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Abstract

In multisite neuroimaging studies there is often unwanted technical variation across scanners

and sites. These “scanner effects” can hinder detection of biological features of interest, produce
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inconsistent results, and lead to spurious associations. We assess scanner effects in two brain

magnetic resonance imaging (MRI) studies where subjects were measured on multiple scanners

within a short time frame, so that one could assume any differences between images were due

to technical rather than biological effects. We propose mica (multisite image harmonization

by CDF alignment), a tool to harmonize images taken on different scanners by identifying and

removing within-subject scanner effects. Our goals in the present study were to (1) establish a

method that removes scanner effects by leveraging multiple scans collected on the same subject,

and, building on this, (2) develop a technique to quantify scanner effects in large multisite

trials so these can be reduced as a preprocessing step. We found that unharmonized images

were highly variable across site and scanner type, and our method effectively removed this

variability by warping intensity distributions. We further studied the ability to predict intensity

harmonization results for a scan taken on an existing subject at a new site using cross-validation.

Key Words: intensity normalization, image harmonization, warping, curve registration, image

densities, multisite imaging

1 Introduction

Medical imaging has become an established practice in clinical studies and medical research, leading

to situations where images must be compared across site locations, scanners, or scanner types.

Upgrades in scanner technology within a site may render old data not comparable to data collected

on a newer machine, and this presents challenges in studies where acquisition techniques change

over time. Multisite studies have become common as well; examples include large neuroimaging

studies such as the Alzheimer’s Disease Neuroimaging Initiative (Mueller et al., 2005) and the

Human Connectome Project (Van Essen et al., 2013), as well as targeted clinical trials studying

multiple sclerosis (MS) interventions such as Kappos et al. (2006) and Hauser et al. (2017).

Measurement across multiple sites and scanners introduces unwanted technical variability in

the images (Schnack et al., 2004). Going forward we will refer to technical artifacts introduced

across either sites or scanners as “scanner effects.” Scanner effects in imaging studies can reduce
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power to detect true differences across images and distort downstream measurements of regional

volumes, brain lesions, and other biological features of interest (Schnack et al., 2010; Jovicich et al.,

2013; Cannon et al., 2014; Keshavan et al., 2016; Schwartz et al., 2019). In structural magnetic

resonance imaging (MRI) studies, detection of scanner effects is particularly challenging because

images are collected in arbitrary units of voxel intensity; as a result, raw MRI intensities are often

not comparable across study visits even within the same subject and scanner. We refer to unwanted

technical variability within the same scanner and subject that are due to arbitrary unit intensity

values as “intensity unit effects.” Though often conflated, intensity unit effects and scanner effects

are distinct sources of unwanted technical variation and should be treated separately. We refer to

methods intended to address intensity unit effects as “normalization” methods to distinguish them

from methods intended to reduce scanner effects, which we term “harmonization” methods. Both

scanner effects and unit effects are present in multisite MRI studies, and in practice they can be

challenging to separate.

Figure 1: Histograms of voxel intensities for scan-rescan data across seven sites in the NAIMS pilot
study: Brigham and Women’s Hospital (Brigham), Cedars-Sinai, Johns Hopkins University (JHU),
National Institutes of Health (NIH), Oregon Health & Sciences University (OHSU), University of
California San Francisco (UCSF), and Yale University (Yale). Left panel shows raw voxel intensities;
right panel shows densities after mica harmonization and White Stripe normalization. At each site
two scans were collected; a 1 or 2 after site name indicates the first or second scan, respectively.
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Scanner effects can be due to differences in scanner hardware, scanner software, scan acquisition

protocol, or other unknown sources. When present, images collected at different sites may have sys-

tematically different distributions of intensity values. For example, Shinohara et al. (2017) showed

substantial differences in volumetrics across sites and scanner types even for a single, biologically

stable subject measured under standardized protocols at the same field strength on platforms pro-

duced by the same vendor. The left panel of Figure 1 shows histograms of intensity values for this

single subject, who was scanned twice at each of seven sites across the U.S. Large scanner effects

are evident; smaller but visible differences within site show that intensity unit effects are present

as well. In subsequent analyses, scanner effects produced inconsistent measurements of MS lesion

volume both when lesions were segmented manually or by a variety of automated software pipelines

(Shinohara et al., 2017) .

The issue of arbitrary units has long been recognized and is the subject of a large literature

on intensity normalization (Nyúl et al., 1999; Shinohara et al., 2011, 2014; Ghassemi et al., 2015).

Intensity normalization methods facilitate comparability across subjects measured on the same

scanner and standardize voxel intensity values; for a review of several methods see Shah et al. (2011).

Histogram matching is an early approach that aligns densities of voxel intensities to quantiles of an

image template constructed from several control subjects. Though popular, histogram matching

often fails to preserve biological characteristics of individual scans and removes useful information

regarding variation among subjects. Shinohara et al. (2014) formalized the principles of image

normalization and introduced the White Stripe method. White Stripe normalizes images using

patches of normal appearing white matter (NAWM), so that rescaled intensity values are biologically

interpretable as units of NAWM. White Stripe can effectively normalize white matter across subjects

and is a useful preprocessing step for automated lesion segmentation in MS (Sweeney et al., 2013a,b;

Valcarcel et al., 2018), but technical variability can remain in the gray matter.

Unlike intensity normalization methods, which target intensity unit effects, harmonization meth-

ods aim to reduce scanner effects so that downstream analyses are more comparable across sites and

scanners (Fortin et al., 2017; Yu et al., 2018). Fortin et al. (2018) described a voxel-wise regression
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method, based on tools from genomics, that harmonizes cortical thickness measurements from MRI

scans. This method succeeds in removing scanner effects for measurements extracted from each

image; in contrast, our goal in the present study was to develop an effective harmonization method

that can be applied to the entire brain. Similar tools from genomics are used to correct for scanner

effects in multisite diffusion tensor imaging data (Fortin et al., 2017) and multisite functional MRI

data (Yu et al., 2018). However, these harmonization methods require spatial registration to a pop-

ulation template, which can lower image resolution and make it challenging to detect important

disease features such as MS lesions. Ideally, an all-purpose harmonization method would remove

scanner effects from the whole brain without requiring that all subjects be spatially registered to

the same template image.

In the past, “normalization” has been used to simultaneously address the problems we charac-

terize as unit and scanner effects, although these are more correctly viewed as distinct problems. As

a result, intensity normalization techniques such as histogram matching and White Stripe are often

used to address harmonization issues (Schnack et al., 2004; Shinohara et al., 2014; Fortin et al.,

2016). Unlike harmonization techniques mentioned previously, these normalization techniques can

be applied to the whole brain, do not require spatial registration, and reduce intensity unit effects.

When scanner effects are due to the same voxel intensity transformations used to reduce unit ef-

fects, the normalization techniques will reduce scanner effects as well. However, often they fail

to reduce much of the variability across sites, especially when large nonlinear scanner effects are

present. Additionally, histogram matching normalizes voxel intensities across images at the cost of

removing biological variability across subjects which can distort structures and mask inter-subject

differences of interest.

Here, we introduce a new image intensity harmonization framework for multisite studies. We

use data in which a subject was scanned on multiple scanners closely enough in time that any

image differences can be attributed to differences across acquisition platforms (scanner effects)

rather than biological effects. Our objectives in this study were to (1) establish a method that

removes scanner effects by leveraging multiple scans collected on the same subject, and, building
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on this, (2) develop a technique to estimate scanner effects in large multisite trials so these can be

reduced with preprocessing steps. The first objective establishes a framework for understanding

harmonization, and the second relates to the practical use of this framework in multisite studies.

We propose multisite image harmonization by CDF alignment (mica), which harmonizes images

by aligning cumulative distribution functions (CDFs) of voxel intensities. Our approach estimates

nonlinear, monotonically increasing transformations of the voxel intensity values in one scan such

that the resulting intensity CDF perfectly matches the intensity CDF from a second (“target”) scan.

CDFs can be perfectly aligned using standard approaches to curve registration in the functional

data analysis literature (Srivastava et al., 2011; Tucker et al., 2013; Wrobel et al., 2018). Although

these intensity transformations, called warping functions, are defined using CDFs, they can be

applied to voxel-level intensity values to produce a harmonized image. For a subject measured on

different scanners in close succession, this allows us to identify and remove scanner effects; mappings

established in this way can be used to reduce the impact of scanner effects in multisite studies.

We outline our harmonization approach using two data sets with distinct but related problems.

The North American Imaging in Multiple Sclerosis (NAIMS) pilot study (Shinohara et al., 2017;

Dworkin et al., 2018; Oh et al., 2018; Papinutto et al., 2018; Schwartz et al., 2019) found large

scanner effects in a single subject with biologically stable MS, and we use these data to show that

mica can reduce technical variability across sites while preserving the ability to detect MS lesions.

A second study, which we refer to as the trio2prisma study, scanned ten healthy subjects on two

different machines and found systematic nonlinear differences between the scanners. We used mica

to harmonize images from the first scanner so that they are comparable to images collected on

the second scanner; this demonstrates how our method can be used to create a mapping between

scanners, and that scanner effects can be removed when data are available from both scanners for

all subjects. Since scan-rescan data are often only available for a subset of study subjects, we also

employed a leave-one-scan-out cross-validation approach to assess the utility of our harmonization

method in this common setting. For both studies, we used mica to understand and, to the extent

possible, remove scanner variability. We paired our method with White Stripe to remove intensity
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unit effects as well as scanner effects, though other intensity normalization methods could be used

instead.

In the next section, we describe our data and the mica methodology. We then present the

results of our technique in different settings, followed by a discussion.

2 Materials and Methods

2.1 Data and processing

2.1.1 NAIMS dataset

The NAIMS steering committee developed a brain MRI protocol relevant to MS lesion quantification

(Shinohara et al., 2017). Using this protocol, two scans were collected at each of seven sites across

the United States on a 45-year-old man with clinically stable relapsing-remitting MS. All scans

were performed on 3T Siemens scanners (four Skyra, two TimTrio, and one Verio). At each site,

scan-rescan imaging was performed on the same day, with the subject exiting the machine between

scans. The participant was also assessed at the beginning and end of the study on the same scanner

to confirm disease stability by clinical and MRI measures .

Each image was bias-corrected using the N4 inhomogeneity correction algorithm (Tustison et al.,

2010), then brain extraction was performed using the FSL BET skull-stripping algorithm (Smith,

2002). After performing mica harmonization as described in Section (2.2), T1-weighted (T1-w) and

fluid attenuated inversion recovery (FLAIR) images were White Stripe normalized (Shinohara, R T

and Muschelli, J, 2018) to remove intensity unit effects and enable automated MS lesion detection

using the MIMoSA (Valcarcel et al., 2018) software pipeline.

2.1.2 trio2prisma dataset

The trio2prisma data were collected from ten healthy subjects ages 19 to 29 at the University of

Pennsylvania. For each subject, brain MRI scans were obtained on both a Siemens Trio machine

and a Prisma scanner. Scans were performed between 2 and 11 days apart for each subject (mean
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4.2 days), a time window in which we expect no significant structural changes in the brain. We

focused on T1-w images for the trio2prisma data, though our method can be applied to other

modalities as well. Images were bias-corrected, skull-stripped, and White Stripe normalized using

the same algorithms described for the NAIMS data. Because normalization methods have often

been used for harmonization in the past, we compared mica to White Stripe and histogram matching

normalization. To assess method performance on this data, we compared white and gray matter

segmentations for mica-harmonized images to White Stripe and histogram matching normalized

images. All white and gray matter segmentations were obtained using multi-atlas Joint Label

Fusion (Wang et al., 2013).

Figure 2: Harmonization pipeline. Raw images are N4 bias-corrected, skull-stripped, voxel inten-
sities are converted to CDFs, CDFs are aligned by warping intensity values. The transformation
of intensity values that produces this alignment is called a warping function, and the nonlinear
transformation is applied to the raw images to produce harmonized images.

2.2 Methodology

Our framework for image harmonization uses non-linear transformations of image intensity values

to remove scanner effects. The transformations were calculated by aligning distribution functions
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of intensity values. For a particular imaging modality (for example, T1-w), Yijk(v) represents

the intensity at a given voxel v for scan j of subject i measured at site k. Then fijk(x) and

Fijk(x) represent the probability density function (PDF) and CDF, respectively, for the voxel

intensities of image Yijk measured over intensities x. Within each subject we assumed variability in

voxel intensities across visits j and sites k is due to scanner and intensity unit effects rather than

biological change, and that non-biological differences could be removed by aligning all CDFs for

the ith subject to a subject-specific “template CDF,” Fit(x), for template t; template choices for

our motivating studies are described below.

For image Yijk we estimate the nonlinear monotonic transformation of the intensity values, or

warping function, h−1
ijk(x) = x̃, which aligns the CDF Fijk(x) to its template via

Fijk

{
h−1
ijk(x)

}
= Fijk(x̃) = Fit(x). (1)

After alignment, the CDF of the original images becomes identical to the CDF of the template.

For this reason, we use the notation Fit(x) to represent the mica-harmonized CDF as well as the

template for alignment. We further denote fijk

{
h−1
ijk(x)

}
= fit(x) and Yit(v) to be the mica-

harmonized PDFs and images, respectively. The aligned PDFs, fit(x), can be recovered from

CDFs by differentiation. The warping functions h−1
ijk(x) = x̃ define a new intensity value, x̃, for

each original intensity value in x. Since each Yijk(v) is a voxel intensity in x, harmonized images Yit

take values in x̃ and are obtained by h−1
ijk {Yijk(v)} = Yit(v). Figure (2) shows a schematic of this

process: images were bias corrected and skull-stripped, voxel-intensities were converted to CDFs,

CDFs were aligned, and warping functions from CDF alignment were used to generate harmonized

images.

Given this framework for quantifying scanner effects, we now address objectives (1) and (2)

stated in Section (1). Our first objective, to establish a method that removes scanner effects,

is illustrated using both the NAIMS and the trio2prisma data. For NAIMS data, we obtained

empirical CDFs of T1-w and FLAIR images from the NAIMS dataset. Within an imaging modality,
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each CDF is given by Fijk(x), i = 1, j ∈ {1, 2}, k ∈ {1, ..., 7}. We used the Karcher mean as the

common template Fit(x) to which all CDFs within a modality are aligned, though in principle other

templates could be used. For the trio2prisma data, we obtained empirical CDFs of T1-w images.

Each CDF is given by Fijk(x), i ∈ {1, ..., 10}, j = 1, k ∈ {Trio, Prisma}. For each subject, we used

the CDF from the Prisma image, FiPrisma(x), as the template to which we align the CDF from

the Trio image, FiTrio(x). Functions from the fdasrvf R package (Tucker, 2017) were used to

perform alignment.

Our second objective was to develop a technique to estimate scanner effects in large multisite

trials; to illustrate this, we used warping functions from the trio2prisma data. In such studies, most

subjects are only measured on a single scanner. At best, only a subset of subjects will have scans

collected at all locations in the study. In order to harmonize scans for all subjects in this real-world

setting, we propose to use mica to estimate warping functions for the subset of subjects who have

multiple scans, average these warping functions across subjects; and use the resulting mean to

harmonize images for subjects with only a single scan available. We assessed the performance of

this approach using leave-one-scan-out cross validation in the trio2prisma data. Specifically, we

removed the Prisma scan for one subject and computed the mica warping functions {h−1
i (x)} for

the remaining subjects. We then computed the pointwise mean of these warping functions; using

this as the warping function for the removed subject, we obtained a predicted Prisma scan from

the known Trio scan. This process was repeated for each of the ten subjects. In the subsequent

sections, scans harmonized using this leave-one-scan-out (loso) approach will be referred to below

as loso-harmonized images and Trio scans harmonized using the full data will be referred to as

mica-harmonized scans.

2.3 Statistical performance

All analyses were performed in the R software environment.
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2.3.1 NAIMS data

To assess the performance of our method on the NAIMS data we quantified T2-hyperintense le-

sion volume from the 3D FLAIR and T1-w images in both the White Stripe normalized and

mica-harmonized images using MIMoSA (Valcarcel et al., 2018) for automated lesion segmenta-

tion. Because the number and volume of lesions are important metrics for monitoring MS disease

progression (Bakshi et al., 2008) and the evaluation of therapeutic efficacy (Filippi et al., 2006),

eliminating non-biological variability in detected lesion volumes will help clinicians deliver the best

possible care to their patients.

We quantified mean and variance of lesion volumes within and across sites after applying White

Stripe alone and after applying mica followed by White Stripe.

2.3.2 trio2prisma data

For the trio2prisma data, we compared mica and loso to the histogram matching algorithm pro-

posed by Nyúl et al. (1999), as implemented in Fortin et al. (2016). For better performance we first

removed background voxels before running the histogram matching algorithm. To quantify perfor-

mance of the methods we computed Hellinger distance of images before and after normalization,

both within and across subjects. The Hellinger distance operates on PDFs of intensities, and its

square is given by

h2(fl, fk) =
1

2

∫ (√
fl(x)−

√
fk(x)

)2
dx (2)

for PDFs fl(x) and fk(x). We visualized CDFs and PDFs and calculated Hellinger distances

(Figures 4, 5, and 6, respectively) using images that had been mica or loso-harmonized but not

yet White Stripe normalized. This is to isolate and visualize the effects of our method. For

downstream analyses, including automated white and gray matter segmentation, we applied White

Stripe normalization to the mica and loso-harmonized images to remove any residual intensity unit

effects. We then estimated gray and white matter volumes and compare these across harmonization
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methods.

3 Results

For the NAIMS pilot data, we compared White Stripe normalized images to images processed using

the mica approach outlined in section (2). For the trio2prisma data, we compared four harmoniza-

tion strategies: no harmonization, histogram matching, mica, and loso. The main findings from

these comparisons are summarized in the following two sections.

3.1 mica reduces variation in lesion volumes across sites in the NAIMS study

Figure 3: Estimated T2 lesion volumes for scan-rescan pairs at each of 7 sites in the NAIMS study.
Circles indicate scan 1 and triangles indicate scan 2. Light and dark colors are volumes for White
Stripe normalized images and mica normalized images, respectively.

We mica-harmonized then White Stripe normalized the NAIMS scans, and then quantified MS

lesion volume to assess the effect of scanner variability on a common downstream analysis before

and after mica harmonization. The left panel of Figure 1 shows PDFs of raw voxel intensities

from the NAIMS study images, and the right panel shows PDFs of images that have been mica-

harmonized then White Stripe normalized. The raw PDFs show small differences within site, which
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are attributable to intensity unit effects, and larger differences across site, which are attributable

to scanner effects. Scanner effects are particularly large between the UCSF site and other sites.

After mica harmonization, the images across and within site have the same distributions of voxel

intensities.

Figure 3 shows estimated T2-hyperintense lesion volume across sites for both White Stripe

alone and White Stripe in conjunction with mica for scan-rescan pairs across the seven NAIMS

sites. Compared to White Stripe alone, mica in conjunction with White Stripe yielded less variable

lesion volume measurements across sites (variance 11.8 ml2 vs. 17.1 ml2) and similar lesion volume

measurements within sites (variance 12.4 ml2 vs. 11.9 ml2). We see a larger impact across sites than

within sites, suggesting that our method decreases site-to-site variance as expected and, together

with White Stripe, performs comparably to existing methods for within site variance.

3.2 mica preserves variation across subjects in the trio2prisma study

An appropriate harmonization method for multisite studies should reduce variability across scanners

within the same subject but preserve biological differences across subjects. Here, we evaluate results

from the trio2prisma data with these goals in mind. We compared mica and loso-harmonized images

to images processed by histogram matching.

Figures 4 and 5 show CDFs and PDFs, respectively, under different harmonization scenarios.

Visual inspection of intensity PDFs and CDFs in untransformed images suggests differences across

scanners: the Prisma scans tend to have lower intensity values and higher peaks than the Trio

scans. For both mica and histogram matching, within-subject technical variability is reduced

because PDFs of Trio scans and Prisma scans are aligned. mica accomplishes this by mapping the

Trio scan to the original Prisma scan, thus preserving the original features of the Prisma scans

including variability across subjects. Histogram matching must be applied to scans from both

the Trio and Prisma scanners, and reduces within-subject variability at the expense of eliminating

desired differences across subjects. loso provides reasonable harmonization in that it maps Trio

scans into the same range of intensity values as Prisma scans, but has less accuracy in reducing
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Figure 4: CDFs of intensities before and after harmonization by tissue type in the trio2prisma
study. Rows indicate tissue type, with whole brain, white matter, and gray matter shown in rows
1, 2, and 3, respectively. Columns correspond to different harmonization methods.

within-subject variability than mica or histogram matching. However, much of the desired across-

subject variability is retained.

We quantified the variability across subjects using the Hellinger distance from equation (2) on

PDFs of voxel intensities. Figure 6 displays boxplots of these pairwise distances for the original

Trio scans, original Prisma scans, and scans processed by histogram matching, loso, and mica. The

figure is divided into distances calculated on the full skull-stripped images (left column), white

matter (middle column), and gray matter (right column). The mica-harmonized Trio scans have

similar across-subject variability to the Prisma scans. The loso scans have variability comparable to

the original Trio scans but smaller than the Prisma scans. Histogram matching virtually eliminates

inter-subject variability, including that which is presumably biological.
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Figure 5: Histograms of intensities before and after harmonization by tissue type in the trio2prisma
study. Rows indicate tissue type, with whole brain, white matter, and gray matter shown in rows
1, 2, and 3, respectively. Columns correspond to different harmonization methods.

Figure 7 shows an axial slice of the Trio image for one subject from the trio2prisma dataset. The

slice is shown for raw intensity values (center), intensity values after mica harmonization (left), and

intensity values after histogram matching (right). Here, mica-harmonization brightens the contrast

between white and gray matter but does not distort the shape of biological features in the tissue.

Histogram matching, however, drastically changes the appearance of the image, converting some

gray matter to CSF and some white matter to gray matter.

Finally, neither harmonization nor normalization methods should bias assignment of tissue type.

After harmonization or normalization, we expect that segmentation volumes from harmonized Trio

scans should be similar to segmentation volumes from unharmonized and unnormalized (raw) Trio

scans. We estimated white and gray matter volumes on original Trio scans and after histogram
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Figure 6: Boxplots of Hellinger distances across subjects, shaded by method. Columns show results
for full brain (left), white matter (middle), and gray matter (right).

matching, White Stripe, mica followed by White Stripe, and loso followed by White Stripe. Figure

8 shows these volumes for each subject and tissue type. All methods have at least some difference

in segmentation volume compared to the raw data. The mica, loso, and White Stripe methods all

performed similarly, with volumes that are close to those of the raw images but slightly lower for

the gray matter and slightly higher for the white matter. Histogram matching, however, had much

lower segmentation volumes in both the gray matter and the white matter than either the raw data

or any other method. As shown in Figure 7, histogram matching severely distorts the image; we

believe this distortion causes the segmentation algorithm to convert some gray matter to CSF and

some white matter to gray matter, which explains the consistently lower volumes.

4 Discussion

Unwanted technical variability due to scanner effects in multisite clinical trials and observational

studies is an increasingly common problem; to mitigate these scanner effects we introdce mica,

a method that harmonizes structural MRI images by defining nonlinear transformations between
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Figure 7: Axial slice of skull-stripped images from a single subject in the trio2prisma dataset.
Center panel shows the raw intensity values from an image collected on the Trio scanner. Left and
right panels show the same image after mica harmonization and histogram matching, respectively.

CDFs of voxel intensities. To specifically target scanner effects, we developed a paradigm for

understanding scanner effects and intensity unit effects as related but distinct sources of technical

variability in MRI scans. Intensity unit effects are due to arbitrary MRI unit intensities within a

single scanner, and scanner effects are unwanted technical artifacts introduced across scanners or

sites. We also distinguish between approaches targeting these sources of variability: normalization

methods address intensity unit effects, and harmonization methods, the focus of our study, address

scanner effects.

Our data came from two small studies, the NAIMS pilot study and the trio2prisma study, with

multiple images per subject taken on multiple scanners, and nonlinear scanner effects. We found

that mica reduced within-subject variability in whole brain scans as well as white and gray matter

while preserving biological variability across subjects. We also found that mica, paired with White

Stripe, enhanced reproducibility of measurements of MS lesion volume across sites.

Normalization methods such as histogram matching and White Stripe are sometimes used for

harmonization, but they are inadequate in cases where across-site differences are much larger than
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Figure 8: Segmented brain volume in the gray matter (left) and white matter (right) for each
trio2prisma subject across harmonization approaches. We compare no normalization or harmo-
nization (raw), histogram matching (hm), White Stripe normalization (ws), mica, and loso.

those within site. Additionally, histogram matching can reduce biological variability across subjects

and White Stripe can leave residual technical variability in the gray matter. While we differentiate

conceptually between intensity unit effects and scanner effects, we also acknowledge that in reality

these artifacts can be challenging to separate. As a result, mica is likely to remove some intensity

unit effects and intensity normalization methods are likely to remove some scanner effects when

applied separately. In particular, White Stripe alone will likely perform well as a harmonization

method when scanner effects are small, linear transformations. Histogram matching, however, is

likely to remove desired variability across subjects and bias results.

Because our method is flexible and operates on the full brain, we can map images from one

scanner to another. This mapping is only exact for a particular subject when images are available

from both scanners, which is not realistic for most studies. That said, our leave-one-scan-out anal-

ysis suggests that when systematic site differences are present, mica can help understand scanner

effects and mitigate those differences. Before conducting multisite studies, we recommend obtaining

a baseline measurement of scanner variability by having a subset of patients measured at all sites.
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Our method can then be applied to all images collected to remove average scanner variability. We

acknowledge that this solution is imperfect in the sense that average scanner variability collected

from a subset of patients in a trial will not always capture the true scanner variability for each

subject. However, our simple and easy-to-apply methodology is an important step forward for an

increasingly prevalent problem. There is evidence that scanner effects may vary across covariates

such as gender and age, so extensions to mica that incorporate covariates may address some of the

issues outlined above.

5 Software

To enable use of mica we have written an R software package which is available for download at

https://github.com/julia-wrobel/mica.
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