform a BLAST search and only hits with an identity of
395 greater than 30% and an e-value less than 10^{-10} were considered and provided in
396 supplementary table S2. All the sequences that were used to identify the EPCs and perform
397 the BLAST search are provided in Supplementary File 1 along with the BLAST hits.

398

399 *Cultivation of algae, RNA isolation and transcriptomics.*

400

401 All algae were grown in their respective media (see SAG Göttingen or ncma.bigelow.org) in
402 aerated flasks under controlled conditions at 22°C and illuminated with 50 μ E under a 12/12h
403 day-night cycle. RNA was isolated from cells growing in the exponential phase and at 6h into
404 the day and 6h into the night. RNA was isolated using either TrizolTM reagent (Thermo
405 Fisher, Cat. No.: 15596018) or the SpectrumTM Plant Total RNA Kit (Sigma Aldrich, Cat.
406 No.: STRN50) according to the manufacturer's protocols. Then, samples were DNase treated
407 (DNase I, RNase free, Thermo Fisher, Cat. No.: EN0525) and RNA-Seq was performed at
408 the Beijing Genome Institute (BGI, Hong Kong) using an Illumina HiSeq2000 resulting in
409 150bp paired-end reads. For each sample, three individual runs were performed and pooled.
410 Raw reads were subjected to several cleaning steps. First, adapter sequences as well as reads
411 containing more than 5% of unknown nucleotides or more than 20% of nucleotides with
412 quality scores less than 10 were removed. Further, reads were processed using trimmomatic
413 (version 0.35) (Bolger et al. 2014) by removing the first 10 nucleotides as well as reads
414 which showed a quality score below 15. Additionally, poly-A/T tails \geq 5 nt were removed
415 using prinseq-lite (version 0.20.4) (Schmieder & Edwards 2011). Finally, only reads with a
416 minimum length of 25 nt were retained. Trimmed reads were assembled using Trinity
417 (version 2.2.0) (Grabherr et al. 2011) and resulting contigs were filtered for a minimum
418 length of 300 nt using an in-house perl script. Subsequently, open reading frames (ORFs)
419 were identified using Transdecoder (version 3.0.1)
420 (<https://github.com/TransDecoder/TransDecoder/wiki>). These ORFs were used for a BLAST

421 with an identity cut off of 30% against the genome of the respective organisms to verify their
422 presence in the genome and to remove possible contaminations. Transcriptomes are available
423 at [*accession numbers will be made available once the manuscript has been accepted*].

424

425 **Acknowledgments**

426 We gratefully acknowledge the funding of this work by the DFG (to SBG; 267205415 – SFB
427 1208), the ERC (WFM; 666053), and the VolkswagenStiftung to SBG and WFM (both Life).

428

429

430 **Supplementary files**

431

432 **Supplementary Figure 1:** Presence-absence pattern of enzymes associated with anaerobic
433 metabolism across and prokaryotes.

434

435 **Supplementary Table 1:** Annotations of the functions of the eukaryote prokaryote clusters
436 from Ku et al., 2015 and eukaryote monophyly in EPC trees.

437

438 **Supplementary Table 2:** BLAST output for the sequences without EPCs in Ku et al., 2015.

439

440 **Supplementary Table 3:** FASTA headers of all the sequences used in the study along with
441 their aliases.

442

443 **Supplementary Table 4:** BLAST output of the expressed contigs against their respective
444 genomes.

445

446 **Supplementary File 1:** FASTA sequences of the proteins screened for in the expression data.

447

448 **Supplementary File 2:** Extracted Newick trees (from Ku et al. 2015) for clusters containing
449 analyzed enzymes that are part of figure 2. Columns: (i) enzyme name; (ii) enzyme name
450 abbreviation; (iii) cluster number as referenced in Ku et al. 2015; (iv) tree in Newick format.

451

452 **Supplementary File 3:** FASTA sequences of the expressed contigs that mapped to the
453 respective genomes.

454

455

456 **References**

457

- 458 (1) Allen JF. (2005). A redox switch hypothesis for the origin of two light reactions in
459 photosynthesis. *FEBS Lett* 579:963–968.
- 460 (2) Allen JF. (2015). Why chloroplasts and mitochondria retain their own genomes and
461 genetic systems: Colocation for redox regulation of gene expression. *Proc Nat Acad Sci*
462 112:10231–10238.
- 463 (3) Altschul SF. et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein
464 database search programs. *Nucleic Acids Res.* 25, 3389–3402.
- 465 (4) Atteia A, van Lis R, Tielens AGM, Martin WF. (2013). Anaerobic energy metabolism in

466 unicellular photosynthetic eukaryotes. *Biochimica et Biophysica Acta - Bioenergetics*
467 1827:210–223.

468 (5) Barth C, Weiss MC, Roettger M, Martin WF, Uden G: Origin and phylogenetic
469 relationships of [4Fe-4S]-containing O₂-sensors of bacteria. *Environ Microbiol* (2018) in
470 press.

471 (6) Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, et al. (2004). Dating the rise of
472 atmospheric oxygen. *Nature* 427:117–20

473 (7) Betts HC, Puttik MN, Clark JW, Williams TA, Donoghue PCJ, Pisani D. (2018).
474 Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote
475 origin. *Nature Eco Evo* 2: 1556–1562

476 (8) Bexkens ML et al. (2018). Lipids are the preferred substrate of the protist *Naegleria*
477 *gruberi*, relative of a human brain pathogen. *Cell Reports* 25, 537–543

478 (9) Bolger AM, Lohse M, Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina
479 sequence data. *Bioinformatics* 30:2114–2120.

480 (10) Boxma B, Voncken F, Jannink S, Van Alen T, Akhmanova A, van Weelden SWH, van
481 Hellemond JJ, Ricard G, Huynen M, Tielens AGM, et al. (2004). The anaerobic
482 chytridiomycete fungus *Piromyces* sp. E2 produces ethanol via pyruvate:formate lyase
483 and an alcohol dehydrogenase E. *Mol Microbiol* 51:1389–1399.

484 (11) Buckel W, Thauer RK. (2018). Flavin-based electron bifurcation, a new mechanism of
485 biological energy coupling. *Chem Rev.* 118: 3862–3886

486 (12) Cecchin M, Benfatto S, Griggio F, Mori A, Cazzaniga S, Vitulo N, Delledonne M,
487 Ballottari M. 2018. Molecular basis of autotrophic vs mixotrophic growth in *Chlorella*
488 *sorokiniana*. *Sci. Rep.*:1–13.

489 (13) Cerff R (1982) Evolutionary divergence of chloroplast and cytosolic glyceraldehyde-3-
490 phosphate dehydrogenases from angiosperms. *Eur J Biochem* 126:513–515.

491 (14) Cornish AJ, Green R, Gärtner K, Mason S, Hegg EL (2015). Characterization of
492 hydrogen metabolism in the multicellular green alga *Volvox carteri*. *PLoS ONE* 10:
493 e0125324.

494 (15) Crain AV, Broderick JB. 2014. Pyruvate formate-lyase and its activation by pyruvate
495 formate-lyase activating enzyme. *J Biol Chem* 289:5723–5729.

496 (16) Darveau CA, Suarez RK, Andrews PW, Hochachka PW (2002). Allometric cascade as a
497 unifying principle of body mass effects on metabolism. *Nature* 417:166–170.

498 (17) Degli Esposti M (2014). Bioenergetic evolution in proteobacteria and mitochondria.
499 *Genome Biol. Evol.* 6:3238–3251.

500 (18) de Vries J, Stanton A, Archibald JM, Gould SB. (2016). Streptophyte terrestrialization in
501 light of plastid evolution. *Trends Plant Sci* 21:467–476.

502 (19) de Vries J, Curtis BA, Gould SB, Archibald JM. (2018). Embryophyte stress signaling
503 evolved in the algal progenitors of land plants. *Proc Nat Acad Sci USA* 115:E3471–
504 E3480.

505 (20) Eme L, Gentekaki E, Curtis B, Archibald JM, Roger AJ. 2017. Lateral gene transfer in
506 the adaptation of the anaerobic parasite *Blastocystis* to the gut. *Curr Biol* 27:807–820.

507 (21) Fischer WW, Hemp J, Johnson JE. 2016. Evolution of oxygenic photosynthesis. *Annu.*
508 *Rev. Earth Planet. Sci.* 44:647–683.

509 (22) Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert

510 M. (2003). Expression of two [Fe]-hydrogenases in *Chlamydomonas reinhardtii* under
511 anaerobic conditions. European Journal of Biochemistry 270:2750–2758.

512 (23) Gerotto C, Alboresi A, Meneghesso A, Jokel M, Suorsa M, Aro E-M, Morosinotto T.
513 (2016). Flavodiiron proteins act as safety valve for electrons in *Physcomitrella patens*.
514 Proc Natl Acad Sci USA 113:12322–12327.

515 (24) Giordano M, Beardall J, Raven JA. (2005). CO₂ concentrating mechanisms in algae:
516 mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56:99–
517 131.

518 (25) Ginger ML, Fritz-Laylin LK, Fulton C, Cande WZ, Dawson SC. (2010). Intermediary
519 metabolism in protists: a sequence-based view of facultative anaerobic metabolism in
520 evolutionarily diverse eukaryotes. Protist 161:642–671.

521 (26) Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan
522 L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di
523 Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. (2011). Full-
524 length transcriptome assembly from RNA-Seq data without a reference genome. Nature
525 Biotechnol 29:644–652.

526 (27) Grieshaber, M., and S. Völkel. (1998). Animal adaptations for tolerance and exploitation
527 of poisonous sulfide. Annu. Rev. Physiol. 60:33–53.

528 (28) Hanawa H, Kimitsune Ishizaki, Kana Nohira, Daisuke Takagi, Ginga Shimakawa,
529 Takehiro Sejima, Keiichiro Shaku, Amane Makino, Chikahiro Miyake. (2017). Land
530 plants drive photorespiration as higher electron-sink: comparative study of
531 post-illumination transient O₂-uptake rates from liverworts to angiosperms through ferns
532 and gymnosperms. Physiologia Plantarum 161:138–149

533 (29) Hrdý I, Foster PG, Tachezy J, Hirt RP, Dolezal P, Bardonová L, Embley T. (2004).
534 *Trichomonas* hydrogenosomes contain the NADH dehydrogenase module of
535 mitochondrial complex I. Nature 432:618–622.

536 (30) Hemschemeier, A., and T. Happe. (2005). The exceptional photofermentative hydrogen
537 metabolism of the green alga *Chlamydomonas reinhardtii*. Biochem. Soc. Trans. 33:39–
538 41

539 (31) Hemschemeier A, Jacobs J, Happe T. (2008). Biochemical and physiological
540 characterization of the pyruvate formate-lyase pfl1 of *Chlamydomonas reinhardtii*, a
541 typically bacterial enzyme in a eukaryotic alga. Eukaryotic Cell 7:518–526.

542 (32) Hochachka, P.W. & Somero, G.N. (2002) Biochemical adaptation—mechanism and
543 process in physiological evolution (Oxford Univ. Press, New York)

544 (33) Huang J., Song D., Flores A., Zhao Q., Mooney S.M., Shaw L.M. & Lee F.S. (2007)
545 IOP1, a novel hydrogenase-like protein that modulates hypoxia-inducible factor-1alpha
546 activity. The Biochemical Journal 401:341–352.

547 (34) Hug, L. A., Stechmann, A., & Roger, A. J. (2010). Phylogenetic distributions and
548 histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol
549 Evol 27:311–324.

550 (35) Kim J, I Tchernyshyov, GL Semenza, CV Dang (2006). HIF-1-mediated expression of
551 pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to
552 hypoxia. Cell Metabol 3:177–185

553 (36) Komuniecki R, McCrury J, Thissen J, Rubin N. (1989). Electron-transfer flavoprotein

554 from anaerobic *Ascaris suum* mitochondria and its role in NADH-dependent 2-methyl
555 branched-chain enoyl-CoA reduction. *Biochim. Biophys. Acta* 975:127–131.

556 (37) Kruse, Olaf & Hankamer, Ben. (2010). Microalgal hydrogen production. *Curr Opin*
557 *Biotechnol. Current opinion in biotechnology.* 21:238–43.

558 (38) Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, Bryant D, Hazkani-Covo E,
559 McInerney JO, Landan G, Martin WF. (2015). Endosymbiotic origin and differential loss
560 of eukaryotic genes. *Nature* 524:427–432.

561 (39) Leger MM, Eme L, Stairs CW, Roger AJ (2018). Demystifying eukaryote lateral gene
562 transfer. *Bioessays* 40:e1700242.

563 (40) Lenton TM, Dahl TW, Daines SJ, Mills BJW, Ozaki K, Saltzman MR, Porada P. (2016).
564 Earliest land plants created modern levels of atmospheric oxygen. *Proceedings of the*
565 *National Academy of Sciences* 113:9704–9709.

566 (41) Licausi F, JT Van Dongen, B Giuntoli, G Novi, A Santaniello, et al. (2010). HRE1 and
567 HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in
568 *Arabidopsis thaliana*. *Plant J* 62:302–315

569 (42) Lindmark DG, Müller M (1973). Hydrogenosome, a cytoplasmic organelle of the
570 anaerobic flagellate *Tritrichomonas foetus*, and its role in pyruvate metabolism. *J Biol*
571 *Chem* 248:7724–7728.

572 (43) Loreti E, MC Valeri, G Novi, P Perata. (2018). Gene regulation and survival under
573 hypoxia requires starch availability and metabolism. *Plant Phys* 176:1286–1298.

574 (44) Love MI, Huber W, Anders S (2014). Moderated estimation of fold change and
575 dispersion for RNA-seq data with DESeq2. *Genome Biol* 15:550.

576 (45) Lyons TW, Reinhard CT, Planavsky NJ (2014). The rise of oxygen in Earth’s early
577 ocean and atmosphere. *Nature* 506:307–315.

578 (46) Maheswari, U., Montsant, A., Goll, J., Krishnasamy, S., Rajyashri, K.R., Morawala
579 Patell, V. and Bowler, C. (2005). The Diatom EST Database. *Nucl Acids Res* 33: D344-
580 D347

581 (47) Martin W, Müller M. (1998). The hydrogen hypothesis for the first eukaryote. *Nature*
582 392: 37–41.

583 (48) Martin WF, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B,
584 Hasegawa M, Penny D. (2002). Evolutionary analysis of *Arabidopsis*, cyanobacterial,
585 and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial
586 genes in the nucleus. *Proc Natl Acad Sci USA* 99:12246–12251.

587 (49) Martin WF. (2010). Evolutionary origins of metabolic compartmentalization in
588 eukaryotes. *Philosophical Transactions of the Royal Society B* 365:847–855.

589 (50) Matt GY, Umen JG. (2018). Cell-Type Transcriptomes of the multicellular green alga
590 *Volvox carteri* yield insights into the evolutionary origins of germ and somatic
591 differentiation programs. *G3* 8:531–550.

592 (51) Mentel M, Martin WF. (2008). Energy metabolism among eukaryotic anaerobes in light
593 of Proterozoic ocean chemistry. *363:2717–2729.*

594 (52) Meuser JE, Boyd ES, Ananyev G, Karns D, Radakovits R, Murthy UMN, Ghirardi ML,
595 Dismukes GC, Peters JW, Posewitz MC. (2011). Evolutionary significance of an algal
596 gene encoding an [FeFe]-hydrogenase with F-domain homology and hydrogenase
597 activity in *Chlorella variabilis* NC64A. *Planta* 234:829–843.

598 (53) Mi H, Endo T, Ogawa T, Asada K. (1995). Thylakoid membrane-bound, NADPH-
599 specific pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in
600 the cyanobacterium *Synechocystis* sp. PCC 6803. *Plant Cell Physiol* 36:661–668.

601 (54) Mondy S, Lenglet A, Cosson V, Pelletier S, Pateyron S, Gilard F, Scholte M, Brocard L,
602 Couzigou JM, Tcherkez G, et al. (2014). GOLLUM [FeFe]-hydrogenase-like proteins
603 are essential for plant development in normoxic conditions and modulate energy
604 metabolism. *Plant Cell Environ.* 37:54–69.

605 (55) Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T.
606 (2004). Cyclic electron flow around photosystem I is essential for photosynthesis. *Nature*
607 429:579–581.

608 (56) Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR. (2007). Anaerobic
609 acclimation in *Chlamydomonas reinhardtii*: anoxic gene expression, hydrogenase
610 induction, and metabolic pathways. *J Biol Chem* 282: 25475–25486

611 (57) Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu R-Y, van
612 der Giezen M, Tielens AGM, Martin WF. (2012). Biochemistry and evolution of
613 anaerobic energy metabolism in eukaryotes. *Microbiol Mol Biol Rev* 76:444–495.

614 (58) Nguyen AV, Thomas-Hall SR, Malnoë A, Timmins M, Mussgnug JH, Rupprecht J,
615 Kruse O, Hankamer B, Schenk PM. (2008). Transcriptome for photobiological hydrogen
616 production induced by sulfur deprivation in the green alga *Chlamydomonas reinhardtii*.
617 *Eukaryotic Cell* 7:1965–1979.

618 (59) Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK,
619 Haas FB, Vanderstraeten L, Becker D, Lang D, et al. (2018). The Chara genome:
620 secondary complexity and implications for plant terrestrialization. *Cell* 174:448–464

621 (60) Opperdoes FR, Borst P (1977). Localization of nine glycolytic enzymes in a
622 microbody-like organelle in *Trypanosoma brucei*: The glycosome. *FEBS Letters* 80:360–
623 364

624 (61) Parfrey LW, Lahr DJG, Knoll AH, Katz LA. 2011. Estimating the timing of early
625 eukaryotic diversification with multigene molecular clocks. *Proc Nat Acad Sci USA*
626 108:13624–13629.

627 (62) Perata P, Alpi A (1993). Plant responses to anaerobiosis. *Plant Sci* 93:1–17

628 (63) Petersen JR, Brinkmann H, Cerff RD. (2003). Origin, evolution, and metabolic role of a
629 novel glycolytic GAPDH enzyme recruited by land plant plastids. *J Mol Evol* 57:16–26.

630 (64) Rasmussen B, Bekker A, Fletcher IR. (2013). Correlation of paleoproterozoic glaciations
631 based on U-Pb zircon ages for tuff beds in the transvaal and huronian supergroups. *Earth*
632 *Planet. Sci. Lett.* 382:173–80

633 (65) Río Bártulos C, Rogers MB, Williams TA, Gentekaki E, Brinkmann H, Cerff R, Liaud
634 M-F, Hehl AB, Yarlett NR, Gruber A, et al. (2018). Mitochondrial glycolysis in a major
635 lineage of eukaryotes. *Genome Biol Evol* 10:2310–2325.

636 (66) Rotte, C., Stejskal, F., Zhu, G., Keithly, J. S., & Martin, W. (2001). Pyruvate:NADP
637 Oxidoreductase from the mitochondrion of *Euglena gracilis* and from the apicomplexan
638 *Cryptosporidium parvum*: a biochemical relic linking pyruvate metabolism in
639 mitochondrion and amitochondrion protists. *Mol Biol Evol* 18:710–720.

640 (67) Rowe JM, Jeanniard A, Gurnon JR, Xia Y, Dunigan DD, Van Etten JL, Blanc G. (2014).
641 Global analysis of *Chlorella variabilis* NC64A mRNA profiles during the early phase of

642 *Paramecium bursaria* Chlorella Virus-1 Infection. PLoS ONE 9:e90988–e90988.

643 (68)Schmieder R, Edwards R. (2011). Quality control and preprocessing of metagenomic
644 datasets. Bioinformatics 27:863–864.

645 (69)Schnarrenberger C, Flechner A, Martin W (1995). Enzymatic evidence for a complete
646 oxidative pentose phosphate pathway in chloroplasts and an incomplete pathway in the
647 cytosol of spinach leaves. Plant Physiol 108: 609–614

648 (70)Schut GJ, Adams MW (2009). The iron-hydrogenase of *Thermotoga maritima* utilizes
649 ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen
650 production. J Bacteriol 191:4451–4457.

651 (71)Scoma A, Durante L, Bertin L, Fava F. (2014). Acclimation to hypoxia
652 in *Chlamydomonas reinhardtii*: can biophotolysis be the major trigger for long-term
653 H₂ production? New Phytol 204:890–900.

654 (72)Seki M, Takeda Y, Iwai K, Tanaka K. (2013). IOP1 protein is an external component of
655 the human cytosolic iron-sulfur cluster assembly (CIA) machinery and functions in the
656 MMS19 protein-dependent CIA pathway. J Biol Chem 288:16680–16689.

657 (73)Selinski J, Nig NK, Wellmeyer B, Hanke GT, Linke V, Neuhaus HE, Scheibe R. (2014).
658 The plastid-localized NAD-dependent malate dehydrogenase is crucial for energy
659 homeostasis in developing *Arabidopsis thaliana* seeds. Molecular Plant 7:170–186.

660 (74)Semenza, G. L. (2001). HIF-1, O₂, and the 3 PHDs: how animal cells signal hypoxia to
661 the nucleus. Cell 107:1–3

662 (75)Song D, Lee FS. (2011). Mouse knock-out of IOP1 protein reveals its essential role in
663 mammalian cytosolic iron-sulfur protein biogenesis. J Biol Chem 286:15797–15805.

664 (76)Stairs CW, Roger AJ, Hampl V (2011). Eukaryotic pyruvate formate lyase and its
665 activating enzyme were acquired laterally from a firmicute. Mol. Biol. Evol. 28:2087–
666 2099.

667 (77)Stairs CW, Leger MM, Roger AJ (2015). Diversity and origins of anaerobic metabolism
668 in mitochondria and related organelles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:
669 20140326.

670 (78)Stolper DA, Keller CB. (2018). A record of deep-ocean dissolved O₂ from the oxidation
671 state of iron in submarine basalts. Nature 553:323–327.

672 (79)Tielens AGM, Rotte C, van Hellemond JJ, Martin W. (2002). Mitochondria as we don't
673 know them. Trends Biochem. Sci. 27:564 –572.

674 (80)Vignais PM, Billoud B, Meyer J. (2001). Classification and phylogeny of hydrogenases.
675 FEMS Microbiol Rev. 25:455–501.

676 (81)Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam
677 S, Barker MS, Burleigh JG, Gitzendanner MA, et al. (2014). Phylogenomic analysis of the origin and early diversification of land plants. Proc Nat Acad Sci USA
678 111:E4859–E4868.

680 (82)Woehle C, Dagan T, Martin WF, Gould SB. 2011. Red and problematic green
681 phylogenetic signals among thousands of nuclear genes from the photosynthetic and
682 apicomplexa-related *Chromera velia*. Genome Biol Evol 3:1220–1230.

683 (83)Woo YH, Ansari H, Otto TD, Linger CMK, Olisko MK, Michálek J, Saxena A,
684 Shanmugam D, Tayyrov A, Veluchamy A, et al. 2015. Chromerid genomes reveal the
685 evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife

686 Sciences 4:1–41.

687 (84) Yamori W, Sakata N, Suzuki Y, Shikanai T, Makino A. (2011). Cyclic electron flow
688 around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex
689 performs a significant physiological role during photosynthesis and plant growth at low
690 temperature in rice. Plant J 68:966–976.

691 (85) Zones JM, Blaby IK, Merchant SS, Umen JG. (2015). High-Resolution profiling of a
692 synchronized diurnal transcriptome from *Chlamydomonas reinhardtii* reveals continuous
693 cell and metabolic differentiation. The Plant Cell 27:2743–2769.