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Abstract

Background

Highly accurate next-generation sequencing (NGS) of genetic variants is key to
many areas of science and medicine, such as cataloguing population genetic
variation and diagnosing patients with genetic diseases. Certain genomic loci and
regions can be prone to higher rates of systematic sequencing and alignment bias
that pose a challenge to achieving high accuracy, resulting in false positive variant
calls. Current standard practices to differentiate between loci that can and cannot be
sequenced with high confidence utilise consensus between different sequencing
methods as a proxy for sequencing confidence. This assumption is not accurate in
cases where all sequencing pipelines have consensus on the same errors due to
similar systematic biases in sequencing. Alternative methods are therefore required

to identify systematic biases.

Methods

We have developed a novel statistical method based on summarising sequenced
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reads from whole genome clinical samples and cataloguing them in “Incremental
Databases” (IncDBs) that maintain individual confidentiality. Variant statistics were
analysed and catalogued for each genomic position that consistently showed

systematic biases with the corresponding sequencing pipeline.

Results

We have demonstrated that systematic errors in NGS data are widespread, with
persistent low-fraction alleles present at 1.26-2.43% of the human autosomal
genome across three different lllumina-based pipelines, each consisting of at least
150 patient samples. We have identified a variety of genomic regions that are more
or less prone to systematic biases, such as GC-rich regions (OR = 6.47-8.19) and
the NIST high-confidence genomic regions (OR = 0.154-0.191). We have verified our
predictions on a gold-standard reference genome and have shown that these
systematic biases can lead to suspect variant calls at clinically important loci,

including within introns and exons.

Conclusions

Our results recommend increased caution to minimise the effect of systematic
biases in whole genome sequencing and alignment. This study supports the utility of
a statistical approach to enhance quality control of clinically sequenced samples in
order to flag up variant calls made at known suspect loci for further analysis or
exclusion, using anonymised summary databases from which individual patients

cannot be re-identified, so that results can be shared more widely.

Introduction

DNA sequencing is an imperfect process, and although error rates are low,
mistakes in identifying genomic variants can still occur. While the sources of random

sequencing errors are relatively well understood (Ma et al. 2019; Benjamini and
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Speed 2012), identifying systematic errors in whole genomes sequenced in a clinical
or commercial setting is not always possible due to restrictions in gathering
information about the samples and sequencing processes. These errors could cause
incorrect decisions on presence/absence of disease relevant variants in the genome
and influence the decisions of the corresponding physician or patient (Goldfeder et
al. 2016).

One of the major challenges to improving variant detection is that certain
regions of the genome are prone to higher rates of systematic sequencing or
alignment errors, which can result in the false detection of low allelic fraction
variants. In the case of diploid genotype calls, true variants are expected at 50% or
100% allelic fractions, corresponding to heterozygous and homozygous loci.
However, real variants often occur at low allelic fractions, such as somatic variants in
tumours, and in mosaicism, where nearby cells sampled together can show genetic
heterogeneity across the sample (Xu 2018). In these cases it becomes critical to be
able to filter out variants that systematically exhibit a low allelic fraction across

individuals, since these are unlikely to be true somatic variants.

Lists of ‘high confidence’ calls from gold-standard reference genomes are
often used for quality control in clinical and commercial sequencing laboratories.
The NIST GIAB consortium has proposed a list of all ‘high confidence’ positions on
the genome within which sequencing accuracy is thought to be higher, developed by
analysing the consensus between different sequencing technologies and variant
callers for the same genomic samples to develop a ‘truth set’ of variant calls (Zook et
al. 2014). However, this top-down approach cannot identify which variant calls are
most likely when there is disagreement between the results from different
sequencing protocols. In addition, at loci that have the same sequencing biases
across all or most sequencing technologies, assuming that the consensus call is true
can lead to errors being falsely called as real high-confidence variants (Krusche et
al. 2019). Another drawback to this is that clinically collected samples can vary in
quality and contamination and may introduce variants with low allelic fractions not
seen in reference genomes. Furthermore, the number of reference genomes used
may be quite small and is therefore unlikely to be representative of the diversity of

clinically-sequenced genomes.
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Other top-down approaches of evaluating thresholds for allelic fraction or read
quality may differ depending on the variant calling pipelines used (Sandmann et al.
2017). Benchmarking these different approaches on cohorts of genomes may be
insightful for research, but impractical for clinical applications and it risks leaking
sensitive genetic information. Furthermore, standard variant calling quality control
measures can sometimes be overly simplistic, such as fixed read depth thresholds
for calling variants across the genome, which are not tailored to wide regional
differences in systematic biases. An excessive reliance on high read depth for
accurate variant calling increases the costs of sequencing studies, which are forced
to compromise between the number of genomes they can sequence and the depth
of coverage they can achieve (Consortium and The 1000 Genomes Project
Consortium 2010).

Instead, a ‘bottom-up’ method that utilises large numbers of real-world clinical
samples, can be trained on data from a single whole genome sequencing (WGS)
pipeline, and does not rely on consensus between multiple sequencing technologies.
We used the method to evaluate systematic bias in detected allelic fractions across
whole genomes from three non-cancer cohorts, 150 individuals in the USA who
underwent genetic testing at Personalis Inc., and two separate sets of 215
individuals in England from the 100,000 Genomes Project. Our method implements a
novel technique for cataloging cohort allele fractions called an Incremental Database
(IncDB). IncDBs provide statistics such as the average allelic fractions at each
genomic locus and the standard deviation for these fractions across individuals
(Figure 1), without containing any sample-specific information. This ensures that
individuals remain anonymous during the quality control process of examining reads

using an IncDB.

In this study we have searched the IncDBs generated for loci that persistently
present a low-fraction alternate allele, across many samples. Such loci may arise
from systematic sequencing or mapping errors. Because these loci may be mistaken
for true biological variation, it is important to understand that such loci exist, and to
utilize a catalog of these "suspect loci" when interpreting measurements of genetic

variation based on NGS data. We analyse the genomic positions where systematic
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biases occur, in terms of chromosomal architecture and in terms of specific types of
genomic regions in which they are enriched, such as GC-rich regions and Alu
repeats. We also examine these biases in high confidence sequence regions and in
high quality clinical genomes to demonstrate the value of our method. We propose
the use of our method as a tool for researchers and clinicians to aid in differentiating
between true and false positive called genomic variants with particular utility for
cases where variants are expected at low allelic frequencies, such as cell-free DNA

(cfDNA) sequencing in cancer patients.
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Figure 1: Approach for detecting loci with systematic sequence bias: Variant allele
frequencies are collected from a cohort of individuals at every locus and
aggregated into allele-specific summary statistics. These aggregate allelic fractions
and standard deviations at each genomic position is stored in the Incremental
Database (IncDB), which does not contain any patient-specific information. The
99.9% confidence intervals for expected standard deviation at each allelic fraction
was generated. Genomic positions where the observed standard deviation was
beyond the confidence interval of the expected was considered to have “biased”
allelic fractions. These positions were cataloged as “suspect loci”, and mapped to
variant calls in clinically relevant genes. Prioritisation of genes for diagnostic and
reporting purposes can be adjusted according to the presence of suspect loci.
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Methods

Data sources

Data set 1 (Personalis Inc.):
WGS data was obtained by Personalis Inc. using lllumina HiSeq sequencing and

mapped with BWA MEM to align reads against the GRCh37 reference human
genome (Table 1). The mean depth of coverage across patients was 45x. There
were 150 non-cancer individuals in the cohort, including some triplets of related

individuals, recruited from hospitals in the USA and a mix of ethnicities.

Data sets 2 & 3 (100,000 Genomes Project):
WGS data was obtained by Genomics England’s 100,000 Genomes Project, using

lllumina HiSeq sequencing and mapped with the lllumina Isaac-aligner to align reads
against the reference human genomes GRCh37 (data set 2, patients sequenced
earlier in the study and mapped with an earlier version of the Isaac-aligner) and
GRCh38 (data set 3, patients sequenced later in the study and mapped with a more
recent version of the Isaac-aligner). The reads were aligned by lllumina with their
internal workflow. lllumina workflow V2 (HiSeq Analysis Software 2) was used for
GRCh37 (data set 2) and lllumina workflow V4 (NorthStar4) was used for GRCh38
(data set 3) before the output was delivered to Genomics England. The length of
paired-end reads was 150bp and the mean depth of coverage across patients was
30x. Blood samples were taken from 215 distinct patients of mixed ethnicities with
non-cancer neurological diseases in each cohort, recruited from hospitals in the UK.

No patients were in both data sets 2 and 3.
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Number/type of

Data set | Source . Genome build | Sequencing Alignment
patients
1 Personalis Inc. (USA) | 20 (non- GRCh37 lllumina HiSegX | BWA-MEM
cancer) 0.7.12
215 (earlier Isaac-aligner
2 100,000 Genomes sequenced GRCh37 llumina HiSeqX | (SAACO0776.
Project (UK) neurological 15.01.27)
disorders) T
215 (later Isaac-aligner
3 100,000 Genomes sequenced GRCh38 llumina HiSegX | (SAAC-
Project (UK) neurological
; 03.16.02.19)
disorders)

Table 1: Sequencing protocols and data sources for all data sets used to generate IncDBs.

Incremental Database Generation

The coverage values for each allele (A, C, G, T) at every autosomal genomic locus
were calculated and divided by the total coverage at the corresponding loci to get the
allelic coverage fraction, x, , for each allele at each locus in each patient, as shown
in Figure 1. Individual IncDBs were created for each data set from the aggregate
allelic fraction and standard deviation values for each allele at each locus across the

entire cohort, which were calculated from x, as described below.

N
Aggregate allelic fraction = %Z X,

N N
Standard deviation = \/% > (x,-xf = \/% > (Xi)_ , where N is the

number of patients, p is the patient identifier, x, is the allelic coverage fraction for

a specific allele in patient p, and X is the mean of all of the allelic coverage
fractions for that same allele across all patients (aggregate allelic fraction). Notice
that to compute the average allelic fraction, we do not store each individual's  x,
values, but the sum of X, across all individuals. Similarly, we can compute the

standard deviation across individuals by storing the sum of x, , as well as the sum

of x?

» . This approach not only removes all individual-specific genomic information,
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but also allows the IncDB to grow indefinitely, as more samples are sequenced and

analyzed: they can simply contribute to the running sums of X, and x> .Also

p
note that the sum registers in the equations above do not take up more
computational size on disk as the number of samples increases, so the overall IncDB

file size does not increase as new samples are added.

Identifying loci affected by systematic bias (suspect loci)

For each locus in all autosomal chromosomes, the standard deviation and
aggregate allelic fraction values were taken from the IncDB and plotted against each
other in a density plot using MATLAB 9.6.

Monte Carlo sampling assuming diploid allele arrangements was used to generate
the expected 99.9% confidence interval for the standard deviation at each aggregate
allelic fraction (ranging from 0 to 1 in intervals of 0.01) with 1000 repetitions at each,
see pseudo-code below. The model assumed an error rate of 0.01, corresponding to
an approximation of the error rate of lllumina WGS (Wall et al. 2014). Approximately
90% of genomic reads in data set 1 had a quality score of 20 or above,

corresponding to this error rate (Figure 9).
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Monte Carlo simulation of standard deviation (pseudocode)

Description: This Monte Carlo model consists of 3 nested loops which
respectively simulate the standard deviation at a single genomic locus
between i individual patient allelic fractions (repeat loop 2), 1000 times to
calculate the upper and lower 99.9% confidence intervals (repeat loop 1),
tor each aggregate allelic fraction from O to | in intervals of (L01 (for loop
). The standard deviation values are recorded and used to classify suspect
loci as visually illustrated in figure 2A-C.

for aggregate allelic fractions, AAF, from 0 1o 1 in intervals of 001 {each
representing a simulated single autosomal genomic position with thar
aggregate allelic fraction across all patienis) do

repeat

Draw a read depth value. ¢, from the genome at random;
repeat

Randomly generate diploid genotype for each simulated patient

using the binomial distribution at the given AAF value;

Assuming a sequencing error rate of 0L01, randomly draw ¢ reads
from the binomial distribution to simulate observed
major/minor allelic reads for the generated diploid genotype;

Divide by total read depth, ¢, to get the individual allelic fractions
for each patient;

until n simulated patienis (n = 150 for data set 1 and 215 for daia
sety 2 and 3 );

Calculate the standard deviations between the individual allelic
fractions for all # patients at the simulated genomic position:

until 7000 reperitions;

Maximum and minimum values of 1000 repetitions mark upper and
lower 99.9% confidence intervals for standard deviation at given AAF;

end

The expected values for the standard deviation in the individual allelic fractions
simulated from this model were used to highlight the differences between the
observed and expected standard deviation distributions. Observed loci below the
lower 99.9% confidence interval on the expected distribution for a given nucleotide

were defined as suspect loci for that nucleotide, since they displayed excessively low
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standard deviation for their aggregate allelic fraction, and were not likely to be in
Hardy-Weinberg equilibrium (Figure 2). Autosomal loci that displayed at least one
suspect allele at that position were termed unique suspect loci. The total count of
unique suspect loci was therefore lower than the total count of suspect loci, since

some loci had multiple suspect alleles.

Analysis of regional enrichment of unique suspect loci

Histograms of suspect locus density across the chromosome were plotted in
MATLAB alongside chromosome ideograms taken from the UCSC Genome Browser
Downloads page for GRCh37 (data sets 1 and 2) and GRCh38 (data set 3) in order
to show suspect locus density in comparison with chromosomal banding patterns.

In addition, BED files were provided by Personalis Inc. for 8 different types of
genomic region which were analysed to check enrichment of unique suspect loci
using a Fisher Exact test to calculate the exact significance values. A full contingency
table for GC-rich regions in data set 1 (autosomal chromosomes only) is available in

Supplementary Table 1 as an example to show how this was calculated.

The regions tested were the GIAB NIST (Genome in a Bottle National Institute of
Standards and Technology) high confidence regions, Alu repeats, GCgt70 (> 70%
GC content) regions, NonUnique100 regions (defined as all regions where a single
100-bp read could not map uniquely), segmental duplications, small/large
homopolymers, repeat masker region, introns, exons, genes, intergenic region and
three neurological clinical panels (see next section for full list and details of BED files

used).

Genomic region BED file sources

GIAB NIST (Genome in a Bottle National Institute of Standards and Technology) high
confidence region (Xiao et al. 2014) - A selection of genomic loci covering the

majority of the human genome that are considered to have high confidence calls.
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GCqgt70 (GC content > 70%) - Regions with greater than 70% GC content. Loci were
annotated as within this region if the surrounding 100bp around each locus had

greater than 70% GC content.

NonUnique100 - All regions where a single 100-bp read cannot map uniquely (so all
stretches on the reference that are 100bp or longer that are repeated on the
GRCh37 reference).

Segmental duplication - Long DNA sequences (> 10kb) that are found in multiple

locations across the human genome as a result of duplications.

Small homopolymer - Region of DNA containing a single nucleotide (9-19 bp).

Large homopolymer - Region of DNA containing a single nucleotide (= 20
bp).

RepeatMasker region - A BED file containing a variety of different types of repeats
(Smit, AFA & Green, P - http://www.repeatmasker.org/). The open-3-2-7 version of

RepeatMasker was downloaded from the UCSC Table Browser.

Alu repeats (Hasler and Strub 2007) - The most common type of transposable
element in the human genome, of which there are over one million copies. The BED
file was composed of all RepeatMasker Regions downloaded from the UCSC Table

Browser that were annotated as Alu repeats in the repName column.

BED files were also downloaded for genic regions, intergenic regions, exonic
regions, intronic regions (03/22/19) and ClinVar short variants (06/12/19), acquired
from the UCSC Table Browser.

Clinical panel BED files were also downloaded for the three most reviewed
neurological clinical panels on PanelApp (for intellectual disability (10/19/18), genetic

epilepsy syndromes (02/07/19) and hereditary spastic paraplegia respectively
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(02/07/19)).

“All sequenced regions” referred to a BED file generated for each data set analysed
containing a list of all genomic loci where the number of aligned reads was greater

than zero.

Calculating allelic frequencies at suspect loci in NA12878

An indexed BAM file for NA12878 chromosome 1 was obtained from the GIAB
consortium (Xiao et al. 2014). We used the Integrative Genomics Viewer (IGV) to
examine NA12878’s read pileup at several data set 1 suspect locus positions at
which chromosome 1 SNVs had previously been called. These positions included
examples within intronic and exonic regions in the PanelApp Intellectual Disability
clinical gene panel and within intergenic regions. Observing these read pileups
confirmed that NA12878 exhibited low-fraction alleles at these positions. NA12878
was not part of any cohorts used to build the IncDBs in this study. Chromosome 1
SNVs in NA12878 were extracted from a VCF file corresponding to the sequencing
pipeline used for data set 1. SNVs were classified as suspect if they corresponded to
the same alleles at the same positions as suspect loci calculated for data set 1. The
allelic frequencies for these variants were calculated from the NA12878 BAM file
using SAMtools mpileup v1.9. Variants with fewer than 10 supporting reads were

deemed to have insufficient coverage and were filtered out.

Analysing the proportion of gnomAD SNVs that are suspect

A list of all gnomAD variants, along with their allelic fraction and annotation as
PASS-flagged or not, was obtained from a TSV file. This was filtered to only include
autosomal SNVs. These were classified as suspect and non-suspect SNVs as
above. Variants in gnomAD were annotated as PASS variants if they were marked

this way in gnomAD v2.1.
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Comparing sequencing quality between suspect and non-suspect loci

The coverage of different allelic reads across all loci/nucleotide combinations on
chromosome 1 was available for data set 1 (Cov), along with the corresponding
coverage of allelic reads filtered to only include reads with sequencing and mapping
quality scores greater than 20 (Cov20). The filtered coverage values of allelic reads
(Cov20) were divided by the corresponding unfiltered coverage values (Cov) to get
the proportion of allelic reads with sequencing and mapping quality scores both
greater than 20 at each locus/nucleotide combination. The cumulative distributions of
these values were calculated separately for locus/nucleotide combinations that were

annotated as suspect loci or non-suspect loci.

Results

Systematic biases widespread across many genomic loci

The observed relationship between standard deviation and the average allelic
fraction at each genomic locus was compared to the expected distribution assuming
inherited variants in Hardy-Weinberg equilibrium in Figure 2A/B/C. We labelled the
positions which fell outside the 99.9% envelope of the Mendelian model as ‘suspect
loci’; 1.26-2.43% of all autosomal loci are suspect loci for at least one allele, which
we term unique suspect loci in this study. In all three datasets, the suspect loci trace
a plume of low allelic fraction (up to 40%), but with much lower standard deviation
across samples than a Mendelian variant with equal aggregate allele fraction would
have. Single nucleotide variants (SNVs) that were called in NA12878, an individual
sample separate from all of the data sets used, were analysed to check if they
matched both suspect locus positions and their corresponding suspect alleles in data
sets 1 and 2 (Figure 2D). The majority of NA12878 SNVs annotated as suspect were

shared between data sets 1 and 2.
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Figure 2: Identification of suspect autosomal loci/allele combinations with persistent low allelic fractions across
patients. Observed and expected variant allele frequencies were estimated from three different whole genome
sequenced cohorts. A/BIC- For all loci in autosomal chromosomes (A, Data set 1, B, Data set 2, C, Data set 3),
the standard deviation and aggregate allelic fraction values from the Incremental Database were plotted against
each other in a density plot. The darker regions have the highest concentration of loci, while lighter pixels
represent combinations of standard deviation and aggregate allelic fraction that did not contain as many loci.
The red lines indicate the upper and lower boundaries of the 99.9% confidence interval (shown in
Supplementary Figures 1A/B respectively). Suspect loci in A and B/C were defined as the loci which occurred
below this threshold. The percentage of loci with at least one suspect locus annotated (unique suspect loci) are
reported below the curve on each. D- Venn diagram showing the overlap of suspect SNVs between data sets 1
and 2, called in NA12878 (both GRCh37). Data set 3 used the GRCh38 reference, so it was not included in the

Venn diagram.
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Unique suspect locus enrichment within genomic regions

Unique suspect autosomal loci were found to be present across the entire
sequenced genome and only absent in unsequenced sections, although their
prevalence varied across sequenced regions both locally and showing larger trends
across chromosomes (Figure 3). We examined the distribution of unique suspect
loci across different regions of the genome (Figure 4), and recorded the regional
enrichment of unique suspect loci using odds ratios (OR). All odds ratios calculated
were highly statistically significant due to the very large number of genomic positions
sampled, even when the odds ratios were close to 1. The 95% confidence interval
lower and upper bounds were the same as the reported odds ratios to 3 significant
figures in all cases. The highest/least significant p-value recorded was for the
enrichment of suspect loci in the intellectual disability gene panel in data set 2
(OR=1.01, p=8.69x10-4"). All other p-values ranged from 10322 to 1079,

GC-rich regions (OR = 8.19/6.47/7.99 for data sets 1/2/3) and Alu repeats (OR =

5.70/6.74/6.21 for data sets 1/2/3) were very strongly enriched for suspect loci. Large
homopolymers (OR = 1.93/2.92/1.84 for data sets 1/2/3) and the Repeat Masker
regions (OR = 1.85/2.96/2.18 for data sets 1/2/3) were mildly enriched for suspect
loci. Small homopolymers on the other hand were depleted or unenriched (OR =
0.525/1.03/0.519 for data sets 1/2/3), and the NIST GIAB high confidence region
was strongly depleted (OR = 0.191/0.154/0.172 for data sets 1/2/3) for suspect loci.
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Figure 3: Variability in distribution of unique suspect loci in sequenced regions of chromosomes.
Histograms show the positions of suspect loci (as defined above) across chromosome 1 (A: Data set
1/Personalis IncDB, B: Data set 2/100,000 Genomes Project GRCh37 IncDB, C: Data set 3/100,000
Genomes Project GRCh38 IncDB), with the number of suspect loci per bin on the y axis and the nucleotide
position on the x axis (GRCh37 for A/IB, GRCh38 for C). There were no suspect loci at the centromere
since this could not be sequenced. The black dotted line shows the mean number of suspect loci per bin,
while the red line shows the amount of suspect loci in each bin that would be expected by chance (1 per
1000 loci).
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Figure 4: Enrichment of unique suspect loci in low complexity regions and depletion in high confidence
regions, in three independent cohorts using lllumina sequencing. All odds ratios shown are statistically
significant and equivalent to the 95% upper and lower confidence intervals to 3 significant figures.
A: Log2 scale barplot showing the odds ratios for regional enrichment of unique suspect loci across all
autosomal chromosomes from three different data sets. All odds ratios were calculated and shown to be
significant using Fisher’s Exact Test. “All sequenced regions” had an odds ratio of 1 because it contained
all of the loci tested.
B: Barplot showing the number of unique suspect loci per kb across all autosomal chromosomes from
three different data sets.

While there was enrichment (Figure 4A) of suspect loci in repeat and homopolymer
regions (Alu repeats, the Repeat masker region, Large homopolymers), the suspect
loci were the most enriched in GC > 70% regions. The correlation between suspect
loci and GC-rich region proportions for all autosomal chromosomes was high
(Spearman’s Rho = 0.822/0.922/0.760, p = 2.73x107°/1.03x10~°/4.13x10~3) for data
sets 1, 2 and 3 respectively, accounting for the majority of the variability in the
proportion of suspect loci in autosomal chromosomes (Figure 5). Even though there
was wide variability in the proportions of autosomal chromosomes covered by GC >
70% regions (0.003-0.0219), there was very little variation in the overall GC content
(40-42%), suggesting that this effect is a function of GC clustering specifically, rather

than a sequencing issue with individual GC loci generally.
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Figure 5: Proportion of chromosomal positions with at least one suspect locus vs.
proportion of chromosome within GCgt70 (GC content > 70%) regions, with linear line of
best fit. There is a strong linear correlation between the proportion of unique suspect loci in
each chromosome and the proportion of loci in GCgt70 regions, indicating that these
regions are a key contributor to systematic sequencing and/or alignment errors.
Chromosomes 13 and 19 are labelled as the chromosomes with the lowest and highest
pairs of values respectively in all 3 data sets, with the exception of chromosome 14, which
had a slightly lower proportion of unique suspect loci than chromosome 13 in data set 3
(the GRCh38 100,000 Genomes Project IncDB).

Systematic biases confirmed in gold-standard reference sample

Our analysis based on aggregate allele statistics across more than 150 samples
implies the presence of genomic loci that present a low-fraction allele in most
samples. In order to confirm this prediction, select (non-unique) suspect loci were
examined in the reference sample NA12878, which was not part of the training set
for any of the IncDBs. NA12878 displayed the low-fraction alleles in its read pileup at

each of the suspect locus positions we examined. In addition, variants called in
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NA12878 were found to have far lower median allelic fraction when they occurred at
suspect loci (0.300), compared to variants called elsewhere (0.579) (Figure 6). The
Kullback-Leibler divergence value between the distributions in this figure was
0.0340. While most called variants in NA12878 conform to the expected distribution
of allele fractions for heterozygous or homozygous variants, variants called at
suspect loci (which comprised ~5% of all variants) show no heterozygous peak
around 50% allele fraction, with the majority occurring between ~10-35%, confirming

that suspect loci can yield false positive variant calls.

20 . . . .

[ Ivariants in Suspect Loci
18 | |[C__1Variants not in Suspect Loci .

Frobability density of called variants

I:I ! Il Il
0 0.2 0.4 0.6 0.8 1

Allelic fraction

Figure 6: Distribution of allelic fractions among called SNVs on chromosome 1 in
NA12878, separated by presence/absence of suspect loci at SNV in data set 1
(Personalis). Low coverage variants (<10 supporting reads) were excluded from this
analysis. Area under the curve equals 1 for both curves.

In addition, individual examples of these chromosome 1 suspect variants were

observed using the Integrative Genomics Viewer within the PanelApp Intellectual
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Disability clinical gene panel in NA12878 (Figure 7). Suspect loci were examined
within clinically relevant exons, introns and intergenic regions, and suspect reads

were confirmed at all of these positions.

Exon in CEP170 Intron in COL24A1 Intergenic
G>A (Thr>Iso) 18.4% G>T 35.3% A>T 41.2% C>T 46.3%

AA GAAGTTTCC TTTOGTATTT T T T A A CG TA A
I R

Figure 7: Cropped panels from the Integrative Genomics Viewer (Robinson et al. 2011),
highlighting suspect loci from data set 1 in chromosome 1 which were called as variants
separately in the GIAB pilot genome (sequenced with lllumina HiSeq, but not used as part
of the patient data set to create the Incremental Database) (NA12878) (Xiao et al. 2014)
predicted to have consistent low allelic fraction loci. Reads are shown in grey with coloured
bands where non-reference allelic reads were observed (A=Green, C=Blue, G=Brown,
T=Red). Suspect variant alleles and their respective read proportions in NA12878 are
indicated above - these systematically occur at similar levels across all patients in the
Incremental Databases used to identify them. Left/Middle: Suspect variant calls in exonic
and intronic regions of genes in the PanelApp Intellectual Disability panel, predicted from
data set 1 (Personalis IncDB) and called as variants in NA12878. Right: Suspect loci from
data set 1 (Personalis IncDB) in an intergenic region of NA12878.

Discussion

The main aim of this study has been to develop and evaluate a novel statistical
method to identify positions of the genome that are prone to systematic bias in
genomic sequencing and alignment, using anonymised summary patient data. We
developed an approach to quality control sequenced reads in the autosomal genome
by cataloguing genomic positions in which there is significantly less standard
deviation in patient allelic fractions than would be predicted in the absence of
systematic bias, which we have labelled as 'suspect loci'. We have explored the

extent to which these systematic biases occur across different genomic regions,
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including regions known to be difficult to sequence, higher confidence regions and
clinical panels. We have also confirmed the utility of our approach in an independent
gold-standard reference genome and elaborated on possible scientific and clinical
applications to help resolve current issues in whole genome sequencing and

alignment.

For loci unaffected by systematic bias, the standard deviation between individual
allelic coverage at each locus and the measured aggregate allelic fraction, both
taken from the IncDB, were expected to relate to each other in accordance with
Hardy-Weinberg equilibrium. For example, variants that were fixed in the cohort were
expected to show no standard deviation, while variants that were closer to a
aggregate allelic fraction of 50% were expected to give higher standard deviation
values. However, 1.26-2.43% of autosomal loci had significantly lower standard
deviation than predicted by Hardy-Weinberg equilibrium (p=0.0005), suggesting the
presence of systematic bias across numerous genomic loci. At these loci, it seems
that many if not most individuals must present a low-fraction allele. Because such
persistent low-fraction alleles seem to be inconsistent with our understanding of
human genetics, we interpret their existence as a technological artifact: a bias or
systematic error in the sequencing technology itself, or perhaps in the read mapping
(Figure 2). The impact of these suspect loci is magnified in the context of studies
looking at large numbers of genomic positions, since a small percentage of this
would still correspond to a high number of genomic positions affected by systematic
bias. It is therefore clear that these systematic biases are of concern and deserve

further attention.

Suspect loci were widespread across all sequenced chromosomal segments, but
there was variability between different types of genomic region. Despite this, there
was little or no depletion of suspect loci in some regions expected to have more
accurate sequencing, such as exons (OR = 1.09/0.86/1.18 in data set 1/2/3) and the
clinical gene panels analysed (OR range = 0.98-1.32), suggesting that greater

caution in these areas is justified.

In addition we found differences in regional systematic biases between data sets.

For example, the NonUnique100 region showed much greater enrichment of
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suspect loci in data sets 2 (OR = 3.26) and 3 (OR = 2.17), than in data set 1 (OR =
1.30). This region is known to be prone to mapping/alignment errors, so the low
enrichment in this region in data set 1 and high enrichment in other regions such as
the GC-rich region suggested that the vast majority of these bias-prone loci were not
likely to be the result of alignment errors. On the other hand, the higher enrichment
of suspect loci in NonUnique100 in data sets 2 and 3 could indicate that the different
aligners used - Isaac aligner for data set 2 and 3 rather than BWA MEM - could be
the cause for the susceptibility of this region to alignment-related variant calling

biases.

The selection of reference genome build used also affected the quantity of suspect
loci observed. For example, data set 3 had consistently lower levels of suspect loci
than data set 2, especially within small homopolymers (10.3 vs. 27.1 per kb), large
homopolymers (35.5 vs. 73.1 per kb), NonUnique100 regions (39.7 vs. 74.7 per kb)
and Alu repeats (75.5 vs. 104.6 per kb), which are all low-complexity regions that are
associated with greater difficulty aligning reads due to their repetitive nature. These
data sets both used the same sequencing pipeline with the exception that data set 2
used the earlier GRCh37 reference human genome and an earlier version of the
Isaac aligner (SAAC00776.15.01.27) for read alignment while data set 3 used
GRCh38 and a later version of the lIsaac aligner (iISAAC-03.16.02.19). This
suggested that read alignment was improved with the newer genomic build, greatly
decreasing suspect locus abundance, especially in low complexity regions. Both
data set 2 and 3 included data from different patients within the overall set of
neurology patients in the 100,000 Genomes Project, with no patients in common
between them, because no patients were sequenced on both GRCh37 and GRCh38.
However, the patients were phenotypically similar, so this was considered unlikely to
be a confounding factor. These types of comparisons could be used to identify the
strengths and weaknesses of different sequencing/alignment protocols for
benchmarking, and in order to prioritise areas for improvement in the development of
new sequencing/alignment tools, and could perhaps justify the use of different
parameters when sequencing in the most problematic regions, such as GC-rich

areas.

There was also great variability in the distribution of suspect loci within individual
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genes tested (Supplementary Data 1/2). For example, different genes within the
PanelApp gene panels examined ranged from having very low proportions of
suspect loci (0% out of 2,021 total loci in LIPT2 in data set 2) to very high proportions
of suspect loci (36.6% out of 3,759 total loci in NPRL2 in data set 2), suggesting that
some whole genes might be particularly prone to systematic sequencing biases.
Both of these genes are associated with genetic epilepsy syndromes, but LIPT2 isn’t
affected by systematic sequencing biases at all, while these heavily affect NPRL2.
Researchers focussing on specific genes could use this information to identify how
much caution they need when sequencing and calling variants in their genes of

interest.

It was confirmed that the suspect loci we identify do indeed manifest as consistent
low-fraction alleles in the read pileup of an individual sample that was not part of our
analysis cohort. In addition, called variants that occurred at suspect loci generally
had lower, more irregular allelic frequencies in NA12878. Predicted suspect loci for
the same sequencing pipeline as NA12878 were confirmed in NA12878, including
within introns, exons, intergenic regions and NIST GIAB ‘high-confidence’ regions,
and within called variants in clinically relevant regions such as the PanelApp disease
panels tested. This confirmed that these variants were likely false positives, and the
corresponding loci were prone to systematic biases across all patients, including
those outside of the IncDB data set, as we had hypothesised. This demonstrates the
value of the IncDB-based method described in this study for identifying these
variants, since it enables them to be analysed with increased caution and potentially
filtered out of variant calling results, even from patients not used in the training set,

as long as the sequencing pipeline is the same across patients.

We also examined whether our IncDB-based statistical approach added additional
utility beyond pre-existing quality control processes with two additional analyses. We
examined whether suspect gnomAD variants were filtered out using the pre-existing
quality control processes employed in the gnomAD database (Supplementary
Figure 2). The gnomAD database is a large database of all of the variation found
across a large ethnically diverse population, taken from 125,748 exomes and 15,708
genomes (Karczewski et al. 2019). Our results revealed that suspect variants were

also widespread in the gnomAD database, even after gnomAD's quality control
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process, across allelic frequencies. We also evaluated whether suspect loci could be
identified simply by using a quality threshold (Supplementary Figure 3). Non-
suspect loci had significantly higher proportions of high quality reads, with >90% of
reads having sequencing and mapping quality scores >20 in ~90% of non-suspect
loci/allele combinations vs. ~5% of suspect loci/allele combinations. This
demonstrated that low quality reads were more frequent among suspect loci to a
large degree, suggesting that improving sequencing and alignment quality could help
with decreasing these systematic biases. However, there was still significant overlap
between read quality at suspect and non-suspect loci. This showed that using a
quality cutoff would therefore also filter out non-suspect loci, while not fully filtering
out all suspect loci, indicating that quality filters had limited utility in the absence of
the IncDB-based methods presented in this study. Our analyses therefore concluded
that the existing quality control procedures already in place were not sufficient to
filter out the systematic biases identified by our methods, demonstrating the
additional value gained by using these methods on top of pre-existing quality control

procedures.

We have demonstrated the utility of IncDBs to assess the quality of clinical whole
genomes of three independent cohorts sequenced by commercial and public
healthcare organisations while maintaining patient anonymity. In addition to showing
the utility of this approach on whole genome Illumina sequencing, IncDBs could be
applied to data from different types of sequencing platforms in the future, including
specific targeted, exome-sequencing and long-read technologies such as PacBio
and Oxford Nanopore. Analysis of suspect loci from different sequencing platforms
would allow us to identify which loci are prone to platform-specific bias, and compare
systematic biases between platforms. By doing this, the accuracy of more
sequencing platforms could potentially be improved by identifying error-prone loci
and the source of their associated sequencing and alignment errors, enhancing
variant calling in academia, industry and healthcare, and facilitating the design and

utility of genomic prognostic tools that rely on this.
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Conclusions

The novel IncDB-based method explored in this study, for identifying genomic
regions and loci prone to sequencing and alignment errors, has strong implications
for improving variant calling accuracy by identifying likely false positive variant calls.
Suspect loci have been observed to occur widely across the genome, including
within clinically relevant gene panels and regions considered high-confidence. The
suspect loci we identify did indeed manifest as low-fraction alleles in the read pileup
of NA12878, a gold-standard reference sample separate from the IncDB training
sets, confirming our findings. Identifying these systematic biases enables
improvements to variant calling and has the potential to reduce errors in clinical

genomic testing.
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Supplementary Figure 1 - Monte-Carlo model standard deviation vs. aggregate
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allelic fraction density plots.

Supplementary Figure 2 - Proportion of autosomal gnomAD SNVs annotated as

suspect at different gnomAD allele frequencies in data set 1.

Supplementary Figure 3 - Proportion of allelic reads that had quality scores > 20 for

both sequencing and mapping in suspect and non-suspect loci (data set 1).

Supplementary Table 1 - A Fisher Exact test contingency table for suspect locus
enrichment within GC-rich regions, across all autosomal chromosomes (from data
set 1)

Supplementary Data 1 - List of autosomal genes associated with hereditary spastic
paraplegia from the PanelApp gene panel, ranked in descending order by suspect

loci percentage. Files A, B, C refer to data sets 1, 2, 3 respectively.

Supplementary Data 2 - List of autosomal genes associated with genetic epilepsy
syndromes from the PanelApp gene panel, ranked in descending order by suspect

loci percentage. Files A, B, C refer to data sets 1, 2, 3 respectively.

Appendix

Websites/Tools

Genome in a Bottle - High confidence BED file (NA12878, GRCh37):

ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878 HGO01/NISTv3.2/NA12878 GIAB_
highconf CG-IIIFB-IGATKHC-lon-Solid_ ALLCHROM_v3.2_highconf.bed

Accessed 17 June 2019

SAMtools (v1.9):
http://www.htslib.ora/download/
Accessed 19 June 2019

Chromosome cytoband information:
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cytoBandldeo.txt.gz



http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cytoBandIdeo.txt.gz
http://www.htslib.org/download/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.2/NA12878_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid_ALLCHROM_v3.2_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.2/NA12878_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid_ALLCHROM_v3.2_highconf.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.2/NA12878_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-Solid_ALLCHROM_v3.2_highconf.bed
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Accessed 8 March 2018
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cytoBandldeo.txt.gz
Accessed 27 March 2019

UCSC Table Browser (source of exon/intron/gene/RepeatMasker/Alu repeat
coordinates):

https://genome.ucsc.edu/cgi-bin/hgTables

Accessed 22 March 2019

PanelApp panels list:

https://panelapp.genomicsengland.co.uk/panels/
Accessed 7 February 2019

gnomAD:
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