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25  Summary

26 Systems with strong horizontal and vertical gradients, such as fjords, are useful models for
27  studying environmental forcing. Here we examine microbia (prokaryotic and eukaryotic)
28 community changes associated with the surface low salinity layer (LSL) and underlying
29  seawater in multiple fjords in Fiordland National Park (New Zealand). High rainfall (1200-
30 8000 mm annually) and linked runoff from native forested catchments results in surface LSLs
31 with high tannin concentrations within each fjord. These gradients are expected to drive
32 changes in microbia communities. We used amplicon sequencing (16S and 18S) to assess
33  theimpact of these gradients on microbial communities and identified depth linked changes
34 in diversity and community structure. With increasing depth we observed significant
35 increases in Proteobacteria (15%) and SAR (37%), decreases in Opisthokonta (35%), and
36 transiently increased Bacteroidetes (3% increase from O to 40 m, decreasing by 8% at 200 m).
37  Community structure differences were observed along a transect from inner to outer regions,
38  gpecifically 25% mean relative abundance decreases in Opisthokonta and Bacteroidetes, and
39 increasesin SAR (25%) and Proteobacteria (>5%) at the surface, indicating changes based on
40  distance from the ocean. This provides the first in-depth view into the ecological drivers of

41  microbia communities within New Zealand fjords.


https://doi.org/10.1101/680694
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/680694; this version posted June 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

42 1. Introduction

43 Microorganisms play amajor role in the cycling of both organic and inorganic nutrientsin all
44  major ecosystems (Falkowski et al., 2008; Junge et al., 2006; Sullam et a., 2017; Zahran,
45  1999). In particular, marine microbes have been linked to global nutrient cycling with
46 community changes affecting global balances of carbon and nitrogen (Arrigo, 2005). Further,
47  as both primary producers and recyclers, they provide information about ecosystem health,
48  viability, and function (Azam and Worden, 2004; Graham et a., 2016). It is therefore critical
49  to understand the factors controlling the microbial community structure in the marine
50 environments. Up to date, a wide range of marine ecosystems remains understudied,
51 including nearshore systems such as fjords. Indeed, fjord-systems with strong horizontal and
52  vertical environmental gradients can be extremely useful models for studying the response of
53  microbial communities to environmental factors.

54 Fords are long narrow coastal inlets flanked by steep cliffs, typicaly carved by
55 glaciers and resulting in deep waterways. In New Zealand (NZ), these sites receive large
56  amounts of rain (>400 mm per month) (NIWA, 2016) and carbon per unit area (Smith et al.,
57 2015) through exogenous carbon inputs particularly tannins (Currey et al., 2009). The
58 externa freshwater inputs help create vertical and horizontal gradients along the transition
59 towards inland from the sea, and with depth, consistent with other sites (Storesund et al.,
60 2017). These gradients can differ based on geographic (i.e. catchment area size) and
61  environmental (i.e. land cover) variables resulting in highly diverse marine, and microbial
62 communities, even in relatively close geographical locations (Brattegard, 1980; Herlemann et
63 4a., 2011). Microbia marine communities are dynamic (Berdjeb et al., 2018; Henriques et al.,
64  2006) arising from the temporally and spatially fluid aquatic gradients (Jakacki et al., 2017,
65  Storesund et al., 2017). Despite this, the microbial communities within fjords of the southern

66  hemisphere (particularly NZ) remain unexplored. NZ fjords are part of a temperate climate,
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67  unlike those found in Chile, Antarctica and Iceland. The different climates, fauna and flora
68  changes, as well as morphological differences, such as depth, could influence the drivers of
69  microbial community composition in fjords.

70 In the present study we characterised the microbial (both eukaryotic and prokaryotic)
71 community composition of six fjords in New Zealand, and linked the observed variance in
72 diversity and community composition to key environmental variables (i.e. depth, salinity,
73 horizontal location, oxygen, temperature) (Logue et al., 2015). We hypothesised that, similar
74 to other fjord systems around the world, depth and salinity would be key determinants of
75  microbial diversity and community composition (Sakami et al., 2016; Storesund et al., 2017,
76  Wash et al., 2016; Ying et al., 2009). We aso hypothesised a close coupling between
77  changes in eukaryotic and prokaryotic communities shift along fjords. To test this, we
78  collected samples from six New Zedand fjords at multiple depths and locations, utilising
79  amplicon sequencing of the small subunit ribosomal rRNA gene (both 16S and 18S) to
80  determine changesin microbial communities.

81

82 2. Materials and methods

83  2.1. Sampling.Samples were collected in November 2015 throughout Fiordland National
84  Park (45.60° S, 167.36° E) (Fig. 1), specifically Breaksea Sound (45.5860° S, 166.7567° E),
85  Chalky Inlet (45.9922° S, 166.6024° E), Doubtful Sound (45.3260° S, 166.9911° E), Dusky
86  Sound (45.7246° S, 166.5065° E), Long Sound (46.0001° S, 166.762415° E), and Wet Jacket
87 Arm (45.6415° S, 166.8413° E).

88 A total of 44 samples were collected from Breaksea Sound (8), Chalky Inlet (10),
89  Doubtful Sound (10), Dusky Sound (10), and Wet Jacket Arm (6). At each site duplicate (2)
90 samples were collected from inner and outer regions of the fjord, and for each region

91  sampling was performed at two depths (0 and 10 m), exceptions including Breaksea Sound's
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92  outer 10 m, Chaky Inlet’s inner 10 m, Doubtful Sound’s inner surface, Dusky Sound’s inner
93 10 m, and Wet Jacket Arm’s inner surface regions where 1, 1, 4, 1, and 4 samples were taken
94  respectively. For higher resolution sampling, duplicate samples were collected at Long Sound
95 from a transect starting at an outer location (Fig. 1 b) and moving inwards with sampling
96  occurring at 2.47, 3.16, 4.73, 5.59, 8.47, 10.67, and 14.3 km from the outermost sample at a
97  depth of 0 and 10 m, exceptions including samples at 2.47, 3.16, 4.73, and 10.67 km at 10 m
98 where no samples were taken, at 8.47 km where only a single sample was taken along the
99  surface for prokaryotes, and at 10.67 km at the surface where only a single eukaryotic sample
100  was taken. An additional depth profile was collected at 8.47 km from the outermost site with
101  duplicate samples collected at 0, 10, 40, 100, 200, and 360 m depths (Fig. 1 b), exceptions
102  including surface, 10 m, and 200 m samples were 4, 3, and 3 samples were taken
103  respectively.
104 A CTD sensor system (SBE-25 0352) was used for vertical profiling of salinity
105  (conductivity), temperature, and dissolved oxygen. Water samples were collected in 10 L
106  Niskin bottles for subsequent analysis.
107
108 2.2. DNA extraction. A 0.5 to 1 litre subsample of water was filtered through a 0.22 um
109 (diameter of 47 mm) polycarbonate filter prior to freezing and storage at -20 °C during
110 transport to the lab and finally stored at -80°C until further processing. Total community
111  DNA was extracted from filters using the MoBio DNeasy® PowerSoil® Kit (MoBio, Solana
112  Beach, CA, USA) in accordance to a modified manufacturer’s protocol. Samples were bead
113 beaten in a Geno/Grinder for 2 x 15s instead of vortexing a maximum speed for 10 minutes.
114  All extracted DNA was stored at -20°C until further use.

115
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116  2.3. Total community profiling using small subunit ribosomal rRNA gene (SSU rRNA)
117 amplicon libraries. Community profiles were generated using barcoded 16S (targeting the
118 V4 region: 515F (5-NNNNNNNNGTGTGCCAGCMGCCGCGGTAA-3) and 806R (5'-
119 GGACTACHVGGGTWTCTAAT-3')) or 18S 1391f (5- GTACACACCGCCCGTC-3') and
120 EukBr (5- TGATCCTTCTGCAGGTTCACCTAC-3') rRNA gene primers as per the Earth
121 Microbiome Project protocol(Caporaso et al., 2012). Barcoded samples were then loaded
122 onto separate Illumina HiSeq (16S) or MiSeq (18S) 2 x 151 bp runs (lllumina, Inc., CA,
123 USA).

124 Raw community profiles were analysed using the Quantitative Insights Into
125 Molecular Ecology (QIIME) 1.9.1 open-reference operation taxonomic unit-picking
126  workflow (Caporaso et a., 2010). Default parameters, including a read length >75 bp,
127  minimum number of consecutive high quality base calls to include a read as a fraction of the
128  input read length of 0.75, a Phred quality score of 3, no ambiguous bases, and no mismatches
129 inthe primer sequence (Bokulich et a., 2013) were used. Analysed sequences were all >136
130 bp in length. Raw sequences were demultiplexed with no ambiguous bases, using only
131 forward reads and the split_libraries_fastq.py command. This has been shown to increase
132 sequence depth per sample and analysis speed while producing comparable results to paired
133  end data (Werner et al., 2012). Operational taxonomic units (OTUs) were generated by
134  clustering at 97% for 16S and 99% for 18S similarity using UCLUST (Edgar, 2010) and an
135  open reference strategy based on reference sequences located in the SILVA database (release
136  128) using the QIIME pick_open_reference_otus.py command (Quast et al., 2013). OTUs
137  were classified to 7 taxa levels (kingdom, phylum, class, order, family, genus, OTU) using
138 BLAST (Altschul et al., 1997) with a maximum e-value of 0.001 against the SILVA

139  database.
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140 The 16S sequence pool was subsampled and rarefied 10 times to a depth of 22,000
141  sequences to eliminate biases in sampling depth, while the 18S sequence pool utilised a depth
142 of 6,600 sequences. The 10 resulting tables were merged into asingle OTU table with a total
143  sequence depth of 220,000 and 66,000 sequences per sample respectively. The data was
144  exported as abiom (json) file for further processing.

145

146  2.4. Microbial community analysis.All data analysis was carried out within RStudio (R
147  Core Team, 2018) version 1.1.453 (RStudio Team, 2016), and visualised using the ggplot2
148  package (version 3.0.0) (Wickham, 2016) unless otherwise stated. Sample counts were
149  transformed using transform_sample_counts() in the phyloseq package (version 1.24.2)
150 (McMurdie and Holmes, 2013) to account for multiple rarefactions. Individua OTU
151  abundances were divided by 10 to provide a mean. To avoid counts represented by fractions
152  all data was rounded to the nearest possibility (using the round() command from the stats
153  package — version 3.5.1) prior to downstream analysis. The a-diversity measures observed
154  richness and Shannon were calculated using the estimate richness() command within the
155  phyloseq package, while Pielou evenness was calculated using the evenness() commands
156  from the microbiome package (version 1.2.1) (Lahti et al., 2017). Significance was calcul ated
157  using a Kruskal-Wallis (KW) test using the kruskal.test() command, from the stats package.
158 Interactions between geographical parameters were calculated using the interaction()
159  command from the base package. Visualisation of B-diversity utilised plot_ordination() from
160 the vegan package together with adjustments from the ggplot2 package (version 3.0.0).
161  Significant correlations between environmental variables and B-diversity were calculated
162  using the PCA() command from the FactoMineR package (version 1.4.1) (L€ et al., 2008). A
163  mantel test was used, as previously described, to identify significant community changes in

164  relation to depth, horizontal location, and the fjord of origin.
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165 Significant microbial community genera changes were calculated using the EdgeR
166  package (version 3.22.3) (Robinson et al., 2009) and an exact test across both the five-fijord
167 and Long Sound fjords. All p values were FDR adjusted using Bonferroni via the p.adjust()
168 command from the stats package. All significantly changing organisms were displayed at the
169  phylalevel for ease of visualisation.

170 Medians were calculated using the ddply() command from the plyr package (version
171 1.8.4) (Wickham, 2011). Standard error, standard deviation and the 95% confidence interval
172 calculated using summarySE() from Rmisc (version 1.5) (Hope, 2013), and arrange() from
173  thedplyr package (version 0.7.6) (Wickham, 2018).

174

175  2.5. Statistical analyses. Physicochemical parameters across and within Long Sound
176  were visualised using the graphics package (version 3.5.1) within RStudio (R Core Team,
177  2018). Mantel tests (vegan package version 2.5-2) (Oksanen, 2008), were used to determine
178  sgnificantly changing physicochemical parameters across geographical (depth, horizontal
179  location, and fjord of origin) parameters.

180

181  2.6. Data availability. The sequence data from this study have been deposited in
182  NCBI under BioProject PRINA540153. All data generated and/or analysed during the study
183 is avalable within the GitHub repository, https://github.com/SvenTobias-
184  Hunefeldt/Fiordland 2019/.

185

186 3. Results

187  3.1. Alphadiversity within fjords

188 OTU richness remained constant across the surface transect in Long Sound fjord for

189  both prokaryotic (1050 + 183) and eukaryotic (388 + 44) communities (Spearman, p value
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190 >0.05)(Fig. 2a-b). At 10 m depth, observed OTUs increased (Spearman: prokaryotes rho =
191  0.83, p vaue = 0.01; eukaryotes rho = 0.76, p value = 0.05) towards the head (landside/in) of
192  the fjord resulting in a near doubling of richness (Fig. 2a-b) compared to the mouth of the
193  fjord (seaside/out). On average, across the length of Long Sound, no significant differences
194 (KW, p > 0.05) were detected in alpha diversity between surface and 10 m richness for either
195  prokaryotes or eukaryotes.

196 A depth profile in the degpest sampled site of the same fjord (8.5 km) showed the
197  prokaryotic richness increasing with depth, with a maximum observed (1503) at 100-200 m,
198  whereas eukaryote's highest richness (599) was located a 10 m (Fig. 2c-d). Overal half as
199  many eukaryotes were identified in the sample compared to prokaryotes (Fig. 2).

200 When richness patterns between outer and inner sites were compared across 5 fjords
201  (Breaksea Sound, Chalky Inlet, Doubtful Sound, Dusky Sound, and Wet Jacket Arm), inner
202  surface communities exhibited higher prokaryotic richness (Fig. 2e), although high variance
203  was observed across fjords. Both depth (KW, X? of 19.55, p value < 0.01) and location
204  within the fjord (KW, X? of 9.40, p value < 0.01) were significantly associated with changes
205 in observed richness, with strong interactions between them (KW, X? of 29.75, p value <
206 0.01) (Table S1 and Fig. 2e).

207

208 3.2. Betadiversity within Long Sound

209 Long Sound’s microbial community was dominated by a few key phyla, with
210  Proteobacteria and Bacteroidetes being the most abundant prokaryotes, while SAR
211 (Stramenopila, Alveolate, and Rhizaria) and Opisthokonta were the most abundant
212 eukaryotes (Table S2-$4). Changes in communities (B-diversity) within the same fjord where
213 strongly linked to depth (Fig. 3). At Long Sound, samples along the horizontal transect were

214 primarily clustered based on depth (0 vs. 10 m), for both prokaryotes (adonis (ado), r2 = 0.24,
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215 pvaue<0.01, ANOSIM (ANO), R = 0.57, p value < 0.01) and eukaryotes (ado, r2 = 0.26, p
216  vaue <0.01, ANO, R = 0.66, p value <0.01) (Fig. 3a-b), with interactions by location (Table
217  S5). The same depth stratification was seen on the vertical axis of Long Sound, showing a
218  clear difference between depths for eukaryotes (ado, r2 = 0.23, p value< 0.01, ANO,R=1,p
219  value <0.01), specifically between the surface, 10 m, and >40 m samples (Fig. 3c-d), but not
220  prokaryotes (p value > 0.05). However, prokaryotic community changes were significantly
221  associated with changes in salinity, oxygen and their interaction (Table S5), which were
222 themselves associated with depth stratification (p value <0.05). For eukaryotic communities,
223  dratification along the horizontal and vertical axis was correlated significantly with all tested
224  environmental parameters excluding horizontal location (Table 14). Prokaryotic stratification
225  based on depth was most correlated along the vertical NMDS axis (Fig. 3c-d), while the
226 eukaryotic NMDSL showed separation between communities above 10 and those below 40
227  m. The NMDS2 separated surface, 10 m, and below 40 m, the surface and 10 m communities
228  shown to be more dissimilar than those below 40 m. Outer region prokaryotic and eukaryotic
229 Long Sound samples clustered together, unlike the innermost samples (Fig. 3ab). This
230  pattern was also noted in the prokaryotic five-fjord NMDS (Fig. 4).

231

232 3.3. Significantly changing taxa

233 Salinity change patterns along the transect in deeper (10 m) samples are similar to the
234  ones observed in surface samples, but less pronounced. Oxygen levels remained constant
235  aong the surface samples and showed a decrease towards the Fjord's head in 10 m samples
236 (Fig. 5a-b). The shifts found in community composition seemed to correlate with these
237 changes. For example, aong the transect, shifts in dominant taxa in the surface samples
238 seemed to correlate to sharp changes in salinity. The most notable shift in taxa occurred

239  between 5.6 and 8.5 km for both prokaryotes and eukaryotes, where the Bacteroidetes and

10
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240  Opisthokonta decreased from the outermost to innermost sample along a region with steep
241 salinity changes (Fig. 5).

242 When taxonomic changes where explored using the depth profile in Long Sound,
243  large rearrangements were observed at the domain and all eukaryotic phyla level organisms
244 in accordance to mixing regions (Fig. 6). At the surface, Eukaryota (mostly Opisthokonta)
245  clearly dominated the community (>75%), but as depth increased the relative abundance of
246  eukaryotes decreased within the first 40 m to <60%, reaching stable levels at depths > 100 m
247  (<38%, mostly SAR). Concerning prokaryotes, Archaea were almost absent at the surface
248  (<5%), increasing with depth, and stabilizing at around 40 m (>50%). In contrast, Bacteria
249  remained largely unaffected by depth. At phylum level, changes in taxa abundance were only
250 pronounced for some groups. The relative abundance of SAR increased with depth, while
251  Opisthokonta decreased. The prokaryotic phyla Proteobacteria and Bacteroidetes, and the
252  eukaryotic phyla SAR and Opisthokonta remained the most abundant taxa within Long
253  Sound that significantly correlated with most tested environmental variables (Fig. 6, 7). Shifts
254  in abundance for different groups where consistent within domains, but differed across them.
255  Changes in prokaryotic taxa abundance occurred a 100-200 m, whereas eukaryotic shifts
256  occurred much closer to the surface at 40 m.

257 While some prokaryotes (i.e. Proteobacteria, Bacteroidetes, and Cyanobacteria),
258  showed significant correlations with all tested environmental variables, this was not the case
259 for eukaryotes (Fig. 5, 7). No eukaryotic taxa was found to significantly correlate with
260  oxygen or temperature. However, we did see an inverse relationship for all Long Sound’s
261 community patterns, most commonly between Proteobacteria and Bacteroidetes, and SAR
262  and Opisthokonta (Fig. 5, 7).

263

264

11
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265 4. Discussion

266 Our analyses indicate that a correlation exists between the diversity and community
267  structure, and the depth and salinity conditions within six New Zealand fjords. These results
268  are consistent with previous studies suggesting that changes in a fjord’s microbial diversity
269  areprimarily correlated with environmental conditions associated with depth, such as salinity
270 (Bordalo and Vieira, 2005; Crump et al., 2004; Herlemann et al., 2011), light (Holker et al.,
271  n.d.), organic matter (POC (Moncada et al., 2019), PON (Moncada et a., 2019), DOC (Li et
272 a., 2012)), tannins (Baptist et al., 2008) and temperature (Berner et al., 2018; Hobbie, 1988).
273 A LSL (low sdlinity layer), distinct from the lower marine layer (Citterio et al., 2017), is
274 common across a fjord’s surface. Physicochemical differences between the marine and LSL
275 layers could be responsible for large diversity and taxa shifts within the upper 10 m (Citterio
276 et al., 2017). Hence, salinity could play arole for both the vertical and horizontal distribution
277  of the community or act as a proxy for LSL mixing. Mixing zones, known to be particularly
278  diverse due to hosting organisms from both environments (Gibbons and Gilbert, 2015),
279  presented a particular strong response correlated with salinity changes (Cloern et al., 2017).
280  The observed shift in salinity could most likely be associated with Fiordland’s characteristic
281  extremely high rainfal levels and thus large freshwater inputs (NIWA, 2016) resulting in
282  large differences in environmental conditions between the surface and the 10 m depth strata.
283  Shiftsin salinity, combined with high tannin concentrations, which limit light penetration to
284  approximately 50 m (Nelson et al., 2002), could influence arapid change in diversity patterns
285 and taxa between depths, especialy in the first 10 m. In addition, the retention times of
286  different water masses in the fjords differ enormously. While the surface water stays severa
287  hours in the fjord and flows seawards constantly, the seawater below is slowly entrained
288  staying several months in the fjord (Goebel et al., 2005) depending on freshwater inputs. The

289  relatively shallow nature of the terminal sills at the fjord entrances (30 to 150 m (Stanton and

12
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290 Pickard, 1981)) limits the depth-associated effects by limiting the maximum salinity of the
291  marine water within the fjord, since only the relatively shallow (and thus less saline) marine
292  water enters and flows up the fjord (Pickrill, 1993; Stigebrandt, 2012; Talley et al., 2011),
293  resulting in a less saline mixing layer between the marine water and LSL that would be
294  associated with oceanic deep water. The relationship between salinity and depth
295 (Macigewskaand Pempkowiak, 2014), is sustained on the scale of 100’'s of meters within the
296  ocean (Cummins, 1991) rather than the smaller scale relationship found within lakes (Garcia
297 et a., 2013). But overall, Fiordland contains more unique characteristics that increase the
298  effect of depth rather than those that decrease depth’s effect on its community.

299

300 4.1. Alphadiversity patternsweredriven by depth and salinity

301 Mixing due to currents, wind or semi-continuous external freshwater inputs (e.g. waterfalls
302 aong the fjord walls) are likely responsible for the constant microbial (both prokaryotes and
303 eukaryotes) richness observed along Long Sound’s surface as well as the varying retention
304 times between the surface and 10 m layer. Microbial richness a 10 m depth decreased
305 towards the fjord’'s mouth, possibly caused by the lower levels of mixing and higher water
306 retention times within Long Sound. Oxygen concentration decreases at 10 m towards the
307 fjord’'s head. Oxygen being consumed during the heterotrophic respiration of organic matter
308 and a lack of renewal from atmospheric exchange due to the LSL, which persistently
309  overcaps the underlying seawater.

310 The microbial diversity pattern found a the surface does not display a clear
311  progression related to horizontal location, while at 10 m a seeming region-like richness and
312  taxa change is noted for both prokaryotes and eukaryotes (Fig. 2, 3), most likely due to the
313  varying retention time (Goebel et al., 2005) and dilution effects. The relative longer retention

314  timeat 10 m (compared to the LSL) and less wind mixing could allow for the establishment
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315  of more complex communities, a community increasing in complexity and diversity asit ages
316  (Donlan, 2002). While the surface exhibits similar richness levels across the horizontal axis,
317 its high flow rate corresponding to a high rate of horizontal dispersal (Campbell and
318  Kirchman, 2013), and the homogeneity of phytoplankton communities within the LSL (and
319  associated heterotrophic community) (Goebel et al., 2005) prevent the establishment of
320 strong horizontal structure in microbial communities.

321 Observed richness along the vertical Long Sound axis correlated significantly with
322 salinity but not depth on microbial diversity, corroborating the strong influence of the surface
323  freshwater layer, constantly fed by external freshwater sources. Neither temperature nor
324  oxygen showed a correlation with richness patterns, even though these variables are
325 commonly considered to be very closely associated with depth. Much like marine snow often
326  correlates with depth. Marine snow comes from the sinking of surface organic matter and
327  organisms towards greater depths (Mestre et al., 2018), as such it is possible for microbes
328 growing at the surface to be found at unexpected depths in an environment unsuitable for
329 their growth. Much like marine snow, the dispersal effect, based upon the fact that due to
330 their small size microbes disperse over large distances (Foissner, 2006), allows for microbes
331  tobefound in environments unsuitable for their optimal growth.

332 When taxonomic richness is compared among the six fjords, Doubtful Sound had a
333  much higher richness level within the surface layer of the inner fjord. This 40 km long fjord
334 ischaracterised by alarger LSL produced by the Manapouri Power Station freshwater output
335 (Gibbs et al., 2000; Nelson et al., 2002). The deeper and more persistent LSL could have
336 resulted in the observed increased microbia richness. An elevated flow rate and strong
337  separation between the LSL and the underlying seawater layer likely prevented migration of
338 microbial communities to the 10 m layer at the fjord’s head, also potentially decreasing

339  vertical fluxes associated with marine snow. The inner surface region of five of the fjords
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340 studied presented higher microbial taxonomic richness levels, in contrast with the trend
341 observed in Long Sound. As such, the patterns observed among the six fjords demonstrated
342  that while microbial richness patterns within these fjords were correlated with depth, it was
343 not in accordance to our initial hypothesis. Overall, our results indicate that both prokaryotic
344  and eukaryotic richness patterns within all tested fjords present a clear correlation with depth.
345

346  4.2. Depth effects drove community changes between sites

347  Long Sound's prokaryotic and eukaryotic outermost communities presented more similarities
348  amongst themselves than the innermost communities, possibly due to a smaller LSL in those
349  outer regions and the effects of increased mixing on horizontal dispersal. The innermost
350 communities at different depths were just as dissimilar to each other as they were to the
351  outermost communities, indicating aclear effect of strong vertical gradients in environmental
352  conditions linked to the presence of a deep and distinct LSL. The LSL is at its deepest at the
353 fjord’s head where the main freshwater runoff is located, and in Long Sound because of
354  topographic isolation of the inner fjord basin the LSL is thick and has a higher retention time
355 than in the other fjords. Towards the outermost regions, across the narrow passage that
356  connects Long Sound with the outer coast Preservation Inlet, the LSL becomes much
357 shalower, at times disappearing (Wing, 2009) and is subject to advection and mixing by
358  ocean waves. As such, the outermost communities at both the surface and 10 m exist in non-
359  LSL-influenced marine water. This contrasts with the communities closer to the fjord’s head,
360  where the surface community is located primarily within the LSL, while the community at 10
361 mis found within LSL-influenced marine water. This degree of marine influence was aso
362  seen on the prokaryotic and eukaryotic vertical Long Sound axis NMDS plots. Grouping of
363 communities into three separate layers was found, possibly due to depth associated

364  environmental condition changes, specifically salinity and oxygen. However, prokaryotic
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365 communities of different depths were less dissimilar compared to eukaryotic communities.
366  Both prokaryotes and eukaryotes showed that depth differences, and thus degree of marine
367 influence, resulted in different communities. Based on this we hypothesised that each fjord
368  would contain its own unigque microbial community associated with the distinct environments
369  within each fjord (e.g. depth, LSL depth, freshwater input, fjord length, entrance depth, etc.).
370  Non-significant fjord clustering was noted for prokaryotes, the inner surface samples all
371  clustering to the left of other samples from the same fjord, possibly due to the freshwater
372 input carrying soil organisms from the fjord’s head. The separation of the inner surface
373  samples reflects the increase in richness of the five-fijords but not the Long Sound richness
374  patterns found in our study. Interestingly, the amount of freshwater appeared to influence the
375 fivefjord NMDS, since Chalky Inlet (containing the smallest LSL) and Doubtful Sound
376  (with the largest LSL) were located at opposite sides of the NMDS plot. Overal, diversity
377  patterns matched with depth associated environmental changes across Long Sound. However,
378  those same trends were not visible within the five-fjord diversity and community patterns.
379

380 4.3. Fiordland fjords community composition changes are mainly due to the effects
381 depth hason environmental variables.

382 Our study was the first to simultaneously investigate patterns in both prokaryotic and
383  eukaryotic community diversity within fjords. To date, very few studies have focused on
384 diversity patterns in fjordic environments, particularly those of the eukaryotic community,
385  often excluding large taxa and targeting specific groups such as protists (Orsi et al., 2012;
386  Piguet et al., 2010). The results obtained on dominantly identified phyla in the present study
387 are consistent with previous reports on marine and fjord systems, which were dominated by
388  Proteobacteria (Aldunate et al., 2018; Sinha et a., 2017; Spietz et al., 2015; Vander Roost et

389 4., 2018; Zaikovaet al., 2010), Bacteroidetes (Aldunate et al., 2018; Fernandez-Gomez et al.,
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390 2013; Sinha et a., 2017; Spietz et a., 2015), Opisthokonta (Del Campo et a., 2015), and
391  SAR(Guillou et a., 2008).

392 Proteobacteria include many different phylogenetic groups capable of diverse
393  functional ability, from consuming dissolved organic matter (Wagner et al., 2006) to Sulphur
394 oxidation (Frigaard et a., 2006; Yamamoto and Takai, 2011). Marine associated
395 Bacteroidetes degrade particulate organic matter, containing significantly more proteases
396 than non-marine Bacteroidetes (Ferndndez-Gomez et a., 2013). Marine associated
397 Bacteroidetes attachment to phytoplankton may thus influence Bacteroidetes distribution, as
398 has been previously observed within blooms (Pinhass et al., 2004; Smith et a., 2017;
399 Teeling et al., 2012). Cyanobacteria, a photoautotrophic oxygen producing prokaryote phyla
400 (Hamilton et al., 2016), showed high abundance at the surface but was mostly absent at
401  greater depths. The observed pattern is consistent with those found in other marine systems,
402  abundance decreasing with light penetration and availability (Cantonati et al., 2014).

403 Opisthokonta are a diverse group of eukaryotes including organisms from both the
404  animal and fungal kingdoms (Adl et a., 2018; Shalchian-Tabrizi et a., 2008), making it hard
405 to determine the role they play within marine systems. Key characteristics of Opisthokonta
406  include synthesis of extracellular chitin, cyst/spore/cell walls of filamentous growth, hyphae,
407  and the extracellular digestion of substrates (Adl et al., 2018). Only 5% of SAR are from well
408 sampled families making them a poorly understood phyla (Grattepanche et al., 2018). SAR is
409 made up of Stramenopila, Alveolate, and Rhizaria. Stramenopila are mostly made up of
410 autotrophic primary CO, producers. A shared ecological function has not yet been
411 determined for Alveolate, which made up the mgority of the SAR distribution patterns
412 (Table S2-$4). Alveolata are characterised by the presence of cortical alveoli (membrane-
413  bound sacs underlying the cell membrane). Rhizaria is made up of a diverse range of free-

414  living heterotroph lineages. Photosynthetic Rhizaria have also undergone photosynthetic
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415 endosymbiosis. But difficulty in isolation and cultivation makes Rhizaria and other SAR
416  clades hard to study within [aboratory settings.

417 Prokaryotes and eukaryotes shifted at different depths along vertical axis of Long
418  Sound. While the prokaryotic community shifted at 100 m depth, the eukaryotic community
419  shifted much closer to the surface at 40 m depth. The late shift of the prokaryotic community
420 ismost likely due to the presence of a permanent sulphur mat at ~150 m (James et al., 2018),
421 while the eukaryotic community shift could be explained by the effects of light penetration,
422  due to the high tannin concentration in the water due to the land runoff in periods of high
423  rainfall. As such, even changes across the horizontal axis can be attributed to the differences
424 inenvironmental factors derived from the effects of depth.

425 The environmental factors of depth, horizontal location, and salinity consistently
426  correlated with both prokaryotic and eukaryotic diversity patterns. Oxygen and temperature
427  did not match the taxa distribution pattern as closely as depth, horizontal location, and
428  salinity. Thus, we hypothesise that oxygen and temperature were not as important as the other
429  environmental variables in determining taxonomic diversity patterns . Indeed, depth and
430  salinity, which always significantly correlated with community diversity, are likely much
431  moreinfluential in determining microbial community assemblages established within a fjord.
432

433 5. Conclusions

434  For the first time depth and salinity have been shown to act as major factors on both
435  prokaryotic and eukaryotic diversity, community composition, and taxa patterns across and
436  within fjords. However, our exploratory study did not focus on individual organisms or their
437  interactions within the ecosystem. We instead focused on high taxa rank distributions due to
438  environmental parameters; prompted by the lack of similar studies. Subsequent studies

439  should focus on functional analyses across depths and individual interactions across the
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440  ecosystem. A high-resolution sampling of all fjords should be utilised instead of a region-
441  based analysis. Regional analyses alow the identification of general trends along a fjord but
442  lack the power to assess individual fjords. Unique fjord characteristics (e.g. additional
443  freshwater sources) make direct cross-fiord studies difficult; cross-fjord studies should
444  instead assess conserved trends across multiple fjords. Further refining our understanding of
445  microbia communities within afjord and the ecological reasoning behind their distribution.

446
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735  Figureslegends:

736  Figure 1. Geographical location of sampling sites. Geographical locations of sampling sites
737 in New Zealand, Fiordland (a) (Kahle and Wickham, 2013), and Long Sound’'s sampling

738  scheme (b).

739

740 Figure 2. Alpha-diversity of Fiordland fjords. Richness for both 16S (left side) and 18S
741  (right side) across Long Sound’s horizontal axis (a, b), Long Sound’s vertical axis (c, d), and
742  richness based on 16S for al five sampled fjords samples (e). OTU clustering as carried out
743 at 97% similarity.

744

745  Figure 3. Microbial beta-diversity within L ong Sound. Beta-diversity based on 16S (left
746  panels) and 18S (right panels) datafor Long Sound’ s horizontal axis (a, b) and its vertical

747  axis(c, d). Dissmilarity was assessed using Bray-Kurtis distance matrices based on OTUs at
748  97% similarity.

749

750 Figure4. Microbial beta-diversity of fivefjords. The fjord of origin, sample region, and
751  depth were used to identify sample origin. Dissimilarity was assessed using Bray-Kurtis

752  distance matrices based on OTUs at 97% similarity.

753

754

755  Figure 5. Changes in environmental parameters and significantly associated taxa along
756  Long Sound’s horizontal axis. Environmental parameter changes were noted across Long
757  Sound’s horizontal axis surface (a) and 10 m (b) in a discrete manner. Also shown is the

758  mean relative abundance of phyla across Long Sound’s horizontal axis (c-h). Communities
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were based on 16S (left side) and 18S (right side) sequencing. The microbial community was
correlated against distance from the outermost sample (c, d), salinity (e, f), temperature (g),
and oxygen (h). Phyla <1% mean relative abundance have been identified and grouped into
Rare Taxa (<1%y). Error bars represent standard error of the mean abundance from repeated

samplings. Mean relative abundance was cal culated from pooled significantly correlated taxa.

Figure 6. 18S sequencing based microbial community of Long Sound’svertical axis.
Long Sound'’ s vertical community is shown at both the domain (a) and phyla (b) level as
depth increases. Phyla <1% relative abundance have been identified and grouped into Rare

Taxa (<1%). Mean relative abundance was calculated from pooled taxa.

Figure 7. Changesin environmental parametersand significantly associated taxa along
Long Sound’ s vertical axis. Environmental parameter changes were noted across Long
Sound’ s vertical axis (@) in adiscrete manner. Also shown is the mean relative abundance of
phyla across Long Sound’s vertical axis. Communities were based on 16S (left side) and 18S
(right side) sequencing. The microbial community was correlated against distance from the
outermost sample (b, ), salinity (d, €), temperature (f), and oxygen (g. Phyla <1% mean
relative abundance have been identified and grouped into Rare Taxa (<1%). Error bars
represent standard error of the mean abundance from repeated samplings. Mean relative

abundance was calculated from pooled significantly correlated taxa.

Table S1. Kruskal-Wallis tests on observed richness in relation to depth, distance, fjord of

origin, salinity, oxygen, temperature for all studied fjords.
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Table S2. Prokaryotic taxa significantly correlated with distance, depth, salinity, oxygen, and

temperature along the horizontal axis of Long Sound fjord.

Table S3. Prokaryotic taxa significantly correlated with distance, depth, salinity, oxygen, and

temperature along the vertical axis of Long Sound fjord.

Table 4. Eukaryotic taxa significantly correlated with distance, depth, salinity, oxygen, and

temperature along the horizontal and vertical axis of Long Sound fjord.

Table S5. Mantel tests on fjord taxain relation to depth, distance, fjord of origin, salinity,

oxygen, temperature for all studied fjords.
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