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Abstract

Background

 Highly accurate next-generation sequencing (NGS) of  genetic  variants is key to

many  areas  of  science  and  medicine,  such  as  cataloguing  population  genetic

variation and diagnosing patients with genetic diseases. Certain genomic loci and

regions can be prone to higher rates of systematic sequencing and alignment bias

that pose a challenge to achieving high accuracy, resulting in false positive variant

calls. Current standard practices to differentiate between loci that can and cannot be

sequenced  with  high  confidence  utilise  consensus  between  different  sequencing

methods as a proxy for sequencing confidence. This assumption is not accurate in

cases where all sequencing pipelines have consensus on the same errors due to

similar systematic biases in sequencing. Alternative methods are therefore required

to identify systematic biases. 

Methods

 We have developed a novel statistical method based on summarising  sequenced
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reads from whole genome clinical  samples and cataloguing them in “Incremental

Databases” (IncDBs) that maintain individual confidentiality.  Variant statistics were

analysed  and  catalogued  for  each  genomic  position  that  consistently  showed

systematic biases with the corresponding sequencing pipeline. 

Results

 We have demonstrated that systematic errors in NGS data are widespread, with

persistent  low-fraction  alleles  present  at  1.26-2.43%  of  the  human  autosomal

genome across three different Illumina-based pipelines, each consisting of at least

150 patient samples. We have identified a variety of genomic regions that are more

or less prone to systematic biases, such as GC-rich regions (OR = 6.47-8.19) and

the NIST high-confidence genomic regions (OR = 0.154-0.191). We have verified our

predictions  on  a  gold-standard  reference  genome  and  have  shown  that  these

systematic  biases  can  lead  to  suspect  variant  calls  at  clinically  important  loci,

including within introns and exons.

Conclusions

 Our  results  recommend  increased  caution  to  minimise  the  effect  of  systematic

biases in whole genome sequencing and alignment. This study supports the utility of

a statistical approach to enhance quality control of clinically sequenced samples in

order  to  flag up variant  calls  made at  known suspect  loci  for  further  analysis  or

exclusion,  using  anonymised  summary  databases  from  which  individual  patients

cannot be re-identified, so that results can be shared more widely.

Introduction

DNA sequencing is an imperfect process, and although error rates are low,

mistakes in identifying genomic variants can still occur. While the sources of random

sequencing errors are relatively  well  understood  (Ma et  al.  2019;  Benjamini  and

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2019. ; https://doi.org/10.1101/679423doi: bioRxiv preprint 

https://paperpile.com/c/24kjHs/a609+0yMZ
https://doi.org/10.1101/679423
http://creativecommons.org/licenses/by-nc-nd/4.0/


Speed 2012), identifying systematic errors in whole genomes sequenced in a clinical

or  commercial  setting  is  not  always  possible  due  to  restrictions  in  gathering

information about the samples and sequencing processes. These errors could cause

incorrect decisions on presence/absence of disease relevant variants in the genome

and influence the decisions of the corresponding physician or patient (Goldfeder et

al. 2016).

One of  the major  challenges to  improving  variant  detection  is  that  certain

regions  of  the  genome  are  prone  to  higher  rates  of  systematic  sequencing  or

alignment  errors,  which  can  result  in  the  false  detection  of  low  allelic  fraction

variants. In the case of diploid genotype calls, true variants are expected at 50% or

100%  allelic  fractions,  corresponding  to  heterozygous  and  homozygous  loci.

However, real variants often occur at low allelic fractions, such as somatic variants in

tumours, and in mosaicism, where nearby cells sampled together can show genetic

heterogeneity across the sample (Xu 2018). In these cases it becomes critical to be

able  to  filter  out  variants  that  systematically  exhibit  a  low  allelic  fraction  across

individuals, since these are unlikely to be true somatic variants.

Lists  of  ‘high  confidence’  calls  from gold-standard  reference genomes are

often used for  quality  control  in  clinical  and commercial  sequencing laboratories.

The NIST GIAB consortium has proposed a list of all ‘high confidence’ positions on

the genome within which sequencing accuracy is thought to be higher, developed by

analysing  the  consensus  between  different  sequencing  technologies  and  variant

callers for the same genomic samples to develop a ‘truth set’ of variant calls (Zook et

al. 2014). However, this top-down approach cannot identify which variant calls are

most  likely  when  there  is  disagreement  between  the  results  from  different

sequencing protocols.  In  addition,  at  loci  that  have the  same sequencing biases

across all or most sequencing technologies, assuming that the consensus call is true

can lead to errors being falsely called as real high-confidence variants  (Krusche et

al. 2019).  Another drawback to this is that clinically collected samples can vary in

quality and contamination and may introduce variants with low allelic fractions not

seen in reference genomes. Furthermore, the number of reference genomes used

may be quite small and is therefore unlikely to be representative of the diversity of

clinically-sequenced genomes.
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Other top-down approaches of evaluating thresholds for allelic fraction or read

quality may differ depending on the variant calling pipelines used (Sandmann et al.

2017).  Benchmarking these different approaches on cohorts of  genomes may be

insightful  for  research, but  impractical  for  clinical  applications and it  risks leaking

sensitive genetic information. Furthermore,  standard variant  calling quality control

measures can sometimes be overly simplistic, such as fixed read depth thresholds

for  calling  variants  across  the  genome,  which  are  not  tailored  to  wide  regional

differences  in  systematic  biases.  An  excessive  reliance  on  high  read  depth  for

accurate variant calling increases the costs of sequencing studies, which are forced

to compromise between the number of genomes they can sequence and the depth

of  coverage  they  can  achieve  (Consortium  and  The  1000  Genomes  Project

Consortium 2010).

Instead, a ‘bottom-up’ method that utilises large numbers of real-world clinical

samples, can be trained on data from a single whole genome sequencing (WGS)

pipeline, and does not rely on consensus between multiple sequencing technologies.

We used the method to evaluate systematic bias in detected allelic fractions across

whole  genomes from three non-cancer  cohorts,  150 individuals  in  the  USA who

underwent  genetic  testing  at  Personalis  Inc.,  and  two  separate  sets  of  215

individuals in England from the 100,000 Genomes Project. Our method implements a

novel technique for cataloging cohort allele fractions called an Incremental Database

(IncDB).  IncDBs  provide  statistics  such  as  the  average  allelic  fractions  at  each

genomic  locus  and  the  standard  deviation  for  these  fractions  across  individuals

(Figure 1),  without  containing any sample-specific  information.  This  ensures that

individuals remain anonymous during the quality control process of examining reads

using an IncDB.

In this study we have searched the IncDBs generated for loci that persistently

present a low-fraction alternate allele, across many samples. Such loci may arise

from systematic sequencing or mapping errors. Because these loci may be mistaken

for true biological variation, it is important to understand that such loci exist, and to

utilize a catalog of these "suspect loci" when interpreting measurements of genetic

variation based on NGS data. We  analyse the genomic positions where systematic
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biases occur, in terms of chromosomal architecture and in terms of specific types of

genomic  regions  in  which  they  are  enriched,  such  as  GC-rich  regions  and  Alu

repeats. We also examine these biases in high confidence sequence regions and in

high quality clinical genomes to demonstrate the value of our method. We propose

the use of our method as a tool for researchers and clinicians to aid in differentiating

between true  and false  positive  called  genomic  variants  with  particular  utility  for

cases where variants are expected at low allelic frequencies, such as cell-free DNA

(cfDNA) sequencing in cancer patients.

Figure 1: Approach for detecting loci with systematic sequence bias: Variant allele
frequencies  are  collected  from  a  cohort  of  individuals  at  every  locus  and
aggregated into allele-specific summary statistics. These aggregate allelic fractions
and standard  deviations  at  each genomic  position  is  stored in  the  Incremental
Database (IncDB), which does not contain any patient-specific information. The
99.9% confidence intervals for expected standard deviation at each allelic fraction
was generated.  Genomic positions where the observed standard deviation was
beyond the confidence interval of the expected was considered to have “biased”
allelic fractions. These positions were cataloged as “suspect loci”, and mapped to
variant calls in clinically relevant genes. Prioritisation of genes for diagnostic and
reporting purposes can be adjusted according to the presence of suspect loci.
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Methods

Data sources

Data set 1 (Personalis Inc.):
 WGS data was obtained by Personalis Inc. using Illumina HiSeq sequencing and

mapped  with  BWA MEM  to  align  reads  against  the  GRCh37  reference  human

genome (Table 1).  The mean depth of coverage across patients was 45x. There

were  150 non-cancer  individuals  in  the  cohort,  including  some triplets  of  related

individuals, recruited from hospitals in the USA and a mix of ethnicities.

Data sets 2 & 3 (100,000 Genomes Project):
 WGS data was obtained by Genomics England’s 100,000 Genomes Project, using

Illumina HiSeq sequencing and mapped with the Illumina Isaac-aligner to align reads

against  the reference human genomes GRCh37 (data set 2,  patients sequenced

earlier in the study and mapped with an earlier  version of the Isaac-aligner)  and

GRCh38 (data set 3, patients sequenced later in the study and mapped with a more

recent version of the Isaac-aligner).  The reads were aligned by Illumina with their

internal workflow. Illumina workflow V2 (HiSeq Analysis Software 2) was used for

GRCh37 (data set 2) and Illumina workflow V4 (NorthStar4) was used for GRCh38

(data set 3) before the output was delivered to Genomics England. The length of

paired-end reads was 150bp and the mean depth of coverage across patients was

30x. Blood samples were taken from 215 distinct patients of mixed ethnicities with

non-cancer neurological diseases in each cohort, recruited from hospitals in the UK.

No patients were in both data sets 2 and 3.
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Data set Source
Number/type of 
patients

Genome build Sequencing Alignment

1 Personalis Inc. (USA)
150 (non-
cancer)

GRCh37 Illumina HiSeqX
BWA-MEM 
0.7.12

2
100,000 Genomes 
Project (UK)

215 (earlier 
sequenced 
neurological 
disorders)

GRCh37 Illumina HiSeqX
Isaac-aligner
(SAAC00776.
15.01.27)

3
100,000 Genomes 
Project (UK)

215 (later 
sequenced 
neurological 
disorders)

GRCh38 Illumina HiSeqX
Isaac-aligner 
(iSAAC-
03.16.02.19)

Table 1: Sequencing protocols and data sources for all data sets used to generate IncDBs.

Incremental Database Generation

 The coverage values for each allele (A, C, G, T) at every autosomal genomic locus

were calculated and divided by the total coverage at the corresponding loci to get the

allelic coverage fraction, x p , for each allele at each locus in each patient, as shown

in  Figure 1. Individual IncDBs were created for each data set from the aggregate

allelic fraction and standard deviation values for each allele at each locus across the

entire cohort, which were calculated from x p  as described below.

Aggregate allelic fraction = 
1
N
∑
p=1

N

xp

Standard deviation = √ 1
N
∑
p=1

N

( xp−x )
2 = √ 1

N
∑
p=1

N

( x p
2 )−( 1

N
∑
p=1

N

x p)
2

 , where N is the 

number of patients, p is the patient identifier, x p  is the allelic coverage fraction for 

a specific allele in patient p, and x is the mean of all of the allelic coverage 

fractions for that same allele across all patients (aggregate allelic fraction).  Notice 

that to compute the average allelic fraction, we do not store each individual’s x p

values, but the sum of x p  across all individuals.  Similarly, we can compute the 

standard deviation across individuals by storing the sum of x p , as well as the sum 

of x p
2 . This approach not only removes all individual-specific genomic information, 
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but also allows the IncDB to grow indefinitely, as more samples are sequenced and 

analyzed: they can simply contribute to the running sums of  x p and x p
2 . Also 

note that the sum registers in the equations above do not take up more 

computational size on disk as the number of samples increases, so the overall IncDB

file size does not increase as new samples are added.

Identifying loci affected by systematic bias (suspect loci)

 For  each  locus  in  all  autosomal  chromosomes,  the  standard  deviation  and

aggregate allelic fraction values were taken from the IncDB and plotted against each

other in a density plot using MATLAB 9.6.

 Monte Carlo sampling assuming diploid allele arrangements was used to generate

the expected 99.9% confidence interval for the standard deviation at each aggregate

allelic fraction (ranging from 0 to 1 in intervals of 0.01) with 1000 repetitions at each,

see pseudo-code below. The model assumed an error rate of 0.01, corresponding to

an approximation of the error rate of Illumina WGS (Wall et al. 2014). Approximately

90%  of  genomic  reads  in  data  set  1  had  a  quality  score  of  20  or  above,

corresponding to this error rate (Figure 9). 
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 The expected values for  the standard deviation in the individual  allelic  fractions

simulated  from  this  model  were  used  to  highlight  the  differences  between  the

observed and expected standard deviation distributions.  Observed loci  below the

lower 99.9% confidence interval on the expected distribution for a given nucleotide

were defined as suspect loci for that nucleotide, since they displayed excessively low
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standard deviation for their aggregate allelic fraction, and were not likely to be in

Hardy-Weinberg equilibrium (Figure 2). Autosomal loci that displayed at least one

suspect allele at that position were termed unique suspect loci. The total count of

unique suspect loci was therefore lower than the total count of suspect loci, since

some  loci  had  multiple  suspect  alleles.

Analysis of regional enrichment of unique suspect loci

 Histograms  of  suspect  locus  density  across  the  chromosome  were  plotted  in

MATLAB alongside chromosome ideograms taken from the UCSC Genome Browser

Downloads page for GRCh37 (data sets 1 and 2) and GRCh38 (data set 3) in order

to show suspect locus density in comparison with chromosomal banding patterns.

 In  addition,  BED files  were  provided by  Personalis  Inc.  for  8  different  types of

genomic region which were analysed to check enrichment of unique suspect loci

using a Fisher Exact test to calculate the exact significance values. A full contingency

table for GC-rich regions in data set 1 (autosomal chromosomes only) is available in

Supplementary Table 1 as an example to show how this was calculated.

 The regions tested were the GIAB NIST (Genome in a Bottle National Institute of

Standards and Technology) high confidence regions, Alu repeats, GCgt70 (> 70%

GC content) regions, NonUnique100 regions (defined as all regions where a single

100-bp  read  could  not  map  uniquely),  segmental  duplications,  small/large

homopolymers, repeat masker region, introns, exons, genes, intergenic region and

three neurological clinical panels (see next section for full list and details of BED files

used).

Genomic region BED file sources

GIAB NIST (Genome in a Bottle National Institute of Standards and Technology) high

confidence  region  (Xiao  et  al.  2014) -  A selection  of  genomic  loci  covering  the

majority of the human genome that are considered to have high confidence calls.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2019. ; https://doi.org/10.1101/679423doi: bioRxiv preprint 

https://paperpile.com/c/24kjHs/HKYY
https://doi.org/10.1101/679423
http://creativecommons.org/licenses/by-nc-nd/4.0/


GCgt70 (GC content > 70%) - Regions with greater than 70% GC content. Loci were

annotated as within  this  region if  the surrounding 100bp around each locus had

greater than 70% GC content.

NonUnique100 - All regions where a single 100-bp read cannot map uniquely (so all

stretches  on  the  reference  that  are  100bp  or  longer  that  are  repeated  on  the

GRCh37 reference).

Segmental duplication - Long DNA sequences (> 10kb) that are found in multiple

locations across the human genome as a result of duplications.

Small homopolymer - Region of DNA containing a single nucleotide (9-19 bp).

Large homopolymer - Region of DNA containing a single nucleotide (≥ 20

bp).

RepeatMasker region - A BED file containing a variety of different types of repeats

(Smit, AFA & Green, P - http://www.repeatmasker.org/). The open-3-2-7 version of

RepeatMasker was downloaded from the UCSC Table Browser. 

Alu  repeats  (Hasler  and  Strub  2007) -  The  most  common type  of  transposable

element in the human genome, of which there are over one million copies. The BED

file was composed of all RepeatMasker Regions downloaded from the UCSC Table

Browser that were annotated as Alu repeats in the repName column.

BED  files  were  also  downloaded  for  genic  regions,  intergenic  regions,  exonic

regions, intronic regions (03/22/19) and ClinVar short variants (06/12/19), acquired

from the UCSC Table Browser.

Clinical  panel  BED  files  were  also  downloaded  for  the  three  most  reviewed

neurological clinical panels on PanelApp (for intellectual disability (10/19/18), genetic

epilepsy  syndromes  (02/07/19)  and  hereditary  spastic  paraplegia  respectively
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(02/07/19)).

“All sequenced regions” referred to a BED file generated for each data set analysed

containing a list of all genomic loci where the number of aligned reads was greater

than zero.

Calculating allelic frequencies at suspect loci in NA12878

 An indexed BAM file for  NA12878 chromosome 1 was obtained from the GIAB

consortium  (Xiao et al. 2014). We used the Integrative Genomics Viewer (IGV) to

examine NA12878’s read pileup at several  data set 1 suspect locus positions at

which chromosome 1 SNVs had previously been called. These positions included

examples within intronic and exonic regions in the PanelApp Intellectual Disability

clinical  gene  panel  and  within  intergenic  regions.  Observing  these  read  pileups

confirmed that NA12878 exhibited low-fraction alleles at these positions. NA12878

was not part of any cohorts used to build the IncDBs in this study. Chromosome 1

SNVs in NA12878 were extracted from a VCF file corresponding to the sequencing

pipeline used for data set 1. SNVs were classified as suspect if they corresponded to

the same alleles at the same positions as suspect loci calculated for data set 1. The

allelic frequencies for these variants were calculated from the NA12878 BAM file

using SAMtools mpileup v1.9. Variants with fewer than 10 supporting reads were

deemed to have insufficient coverage and were filtered out.

Analysing the proportion of gnomAD SNVs that are suspect

 A list  of  all  gnomAD variants,  along with  their  allelic  fraction and annotation as

PASS-flagged or not, was obtained from a TSV file. This was filtered to only include

autosomal  SNVs.  These  were  classified  as  suspect  and  non-suspect  SNVs  as

above. Variants in gnomAD were annotated as PASS variants if they were marked

this way in gnomAD v2.1.
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Comparing sequencing quality between suspect and non-suspect loci 

 The coverage of different allelic reads across all  loci/nucleotide combinations on

chromosome 1 was available for  data set  1 (Cov),  along with the corresponding

coverage of allelic reads filtered to only include reads with sequencing and mapping

quality scores greater than 20 (Cov20). The filtered coverage values of allelic reads

(Cov20) were divided by the corresponding unfiltered coverage values (Cov) to get

the  proportion  of  allelic  reads with  sequencing and mapping quality  scores  both

greater than 20 at each locus/nucleotide combination. The cumulative distributions of

these values were calculated separately for locus/nucleotide combinations that were

annotated as suspect loci or non-suspect loci.

Results 

Systematic biases widespread across many genomic loci

 The  observed  relationship  between  standard  deviation  and  the  average  allelic

fraction at each genomic locus was compared to the expected distribution assuming

inherited variants in Hardy-Weinberg equilibrium in Figure 2A/B/C. We labelled the

positions which fell outside the 99.9% envelope of the Mendelian model as ‘suspect

loci’; 1.26-2.43% of all autosomal loci are suspect loci for at least one allele, which

we term unique suspect loci in this study. In all three datasets, the suspect loci trace

a plume of low allelic fraction (up to 40%), but with much lower standard deviation

across samples than a Mendelian variant with equal aggregate allele fraction would

have. Single nucleotide variants (SNVs) that were called in NA12878, an individual

sample separate from all  of  the data sets used,  were analysed to  check if  they

matched both suspect locus positions and their corresponding suspect alleles in data

sets 1 and 2 (Figure 2D). The majority of NA12878 SNVs annotated as suspect were

shared between data sets 1 and 2.
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Figure 2: Identification of suspect autosomal loci/allele combinations with persistent low allelic fractions across 
patients. Observed and expected variant allele frequencies were estimated from three different whole genome 
sequenced cohorts. A/B/C- For all loci in autosomal chromosomes (A, Data set 1, B, Data set 2, C, Data set 3), 
the standard deviation and aggregate allelic fraction values from the Incremental Database were plotted against 
each other in a density plot. The darker regions have the highest concentration of loci, while lighter pixels 
represent combinations of standard deviation and aggregate allelic fraction that did not contain as many loci. 
The red lines indicate the upper and lower boundaries of the 99.9% confidence interval (shown in 
Supplementary Figures 1A/B respectively). Suspect loci in A and B/C were defined as the loci which occurred 
below this threshold. The percentage of loci with at least one suspect locus annotated (unique suspect loci) are 
reported below the curve on each. D- Venn diagram showing the overlap of suspect SNVs between data sets 1 
and 2, called in NA12878 (both GRCh37). Data set 3 used the GRCh38 reference, so it was not included in the 
Venn diagram.
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Unique suspect locus enrichment within genomic regions

 Unique  suspect  autosomal  loci  were  found  to  be  present  across  the  entire

sequenced  genome  and  only  absent  in  unsequenced  sections,  although  their

prevalence varied across sequenced regions both locally and showing larger trends

across chromosomes (Figure 3). We examined the distribution of unique suspect

loci across different regions of the genome (Figure 4), and recorded the regional

enrichment of unique suspect loci using odds ratios (OR). All odds ratios calculated

were highly statistically significant due to the very large number of genomic positions

sampled, even when the odds ratios were close to 1. The 95% confidence interval

lower and upper bounds were the same as the reported odds ratios to 3 significant

figures  in  all  cases.  The  highest/least  significant  p-value  recorded  was  for  the

enrichment  of  suspect  loci  in  the  intellectual  disability  gene  panel  in  data  set  2

(OR=1.01, p=8.69x10 ¹). All other p-values ranged from 10 ³²² to 10 .⁻⁴ ⁻ ⁻⁷⁹

 GC-rich regions (OR = 8.19/6.47/7.99 for data sets 1/2/3) and Alu repeats (OR =

5.70/6.74/6.21 for data sets 1/2/3) were very strongly enriched for suspect loci. Large

homopolymers (OR = 1.93/2.92/1.84 for data sets 1/2/3) and the Repeat Masker

regions (OR = 1.85/2.96/2.18 for data sets 1/2/3) were mildly enriched for suspect

loci.  Small homopolymers on the other hand were depleted or unenriched (OR =

0.525/1.03/0.519 for data sets 1/2/3),  and the NIST GIAB high confidence region

was strongly depleted (OR = 0.191/0.154/0.172 for data sets 1/2/3) for suspect loci.
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Figure 3: Variability in distribution of unique suspect loci in sequenced regions of chromosomes. 
Histograms show the positions of suspect loci (as defined above) across chromosome 1 (A: Data set 
1/Personalis IncDB, B: Data set 2/100,000 Genomes Project GRCh37 IncDB, C: Data set 3/100,000 
Genomes Project GRCh38 IncDB), with the number of suspect loci per bin on the y axis and the nucleotide 
position on the x axis (GRCh37 for A/B, GRCh38 for C). There were no suspect loci at the centromere 
since this could not be sequenced. The black dotted line shows the mean number of suspect loci per bin, 
while the red line shows the amount of suspect loci in each bin that would be expected by chance (1 per 
1000 loci).
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Figure 4: Enrichment of unique suspect loci in low complexity regions and depletion in high confidence 
regions, in three independent cohorts using Illumina sequencing. All odds ratios shown are statistically 
significant and equivalent to the 95% upper and lower confidence intervals to 3 significant figures.
A: Log2 scale barplot showing the odds ratios for regional enrichment of unique suspect loci across all 
autosomal chromosomes from three different data sets. All odds ratios were calculated and shown to be 
significant using Fisher’s Exact Test. “All sequenced regions” had an odds ratio of 1 because it contained 
all of the loci tested.
B: Barplot showing the number of unique suspect loci per kb across all autosomal chromosomes from 
three different data sets.

 While there was enrichment (Figure 4A) of suspect loci in repeat and homopolymer

regions (Alu repeats, the Repeat masker region, Large homopolymers), the suspect

loci were the most enriched in GC > 70% regions. The correlation between suspect

loci  and  GC-rich  region  proportions  for  all  autosomal  chromosomes  was  high

(Spearman’s Rho = 0.822/0.922/0.760, p = 2.73x10 /1.03x10 /4.13x10 ) for data⁻⁶ ⁻⁹ ⁻⁵

sets 1,  2 and 3 respectively,  accounting for the majority of  the variability in the

proportion of suspect loci in autosomal chromosomes (Figure 5). Even though there

was wide variability in the proportions of autosomal chromosomes covered by GC >

70% regions (0.003-0.0219), there was very little variation in the overall GC content

(40-42%), suggesting that this effect is a function of GC clustering specifically, rather

than a sequencing issue with individual GC loci generally.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2019. ; https://doi.org/10.1101/679423doi: bioRxiv preprint 

https://doi.org/10.1101/679423
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Proportion of chromosomal positions with at least one suspect locus vs. 
proportion of chromosome within GCgt70 (GC content > 70%) regions, with linear line of 
best fit. There is a strong linear correlation between the proportion of unique suspect loci in
each chromosome and the proportion of loci in GCgt70 regions, indicating that these 
regions are a key contributor to systematic sequencing and/or alignment errors. 
Chromosomes 13 and 19 are labelled as the chromosomes with the lowest and highest 
pairs of values respectively in all 3 data sets, with the exception of chromosome 14, which 
had a slightly lower proportion of unique suspect loci than chromosome 13 in data set 3 
(the GRCh38 100,000 Genomes Project IncDB).

Systematic biases confirmed in gold-standard reference sample

 Our analysis based on aggregate allele statistics across more than 150 samples

implies  the  presence  of  genomic  loci  that  present  a  low-fraction  allele  in  most

samples. In order to confirm this prediction, select (non-unique) suspect loci were

examined in the reference sample NA12878, which was not part of the training set

for any of the IncDBs. NA12878 displayed the low-fraction alleles in its read pileup at

each of  the  suspect  locus positions  we examined.  In  addition,  variants  called in
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NA12878 were found to have far lower median allelic fraction when they occurred at

suspect loci (0.300), compared to variants called elsewhere (0.579) (Figure 6). The

Kullback-Leibler  divergence  value  between  the  distributions  in  this  figure  was

0.0340. While most called variants in NA12878 conform to the expected distribution

of  allele  fractions  for  heterozygous  or  homozygous  variants,  variants  called  at

suspect  loci  (which  comprised  ~5% of  all  variants)  show no  heterozygous  peak

around 50% allele fraction, with the majority occurring between ~10-35%, confirming

that suspect loci can yield false positive variant calls.

Figure 6: Distribution of allelic fractions among called SNVs on chromosome 1 in 
NA12878, separated by presence/absence of suspect loci at SNV in data set 1 
(Personalis). Low coverage variants (<10 supporting reads) were excluded from this 
analysis. Area under the curve equals 1 for both curves.

 In  addition,  individual  examples  of  these  chromosome 1  suspect  variants  were

observed using the Integrative Genomics Viewer within the PanelApp Intellectual
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Disability clinical gene panel in NA12878 (Figure 7). Suspect loci were examined

within clinically relevant exons, introns and intergenic regions, and suspect reads

were confirmed at all of these positions.

Figure 7: Cropped panels from the Integrative Genomics Viewer (Robinson et al. 2011), 
highlighting suspect loci from data set 1 in chromosome 1 which were called as variants 
separately in the GIAB pilot genome (sequenced with Illumina HiSeq, but not used as part 
of the patient data set to create the Incremental Database) (NA12878) (Xiao et al. 2014) 
predicted to have consistent low allelic fraction loci. Reads are shown in grey with coloured
bands where non-reference allelic reads were observed (A=Green, C=Blue, G=Brown, 
T=Red). Suspect variant alleles and their respective read proportions in NA12878 are 
indicated above - these systematically occur at similar levels across all patients in the 
Incremental Databases used to identify them. Left/Middle: Suspect variant calls in exonic 
and intronic regions of genes in the PanelApp Intellectual Disability panel, predicted from 
data set 1 (Personalis IncDB) and called as variants in NA12878. Right: Suspect loci from 
data set 1 (Personalis IncDB) in an intergenic region of NA12878.

Discussion

 

  The main aim of this study has been to develop and evaluate a novel statistical

method to  identify  positions  of  the  genome that  are  prone to  systematic  bias  in

genomic sequencing and alignment, using anonymised summary patient data. We

developed an approach to quality control sequenced reads in the autosomal genome

by  cataloguing  genomic  positions  in  which  there  is  significantly  less  standard

deviation  in  patient  allelic  fractions  than  would  be  predicted  in  the  absence  of

systematic bias, which we have labelled as 'suspect loci'.  We have explored the

extent  to  which  these systematic  biases occur  across  different  genomic  regions,
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including regions known to be difficult to sequence, higher confidence regions and

clinical panels. We have also confirmed the utility of our approach in an independent

gold-standard reference genome and elaborated on possible scientific and clinical

applications  to  help  resolve  current  issues  in  whole  genome  sequencing  and

alignment.

 For loci unaffected by systematic bias, the standard deviation between individual

allelic  coverage at  each locus and the  measured aggregate  allelic  fraction,  both

taken from the IncDB, were expected to relate to each other in accordance with

Hardy-Weinberg equilibrium. For example, variants that were fixed in the cohort were

expected  to  show  no  standard  deviation,  while  variants  that  were  closer  to  a

aggregate allelic fraction of 50% were expected to give higher standard deviation

values.  However,  1.26-2.43%  of  autosomal  loci  had  significantly  lower  standard

deviation than predicted by Hardy-Weinberg equilibrium (p=0.0005), suggesting the

presence of systematic bias across numerous genomic loci. At these loci, it seems

that many if not most individuals must present a low-fraction allele. Because such

persistent  low-fraction  alleles  seem to  be inconsistent  with  our  understanding of

human genetics, we interpret their existence as a technological artifact: a bias or

systematic error in the sequencing technology itself, or perhaps in the read mapping

(Figure 2). The impact of these suspect loci is magnified in the context of studies

looking at  large numbers of  genomic  positions,  since a small  percentage of  this

would still correspond to a high number of genomic positions affected by systematic

bias. It is therefore clear that these systematic biases are of concern and deserve

further attention.

 Suspect loci were widespread across all sequenced chromosomal segments, but

there was variability between different types of genomic region. Despite this, there

was little or no depletion of suspect loci in some regions expected to have more

accurate sequencing, such as exons (OR = 1.09/0.86/1.18 in data set 1/2/3) and the

clinical  gene  panels  analysed  (OR  range  =  0.98-1.32),  suggesting  that  greater

caution in these areas is justified.

 In addition we found differences in regional systematic biases between data sets.

For  example,   the  NonUnique100  region  showed  much  greater  enrichment  of
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suspect loci in data sets 2 (OR = 3.26) and 3 (OR = 2.17), than in data set 1 (OR =

1.30).  This region is known to be prone to mapping/alignment errors,  so the low

enrichment in this region in data set 1 and high enrichment in other regions such as

the GC-rich region suggested that the vast majority of these bias-prone loci were not

likely to be the result of alignment errors. On the other hand, the higher enrichment

of suspect loci in NonUnique100 in  data sets 2 and 3 could indicate that the different

aligners used - Isaac aligner for data set 2 and 3 rather than BWA MEM - could be

the  cause for  the  susceptibility  of  this  region  to  alignment-related  variant  calling

biases.

 The selection of reference genome build used also affected the quantity of suspect

loci observed. For example, data set 3 had consistently lower levels of suspect loci

than data set 2, especially within small homopolymers (10.3 vs. 27.1 per kb), large

homopolymers (35.5 vs. 73.1 per kb), NonUnique100 regions (39.7 vs. 74.7 per kb)

and Alu repeats (75.5 vs. 104.6 per kb), which are all low-complexity regions that are

associated with greater difficulty aligning reads due to their repetitive nature. These

data sets both used the same sequencing pipeline with the exception that data set 2

used the earlier GRCh37 reference human genome and an earlier version of the

Isaac  aligner  (SAAC00776.15.01.27)  for  read  alignment  while  data  set  3  used

GRCh38  and  a  later  version  of  the  Isaac  aligner  (iSAAC-03.16.02.19).  This

suggested that read alignment was improved with the newer genomic build, greatly

decreasing  suspect  locus abundance,  especially  in  low complexity  regions.  Both

data  set  2  and  3  included  data  from different  patients  within  the  overall  set  of

neurology patients in the 100,000 Genomes Project,  with no patients in common

between them, because no patients were sequenced on both GRCh37 and GRCh38.

However, the patients were phenotypically similar, so this was considered unlikely to

be a confounding factor. These types of comparisons could be used to identify the

strengths  and  weaknesses  of  different  sequencing/alignment  protocols  for

benchmarking, and in order to prioritise areas for improvement in the development of

new  sequencing/alignment  tools,  and  could  perhaps  justify  the  use  of  different

parameters  when  sequencing  in  the  most  problematic  regions,  such  as  GC-rich

areas. 

 There was also great variability in the distribution of suspect loci within individual
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genes tested (Supplementary Data 1/2).  For example, different genes within the

PanelApp  gene  panels  examined  ranged  from  having  very  low  proportions  of

suspect loci (0% out of 2,021 total loci in LIPT2 in data set 2) to very high proportions

of suspect loci (36.6% out of 3,759 total loci in NPRL2 in data set 2), suggesting that

some whole genes might  be particularly  prone to  systematic  sequencing biases.

Both of these genes are associated with genetic epilepsy syndromes, but LIPT2 isn’t

affected by systematic sequencing biases at all, while these heavily affect NPRL2.

Researchers focussing on specific genes could use this information to identify how

much caution they need when sequencing and calling variants in  their  genes of

interest.

 It was confirmed that the suspect loci we identify do indeed manifest as consistent

low-fraction alleles in the read pileup of an individual sample that was not part of our

analysis cohort. In addition, called variants that occurred at suspect loci generally

had lower, more irregular allelic frequencies in NA12878. Predicted suspect loci for

the same sequencing pipeline as NA12878 were confirmed in NA12878, including

within introns, exons, intergenic regions and NIST GIAB ‘high-confidence’ regions,

and within called variants in clinically relevant regions such as the PanelApp disease

panels tested. This confirmed that these variants were likely false positives, and the

corresponding loci  were prone to systematic  biases across all  patients,  including

those outside of the IncDB data set, as we had hypothesised. This demonstrates the

value  of  the  IncDB-based  method  described  in  this  study  for  identifying  these

variants, since it enables them to be analysed with increased caution and potentially

filtered out of variant calling results, even from patients not used in the training set,

as long as the sequencing pipeline is the same across patients.

  We also examined whether our IncDB-based statistical approach added additional

utility beyond pre-existing quality control processes with two additional analyses. We

examined whether suspect gnomAD variants were filtered out using the pre-existing

quality  control  processes  employed  in  the  gnomAD  database  (Supplementary

Figure 2). The gnomAD database is a large database of all of the variation found

across a large ethnically diverse population, taken from 125,748 exomes and 15,708

genomes (Karczewski et al. 2019). Our results revealed that suspect variants were

also  widespread  in  the  gnomAD database,  even  after  gnomAD's  quality  control
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process, across allelic frequencies. We also evaluated whether suspect loci could be

identified  simply  by  using  a  quality  threshold  (Supplementary  Figure  3).  Non-

suspect loci had significantly higher proportions of high quality reads, with >90% of

reads having sequencing and mapping quality scores >20 in ~90% of non-suspect

loci/allele  combinations  vs.  ~5%  of  suspect  loci/allele  combinations.  This

demonstrated that low quality reads were more frequent among suspect loci to a

large degree, suggesting that improving sequencing and alignment quality could help

with decreasing these systematic biases. However, there was still significant overlap

between read quality at  suspect and non-suspect loci.  This showed that using a

quality cutoff would therefore also filter out non-suspect loci, while not fully filtering

out all suspect loci, indicating that quality filters had limited utility in the absence of

the IncDB-based methods presented in this study. Our analyses therefore concluded

that the existing quality control procedures already in place were not sufficient to

filter  out  the  systematic  biases  identified  by  our  methods,  demonstrating  the

additional value gained by using these methods on top of pre-existing quality control

procedures.

 We have demonstrated the utility of IncDBs to assess the quality of clinical whole

genomes  of  three  independent  cohorts  sequenced  by  commercial  and  public

healthcare organisations while maintaining patient anonymity. In addition to showing

the utility of this approach on whole genome Illumina sequencing, IncDBs could be

applied to data from different types of sequencing platforms in the future, including

specific  targeted,  exome-sequencing and long-read technologies  such as  PacBio

and Oxford Nanopore. Analysis of suspect loci from different sequencing platforms

would allow us to identify which loci are prone to platform-specific bias, and compare

systematic  biases  between  platforms.  By  doing  this,  the  accuracy  of  more

sequencing platforms could potentially be improved by identifying error-prone loci

and  the  source  of  their  associated  sequencing  and  alignment  errors,  enhancing

variant calling in academia, industry and healthcare, and facilitating the design and

utility of genomic prognostic tools that rely on this.
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Conclusions

 The  novel  IncDB-based  method  explored  in  this  study, for  identifying  genomic

regions and loci prone to sequencing and alignment errors, has strong implications

for improving variant calling accuracy by identifying likely false positive variant calls.

Suspect  loci  have been  observed  to  occur  widely  across  the  genome,  including

within clinically relevant gene panels and regions considered high-confidence. The

suspect loci we identify did indeed manifest as low-fraction alleles in the read pileup

of  NA12878, a gold-standard reference sample separate from the IncDB training

sets,  confirming  our  findings.  Identifying  these  systematic  biases  enables

improvements to variant  calling and has the potential  to reduce errors in  clinical

genomic testing.  
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Supplementary Figure 1 - Monte-Carlo model standard deviation vs. aggregate 
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allelic fraction density plots.

Supplementary Figure 2 - Proportion of autosomal gnomAD SNVs annotated as 

suspect at different gnomAD allele frequencies in data set 1.

Supplementary Figure 3 - Proportion of allelic reads that had quality scores > 20 for

both sequencing and mapping in suspect and non-suspect loci (data set 1).

Supplementary Table 1 - A Fisher Exact test contingency table for suspect locus 

enrichment within GC-rich regions, across all autosomal chromosomes (from data 

set 1)

Supplementary Data 1 - List of autosomal genes associated with hereditary spastic 

paraplegia from the PanelApp gene panel, ranked in descending order by suspect 

loci percentage. Files A, B, C refer to data sets 1, 2, 3 respectively.

Supplementary Data 2 - List of autosomal genes associated with genetic epilepsy 

syndromes from the PanelApp gene panel, ranked in descending order by suspect 

loci percentage. Files A, B, C refer to data sets 1, 2, 3 respectively.

Appendix

Websites/Tools

Genome in a Bottle - High confidence BED file (NA12878, GRCh37):
ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.2/NA12878_GIAB_
highconf_CG-IllFB-IllGATKHC-Ion-Solid_ALLCHROM_v3.2_highconf.bed
Accessed 17 June 2019

SAMtools (v1.9):
http://www.htslib.org/download/
Accessed 19 June 2019

Chromosome cytoband information:
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cytoBandIdeo.txt.gz
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Accessed 8 March 2018
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cytoBandIdeo.txt.gz
Accessed 27 March 2019

UCSC Table Browser (source of exon/intron/gene/RepeatMasker/Alu repeat 
coordinates):
https://genome.ucsc.edu/cgi-bin/hgTables
Accessed 22 March 2019

PanelApp panels list:
https://panelapp.genomicsengland.co.uk/panels/
Accessed 7 February 2019

gnomAD:
https://macarthurlab.org/2018/10/17/gnomad-v2-1/
Accessed on 26 Feb 2019 (v2.1 GRCh37)

RepeatMasker:
http://www.repeatmasker.org/
Accessed 22 March 2019
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