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Abstract  

 Smoking status, alcohol consumption and HPV infection (acquired through sexual 

activity) are the predominant risk factors for oropharyngeal cancer and are thought to alter the prognosis 

of the disease. Here, we conduct epigenome-wide association studies (EWAS) of these factors and ~3-

year survival using Illumina Methylation EPIC blood DNA methylation profiles from 409 individuals 

in the Head and Neck 5000 (HN5000) study. CpG site associations below our multiple-testing threshold 

(PBonferroni < 0.05) with both a prognostic factor and with survival were observed in four gene regions: 

SPEG (smoking), GFI1 (smoking), PPT2 (smoking), and KHD3CL (alcohol consumption). These were 

further analysed using 2-step Mendelian randomization to assess whether methylation may be a causal 

mediator of cancer survival. Evidence for mediation was observed only in the SPEG gene region, 

showing an association with decreased survival (mortality HR: 1.28, 95% CI: 1.14 to 1.43, P: 2.12x10-

05). Replication in data from independent datasets, and from HN5000 participants with longer follow-

up times is needed to confirm these findings.   
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Introduction  

Head and neck cancer (HNC) is the eighth most commonly diagnosed type of cancer, with over 

12,000 new cases diagnosed in the UK in 2015 (1). Recently, oropharyngeal cancer (OPC), a subtype 

of HNC, has shown a significant increase in incidence in the UK. It has more than doubled between 

1990 and 2006, with a further doubling since 2010 (2) and is affecting younger populations (<45 years 

old) with greater frequency (3). OPC shows poor survival rates, with the 5-year relative survival rate 

for the more recently diagnosed oropharyngeal cases (between 2009-2013) estimated to be around 55-

60% (4). 

Several lifestyle factors as well as viral infections have been implicated in altering both 

incidence and prognosis for OPC (5-7). Of particular importance for both incidence (5, 8, 9) and 

prognosis of OPC (10) are smoking, alcohol intake and HPV16 infection (via sexual contact, including 

that of oral sex). Smoking and, to a lesser extent, heavy drinking at the time of diagnosis are both 

associated with increased incidence and poor prognosis (10-12). Interestingly, HPV16 infection, while 

being a risk factor for OPC incidence, has been associated with better prognosis (13-15), with a 

population-based study conducted in Boston from December 1999 to December 2003 demonstrating 

that HPV16 infected cases showed improved overall survival compared to those without an infection 

(HR: 0.1; 95% CI: 0.02-0.4; N: 448) (16).  

Epigenetic signatures can be measured using rapid high-throughput approaches and may serve 

as valuable prognostic markers for cancer (17). While several whole-genome methylation assays have 

been performed to define the DNA methylation signatures of tumour samples (18, 19), the ability to 

study cancers through non-invasive sampling of body fluids is a rapidly advancing development in 

cancer diagnostics and prognosis. In particular, biomarkers identified in blood hold promise as non-

invasive prognostic tools and may potentially be used to direct treatment if shown to be informative 

proxies for cancer development and prognosis (20). 

Ultimately, smoking, alcohol consumption, and HPV16 infection may influence blood DNA 

methylation patterns which, therefore, have the potential to act as novel exposure or prognostic 

indicators (21-23). Furthermore, as epigenetic changes are a hallmark process of cancer (24), DNA 
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methylation patterns associated with cancer survival may provide insight into biologically relevant 

pathways. More specifically, these epigenetic changes may act as intermediates on the pathways by 

which exposures influence survival. For example, as viral infections are thought to play an important 

role in altering epigenetic processes (25-27), these may serve as a mechanism by which having a HPV16 

infection might confer a protective effect on survival.  However, distinguishing a causal mediating role 

of these epigenetic changes from other explanations, such as confounding and reverse causation, is 

challenging and requires techniques such as Mendelian randomization (MR) to strengthen causal 

inference (28-30). MR is an approach which uses genetic variants strongly associated with modifiable 

exposures to appraise the causal effect of an exposure on disease risk. This approach has been extended 

to interrogate the causal relationship with molecular intermediates such as DNA methylation (29, 30). 

In the setting of a large prospective head and neck cancer cohort (the Head and Neck 5000 

Study; HN5000), we profiled blood DNA methylation in 443 participants with oropharyngeal cancer 

close to the time of diagnosis and prior to treatment starting. We performed epigenome-wide association 

analyses (EWAS) of the main prognostic factors for oropharyngeal cancer (alcohol, smoking and 

HPV16 infection) as well as survival up to ~3 years. We then assessed overlap between the DNA 

methylation profiles related to these prognostic factors and survival. Where there was evidence of a 

shared signal, we performed Mendelian randomization analysis to appraise the causal effect of DNA 

methylation in mediating the effect of these factors on survival.  

 

Results 

Baseline characteristics of samples with epigenetic data, compared to all HNC and OPC 

samples in HN5000 are shown in Table 1. The proportion of those under the age of 60, and the 

proportion of those which are HPV16 E6 seropositive (an established biomarker of HPV-driven OPC) 

in OPC vs non-OPC HNC is notably greater. Table 1 shows that those with OPC who were selected to 

have their methylation patterns typed were broadly representative of others with OPC in HN5000 with 

respect to exposure to prognostic factors, albeit not necessarily representative of HNC as a combined 

entity. 
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Table 1 - Comparison of patient demographics in OPC samples selected for methylation data extraction, all samples in 
HN5000 identified as OPC, and all samples in HN5000 

Variable 

OPC in HN5000 with 

methylation data and 

complete phenotype data 

(N=409) 

OPC in 

HN5000 

(N=1,909) 

All HN5000 (all 

sub-types) 

(N=5,392) 

ICD group (% oropharynx) 100 100 35.4 

Sex (% female) 27.0 21.9 27.2 

Age (% <60) 58.4 52.4 42.7 

Smoking (% never smoked) 27.1 28.0 24.6 

Alcohol (% non-drinker) 25.9 26.6 28.4 

HPV16 E6 (% negative) 33.3 32.3 72.0 

Survival (% died, prior to 30/09/2017) 26.2 24.2 28.0 

 

Epigenome-wide association study of smoking 

The single-site EWAS of ever vs never smokers revealed 52 CpG site associations annotated 

to 27 unique loci (P<5.7x10-8, Bonferroni-adjusted P < 0.05 for 862,491 tests) (Figure 1). CpG site 

cg05575921, which annotates to the AHRR gene region, was most strongly associated (P< 1.48x10-40) 

and  showed the largest effect size of -29.5% difference in methylation between ever and never smokers. 

Forty-nine of the associated CpG sites had lower DNA methylation in ever smokers, with a mean 

difference in methylation of -8.3% (SD: 5.1%, range: -29.5% to -2.2%). The three remaining CpG sites 

had higher methylation in smokers, with a mean difference of 7.7% (SD: 4.2%, range: 4.7% to 12.6%). 

Supplementary Table 1 provides the complete list of all CpGs that were differentially methylated 

below a multiple testing threshold of P:2.4x10-7 (the literature-reported alpha for the Illumina 450K 

BeadChip (31), a predecessor of the EPIC array, common in epidemiological literature, which can assay 

>450,000 CpG sites compared to >850,000 on the EPIC array). Of the results presented in this table, 

37.5% (24/64 CpGs) were CpG sites present on the EPIC array but not its 450K predecessor. 
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In the differentially methylated region (DMR) analysis of ever vs never smoking, 166 unique 

DMRs containing 617 measured CpGs and mapping to 156 gene regions were identified (Figure 1). 

The DMR with the strongest association contained 3 measured CpGs (cg21566642, cg01072057 and 

cg13903162) and was located at Chr2:233284661-233285290, an intergenic CpG island on 2q37.1 

(P:1.13 x10-46). 

Figure 1 - Manhattan plot of EWAS results from a comparison of ever vs. never smoking, showing CpG sites within DMRs in 
red. Each dot represents a single CpG site, plotting –log10(p) (y-axis) against the genomic position of the CpG site (x-axis). The 
horizontal red line is at P<5.7x10-8 and represents the value below which methylation was deemed to be significantly 
associated with smoking. 

 

Epigenome-wide association study of alcohol 

The EWAS of alcohol consumption revealed 3 CpG site associations annotated to 3 unique 

genes (P<5.7x10-8) (Figure 2). The association with the smallest p-value was cg06690548 (P:8.3x10-

16), annotating to the SLC7A11 gene region. This CpG site also showed the largest effect size of -0.10% 

difference in methylation per unit of alcohol increase. All results below the 450K array multiple testing 
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threshold of 2.4x10-7 are shown in Supplementary Table 2. Of the results presented in this table, 40% 

of the CpGs (2/5 CpGs) were present on the EPIC array but not it’s 450K predecessor. 

In the DMR analysis of alcohol consumption, 40 unique DMRs containing 238 measured CpGs 

and mapping to 34 gene regions were identified (Figure 2). The DMR with the smallest P value was a 

region containing 2 CpGs (cg06690548 and cg13903162) found at Chr4:139162808-139163020 (P:1.45 

x10-10), annotating to the SLC7A11 gene region.  

Figure 2 - Manhattan plot of EWAS of alcohol consumption, showing CpG sites within DMRs in red. Each dot represents the 
EWAS result for a single CpG site, plotting –log10(p) (y-axis) against the genomic position of the CpG site (x-axis). The 
horizontal red line is at P<5.7x10-8 and represents the value below which CpG sites were considered to have good evidence of 
association with alcohol consumption. 

 

Epigenome-wide association study of HPV seropositivity 

In the EWAS analysis of HPV16 E6 seropositivity, no CpGs passed our multiple testing p-

value threshold (P<5.7x10-8) (Figure 3). At a suggestive threshold of 2.4x10-7, only 1 CpG site 

(cg26738437; P:1.3x10-7) was found, annotating to the CCL16 gene. This probe is not found on the 

450K array. Methylation at this site was on average 2.3% lower in HPV16 E6 seropositive participants 

when compared to  controls.  
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In the DMR analysis of HPV16 E6 seropositivity, 31 unique DMRs pertaining to 158 CpGs 

and annotating to 38 gene regions were identified (Figure 3). The most associated DMR was a region 

of 13 CpGs found at Chr5:110062343-110062838 (P:4.10x10-6), annotating to the TMEM232 gene 

region.  

Figure 3 - Manhattan plot of EWAS of HPV16E6 seropositivity, showing CpG sites within DMRs in red. Each dot represents 
the EWAS result for a single CpG site, plotting –log10(p) (y-axis) against the genomic position of the CpG site (x-axis). The 
horizontal red line is at P<5.7x10-8 and represents the value below which CpG sites were considered to have good evidence 
of association with HPV16 E6 seropositivity. 

 

Epigenome-wide association study of OPC survival 

Model 1 

In the single-site analysis of survival (adjusting for age, sex and surrogate variables obtained 

by SVA (32)), three CpGs mapping to three unique loci showed association with survival below the 

multiple testing p-value threshold (P<5.7e-8) (Figure 4).  One CpG site showed lower methylation in 

those who died vs were alive during follow-up. This site was also the most strongly associated with 

survival, annotating to PAQR3 and showed the largest effect size among the top hits (cg25864218; β 

[difference in methylation between those that were dead vs alive before 30th September 2017]: -2.54%; 

P: 1.04e-9). Two sites showed higher methylation in those who died vs were alive during follow-up in 
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our analysis, annotating to DNAH11 (cg07377396; β: 0.49%; P: 3.39e-8) and MYBPC1 (cg12151015; 

β: 0.11%; P: 7.51e-9). The mean difference in methylation in these sites was 0.3% (SD: 0.27%, range: 

0.11% to 0.49%). All results below a suggestive multiple testing threshold of 2.4e-7 are shown in 

Supplementary Table 3.  

In the DMR analysis of survival, 142 unique DMRs pertaining to 805 CpGs and annotating to 

153 gene regions were identified (Figure 5). The DMR with the lowest P value was a region of 10 

CpGs found at Chr17:33814297-33814897 (P:5.26e-21), annotating to the CDK16 gene region. 

Figure 4 - Manhattan plot of EWAS of survival (model 1 – adjusting for age, sex and surrogate variables obtained by SVA), 
showing CpG sites within DMRs in red. Each dot represents the EWAS result for a single CpG site, plotting –log10(p) (y-axis) 
against the genomic position of the CpG site (x-axis). The horizontal red line is at P<5.7x10-8 and represents the value below 
which CpG sites were considered to have good evidence of association with survival. 

 

Model 2 

In the single-site analysis of survival using Model 2 (adjusting for age, sex, surrogate variables 

obtained by SVA (32), HPV16E6 seropositivity, smoking status and alcohol intake ), 6 CpGs annotated 

to 4 unique loci showed a p-value of association below our multiple testing threshold (P<5.7e-8) (Figure 

5). Three of the 6 CpGs passing multiple testing correction showed lower methylation in those who 

died vs were alive during follow-up in our analysis, while the other 3 showed higher methylation. Of 
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the 3 sites showing lower methylation, the mean difference in methylation between those that were dead 

vs alive after ~3-year follow-up was -0.07% (SD: 0.05%, range: -2.54% to -0.16%). For the 3 sites 

showing higher methylation, the mean difference in methylation was 0.31% (SD: 0.31%, range: 0.11% 

to 0.67%). The CpG with the smallest P value (cg25864218, P: 1.22x10-8), annotates to the PAQR3 

gene region. This CpG site also showed the largest effect size of -2.5% difference in methylation 

between those who are dead vs alive in this analysis. Other CpGs passing our multiple testing correction 

which were annotated to genes included MYBPC1 (cg12151015; β: 0.11%; P: 2.59e-8), GRIN2A 

(cg08204867; β: -0.16%; P: 2.87e-8), and IL15 (cg26269613; β: 0.67%; P: 5.34e-8). Two CpGs showed 

an association with survival in both models: cg12151015 (annotating to MYBPC1) and cg25864218 

(annotating to PAQR3). All results below a suggestive multiple testing threshold of 2.4e-7 are shown in 

Supplementary Table 4. Interestingly, of the results presented in this table, all 23 associated CpGs 

were present on the EPIC array but not the 450K predecessor. 

In the DMR analysis of survival (model 2), 157 unique DMRs pertaining to 874 CpGs and 

annotating to 177 gene regions were identified (Figure 5). The DMR with the lowest P value was a 

region of 12 CpGs found at ChrX: 47077168- 47077877 (P:1.08e-21), annotating to the CDK16 gene 

region.  
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Figure 5 - Manhattan plot of EWAS of survival (model 2 – adjusted for smoking, alcohol consumption and HPV16E6 
seropositivity), showing CpG sites within DMRs in red. Each dot represents the EWAS result for a single CpG site, plotting –
log10(p) (y-axis) against the genomic position of the CpG site (x-axis). The horizontal red line is at P<5.7x10-8 and represents 
the value below which CpG sites were considered to have good evidence of association with survival. 

 

DMR overlap between OPC risk factors and survival 

Eighteen unique CpGs overlapped between all smoking DMRs and survival DMRs (survival 

EWAS model 1). These CpGs belonged to 3 unique DMRs (annotated to GFI1, SPEG and PPT2); five 

CpGs overlapped between all alcohol DMRs and survival (EWAS Model 1) DMRs, all pertaining to a 

single DMR (annotated to C6orf221) (Supplementary Table 5). No CpGs overlapped at our p-value 

threshold for HPV DMRs and survival (EWAS model 1) DMRs. 

 Of the 18 CpGs which overlapped between smoking and survival, 15 possessed mQTL proxies 

in the Generation Scotland summary data with which to conduct MR (see Methods). Of the 5 CpGs 

which overlapped between alcohol and survival, 3 possessed mQTL proxies in the Generation Scotland 

summary data (Supplementary Table 5).  
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Mendelian randomization: DNA methylation - OPC survival  

Tables 2a-c and Figure 8 show the results MR analyses for the association of mQTL-proxied 

DNA methylation, at CpG sites associated with smoking and survival, with 3-year survival in HN5000. 

In our analyses, there appears to be some evidence for a potential causal effect of decreased DNA 

methylation on survival at the SPEG gene locus (Table 2a; Chr2:22035443-22036041; HR: 1.28; 95% 

CI: 1.14 to 1.43). Our results provide evidence of a causal association seen between methylation 

changes in response to smoking, and decreased survival at this gene region. A lookup in the BIOS QTL 

Browser (https://genenetwork.nl/biosqtlbrowser/) was conducted to assess whether methylation at this 

locus affected gene expression; twenty cis-expression quantitative trait methylations (eQTMs) showed 

evidence of correlation between gene expression and methylation at the SPEG locus in whole blood at 

this gene region.  

The GFI1 (Table 2b) and PPT2 (Table 2c) gene regions appear to show no consistent evidence 

of a causal effect of DNA methylation on survival. We could only conduct multivariable MR Egger 

analysis using independent SNPs (multivariable MR Eggerindependent: a sensitivity analysis for using 

multivariable MR Egger with correlated SNPs in our main analysis) at the SPEG locus, as other regions 

did not have sufficient independent SNPs as proxies. Fewer than 3 SNPs greatly reduces the accuracy 

of MR Egger; therefore, it was only used in analyses with 3 or more SNP proxies. Multivariable MR 

Eggerindependent showed a similar effect estimate to normal multivariable MR Egger at this locus, albeit 

with larger confidence intervals, suggesting the confidence interval for normal multivariable MR Egger 

is likely to be overly precise in this analysis.  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 28, 2019. ; https://doi.org/10.1101/679316doi: bioRxiv preprint 

https://genenetwork.nl/biosqtlbrowser/
https://doi.org/10.1101/679316
http://creativecommons.org/licenses/by/4.0/


13 
 

Table 2a - Mendelian randomization (MR) analysis results, assessing epigenetic mediation between smoking status and ~3-
year survival at the SPEG gene (chromosome 2:220325443-220326041). The number of SNPs per analysis are shown, in 
addition to the inverse-variance weighted (IVW) and multivariable MR Egger MR results. IVW and MR Egger results are 
adjusted for genetic correlation between mQTLs are reported as hazard ratios (HR) with 95% confidence intervals (CI). The 
SPEG locus was the only in our analyses to possess >2 independent SNPs and is therefore the only with multivariable MR 
Egger analysis conducted on this independent subset in addition to all DMR CpGs. 

Region (gene) MR Method SNPs HR 95% CI P 

All DMR CpGs 

Chr2:220325443-220326041 (SPEG) IVW  17 1.28 1.14 to 1.43 2.12x10-05 

Chr2:220325443-220326041 (SPEG) MR Egger 17 1.28 1.18 to 1.38 4.04x10-10 

Sentinel CpG only 

cg06084174 (SPEG) IVW 3 1.14 0.90 to 1.45 0.29 

CpGs with independent SNPs 

Chr2:220325443-220326041 (SPEG) MR Egger 4 1.27 0.78 to 2.08 0.34 

 

Table 2b - Mendelian randomization (MR) analysis results, assessing epigenetic mediation between smoking status and ~3-
year survival at the GFI1 gene (chromosome 1:92946132-92947588). The number of SNPs per analysis are shown, in 
addition to the inverse-variance weighted (IVW) and multivariable MR Egger MR results. IVW and MR Egger results are 
adjusted for genetic correlation between mQTLs are reported as hazard ratios (HR) with 95% confidence intervals (CI). 

Region (gene) MR Method SNPs HR 95% CI P 

All DMR CpGs 

Chr1:92946132-92947588 (GFI1) IVW  8 0.74 0.60 to 0.93 7.9x10-03 

Chr1:92946132-92947588 (GFI1) MR Egger 8 2.65 0.77 to 9.12 0.12 

Sentinel CpG only 

cg06338710 (GFI1) Wald ratio 1 0.93 0.47 to 1.85 0.84 

 

Table 2c - Mendelian randomization (MR) analysis results, assessing epigenetic mediation between smoking status and ~3-
year survival at the PPT2 gene (chromosome 6:32120895-32120907). The number of SNPs per analysis are shown, in 
addition to the inverse-variance weighted (IVW) and multivariable MR Egger MR results. IVW and MR Egger results are 
adjusted for genetic correlation between mQTLs are reported as hazard ratios (HR) with 95% confidence intervals (CI). 

Region (gene) MR Method SNPs HR 95% CI P 

All DMR CpGs 

Chr6:32120895-32120907 (PPT2) IVW 8 0.82 0.52 to 1.30 0.40 

Chr6:32120895-32120907 (PPT2) MR Egger 8 1.68 0.27 to 10.38 0.58 

Sentinel CpG only 

cg17113856 (PPT2) IVW 2 0.67 0.37 to 1.22 0.19 
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Figure 8 - Forest plots showing SNP-specific and overall IV Hazard ratio estimates (95% CI) for Mendelian randomization 
analyses of smoking-associated methylation at 3 gene loci (GFI1, PPT2, SPEG), against 3-year survival in oropharyngeal 
cancer. 
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Table 3 and Figure 9 show the results of the associations of mQTL-proxied DNA methylation, 

at CpG sites associated with alcohol and survival with 3-year survival in HN5000. In our analysis, there 

appears to be no consistent evidence for a causal effect of DNA methylation on survival at the C6orf221 

gene locus (Chr6:74072255-74072376).  

Table 3 - Mendelian randomization (MR) analysis results, assessing epigenetic mediation between alcohol consumption and 
~3-year survival at the KHD3CL gene (chromosome 6:74072255-74072376). The number of SNPs per analysis are shown, in 
addition to the inverse-variance weighted (IVW) and multivariable MR Egger MR results. IVW and MR Egger results are 
adjusted for genetic correlation between mQTLs are reported as hazard ratios (HR) with 95% confidence intervals (CI). 

Region (gene) MR Method SNPs HR 95% CI P 

No clumping of final instrument, meta-analysis of mQTLs 

Chr6:74072255-74072376 (C6orf221) IVW  4 1.17 0.70 to 1.97 0.55 

Chr6:74072255-74072376 (C6orf221) MR Egger 4 0.89 0.27 to 2.98 0.85 

Sentinel CpG only 

cg19146112 (C6orf221) Wald ratio 1 1.17 0.54 to 2.53 0.68 

 

Sensitivity analyses were conducted for results where MR Egger estimates showed an opposite 

direction of effect to the IVW estimate (GFI1, PPT2, KHDC3L). For each of these analyses, the MR 

Egger intercept test of heterogeneity (explained elsewhere (33, 34)) spanned our null of 0 (GFI1 

intercept: -0.25, 95% CI: -0.54 to 0.05, p-value: 0.10; PPT2 intercept: -0.18, 95% CI: -0.58 to 0.23, p-

value: 0.40; KHDC3L intercept: 0.07, 95% CI: -0.09 to 0.23, p-value: 0.37), providing evidence that 

directional pleiotropy was not causing the difference between the MR Egger and IVW estimates. 
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Discussion 

We undertook EWAS analyses and identified CpG sites and DMRs associated with smoking 

and alcohol consumption, but none associated with HPV infection. We also identified 6 CpGs 

associated with OPC survival at 3 years post-diagnosis. Twenty-three CpGs at 4 DMRs were identified 

in both analyses of risk factor and of survival. We hypothesised that for these CpG sites, DNA 

methylation could mediate part of the association between the risk factor and OPC survival. MR 

analysis was conducted to test this hypothesis and we found preliminary evidence to support this 

mediation pathway between smoking and OPC survival at the SPEG gene locus. 

In relation to smoke exposure, our results include several previously reported loci, notably those 

mapping to AHRR and PRSS23. The effect size seen in our EWAS for cg05575921 (29.5%) is markedly 

stronger than the largest published smoking EWAS analysis; Joehanes et al (21) report 18% lower 

methylation in current smokers compared to those who have never smoked (P: 4.60e-26). A potential 

Figure 9 - Forest plot showing the SNP-specific and overall IV Hazard ratio estimates (95% CI) for Mendelian randomization 
analyses of alcohol-associated methylation at the KHDC3L gene locus, against 3-year survival in oropharyngeal cancer. 
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explanation for this finding could be that our analysis was conducted in a case-only setting where 

smoking is one of the predominant risk factors for HNC and smoking intensity is likely to be higher in 

HN5000 smokers compared to  smoking in the general population. We completed a lookup of our top 

smoking CpG sites (P < 5.7e-8), using the EWAS Catalog (http://www.ewascatalog.org/) online tool to 

compare whether our effect sizes were consistently stronger than other published smoking EWAS 

findings (Supplementary Table 6). Of the 52 sites below a multiple-testing correction, 20 had not been 

previously reported in published EWASs. The other 32 CpG sites which had previously been reported 

in the literature showed consistently larger effect estimates in response to smoking in our analysis 

compared to a weighted mean (weighted by sample size) of published EWAS beta values.   

None of the 5 CpG associations with alcohol were replicated in data from the EWAS catalog. 

However, CpGs associated with alcohol were specific to the EPIC array and no other EPIC array 

EWASs of alcohol are currently indexed by the EWAS catalog. SLC7A11, the gene annotated to our 

top CpG site associated with alcohol consumption, is essential for glutathione synthesis, a component 

of the KEAP1-NRF2-CUL3 axis, and strongly associated with poor prognosis in The Cancer Genome 

Atlas (TCGA) HNC cohort (35, 36). 

In our EWAS of 3-year survival none of the 15 (model 1) or 23 (model 2) reported associations 

have previously been reported in published studies of OPC survival. Both survival EWAS models gave 

a top hit annotating to the PAQR3 gene. Aberrant promotor methylation at this gene has been shown to 

be associated with prostate cancer (37), with the gene itself being an established tumour suppressor 

(38). Within the context of HNC, PAQR3 has been associated with tumorigenesis in oesophageal cancer 

(39, 40), although to our knowledge no literature has examined whether this gene affects oropharyngeal 

cancer specifically.   

The consistent direction of effect between MR Egger, MR Eggerindependent and Burgess IVW 

estimates for the SPEG locus provide us with greater confidence that the IV is reliable and that there is 

sufficient statistical power to demonstrate preliminary evidence for a causal association with decreased 

survival. Expression of the SPEG gene shows specificity to vascular smooth muscle cells – the major 

cell type in blood vessel walls, in which smoking has been shown to produce abnormal function 
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throughout the body (41). Functional annotations show the SPEG gene to be essential for cardiac 

function in particular, with deficiency of this gene reported to result in heart failure (42). As mentioned 

previously, a lookup in the BIOS QTL Browser (https://genenetwork.nl/biosqtlbrowser/) confirmed 20 

eQTMs showing evidence of correlation between gene expression and methylation at this locus in whole 

blood, though further work evaluating tissue-specific expression is required. People with head and neck 

squamous cell carcinoma (HNSCC) have an elevated risk of non-HNSCC mortality that persists over 

their lifetime. Among people with HNSCC, the 5-year incidence of non-cancer mortality is 13% (43), 

with a high baseline risk of cardiovascular disease compared to matched controls (44, 45). 

To our knowledge, this is the first EWAS study investigating oropharyngeal cancer survival 

using a cox proportional-hazards model to investigate DNA methylation in relation to survival at ~3 

years. This study uses data derived from the EPIC array, which profiles methylation at approximately 

twice as many CpG sites as its 450k predecessor. Across the EWASs of smoking, alcohol, HPV and 

both survival models, 39.4% of the CpG sites showing association at P<2.4e-7 were specific to the 

EPIC array (43/109). However, proportionally, our results suggest that associations are not enriched 

with the inclusion of novel enhancer region CpGs from the EPIC array. A one-sided Fisher’s exact test 

for enrichment of EPIC probes vs 450K probes in CpG sites below P: 2.4e-7 confirms this; P > 0.99, 

suggesting no evidence of enrichment. 

The HN5000 study recruited individuals with HNC close to time of diagnosis, taking blood 

samples prior to treatment, negating potential confounding of methylation changes in response to 

treatment and minimising information bias. However, whilst unlikely, because cases weren’t recruited 

prior to HNC diagnosis, we cannot rule out that the differences observed in methylation patterns for 

smoking (ever vs never), alcohol consumption (units/week) and HPV16 E6 seropositivity (vs HPV16 

E6 seronegative) are a result of early stage disease difference. By extension, we cannot state with 

complete certainty that methylation is an intermediate causal agent; it is possible that a methylation → 

survival pathway exists independently (i.e. not mechanistically connected) of a smoking → methylation 

pathway, rather than our hypothesised smoking → methylation → survival pathway.  
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It should be noted that, despite being an established biomarker with high sensitivity (>93%) 

and specificity (>94%) for HPV-driven OPC (46), HPV16 E6 seropositivity may underestimate the 

number of individuals in our data with a current HPV-driven disease; they may be yet to present with 

the disease. Additionally, it has been reported that HPV can colocalise to biofilm (a community of 

immotile bacteria encased in a self-produced glycocalyx matrix) in tonsillar crypts, representing a 

reservoir of latent oncovirus undetected by the immune system (47). Therefore, it is also possible that 

individuals in our data have a historically HPV16-driven OPC without evidence of infection at time of 

assessment. As such, our EWAS results for HPV16 infection may be biased towards the null in both 

instances. 

Collider bias may influence associations between our prognostic factors and progression in a 

case-only setting (48). HPV, smoking and alcohol are all associated with OPC incidence; by only 

examining cases, incidence is conditioned on, potentially inducing an association between HPV, 

smoking, alcohol and any unmeasured confounding. Unmeasured, unknown, confounding cannot be 

adjusted for here, so if any unmeasured confounding is associated with survival, it may be that an 

association between a prognostic factor and survival is simply a result of the induced association of the 

prognostic factor and unmeasured confounding.  

Some of our MR analyses highlight potential violations of its methodological assumptions. 

Primarily, those analyses where the MR Egger estimate shows an opposite direction of effect to the 

IVW estimate (GFI1, PPT2, KHDC3L) could indicate an IV where one or more of the genetic variants 

proxying methylation is disproportionately skewing the effect in a certain direction (horizontal 

pleiotropy). However, for each of these analyses, the MR Egger intercept test of heterogeneity 

(explained elsewhere (33, 34)) spans 0 (GFI1 intercept: -0.25, 95% CI: -0.54 to 0.05, p-value: 0.10; 

PPT2 intercept: -0.18, 95% CI: -0.58 to 0.23, p-value: 0.40; KHDC3L intercept: 0.07, 95% CI: -0.09 to 

0.23, p-value: 0.37), indicating that directional pleiotropy is not causing the difference between the MR 

Egger and IVW estimates. A possible explanation of this finding, and one that we cannot rule out, is 

that these analyses suffer from weak instrument bias; a bias where the chance difference in confounders 

may explain more of the difference in phenotype between genotype subgroups than the instrument, 
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thereby confounding the true causal estimate. Finally, in these three analyses, we cannot state the true 

direction of effect with confidence, given that our confidence intervals span our null line of Y = 1; this 

is likely an artefact of low statistical power.  

One notable limitation of our MR analysis is that it is likely particularly conservative as we 

assessed overlap between prognostic factor DMRs and survival DMRs only if they surpassed our 

multiple correction threshold in both analyses. We adopted this approach (rather than to test corrected 

prognostic factor DMRs for association with all survival DMRs, only correcting for a number of tests 

equal to the number of prognostic factor DMRs) to improve confidence that regional methylation was 

associated with both a prognostic factor and survival. In order to reduce the possibility that regional 

methylation was only associated with a prognostic factor (and only spuriously associated with survival), 

we may have missed genuine causal mediation at less-stringent p-value thresholds.  

 

Conclusions 
 

Within the context of OPC, we found novel epigenetic biomarkers measured by the Illumina 

Infinium EPIC array to be associated with the prognostic factors of smoking and alcohol and with 

survival. Of these biomarkers, we used overlapping signals between prognostic factor and survival 

analyses to conduct MR analysis to appraise the causal role of DNA methylation.  Using an IVW 

approach to investigate the causal effect of DNA methylation at the identified sites, we found that a 

collection of CpGs located within a DMR associated with smoking (located at Chr2:220325443-

220326041; annotating to the SPEG gene) showed some evidence of a causal effect on decreased 

survival (HR: 1.28, 95% CI: 1.14 to 1.43, P: 2.12x10-05). DNA methylation at this locus could 

potentially mediate some of the association between smoking and OPC survival. To strengthen the 

validity of these findings, replication analyses in other studies, and a longer follow-up period in Head 

and Neck 5000 are recommended. 
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Methods 

Study population  

The study population for this analysis were individuals enrolled in the Head and Neck 5000 

(HN5000) clinical cohort study. Full details of the study methods and overall population are described 

in detail elsewhere (49, 50). Briefly, between April 2011 and December 2014, 5511 individuals with 

HNC were recruited from 76 centres across the UK. All people with a new diagnosis of HNC were 

eligible to join the study and were recruited before or within a month of their cancer treatment 

commencing.  Individuals with cancers of the pharynx, mouth, larynx, salivary glands and thyroid were 

included, while those with lymphoma, tumours of the skin or a recurrence of a previous head and neck 

cancer were excluded from the study. There were 119 exclusions between recruitment and our data 

release (v2.3) for the following reasons: withdrawn by study/ineligible (n = 72), patient choice 

withdrawal (n = 12), and not HNC (n = 35).  

Participants for our study were selected from the wider pool of individuals (post-exclusion) in 

HN5000 (N: 5392) based on an ICD-10 coding (pathological where available, clinical if otherwise) of 

oropharynx (CO1, CO5, CO9, C10.0-2, C10.3, C10.8 and C10.9; N: 1909/5392), availability of 

OncoChip genotype data generated previously (N: 1034/1909) (51), baseline questionnaire and data 

capture information (see below), and the availability of  blood samples taken at baseline (prior to 

treatment; N: 448/1034). 

Local research nurses obtained informed consent from individuals, which included agreement 

to collect, store and use biological samples; obtain samples of stored tissue; carry out genetic analyses 

and collect clinical information from hospital notes and mortality data through record linkage. Ethics 

approval for this study was granted by the National Research Ethics Committee (South West Frenchay 

Ethics Committee, reference 10/H0107/57, 5th November 2010) and approved by the research and 

development departments from participating NHS Trusts. 
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Baseline data collection 

Participants completed a series of three self-administered questionnaires at baseline enquiring 

about: 1) social and economic circumstances, overall health and lifestyle behaviours; 2) physical and 

psychological health, well-being and quality of life; and 3) past sexual history and behaviours (49). 

Information on diagnosis, treatment and co-morbidity was recorded on a short data capture form using 

questions based on a national audit (52). Diagnoses were coded using the International Classification 

of Diseases (ICD) version 10 (53) and clinical staging of the tumour was derived based on the American 

Head and Neck Society TNM staging (54).  

Research nurses collected a blood sample from all consenting participants (49). These were 

then sent to the study centre laboratory at ambient temperature for processing. The blood samples were 

centrifuged at 3500 rpm for 10 minutes and the buffy coat layer used for DNA extraction. Any 

additional samples from the same participant were frozen and stored at -80°C.   

 

Assessment of tobacco, alcohol and HPV infection  

Detailed information on tobacco and alcohol history was obtained at baseline via the self-

administered questionnaire. Participants were asked about their current smoking and drinking status 

and their use of tobacco and alcohol products prior to receiving their HNC diagnosis.   

Among smokers, information on age at smoking initiation and number of years of smoking was 

obtained. The questionnaire differentiated between use of cigarettes, hand-rolled cigarettes, cigars and 

smokeless tobacco, whereby a cigar was considered equivalent to four cigarettes. From this information, 

participants were dichotomised into ever and never smokers. Ever smokers were defined as those who 

smoked at the equivalent of at least 1 tobacco product a day per year, or ≥100 cigarettes in their lifetime. 

Never smokers were those who reported not smoking in any of the questions answered.  

 Respondents were asked to report their average weekly alcohol consumption of a range of 

beverage types (wine, spirits, and beer/larger/cider) before they were diagnosed with cancer. From these 

measures, we derived an average intake of alcohol consumption in units per week. 

 HPV serologic testing (HPV16 E6, E7, E1, E2, E4, and L1) was conducted at the German 

Cancer Research Center (DKFZ, Heidelberg, Germany) using glutathione S-transferase multiplex (55). 
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Median fluorescence intensity (MFI) values were dichotomized to indicate HPV16 E6 seropositivity 

using a cut-off of ≥ 1000 MFI (56). E6 seropositivity is known to be a marker of with a high sensitivity 

and specificity for HPV16-driven oropharyngeal cancer (57). 

 

Study follow-up and survival  

Regular updates were received from the NHS Central Register (NHSCR) and the NHS 

Information Centre (NHSIC) notifying on subsequent cancer registrations and survival among cohort 

members in the Head and Neck 5000 study. Recruitment for the study finished in December 2014 and 

follow-up information on survival status was obtained on 30th September 2017, resulting in at least 2.75 

years of follow-up for all participants (median: 3.1 years; range: 2.75 to 4.9 years: inter-quartile range: 

1.1 years). 

 

DNA methylation  

 Data generation 

Following extraction, DNA was bisulphite-converted using the Zymo EZ DNA MethylationTM 

kit (Zymo, Irvine, CA, USA). Genome-wide methylation data were generated using the Infinium 

MethylationEPIC BeadChips (EPIC array) (Illumina, USA) according to the manufacturer protocol. 

The arrays were scanned using an Illumina iScan (version 2.3).  

 

Pre-processing 

Raw data files (IDAT files) were pre-processed using the R package meffil 

(https://github.com/perishky/meffil/) (58) to perform quality control (QC) and normalisation. Sample 

mismatches and outliers were identified and removed based on allosome methylation (N: 2 incorrect 

sex prediction; N: 3 outliers) and 65 genotype probes, which were compared with SNP-chip data from 

the same individual (N: 3 exclusions). Sample outliers were also identified based on control probe 

(bisulfite 1 and bisulfite 2) mean outliers (N: 2 exclusions), outliers for the median intensity of the 

methylated vs unmethylated signal for all control probes (N: 2 exclusions), detection p-value (N: 2 

exclusions based on high proportion of undetected probes [>10% of probes failing a detection p-value 
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> 0.01]) and low bead numbers (N: 1 exclusions). Default thresholds for exclusion in meffil were used, 

with 443 samples passing QC. Following QC, Functional normalization was used to separate biological 

variation from technical variation (59). Data were normalised using 5 control probe principal 

components derived from the technical probes. The Infinium EPIC array pipeline detects the proportion 

of molecules methylated at each CpG site on the array. For the samples, the methylation level at each 

CpG site was calculated as a beta value (β), which is the ratio of the methylated probe intensity and the 

overall intensity and ranges from 0 (no cytosine methylation) to 1 (complete cytosine methylation). 

 

EWAS 

Epigenome wide association study (EWAS) analysis was conducted to identify associations 

between DNA methylation and 1) alcohol consumption 2) smoking status and 3) HPV16E6 

seropositivity. EWAS were conducted in meffil, using a linear regression model of DNA methylation 

regressed on the prognostic factors, adjusting for age, sex, surrogate variables obtained by SVA (32) 

and the other prognostic factors (e.g. for alcohol intake, adjusting for smoking and HPV16E6).  

Of the 443 individuals who passed QC, the number of individuals with complete phenotype 

data for alcohol intake, smoking status and HPV16E6 seropositivity with which to conduct an EWAS 

was 409 as of the 2018, version 2.3 release of HN5000 data. All samples possessed information on 

survival status.  

EWASs for survival from recruitment (last participant recruited December 2014) – September 

2017 (or time of censoring; whichever occurred first) was conducted using Cox proportional-hazards 

models using code adapted from the meffil R package (58). Two models were assessed: Model 1, 

adjusting for age, sex and surrogate variables obtained by SVA (32), and Model 2, adjusting for age, 

sex, surrogate variables obtained by SVA (32), HPV16 E6 seropositivity, smoking status and alcohol 

intake. Model 1 was run to assess overlap with prognostic factors by not adjusting for them; Model 2, 

by adjusting for prognostic factors, would provide survival-specific hits independent of them. Death 

from any cause was used as the failure variable and time to death (or censoring) in days as the time 

variable. Other prognostic factors for survival include stage and comorbidity. We conducted survival 
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EWAS with these covariates included and found the effect size remained largely unaffected by the 

addition of stage and comorbidity (Supplementary Table 7). Therefore, we conducted EWAS of 

survival without stage and comorbidity as covariates.  

Due to the large number of tests conducted in our EWAS, we employed a Bonferroni correction 

to derive a conservative p-value threshold of 5.7 x10-8 (0.05/862491 independent tests) to determine 

those sites showing strong evidence of association with our risk factor of interest or survival, 

respectively. We also used the alpha value calculated for the Illumina 450K array (the predecessor to 

the MethylationEPIC array) as a p-value threshold of 2.4 x 10-7 for suggestive evidence of association 

(31).  

 

DMR analysis  

Adjacent probes on the Illumina arrays are often highly correlated; therefore, differentially 

methylated regions (DMRs) may reveal regions of DNA where CpGs are associated with risk factors 

and survival. Following each EWAS we conducted DMR analysis using the dmrff  R package (60). This 

analysis identified regions (> 1 CpG site per region) enriched for low P-values (P<0.05), corrected for 

dependencies between other CpG sites in the DMR and adjusted for multiple testing. 

 

Generation Scotland methylation quantitative trait loci 

DNA methylation can be influenced by genetic sequence variations, such that individual 

genotypes at a given locus may result in different patterns of DNA methylation due to allele-specific 

methylation (61-63). Such sites, called methylation quantitative trait loci (mQTLs), can influence the 

methylation pattern across an extended genomic region (61), and can be used as a proxy for methylation 

levels in a Mendelian randomization (MR) framework (29).  

To generate mQTLs, methylation data from a quality-controlled subset of individuals (N: 5101) 

from the Generation Scotland: Scottish Family Health Study (64) who had undergone EPIC array DNA 

methylation profiling, described previously (65), were used. Following measurement of DNA 

methylation, normalization was performed using the R package minfi (66), producing M-values (67) for 

downstream analysis. Briefly, linear mixed modelling was used to remove potential effects from 
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technical factors, adjusting for both fixed and random effects. Fixed effects included: the top 50 

principal components of control probe intensities (explaining 99% of variation in control probe 

intensities) (68), clinic centre for blood draw appointment, processing batch, year of clinic visit, and 

Sentrix position (position of the sample on EPIC array slide). Random effects included: blood draw 

appointment date and Sentrix ID (EPIC array slide). The model converged successfully for 712,595 

sites. Outliers from this normalisation with residualized-M-values more than five interquartile ranges 

from the nearest quartile were removed (69).  

A GKFSC model (70, 71) was then fitted to derive mQTLs from the normalised data, including 

5 matrices as random effects, and other covariates as fixed-effects. The matrices were: G (a genomic 

relationship matrix), K (a kinship relationship matrix) (72, 73), F (an environmental matrix representing 

nuclear-family-member relationships), S (an environmental matrix representing full-sibling 

relationships) and C (an environmental matrix representing couple relationships) (70, 71). Covariates 

(as fixed effects) included: age, age2, gender, estimated cell counts, season of clinic visit, appointment 

time of the day and appointment day of the week. The model successfully converged for 638,737 CpG 

sites. 

 

Generation of instrumental variables for DMRs 

Prior to MR analysis being conducted (see below), we generated instrumental variables (IVs) 

proxying CpG sites identified in analyses of both prognostic factors and survival (Supplementary 

Figure 1). Where possible, we found DMRs (P < 0.05) from our analyses for each prognostic factor 

and located DMRs spanning the same region in our survival analysis (Model 1 – unadjusted for 

prognostic factors; P < 0.05). CpG sites present in both DMRs were retained. 

Next, using the summary genetic data for mQTLs from Generation Scotland, we extracted all 

mQTLs proxying any CpG site per DMR grouping (MAF >0.05; P < 5x10-8). From this list, we 

generated instruments by LD pruning iteratively; first taking all mQTLs associated with the sentinel 

CpG (defined as the CpG in each DMR with the lowest p-value) and clumping with an r2 of 0.01. We 

then took the second most-associated CpG in the DMR and extracted all mQTLs associated with it 

which were not associated with the previous CpG. The remaining mQTLs were then clumped and 
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combined with the mQTLs proxying the sentinel CpG. This process was repeated for each CpG within 

a DMR. Clumping and mQTL extraction were conducted using R 3.4.1, with the TwoSampleMR R 

package (74). 

In order to account for mQTL proxies influencing methylation at multiple CpG sites, we 

conducted a meta-analysis of mQTL-CpG effects. Per DMR, we used the metafor R package (75) to 

meta-analyse each mQTL effect (beta) on methylation levels at each CpG using a restricted maximum 

likelihood (REML) model, adjusting for pairwise correlation between the CpG sites proxied by our 

instrument. From this, we obtained an mQTL effect on average methylation levels across the DMR.  

 

mQTL associations with survival 

The mQTLs identified above were then regressed against survival in HN5000, using the 

SurvivalGWAS_SV program in Linux to run Cox proportional-hazards survival analyses with an 

additive dosage model for each of the selected SNPs (76). Death from any cause was used as the failure 

variable and time to death (or censoring) in days as the time variable. Age at cancer diagnosis and sex 

were used as covariables in the model. For each SNP the log-hazard ratio (and standard error) per minor 

allele was reported. 

 

Mendelian randomization analyses 

Following identification of shared methylation patterns between prognostic factors and OPC 

survival, we attempted to ascertain whether methylation was a true causal intermediate, or simply just 

associated with both prognostic factors and survival. To this end, we conducted two-sample Mendelian 

randomization to appraise the causal effect of DNA methylation on survival. In the first sample, we 

used mQTL-DMR effect estimates (βGP) from Generation Scotland and in the second sample, mQTL-

survival estimates (βGD) from HN5000. For each mQTL, we calculated the log HR per unit (β) increase 

in DNA methylation at the DMR by the formula βGD/βGP (Wald ratio). Standard errors were 

approximated by the delta method. Where multiple mQTLs were available for one DMR, these were 

combined in a fixed effects meta-analysis after weighting each ratio estimate by the inverse variance of 

their associations with the outcome (IVW approach). In order to account for correlation between 
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mQTLs, we adjusted for genetic correlation using LDMatrix (77) to generate a genetic correlation 

matrix (1000 Genomes reference standard (78)) of mQTLs, which was included as a covariate in our 

MR regression analysis (79). In addition to our main analysis detailed above, we conducted 

multivariable MR Egger analysis as an assessment of IV heterogeneity using the 

MendelianRandomization R package (80). We also conducted sensitivity MR analyses by calculating 

the log HR per unit increase in DNA methylation for the sentinel CpG within each DMR we analysed. 

As above, Wald ratios were calculated for CpGs proxied by a single mQTL and IVW MR estimates 

were calculated when multiple mQTLs were available to proxy a CpG. Finally, where possible, we 

conducted multivariable MR Egger analysis on a subset of independent SNPs for each DMR as a 

sensitivity analysis for using multivariable MR Egger with correlated SNPs in our main analysis. 
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