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Abstract 

Genetic studies have recently highlighted the importance of fat distribution, as well as overall              

adiposity, in the pathogenesis of obesity-associated diseases. Using a large study (n = 1,288)              

from 4 independent cohorts, we aimed to investigate the relationship between adipocyte area             

and obesity-related traits, and identify genetic factors associated with adipocyte cell size. To             

perform the first large-scale study of automatic adipocyte phenotyping using both histological            

and genetic data, we developed a deep learning-based method, the Adipocyte U-Net, to rapidly              

derive area estimates from histology images. We validate our method using three            

state-of-the-art approaches; CellProfiler, Adiposoft and floating adipocytes fractions, all run          

blindly on two external cohorts. We observe high concordance between our method and the              

state-of-the-art approaches (Adipocyte U-net vs. CellProfiler: ​R​2​visceral ​= 0.94, ​P ​< 2.2 × 10 ​−16​,             

R​2​subcutaneous​= 0.91, ​P ​< 2.2 × 10 ​−16​), and faster run times (10,000 images: 6mins vs 3.5hrs). We                 

applied the Adipocyte U-Net to 4 cohorts with histology, genetic, and phenotypic data (total N =                

820). After meta-analysis, we found that adipocyte area positively correlated with body mass             

index (BMI) (​P​subq​= 8.13 × 10 ​−69​, ​β ​subq = 0.45; ​P​visc​= 2.5 × 10 ​−55​, ​β ​visc = 0.49; average ​R​2 across                   

cohorts ​= 0.49) and that adipocytes in subcutaneous depots are larger than their visceral              

counterparts (​P​meta​= 9.8 × 10 ​−7​). Lastly, we performed the largest GWAS and subsequent             

meta-analysis of adipocyte area and intra-individual adipocyte variation (N = 820). Despite            

having twice the number of samples than any similar study, we found no genome-wide              

significant associations, suggesting that larger sample sizes and a homogenous collection of            

adipose tissue are likely needed to identify robust genetic associations. 
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Introduction 

Although obesity is a heritable and heterogeneous cardiometabolic risk factor, little is known             

about how genetic variation influences human adipocyte size across adipose depots or how             

such variability may confer risk to obesity and other cardiometabolic outcomes.​1–4 

A defining feature of obesity is an excess of white adipose tissue (WAT). WAT mass expansion                

can occur in a range of adipose depots. The two most well defined depots are subcutaneous                

WAT and visceral WAT, where adipose accumulates in intra-abdominal depots present mainly            

in the mesentery and omentum and which drains through the portal circulation to the liver.​5 WAT                

expansion, both in normal development and in the development of obesity, is defined by two               

mechanisms: (i) ​hyperplasia​, the increase in the number of adipocyte precursor cells, leading to              

an overall increase in the number of mature adipocytes; and (ii) ​hypertrophy​, the increase in               

size of adipocytes due to lipid filling.​6–8 Reduced total adipocyte number has been associated              

with type 2 diabetes (T2D)​9​, and increased adipocyte size has been associated with insulin              

resistance, dyslipidemia, hepatic steatosis, and the onset of T2D​10,11​. In addition, similar            

adipocyte sizes observed in BMI-concordant twins suggests a strong genetic background           

underlying adipocyte size.​12 To date, little is known about the genetic variation or molecular              

pathways that regulate adipocyte morphology (e.g., size, density, and morphology),​6​,​13 or how            

these link to biological mechanisms, whole-body obesity related traits such as BMI and             

waist-hip-ratio (WHR), and subsequent cardiometabolic disease ​14​.  

We therefore sought to explore the relationship between adipocyte area and anthropometric            

traits like WHR and BMI, as well as investigate the genetic underpinnings of adipocyte area by                

combining histology data of fat tissue with accompanying genetic variation data from the same              

samples. To allow for rapid, automatic quantification and segmentation of adipocyte surface            

area in adipose histology slides from subcutaneous and visceral tissue collected from four             

independent research cohorts, we developed and applied a Convolutional Neural Network           

(CNN). We use these image-derived adipocyte area estimates to test for associations with BMI,              

WHR adjusted for BMI (WHRadjBMI), and a range of glycemic traits. Finally, we report the first                

genome-wide association study (GWAS) of adipocyte surface area to date, with the goal of              

identifying common genetic variants that associate with adipocyte morphology and to           

investigate previously published links to adipocyte morphology. 
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Results 

Applying a convolutional neural network to obtain region of interest proposals from            
thousands of histology slides and millions of cells 

We ascertained histology and genotyping data from four independent cohorts (​Table 1​): (1) the              

Genotype-Tissue Expression (GTEx) Project, comprised of a multi-ancestry sample collected in           

the United States​15​, with adipose tissue sampled from the lower leg (subcutaneous) and greater              

omentum (visceral); (2) the Endometriosis Oxford (ENDOX) project from the Endometriosis           

CaRe Centre, University of Oxford, with adipose tissue sampled from beneath peri-umbilical            

skin (subcutaneous) and from the bowel and omentum (visceral) of women undergoing            

laparoscopy for suspected endometriosis; (3) severely/morbidly obese patients undergoing elect          

abdominal laparoscopic surgery in the Munich Obesity BioBank (MOBB), with adipose tissue            

sampled from the upper abdominal area (subcutaneous) and the angle of His (visceral); and (4)               

a healthy cohort selected for not having type 2 diabetes (fatDIVA), with subcutaneous tissue              

sampled from the abdomen (see ​Methods​ for more detail). 

Table 1 | ​Description of cohorts included in adipocyte morphology phenotyping and            
meta-analysis​. Histology sample sizes denote the number of tissue samples available in either             
the subcutaneous (subq) or visceral (visc) depots, ​after image quality control was complete (see              
Methods ​).  

Cohort N, histology 
(SC/VC)​† 

% 
female 

Mean 
age 

Mean 
BMI 

% with 
T2D 

N, both genetic and 
histology data 

 subq visc  subq visc 

GTEx 715 562 34% 53.4 27.5 22% 504 410 

ENDOX 308 42 100% 32.9 26.5 not 
available 105 23 

MOBB 142 171 67% 46.5 44.4 30% 113 131 

fatDIVA 123 0 58% 58.0 24.9 0% 98 0 

 

To obtain adipocyte surface area measurements, we devised a deep learning pipeline that             
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performs automatic classification of putative adipose cell containing Region of Interest (ROI)            

proposals in whole adipose tissue histology slides followed by segmentation of the images and              

then quantification, allowing us to filter tiles of slides that do not contain adipocytes (​Figure 1​).                

 

Figure 1 ​| Overview of the pipeline to obtain adipocyte areas. Whole Slide Images are split                

into 1024 1024 pixel “tiles”. A Convolutional Neural Network (CNN), InceptionV3, pretrained             

on ImageNet and fine-tuned on adipose histology tiles, is used to assign probabilities to tiles               

containing adipocytes. Using high confidence adipocyte containing tiles (​Posterior Probability >           

0.9) alongside manually created binary segmentation masks, we implemented a U-net CNN to             

segment adipocytes. We then apply a probability threshold ​to each segmentation probability            

map ​16 (see ​Data Availability and Code ​for details), regions are proposed using scikit-learn and              

areas calculated. Pixel areas are converted into um​2 using the appropriate micron per pixel              

conversion factor per image. 

First, we tiled each histology image slide using a sliding window of 1024 × 1024 pixels. We                 

applied this tiling strategy across GTEx and ENDOX samples; the MOBB and fatDIVA cohorts              

already consisted of images containing adipocytes, and therefore required no tiling or filtering.             

Next, we manually selected tiles to form a training dataset of three distinct classes: (i) tiles                

containing adipocytes, (ii) tiles containing no adipocytes, and (iii) empty tiles. Example images             

of these three tile classes are shown in ​Supplementary Figure 1 ​. To obtain only tiles               
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containing adipocytes, we fine-tuned an InceptionV3 deep convolutional neural network          

(CNN)​17​; our CNN achieved 97% accuracy on our held out validation set (​Methods​). For each               

tile, we obtained the posterior probability that the tile belonged to one of the three defined tile                 

classes (​Methods​) and defined the set of tiles containing adipocytes as those tiles exceeding a               

posterior probability threshold of ​P > 0.90 for being in that particular class. Choosing such a                

large posterior probability ensured we obtained images of just adipocytes and no other             

contaminant tissue (resulting in a low false positive rate and a high false negative rate).               

Examples of image tiles classified as adipocyte, non-adipocyte or empty at ​P > 0.90 are               

presented in ​Supplementary Figure 2​. 

Using a deep adipocyte U-net to robustly segment cells and estimate cell area  

To measure adipocyte surface area, we treated the task as a segmentation problem. We              

created a training dataset of 175 high resolution, hand drawn, manually segmented (1024 pixels              

× 1024 pixels) binary segmentation masks across all four cohorts (​Methods​). Binary            

segmentation masks are images in which adipocyte/foreground are represented by white pixels            

taking on value 1 and the background pixels are black, represented as 0 (normalised from pixel                

space [0-255] to [0-1]) (​Methods​). While automated segmentation methods such as watershed            

and adaptive thresholding methods (as implemented in Adiposoft and CellProfiler​18​) can be            

effective for some image analysis, deep learning has shown state-of-the-art performance in            

semantic segmentation, object recognition and biomedical segmentation tasks​19​,​20,21​,​22​.        

Additionally, our approach benefits from GPU-acceleration, as it is currently not feasible to             

analyse tens of hundreds to millions of images with traditional methods relying on serial CPU               

compute, Graphical User Interfaces (GUI), or both. Therefore, we trained a U-net architecture,             

which we call the Adipocyte U-net (​Methods​), to produce binary segmentation masks of             

adipocytes that are then trivial to count and measure computationally. Our Adipocyte U-net             

achieved a held-out performance dice coefficient of 0.84 (​Methods​), indicating a high degree of              

overlap between our predicted segmentation and the ground truth known segmentation in the             

held out test set (see ​Methods ​).  

To benchmark and validate our Adipocyte U-net, we used two cohorts that had previously              

independently (blindly) estimated adipocyte surface area for all individuals using Adiposoft           

(fatDIVA) and CellProfiler (MOBB), alongside significant manual gating and expert correction of            

area predictions. These two methods are the current state of the art approaches for segmenting               
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both adipocyte histology images (Adiposoft) and images of a wider array of cells more generally               

(CellProfiler).​23–25 We show significant concordance between independent adipocyte area         

estimates between either FatDIVA (r​subq = 0.91, ​P = 8.3 × 10 ​−45​) or MOBB (r​visc = 0.94, ​P < 2.2 ×                     

10 ​−16​, r​subq = 0.91, ​P 2.2 × 10 ​−16​) and our novel adipocyte estimation method, Adipocyte U-net                

(​Figure 2 ​). Adipocyte area estimates from the Adipocyte U-net were, on average smaller,             

compared to the area estimates obtained by other methods. This can be attributed to a               

difference in cutoff values of cell size being used to exclude small, improperly gated objects               

between methods. 

 

Figure 2 | ​Comparison of Adipocyte U-net-estimated adipocyte area with Adiposoft and            
CellProfiler-estimated adipocyte area across fatDIVA and MOBB cohort. Estimates from          
our Adipocyte U-Net and from Adiposoft or CellProfiler are highly correlated, indicating            
concordance between our method and the two current gold standards for measuring cell             
morphology. The time necessary to compute these estimates with Adipocyte U-net was several             
orders of magnitude faster than the time required by Adiposoft/CellProfiler to generate the same              
measures. 

As a second, non-histology based validation strategy, we compared fat cell size from             

collagenase digestion to adipose U-net area estimates in the MOBB cohort. Independent of the              

depot, and similar to the histological validation above, we observed agreement between both             

methods (n ​subq = 46, r​subq = 0.41, ​P​subq = 5.0 × 10 ​−3​; n ​visc = 65, r​visc = 0.59 , ​P​visc = 2 × 10 ​−7​). As                         

previously reported, we find that whilst adipocyte area estimates vary substantially dependent            
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on the method used for quantification, the correlation of adipocyte size and obesity is robust to                

these differences.​26  

Our Adipocyte U-net required less than 6 minutes to predict adipocyte surface area across the               

~10,000 images included in fatDIVA and MOBB. In comparison, Adiposoft took ~3.5 hours.             

GTEx and ENDOX, our largest cohorts, each consisting of approximately 250,000 images, took             

~1 hour using the Adipocyte U-net, whilst we estimate Adiposoft would take 19 days for a single                 

run. Additionally, our method captured adipocytes that are absent in Adiposoft produced            

segmentation masks (​Supplementary Figure 3 ​and 4​). Examples of the test segmentation            

quality are presented in ​Supplementary Figure 5 ​(all data and code available, see Data              
Availability & Code ​). 

Adipocyte area differences from adipose depots throughout the human body. 

We next utilised our Adipocyte U-net to obtain area estimates from our four cohorts. These               

cohorts totalled 2,176 samples (multiple distinct adipose depots per subject) (​Table 1​) making it              

the largest study of adipocyte morphology of its kind. 

For adipocyte area estimation, we obtained estimates for the mean as well as the standard               

deviation of adipocyte size for 500 unique cells/per sample/per depot (subcutaneous and            

visceral). We determined 500 unique cells to be a necessary minimum for stable, low variance               

estimates of adipocyte surface area by applying Monte Carlo sampling (​Supplementary Figure            
6​). Given the different metabolic and physiological roles subcutaneous and visceral adipose            

tissue depots play, we compared their mean adipocyte cell surface area and performed a              

random-effects meta analysis to compare adipocytes across visceral and subcutaneous adipose           

depots. A depot-specific effect was observed (​P​meta = 9.8 × 10 ​−7​, ​β ​= -0.55), with larger cells on                  

average observed in subcutaneous adipose depots ​(​Supplementary Figure 7A​)​. ENDOX          

cohort samples showed no significant, but directionally consistent, differences across the two            

depots (t-statistic = -1.52, ​P = 0.13), likely due to limited power in this cohort (N = 42 visceral                   

samples vs. N = 562 in GTEx; ​Figure 3 ​). Finally, we observed variation within each depot,                

further demonstrating how adipocyte size within a single depot can vary substantially (​Figure 3              

and ​Supplementary Figure 9 ​). 

As body fat distribution and it's genetic basis is sexually dimorphic​1,3​, we tested for sexual               

dimorphic effects in adipocyte morphology. A depot-specific meta-analysis showed that mean           
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adipocyte area in visceral, but not subcutaneous adipose, is sexually dimorphic           

(​Supplementary Figure 7C​)​. Our meta-analysis indicated that women had smaller adipocytes           

in visceral fat (​P​meta = 3.05 ​× 10 ​−7​, ​β = -0.34, I​2 = 0). While females have larger adipocytes in                    

subcutaneous adipose as compared to men, this result was not significant when meta-analysed             

across cohorts (​P​meta = 0.08, ​β = 0.186 I​2 = 53.2), adjusting for BMI, age and self-reported race                  

(​Supplementary Figure 7B ​and Supplementary Figure 10​). Due to the heterogeneity of            

subcutaneous adipose tissue being derived from various anatomical locations (​I​2 = 53.2)​, it is              

possible there is a sexually dimorphic effect that is specific to precise anatomical  
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Figure 3 | ​Mean adipocyte area across adipose depots (subcutaneous: cyan, visceral:            
blue) per sample. Visceral adipose tissue tends to have a bimodal distribution of mean              
adipocyte areas as compared to subcutaneous adipose tissue.  

subcutaneous adipose depots. For example, an effect (​β = ​0.32, ​P = 3.0 ​× 10 ​−6​) was present in                   

GTEx (derived from the lower leg), one of the four cohorts analysed (​Supplementary Figure 7)​. 

Next, we assessed the relationship between adipocyte area in each depot and a range of               

disease relevant covariates. Previous studies have observed that obese individuals have larger            

adipocytes, but the vast majority of these analyses have been carried out using small sample               

sizes (N < 100)​27,28​. ​We recapitulate the relationship between adipocyte size and BMI in both               

subcutaneous and visceral depots across all four cohorts with an effective BMI range of [17-80],               

a range of collection methods and disease states. We observed an association between mean              

adipocyte area and BMI. We find that the mean adipocyte surface area in visceral fat correlates                

more strongly with BMI than adipocyte size in subcutaneous depots (r​subq​= 0.47, r​visc​= 0.50;              

Figure 4, ​P​meta = 8.13 ​× 10 ​−69​, ​β = 0.4 ​5), significant after adjustment for sex, age, T2D status,                  

and self-reported ethnicity (​Supplementary Figure 7D ​and 7E​). We also find a significant             

positive association between adipocyte area and subject age in visceral, but not subcutaneous             

adipose tissue, when meta-analysed across all available cohorts (​P​subq meta = 0.09, ​β = 0.09; ​P​visc                

meta​ = 0.01, ​β ​ = 0.12) (​Supplementary Figure 7H ​and ​ 7I​). 

Table 2 ​ | Summary of adipocyte measurements per cohort.  

Cohort Mean adipocyte area estimates (​μm​2​) 

 Subcutaneous Visceral 

GTEx 2,813 ​±​ 717 2,352 ​±​ 866 

ENDOX 1,842 ​±​ 484 1,711 ​±​ 518 

MOBB 3,239 ​±​ 880 2,513 ​±​ 850 

fatDIVA* 1,461 ​±​ 276 N/A 

* ​The cohort fatDIVA were ascertained to fall within a healthy BMI range and to be free of type 2                   
diabetes. MOBB, with the largest cell size estimates, are primarily morbidly obese subjects. 
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Figure 4 ​ |​ Association between mean adipocyte area and BMI across subcutaneous and 
visceral adipose tissue depots. ​ We observe a strong correlation between BMI and mean 
adipocyte size across both subcutaneous and visceral depots in all cohorts. 

As GTEx samples are collected post-mortem, and numerous publications have shown a range             

of significant associations between sample ischemic time and assays performed on GTEx            

subjects​29,30​, we assessed the relationship between our adipocyte area estimates, and sample            

ischemic time across depots. We find a positive association between mean adipocyte area and              

sample ischemic time (​P​subq = 1.7 ​× 10 ​−4​, ​β ​subq = 0.14 ​± ​0.037; ​P​visc = 6.8 ​× 10 ​−4​, ​β = 0.14 ​±                      

0.042) suggesting a relationship between longer ischemic time and larger cells, most likely due              

to cell degradation and/or bursting, leading to overestimation of cell surface area from broken or               

joining cell membranes or due to failed staining. Additionally, we found no association between              

cell estimates and self-reported ethnicity for both depots (​P = 0.59). Finally, studies have found               

conflicting evidence regarding a relationship (or lack thereof) between adipocyte size and insulin             

resistance or T2D status.​28​,​31,32​. We meta-analyzed GTEx and MOBB, as T2D status was             

available for both, and did not observe a significant relationship between adipocyte size and              

T2D for either depot (​P​visc meta = 0.11, ​β = 0.12; ​P​subq meta = 0.37, ​β = -0.19) (​Supplementary                   
Figures 7F, 7G ​and ​11​). As a range of glycemic state variables (HbA​1C ​and fasting blood           

glucose) were available for the MOBB cohort, we ran a multiple linear regression adjusting for               

BMI and age to investigate the relationship between adipocyte size and glucose homeostasis.             

Independent of the depot, no significant associations between glucose or HbA​1C ​and adipocyte             

size were found (Glucose: n ​Subq ​= 110, P​Subq = 0.71, n ​visc = 124, p ​visc = 0.061; HbA1c: n ​Subq ​= 79,                    

P​Subq = 0.75, n ​visc = 86, p ​visc = 0.059). While this ​suggests that BMI might act as the primary                   

modifier of adipocyte size in these depots, further studies in larger cohorts including clinical              

biochemistry parameters of glucose homeostasis are necessary to clearly elucidate the role            

between diabetic state and adipocyte size. 

For the MOBB cohort, we had additional extensive clinical measurements, including C-reactive            

protein, glucose, triglycerides and 12 additional clinical chemistry-derived phenotypes         

(​Supplementary Figure 8 ​). We observed several relationships between increased adipocyte          

size and WHR (r​subq ​= 0.28, r​visc = 0.33), C-reactive protein (r​subq ​= 0.17, r​visc = 0.26), prealbumin                  

(r​visc = 0.21), gGT (r​subq = 0.17 r​visc = 0.21), thyroxine T3 (r​visc = 0.3) and triglycerides (r​visc = 0.18),                    

demonstrating a wide range of depot-specific associations. Of these associations, only BMI            

(​P​subq = 3.6 ​× ​10 ​−10​; ​P​visc = 5.6 ​× 10 ​−11​) remained significant after adjustment for multiple testing in                  

12 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/680637doi: bioRxiv preprint 

https://paperpile.com/c/VCmO4E/Rcwl+hgby
https://paperpile.com/c/VCmO4E/EWHw
https://paperpile.com/c/VCmO4E/Nu77+GI6G
https://doi.org/10.1101/680637
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 phenotypes (​P = 2.6 ​× 10 ​−3​). Together, these analyses suggest that obesity, as measured               

through BMI, is the dominant phenotype associated with adipocyte size, with mean adipocyte             

size in visceral fat accounting for, on average, 25% of the variance of BMI (​Figure 4​). 

GWAS meta-analysis of depot-specific adipocyte surface area estimates 

We sought to use our histology-derived phenotype data to identify common genetic variants             

(single nucleotide polymorphisms, SNPs) that associate with mean adipocyte size or variance of             

adipocyte size in subcutaneous and visceral tissue. After data quality control and imputation             

using the Haplotype Reference Consortium​33 for those cohorts with SNP array data (​Methods​),             

we used the histology phenotypes to perform genome-wide association testing in each depot             

and for each cohort. We then meta-analysed the results in an inverse variance fixed effects               

meta-analysis. In addition to performing the meta-analysis across the combined sample, we            

performed sex-specific analyses for each depot and each phenotype (mean adipocyte size and             

variance of adipocyte size).  

Our meta-analysis in the combined sample in the subcutaneous depot examined 820 samples             

(424 women and 396 men) with available subcutaneous histology data, while our meta-analysis             

in the visceral depot tested 564 samples (259 women and 305 men) with relevant available               

histology data. We performed all GWAS analyses using Plink 1.9 and adjusted analyses for sex,               

age, BMI, and the first 10 principal components (​Methods​). As the ENDOX cohort was              

genotyped on two separate platforms, we additionally adjusted these GWAS for genotyping            

platform. Due to ancestral heterogeneity in GTEx, we reduced our sample to just those              

individuals of European descent (​Methods​). We accounted for testing two separate depots by             

setting genome-wide significance at ​P​ < 2.5 ​×​ 10 ​−8​. 

No SNP in our meta-analysis achieved genome-wide significance (​P < 2.5 ​× 10 ​-8​), likely due to                

limited power given the small sample size. A small number of loci in our meta-analyses               

contained common SNPs at ​P < 5 ​× 10 ​-7 ​with consistent direction of effect across all available                 

cohorts (see summary-level results in ​Data and Code Availability​), representing regions of            

interest for further genome-wide association testing.  

Finally, we used our largest cohort (GTEx) to estimate the SNP-based heritability of the adipose               

histology phenotypes analysed here (​Supplementary Figure 12​). We used Genome-wide          

Complex Trait Analysis (GCTA)​34 to perform Restricted Maximum Likelihood (REML) analysis to            
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estimate SNP-based heritability in each cell phenotype and across all sample groups (combined             

samples, women only, and men only). Cell phenotypes in both depots appear to be heritable               

traits, but error estimates were broad (​h​2 of mean cell size in subcutaneous tissue = 35.3%, ​±                 

38.4 ​%; ​h​2 of mean cell size in visceral tissue = 22.4%, ​± 48.5 ​%; ​Supplementary Table 1​)                

reflecting that analysis of a larger set of samples is necessary for more accurate estimates of                

trait heritability.  

Association signals at previously published adipocyte size loci 

Two adipocyte size common variant associations exist in the literature: the ​KLF14 locus             

(rs4731702, found in 18 men and 18 women) and the ​FTO locus (rs1421085, found in 16 risk                 

and 26 non risk-allele carriers). While the ​KLF14 ​locus was characterised using adipose tissue              

histology from non-obese female individuals, the ​FTO locus was characterized using isolated            

floating mature adipocytes in subcutaneous adipose tissue from lean (20 < BMI < 24),              

population-level male individuals​35,36​. In our meta-analysis, we find no evidence to support            

associations for either rs4731702 (​P​combined = 0.925, ​P​females = 0.662, and ​P​males = 0.158 for mean                

adipocyte size in subcutaneous tissue) or rs1421085 (​P​combined = 0.735, ​P​females = 0.426, ​P​males =               

0.609 for mean adipocyte size in subcutaneous tissue; ​Supplementary Table 2​).  

Given that KLF14 is a female-specific type 2 diabetes-imprinted locus, we took further steps to               

mirror the original study design as best as possible in each of our cohorts. We excluded                

heterozygotes, only considering non-risk allele and risk-allele homozygotes, only considered          

genotype data from pre-menopausal women and subjects within a normal BMI range: 18 < BMI               

<30. After this stratification we observe a nominal association similar to the original study (​P =                

0.012 n = 18 risk allele carriers (CC) and n = 14 non-risk subjects (TT), having larger                  

subcutaneous adipocytes (​Supplementary Figure 13​). However, when we repeat this analysis           

in GTEx visceral fat samples and ENDOX subcutaneous fat samples, we see no evidence of               

association (GTEx, ​P = 0.68, n ​CC individuals = 9, n ​TT individuals = 9; ENDOX ​P = 0.91, n ​CC​= 19,                   

n ​TT = 19 ​Supplementary Figure 14​). We were unable to perform these analyses in either               

fatDIVA or MOBB due to the absence of non-risk allele carriers remaining after sample filtering               

(fatDIVA) or due to the nature of the study design (MOBB, which contains a majority of morbidly                 

obese subjects). 

For ​FTO ​we were unable to similarly mirror the study design as we were able to do for the                   
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KLF14 locus, given that the reported effect was specific to lean male individuals. Nevertheless,              

we performed analysis to test for association between ​FTO ​-rs1421085 and adipocyte size in             

GTEx (n risk allele carriers (CC) = ​73 ​, n non-risk allele carriers (TT) = ​246 ​). In subcutaneous fat,                  

FTO ​-rs1421085 was not significantly associated to adipocyte surface area in joint (​P = 0.39, n =                

319), female (​P = 0.75, n = 125) or male-specific analysis (​P = 0.08, n = 194), controlling for the                    

effects of age and BMI. In visceral fat, ​FTO ​-rs1421085 was also not significantly associated to               

adipocyte surface area in joint (​P = 0.59, n = 248), female (​P = 0.98, n = 98) or male-specific                    

analysis (​P = 0.34, n = 150), controlling for age and BMI. Lastly, ​FTO ​-rs1421085 was not                

significant in ENDOX (female-specific subcutaneous cohort) (​P = 0.78, N = 40), MOBB             

(morbidly obese) (​P​subq = 0.67, n ​subq​= 68; ​P​visc = 0.86, n ​visc​= 74) or fatDIVA (normal range BMI                 

and T2D free) (​P​ = 0.34 , n = 52).  

Associations between obesity-trait genetic risk scores and adipocyte area 

We tested for associations between genetic risk scores (GRSs) for BMI, WHR, and WHRadjBMI              

and mean adipocyte area in both subcutaneous and visceral fat depots (​Methods​). We             

observed a nominal (​P < 0.05) association between the BMI GRS and subcutaneous mean              

adipocyte area. Each 1-unit higher BMI GRS (corresponding to a predicted 1-standard deviation             

higher BMI) was associated with 210 μm​2 (95% CI 23 - 397μm​2​, ​P = 0.03) larger mean                 

adipocyte area, with comparable results for standardized adipocyte area (​Supplementary          
Tables 3 ​and 4​). However, the association did not surpass our Bonferroni correction threshold              

of ​P < 0.008 (adjusting for three obesity trait GRSs and two fat depots). We observed no other                  

associations between the obesity-trait GRSs and mean adipocyte area, but the confidence            

intervals were large, suggesting that larger sample sizes are needed to reliably assess these              

relationships. 

Discussion 

Imaging data provides a rich resource to perform rapid, accurate, and large-scale cellular             

phenotyping. Here, we developed the adipocyte U-net, an image segmentation machine           

learning model, to rapidly and accurately obtain measurements of adipocyte area from multiple             

human adipose depots across the human body. We used these image-derived phenotypes to             

establish relationships between obesity, age, sex, T2D, and a range of clinical covariates.             

However, most associations we find are attenuated and no longer significant after conditioning             

on BMI, suggesting BMI is the primary driver of adipocyte size (r = 0.43-0.59 across cohorts and                 
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adipose depots). Using adipocyte surface area as a cellular phenotype, we performed the first              

GWAS of adipocyte surface area. Genome-wide association testing revealed no SNP exceeding            

genome-wide significance (​P < 2.5 ​× 10 ​−8 after multiple test correction). Heritability estimates             

also indicated that adipocyte area is likely heritable, but much larger sample sizes are required               

to obtain tight confidence bounds. 

Our approach represents an additional opportunity for the application of machine learning in             

genomics. The Adipocyte U-net not only enables rapid phenotyping (our method is many orders              

of magnitude faster than current state-of-the-art approaches), but also demonstrates how           

genetic association studies could begin to examine endophenotypes, such as histology imaging,            

rather than clinically-measured phenotypes, such as BMI or waist-to-hip ratio. Being able to             

interrogate high-dimensional endophenotypes in a GWAS framework may yield a more rapid            

uncovering of genetic variants directly linked to the biological mechanisms that underpin            

clinically-measured outcomes. Many such methods to derive phenotypes from images are           

currently being developed ​19,22,37,38​. 

A small number of studies have previously identified common genetic variants as associated to              

adipocyte morphology phenotypes. We report mixed replication results at both rs4731702 (at            

the ​FTO locus) and rs1421085 (at the ​KLF14 locus). Our initial meta-analysis results indicate no               

evidence for association at either SNP (​Supplementary Table 2​). It is likely given the weakness               

of the initial results published and their lack of power (n < 50) that these loci do not reflect true                    

adipocyte size associated loci. Additionally, whilst our study has variable sample ascertainment            

between cohorts (for example, ENDOX is an endometriosis cohort while GTEx are            

population-level ascertained postmortem samples), any single cohort described here is at least            

twice the size of the original publications. The potential signals at these loci will require further                

validation in much larger meta-analyses. 

We have performed the largest study of automated histology measurements using a GWAS             

approach. Despite this being the largest study of its kind, our total sample size is < 1,000                 

samples and we find no genome-wide associated SNPs. Our findings suggest that larger             

samples will be necessary to uncover associated genetic variants and more accurately estimate             

heritability and polygenic risk of these phenotypes. Whilst we were underpowered to obtain             

meta-analysis heterogeneity statistics with tight confidence intervals, and by using          

random-effects to account for additional per-cohort variability, we do indeed see significant            
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heterogeneity (I​2​) for phenotype-adipocyte size analyses, likely reflecting the heterogeneous          

collection of subcutaneous and visceral adipose tissue depots across cohorts, including           

differences in anatomical locations from which tissues were collected. Larger, more           

homogeneous samples will be especially useful to investigate sex-specific effects.​1,3 Finally, our            

study focuses exclusively on samples of European-ancestry, a well-described bias in human            

genomics,​39,40 and studies in diverse ancestral populations will be necessary to fully understand             

the biology of adipocyte morphology and how this links to obesity, a condition that affects               

populations worldwide. 

We have developed a method to enable rapid and accurate phenotyping from histology data,              

enabling integration of larger histology and GWAS datasets with highly-scalable computational           

phenotyping methods for future studies. Such an approach can accelerate the exploration of the              

genetic underpinnings of cell phenotypes or other endophenotypes measured via imaging data,            

thus paving the way for further insights into how genetic variation may contribute to adipocyte               

morphology and how these mechanisms may contribute to downstream cardiometabolic          

disease. 
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Methods 

Data and code availability 

Relevant code and data, including images and annotations can be found at the following GitHub               

repository: ​https://github.com/GlastonburyC/Adipocyte-U-net​. Here, you can also find links to         

download the summary-results from our GWAS analyses. 

GWAS summary statistics used for PRS: 

https://github.com/lindgrengroup/fatdistnGWAS/tree/master/SuppTable1 

Cohort collection, curation, and quality control 

(1) GTEx 

The GTEx Project 

The Genotype Tissue and Expression (GTEx) Project was initiated to measure gene expression             

and identify expression quantitative trait loci (eQTLs) in 53 tissues. The project has been              

previously described ​15​. Briefly, samples were collected in the United States. The vast majority of              

samples were collected postmortem. Tissues were collected and stored according to a released             

protocol. 

Samples 

We obtained 722 subcutaneous and 567 visceral/omentum adipose tissue GTEx histology           

slides. All histology images were stored as whole-slide, high-resolution binary ‘svs’ files. All             

histology slides were obtained at scale 0.4942 ​μ ​m per pixel and were therefore comparable             

across samples. To obtain images that were of reasonable resolution for downstream            

processing and analysis, we tiled across each of the histology slides, producing 1024 ​× 1024               

pixel tiles. 

Whole Genome Sequencing Quality Control 

Sample QC 

All samples had missingness < 5%. We excluded samples based on the suggested sample              

exclusions from GTEx. These samples include large chromosomal abnormalities (e.g.,          
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trisomies, large deletions) and mosaics. Principal component analysis (PCA) indicated the           

cohort to be a multi-ancestry cohort (including African-, East Asian-, and European-descent            

samples), to be expected given that samples were collected from many different locations in the               

United States. Within ancestral groups, no sample had an outlying inbreeding coefficient            

(defined as  6 standard deviations from the coefficient distribution). 

SNP QC 

To clean SNPs, we split the samples (roughly) into subsamples of reasonably homogenous             

ancestral groups (for QC purposes only). We dropped all SNPs out of Hardy Weinberg              

equilibrium (HWE) with ​P​ < 1 ​×​ 10 ​−6​.  

Because samples were sequenced on two sequencing platforms (HiSeq 2000, HiSeq X) we             

performed an association test between the SNPs on each platform and removed any SNPs with               

substantially different frequencies (​P < 5 ​× 10 ​−8​). We ran the same association test, but this time                 

checking for frequency differences by library preparation group and removed any associated            

SNP (​P​ < 5 ​×​ 10 ​−8​).  

After checking transition/transversion ratio by (i) site missingness, (ii) quality-by-depth (QD), and            

(iii) depth of coverage, we removed all sites with missingness > 0.5%, sites with QD < 5, and                  

sites with total depth < 9000 or > 33,000. 

The final dataset included 635 samples and >35M genetic variants with a minor allele count > 1. 

Phenotype analysis 

We assessed the association of adipocyte area to a range of whole-body traits that were               

available in the GTEx dataset (BMI, Weight, Ischemic time & Type 2 Diabetes status). 

(2) Abdominal laparoscopy cohort - Munich Obesity BioBank / MOBB 

Samples 

We obtained subcutaneous and visceral adipose tissue histology slides from a total of 188              

morbidly obese male (35%) and female (65%) patients undergoing a range of abdominal             

laparoscopic surgeries (sleeve gastrectomy, fundoplication or appendectomy). The visceral         
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adipose tissue is derived from the proximity of the angle of His and subcutaneous adipose               

tissue obtained from beneath the skin at the site of surgical incision. Images were acquired at                

20 ​× magnification with a micron per pixel value of 0.193 ​μ ​m/pixel. Collagenase digestion and             

size determination of mature adipocytes was performed as described previously.​41 All samples            

had genotypes called using the Illumina Global Screening beadchip array. 

Quality control of genotyping data 

Sample quality control 

Collaborators from MOBB - the abdominal laparoscopy cohort, sent DNA extracted from 192             

samples to the Oxford Genotyping Center for genotyping on the Infinium HTS assay on Global               

Screening Array bead-chips. Genotype QC was done using GenomeStudio and genotypes were            

converted into PLINK format for downstream analysis. 

We checked sample missingness but found no sample with missingness > 5%. For the              

remaining sample quality control (QC) steps, we reduced the genotyping data down to a set of                

high-quality SNPs. These SNPs were: 

(a) Common (minor allele frequency > 10%) 

(b) Had missingness < 0.1% 

(c) Independent, pruned at a linkage disequilibrium (r​2​) threshold of 0.2 

(d) Autosomal only 

(e) Outside the lactase locus (chr2), the major histocompatibility complex (MHC, chr6), and            

outside the inversions on chr8 and chr17. 

(f) In Hardy-Weinberg equilibrium (​P​ > 1 ​×​ 10 ​−3​) 

Relevant information, including code and region annotations, can be found in the GitHub             

repository provided in the Data and Code Availability section at the beginning of the ​Methods​. 

Using the remaining ~65,000 SNPs, we checked samples for inbreeding (--het in PLINK), but              

found no samples with excess homozygosity or heterozygosity (no sample >6 standard            

deviations from the mean). We also checked for relatedness (--genome in PLINK) and found              

one pair of samples to be identical; we kept the sample with the higher overall genotyping rate.                 

Finally, we performed PCA using EIGENSTRAT and projected the samples onto data from             
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HapMap3, which includes samples from 11 global populations. Six samples appeared to have             

some amount of non-European ancestral background, while the majority of samples appeared            

to be of European descent. We removed no samples at this step, selecting to adjust for principal                 

components in genome-wide testing. However, adjustment for principal components failed to           

eliminate population stratification, and we therefore restricted to samples of European descent            

only, defined as samples falling within +/- 10 standard deviations of the first and second               

principal component values of the CEU (Northern and Western European-ancestry samples           

living in Utah) and TSI (Tuscans in Italy) samples included in the HapMap 3 dataset.​42,43 Finally,                

sex information was received after initial sample QC was complete. As a result, one sample with                

potentially mismatching sex information (comparing genotypes and phenotype information) was          

discovered after analyses were complete and therefore remained in the analysis. 

SNP quality control 

We removed all SNPs with missingness > 5% and out of HWE, ​P < 1 ​× 10 ​-6​. We also removed                    

monomorphic SNPs. Finally, we set heterozygous haploid sites to missing, in order to enable              

downstream imputation. 

The final cleaned dataset included 190 samples and ~700,000 SNPs. We note that histology              

data was not available for all genotyped samples. 

(3) fatDIVA 

“fatDIVA” (Function of Adipose Tissue for DIabetes VAriants) is a recruit-by-genotype study            

aiming to understand more about the mechanisms of differences in adipose tissue function.             

Research volunteers were identified by the NIHR Exeter Clinical Research Facility (Exeter CRF)             

and recruitment facilitated within the Exeter CRF. Before recruitment into fatDIVA,           

approximately 6,000 anonymised DNA samples from the Exeter 10,000 (EXTEND) study were            

genotyped on the Global Screening Array and imputed to the Haplotype Reference Consortium             

reference panel. A genetic risk score of 11 variants was then calculated for each individual and                

weighted by effects on fasting insulin. These 11 variants formed an early version of a               

“favourable adiposity” genetic score – where collectively the alleles associated with higher fat             

mass were associated with a favourable metabolic profile, and vice versa ​44 

Individuals falling into the 5% lowest tail of the weighted genetic score were contacted and, if                
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agreeing to take part in the study, matched to age (​± 4 years), sex and BMI (​± 1 unit) to an                     

individual in the highest 20% of the weighted genetic score. Inclusion criteria were age 18-75               

and exclusion criteria were: treated Diabetes (including insulin and GLP-1 analogues), history            

of bariatric surgery and recent significant weight loss/gain (​± 3 kgs in the last 3 months);                

connective tissue disease, pregnancy and lactation, inflammatory or consuming conditions, and           

the following medications: prescribed glucose-lowering medication, lipid-lowering treatment        

(such as statins, fibrates or ezetimibe) or other medication that alters lipids (such as beta               

blockers and diuretics), oral/IV corticosteroid treatment or loop diuretics (furosemide,          

bumetanide), antiplatelet and anticoagulation medication, methotrexate. All participants were         

asked to refrain from strenuous exercise and from eating very fatty meals in the 48 hours prior                 

to coming in to the clinic, then fast overnight prior to attending a one-off morning visit at the                  

Exeter CRF. A sample of abdominal fat was obtained by firstly injecting some local anaesthetic               

into an accessible area of the abdomen. Using a scalpel, a small incision (approx 2-3cm) was                

made to a depth of approx 15mm and a small (pea-sized) sample of fat removed. The wound                 

was closed with simple sutures or steristrips. Part of the fat sample was stored in formalin for                 

later HE staining. For each individual, a HE stained slide was examined under a microscope               

and ten photographs of different parts of the slide taken, with the operator choosing sections               

with a clear vision of adipocytes wherever possible. Adiposoft software was used to identify and               

quantify the area of adipocytes.  

Imputation data quality control 

Samples had previously been imputed using the HRC panel and sent in best-guess genotype              

format. 

Sample QC 

Phenotypic and genetic sex information was consistent for all samples with available sex             

information. For all samples with sex information missing in the phenotype data, we used the               

genotypic sex to infer sex of the sample. A relatedness check found two pairs of related                

samples (pi-hat > 0.125). Because all samples were imputed (missingness is 0) we arbitrarily              

removed one sample from each pair. One sample had an inbreeding coefficient > 6 s.d from the                 

mean of the inbreeding coefficient distribution, and was therefore removed. PCA indicated all             

samples to be of European descent. 
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SNP QC 

We removed all monomorphic SNPs from the dataset and removed any SNP out of HWE (​P < 1                  

×​ 10 ​−6​). The final dataset comprised 254 samples and > 8.8M SNPs. 

(4) ENDOX​ Endometriosis case/control study 

Samples 

Genotyping data quality control 

Samples were genotyped at the Oxford genotyping center on two arrays: the Affymetrix Axiom              

(UK Biobank chip) (n = 56) and the Illumina Infinium Global Screening Array (n = 127). 

Sample QC 

Samples were cleaned in a manner identical to those samples in the abdominal laparoscopy              

(MOBB) and fatDIVA cohorts. No samples had missingness >5% and all samples were             

consistent in phenotypic and genotypic sex (all female). No sample was an outlier in the               

inbreeding check, and no pair of samples appeared to be related (pi-hat threshold of 0.125,               

equivalent to a cousin relationship). PCA using HapMap 3 data showed that all samples were of                

European descent. 

SNP QC 

SNPs were cleaned in a manner identical to those samples in the abdominal laparoscopy and               

fatDIVA cohorts. The final cleaned dataset included 127 samples and ~685,000 SNPs on the              

Illumina Array and 56 samples and 655,000 SNPs on the Affymetrix array. 

Genotype imputation 

For the genotyped cohorts without imputation data (ENDOX and MOBB) we performed            

imputation via the Michigan Imputation Server. We aligned SNPs to the positive strand, and              

then uploaded the data (in VCF format) to the server. We imputed the data with the Haplotype                 

Reference Consortium (HRC) panel, to be consistent with the fatDIVA data which was already              

imputed with the HRC panel. We selected EAGLE as the phasing tool to phase the data. To                 

impute chromosome X, we followed the server protocol for imputing this chromosome (including             
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using SHAPEIT to perform the phasing step). 

Region Of Interest proposal: InceptionV3 CNN 

We defined our Regions of Interest (ROIs) “adipocyte-only” training set tiles as having little to no                

vessels, smooth muscle or other tissue/contaminate present and that were composed of well             

shaped, viable, non-ruptured adipocytes that filled the majority of the tile (>80%). To automate              

this procedure, we trained an InceptionV3 deep convolutional neural network (CNN) architecture            

using transfer learning ​17​. Whilst the original InceptionV3 network was trained on 1000 ImageNet             

classes​45​, we only wanted to classify empty, adipocyte-only and non-adipocyte containing tiles.            

To do this, we removed the final dense layer and replaced it with an AveragePooling layer with                 

(8,8) convolutions and a stride of 8. Our final layer consisted of a fully connected layer with                 

outputs representing our three classes. We used a softmax activation to obtain posterior             

probabilities of any given tile belonging to one of our three classes. For a tile to be classified as                   

containing adipocytes, we use only high confidence calls (Posterior Probability > 0.9). We used              

Stochastic Gradient Descent (SGD) with Nesterov momentum (0.9) and a learning rate of 1.0 ​×               

10 ​−4​. We trained the network on 2,729 tiles, approximately equally distributed across each class              

from both subcutaneous and visceral depots. We used a 80:20 train:validation split. The model              

reached a training accuracy of 95% and validation accuracy of 96.6%. Our trained classifier and               

weights are available as a Jupyter notebook (see: ​Data and Code Availability)​ ​46​: 

U-net architecture  

To obtain robust count and area estimates of adipocytes we used a deep convolutional neural               

network architecture based on a modified U-net, originally designed to perform biomedical            

image segmentation in a low sample size regime ​20​. We used 175 manually created ground-truth              

segmentations of adipocyte tiles of resolution 1024 ​× ​1024. We demonstrate our network learns              

the correct segmentation mask and predicts adipocytes that are commonly missed by Adiposoft             

(​Supplementary Figure 3 ​). Each adipocyte tile and corresponding mask were concatenated to            

create a large ‘ ​ensemble image​’ which we then sampled 1024 ​× ​1024 input images from. For                

validation, we used 10% of the data ensuring that the same image samples never overlapped               

for training and validation. Our loss function was a dice binary cross-entropy loss, and a dice                

coefficient metric was used to assess performance. The Dice coefficient measures the degree of              

overlap between two segmentations (A: ground truth, B: predicted) and takes on a value              
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between 0 and 1, with 1 representing a perfect score: 

 

 

The final validation Dice coefficient was 0.844. As an output, we obtain a pixel-wise probability               

map per input image of the same dimensions with each pixel classified as an adipocyte or not.                 

The trained U-net model architecture, corresponding weights, and jupyter notebooks are all            

publicly available (see: ​Data and code availability)​. 

Adipocyte area estimation 

To obtain robust adipocyte area estimates we utilised the output of our Adipocyte U-net. To               

further refine our predictions, we thresholded the probability maps and transformed them into             

grey-scale images. To obtain counts and area estimates for every cell in the image, we used the                 

‘ ​regprop​’ function in the scikit-learn library. As a quality control step, we removed cell area               

estimates less than 200 ​μ ​m​2 and greater than 16,000 ​μ ​m​2​, which typically represented cell debris             

and joined adipocytes where H&E staining had failed, respectively. As the quality of the              

histology slides varied significantly, our ROI method and use of a fixed number of cells per                

sample was essential to avoid any significant sample specific biases. 

Network training hardware and software specification 

U-net training took approximately 20 hours and the InceptionV3 fine tuning ran in under one               

hour. Inception tile classification for all samples took 13 hours (classification of more than 2               

Million images) and Inference/Prediction on 1024 ​× 1024 images for the U-net took 22 hours               

(240,000 images). All models were implemented in Keras/Tensorflow. All networks were trained            

on a single server with a one Titan X pascal NVIDIA card, 12Gb of GPU memory and 64GB of                   

RAM. 

Phenotype-Adipocyte size meta-analysis: 

All phenotype-adipocyte meta-analyses were conducted using the R package ‘meta’ and           

‘metafor’ ​47​. As our cohorts come from heterogenous populations and both subcutaneous and            

visceral adipose depots are taken from various anatomical locations, we chose to use a random               
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effects meta-analysis to capture the distributional differences in adipocyte size across cohorts.            

Whilst underpowered to estimate heterogeneity accurately, we calculated I​2​, a statistic that            

quantifies the proportion of the variance in the meta-analysis attributable to heterogeneity. 

Genome-wide association testing and meta-analysis 

Genome-wide association studies (GWAS) within cohorts 

In each cohort, we implemented a genome-wide association study (GWAS) of the available             

histology phenotypes. The GWAS in the GTEx data was performed directly on the genotypes              

generated from whole-genome sequencing.​15 For the other three cohorts, we performed GWAS            

on the best-guess genotypes resulting from imputation with the Haplotype Reference           

Consortium (HRC).​33 Imputation dosages were converted to best-guess genotypes using Plink           

2.0.​48 Due to limited data availability for the X chromosome, we restricted our GWAS to the                

autosomal chromosomes. 

We performed GWAS in each cohort using linear regression implemented in Plink 2.0 (--glm).              

We adjusted all GWAS for sex, age, BMI and the top ten principal components calculated from                

common genetic variation in the cohort using a high-quality set of markers (see ​Cohort              

collection, curation and quality control ​). For the imputed genotype cohorts, we restricted            

regression to those SNPs with an imputation quality (INFO) score > 0.3. We applied no minor                

allele frequency threshold at this step and opted instead to filter on allele frequency once the                

meta-analysis was complete. 

After performing GWAS within each cohort for each group of samples (all samples, women only,               

men only) and each phenotype (mean cell size, cell size variance) we generated             

quantile-quantile (QQ) plots stratified by both imputation quality score and minor allele count             

(​Data and Code Availability ​for details) to check for excessive genomic inflation in particular              

bins of SNPs. We observed no evidence for stratification in any GWAS, and therefore              

proceeded with meta-analysis. 

Meta-analysis 

Once GWAS within each cohort were complete, we performed an inverse-variance fixed effects             

meta-analysis for each phenotype (in the combined and sex-stratified samples). We           

implemented the meta-analysis in METAL.​49 Once the meta-analyses were complete, we again            
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plotted stratified QQ plots (​Data and Code Availability ​for details) to check for evidence of               

population stratification or other sources of confounding. We set genome-wide significance at ​P             

< 2.5 ​× 10 ​−8​, reflecting a Bonferroni correction for testing tissue from two adipose depots. As                

adipocyte mean size and adipocyte variance are highly correlated to one another (r​subq = 0.914               

and r​visc​ = 0.963), we did not count the two phenotypes as independent tests. 

Genetic risk scores for obesity-related traits and adipocyte area 

Construction of genetic risk scores 

We constructed GRSs for BMI, WHR, and WHRadjBMI using independent (r​2 < 0.05) primary              

(“index”, associated with each obesity trait ​P ​< 5 ​× 10 ​−9​) SNPs in the combined-sexes analyses                

in a recent GWAS​3 (see ​data availability ​). We excluded SNPs with duplicated positions,             

missingness > 0.05, HWE ​P ​< 1 ​× 10 ​−6​, and minor allele frequency < 0.05 in the imputed data,                   

after filtering on imputation info > 0.3 in the imputed cohorts and restricting the GTEx cohort to                 

those of European ancestry and excluding one individual due to relatedness. For these             

analyses, the individual in MOBB with potential sex mis-match between genotypic and            

phenotypic sex was removed. Only SNPs available in all cohorts after quality control was              

included, resulting in a final set of 530, 259, and 274 SNPs for BMI, WHR and WHRadjBMI,                 

respectively. The SNPs were aligned so that the effect allele corresponded to the obesity-trait              

increasing allele. GRSs were then computed for each participant by taking the sum of the               

participant’s obesity-increasing alleles weighted by the SNPs effect estimate, using plink           

v1.90b3.​50  

Statistical analyses 

We then investigated associations with subcutaneous and visceral mean adipocyte area per            

1-unit higher obesity GRS, corresponding to a predicted one standard deviation higher obesity             

trait, using linear regression in R version 3.4.3.​51 All analyses were performed both with              

adipocyte area in μm​2 and in standard deviation units, computed through rank inverse normal              

transformation of the residuals and adjusting for any covariates at this stage. We adjusted for               

age, sex, and ten principal components, and with and without adjusting for BMI in the GTEx,                

MOBB, and fatDIVA cohorts. As we did not have access to data about age and BMI in the                  

all-female ENDOX cohort, we only adjusted for ten principal components in that cohort and with               

and without adjusting for chip type. We then meta-analysed the cohorts, assuming a             
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fixed-effects model. In the main meta-analysis model, ENDOX was included using the adjusted             

for chip type estimates. As a sensitivity analysis, we also reran the meta-analyses using the               

ENDOX estimates unadjusted for chip type and completely excluding the ENDOX cohort,            

yielding highly similar results.  
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