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Abstract 

 

Essential features of the world are often hidden and must be inferred by constructing 

internal models based on indirect evidence. Here, to study the mechanisms of inference 

we established a foraging task that is naturalistic and easily learned, yet can distinguish 

inference from simpler strategies such as the direct integration of sensory data. We show 

that both mice and humans learn a strategy consistent with optimal inference of a hidden 

state. However, humans acquire this strategy more than an order of magnitude faster than 

mice.  Using optogenetics in mice we show that orbitofrontal and anterior cingulate cortex 

inactivation impact task performance, but only orbitofrontal inactivation reverts mice from 

an inference-based to a stimulus-bound decision strategy. These results establish a 

cross-species paradigm for studying the problem of inference-based decision-making and 

begin to dissect the network of brain regions crucial for its performance. 
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Introduction 

 

In natural foraging behaviors, animals must continually choose between trying to exploit 

resources at their current location and leaving to explore another, potentially superior one, 

at the expense of a possibly costly travel period. Viewed from the perspective of optimal 

decision-making, the crucial question is when is it best to leave the current site for another 

one? According to the marginal value theorem, in order to maximize returns, an optimal 

forager ought to leave its current site when the immediate rate of reward drops below the 

average rate ​(Charnov, 1976) ​. However, this elegant solution to the foraging problem only 

applies in deterministic environments ​(Kolling et al., 2014)​, in which both immediate and 

average reward rates are knowable to the agent. In a more realistic scenario—for 

example, where rewards are encountered probabilistically—the immediate reward rate is 

ill-defined and the marginal value theorem does not apply. 

One widely-used and powerful approach to model decision making in dynamic, stochastic 

environments is reinforcement learning (RL) ​(Sutton and Barto, 2018)​. In RL, the values of 

different actions (such as leaving a foraging site or staying on) are continuously updated 

through trial and error, based on their outcomes, allowing agents to adaptively modify their 

preferences as conditions change. In its simplest form, model-free RL assigns each action 

with a value that is updated based on its immediate outcome, with no regard to the causal, 

and often hidden, structure that links actions to outcomes. While computationally efficient 

and consistent with a large body of experimental data on both Pavlovian and operant tasks 

(Eshel et al., 2016; Schultz et al., 1997)​, model-free RL is not the best available strategy in 

many situations. Consider, for instance, a lion that has just successfully captured prey. If 

the fact that in doing this it has most likely scared away all other animals is ignored, the 
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lion may continue to hunt in the same region, wasting a considerable amount of time 

searching for the now long-gone prey. Conversely, things may turn out badly for a zebra if 

it assumes that its current foraging ground was safe (that is, lion-free) just because it had 

not seen a lion yet in its immediate surroundings. What these examples illustrate is that 

relying solely on recent outcomes, while ignoring causal structures in the world, may have 

suboptimal (if not catastrophic) consequences. Instead, in structure learning ​(Boyen et al., 

1999; Braun et al., 2010; Pearl, 1991)​, a form of inference-based RL, agents choose 

actions based on their beliefs about the current state of the world, which is determined by 

both incoming sensory evidence (such as outcomes) and knowledge of the underlying 

causal structure of the environment. How humans and animals implement such strategies 

remains an important and poorly understood question ​(Daw et al., 2011; Niv et al., 2015; 

Starkweather et al., 2018)​. 

In the brain, it has been suggested that the orbitofrontal cortex (OFC) is crucial for hidden 

state representation, and hence for inference-based decisions. For example, in both rats 

and primates, lesions or inhibition of OFC impairs subjects’ ability to adjust their behavior 

in reversal learning tasks, where the depletion of a previously rewarding site (or the futility 

of a previously rewarding action) may be viewed as a change in the (hidden) state of the 

world ​(Wilson et al., 2014)​. The adjacent anterior cingulate cortex (ACC) on the other hand 

has been implicated in monitoring value during foraging ​(Hayden et al., 2011; Kolling et al., 

2012)​ and could be responsible for encoding the value of alternative options ​(Kolling et al., 

2016)​ and changing behavior based on the decreasing value of the current option ​(Shima 

and Tanji, 1998; Williams et al., 2004)​. 

Here, we describe a foraging task in which subjects may seek rewards at either one of two 

foraging sites. This task has a special hidden structure: at any given moment, only one of 
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the sites can deliver rewards and the side of the rewards switches with a certain probability 

after each foraging attempt. Importantly, even when reward is available, it is not delivered 

for every attempt, but rather with a probability less than 1. This makes the task a partially 

observable Markov decision process (POMDP): the true state of world (i.e., the identity of 

the rewarding site) is hidden and subjects must infer it based on noisy observations. A 

defining feature of this task, due to the hidden structure, is the asymmetry of the evidence 

provided by rewards and failures (unrewarded attempts): a single failure provides partial 

evidence in favor of a site switch, whereas a single reward provides full certainty that the 

current site is rewarding. A “stimulus-bound” agent, in the sense of Wilson et al. (2014), 

would assign value to observable states (being on the left or on the right or the other 

foraging site) by linearly combining rewards and failures. Such a process does not capture 

the essential asymmetry of the task. Ten rewards are much better than one reward in 

terms of value, but under optimal inference, one single reward is as informative as ten, 

since it already gives absolute certainty that the current site is active. Thus, leaving 

decisions under stimulus-bound and inference-based strategies in this task will be 

qualitatively different. A stimulus-bound agent will become more persistent the more 

rewards it has received at a site, whereas an inference-based agent will not show such an 

effect. We found that both mice and humans display hallmarks of inference in the 

performance of a foraging task and are able to build a non-trivial representation of task 

space. We further show that optogenetic inhibition of the OFC in mice selectively disrupts 

optimal inference behavior, biasing mice towards a sub-optimal stimulus-bound strategy. 

Similar inhibition of the adjacent anterior cingulate cortex (ACC), results in delayed leaving 

decisions but does not disrupt the inference process itself, suggesting a specific role of 

OFC in this important cognitive function.  

5 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2019. ; https://doi.org/10.1101/679142doi: bioRxiv preprint 

https://doi.org/10.1101/679142
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Results 

 

A probabilistic foraging task can dissociate value or evidence accumulation 

We trained mice to perform a probabilistic foraging task (Fig. 1a). Subjects sought water 

rewards (2 µl each) by actively probing a foraging site. Each try at the active site yielded 

reward with probability , and could cause a switch with probability  (Fig. 1b). 

After a state switch, to obtain more rewards, subjects needed to travel to a second site at 

some distance and therefore bear a travel cost. Subjects were thus tasked with inferring a 

hidden state of the current site through a sequence of observations of stochastic events 

(rewards and failures). There are at least two distinct ways of integrating rewards and 

failures to form a decision. In a stimulus-bound process, the relative value of the left 

location with respect to the right location  would increase gradually 

with left rewards, decrease gradually with right rewards, and decay to 0 with failures (Fig 

1c.). In formulas, given a decay coefficient , a reward indicator , a side indicator  (1 

for left, -1 for right) and signed outcomes : 

 

On the other hand, an agent that is aware of the structure of the task—the fact that a 

hidden state determines which side is rewarding at any time— could use rewards and 

failure to infer whether the current side is active or inactive. The relative value would then 

be: 

 

(see methods for a detailed treatment of the probability computation). Unlike the 

stimulus-bound mechanism in Fig. 1c, this process is able to track effectively the rapidly 

evolving value of the foraging sites (Fig. 1d). Both accumulation processes can be used as 
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generative models of the behavior by defining the probability of staying on, e.g., the left 

side as a sigmoidal function of the relative value: 

, 

where  represents a softmax parameter (the higher it is, the more deterministic the 

behavior), and  represents the staying bias (when the value of the left and the right side 

are estimated as equal, the subject should still prefer to stay to avoid the travel cost). 

Both models predict that the probability of leaving increases with the number of 

consecutive failures. However, the effect of a reward is very different between them. In a 

stimulus-bound model the probability of leaving decreases with the number of rewards, as 

each reward contributes to the accumulated value. In the inference-based model it does 

not, as a single reward is sufficient to deduce with certainty that the current side is active 

(Fig. 1e). Thus a simple test of whether subjects are using inference is to check whether 

the number of failures before leaving changes with the number of preceding rewards (Fig. 

1f). 

 

Mice accumulate evidence and not rewards 

We trained 18 C57BL/6 wild type mice of 2 months age for 12 days in a baseline protocol 

with  and  and observed the effect of rewards on behavior during 

learning. In the early part of training, animals were unaware of the structure of the task and 

exhibited hallmarks of a stimulus-bound strategy: more failures were needed to leave the 

foraging port in rich foraging bouts, with many rewards before a state switch, compared to 

poor foraging bouts, with as little as one reward before a state switch. After training, 

however, the number of rewards had no effect on the number of failures before leaving, 

consistent with the inference-based model (Fig. 2a). To quantify this effect at a single 
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animal level, we fitted a linear regression model that predicted the number of consecutive 

failures before leaving as a function of the number of prior rewards in the current foraging 

bout:  (Fig 2b; here and throughout the text we 

use  Wilkinson notation ​(Wilkinson and Rogers, 1973)​, see methods for a detailed 

explanation).​ ​The data show that during the first days of training there was a strong 

positive correlation between these two quantities, but with continued training this 

correlation decayed to zero (Fig. 2c). Therefore, experienced mice, unlike naive animals, 

decide when to leave the foraging site according to an inferred hidden state rather than 

directly integrating rewards and failures. 

As another way of seeing this, a stimulus-bound integration strategy would weigh equally 

each reward and failure with opposite signs. Correct inference instead, given the structure 

of this task, requires that rewards are weighted nonlinearly (the first counting a lot and 

subsequent nothing) and differently from failures, which should add linearly. Indeed, in the 

trained mice, the effect of rewards and failures in shaping the behavior is qualitatively 

asymmetric in just this way, as can be seen by visualizing the probability of leaving as a 

function of both reward number and consecutive failures (Fig. 2d). 

 

Accumulation of evidence is tuned to task parameters 

Having found that the foraging behavior of mice is consistent with the  accumulation of 

evidence to infer a hidden world state, we asked whether this inference process is 

appropriately tuned to the statistics of the foraging environment, represented here by two 

parameters: reward probability  and state switch probability . Intuitively, if  

is high, then a single failure is strong evidence in favor of a state switch, leading to a faster 

accumulation process. Similarly, if  is high, then a failure also carries more evidence in 
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favor of a state switch compared to if it is low (Fig. 3a; see methods for a formal 

justification of this intuitive argument). 

To test this, we trained a separate batch of mice on a set of three different foraging site 

statistics (Easy environment:  and ; Medium environment: 

 and ; Hard environment:  and ; see Fig. 3b). 

Since changing the foraging environment’s statistics can affect average reward rates (i.e. 

average number of rewards per trial), we adjusted the magnitude of individual rewards in 

order to equalize the amount of reward at a given site before state switch across 

conditions. As predicted normatively, mice increased the number of failed attempts they 

would tolerate as the state switching probability and the reward probability dropped (Fig. 

3c, d; difference in failed attempts after last reward in Easy-Medium = -1.61 ± 0.03, 

difference Hard-Medium = 1.77 ± 0.04, N = 20 mice, likelihood ratio test on 

versus 

: p < 1e-10). 

An important additional prediction of optimal decision theory in the context of a foraging 

task is that travel cost should modulate the threshold to leave a given foraging site. To test 

this, we increased the travel cost by placing a physical barrier between the two locations 

(travel time without barrier = 1.86 ± 0.13 s, N = 20 mice; travel time with barrier = 2.69 ± 

0.13 s). Once again, the accumulation process was modulated consistently with the 

normative prediction, longer travel times resulting in a longer accumulation process and 

delayed leaving (Fig. 3c, d, effect of barrier in number of failed attempts after last reward = 

0.42 ± 0.03, N = 20 mice,  likelihood ratio test on 

 versus 

: p < 1e-10). 
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Humans perform inference and tune behavior to task parameters 

To test whether our findings were valid across species, we developed a translation of our 

behavioral assay for human subjects, in the form of a video game, where players would 

drag a character from one side of another of a touch screen and tap to achieve points (Fig 

4a). The statistics of the video game (  and ) were the same as those used in the 

rodent task. 

We again observed hallmarks of inference accumulation: the number of rewards had little 

to no effect on the behavior (Fig 4b, c), which is analogous to the behavior of the trained 

mice: unlike mice, however, humans needed almost no training to learn the statistics of the 

task and displayed hallmarks of evidence, rather than value, accumulation already in the 

first session. 

Analogously to their rodent counterparts, human subjects modulated their behavior 

according to reward statistics as well as travel time (here affected by a manipulation in the 

character’s velocity) consistent with the normative predictions (Fig. 4d, e, difference in 

failed attempts after last reward in Easy-Medium = -1.39 ± 0.03, difference Hard-Medium = 

1.48 ± 0.03, N = 20 subjects, likelihood ratio test on 

 versus 

: p < 1e-10, effect of barrier in number of failed 

attempts after last reward = 0.59 ± 0.02, N = 20 subjects,  likelihood ratio test on 

 versus 

: p < 1e-10). 

 

OFC, but not ACC, is necessary for the correct inference process  
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Finally, to study the brain mechanism of inference in this task, we tested the involvement 

of different regions of prefrontal cortex by silencing them using optogenetic stimulation of 

inhibitory GABAergic interneurons using VGAT-ChR2 mice (mice expressing 

channelrhodopsin-2 in GABAergic neurons). We examined 19 mice, of which 9 were 

bilaterally implanted with optic fibers (Supplementary Table 1) in the anterior cingulate 

cortex (ACC; Fig. 5a, S1a), 6 ChR2 expressing (HET) and 3 control wild type littermates 

(WT) not expressing ChR2 but implanted and stimulated in the same manner, and 10 were 

bilaterally implanted in the orbitofrontal cortex (OFC; Fig. 5a, S1b), 6 HET and 4 WT. 

Transient inactivation (3mW power per side, 10ms pulses at 75Hz, during poking in 50% of 

trials; Fig. 5b) of ACC significantly increased the average number of consecutive failures 

before leaving (Fig. 5c effect of stimulation on consecutive failures after last reward = 0.48 

± 0.05, N = 6 mice,  likelihood ratio test on 

 versus 

: p < 1e-10), while the same protocol 

applied to the controls had no effect (Fig. 5e, effect of stimulation = 0.003 ± 0.07, N = 7 

mice, likelihood ratio test: p = 0.96). More specifically, we found that ACC inactivation 

multiplicatively increased the number of consecutive failures before leaving, consistently 

across protocols and animals (Fig. 5f,  and  interact when predicting 

, likelihood ratio test: p = 1.46e-6, but not when predicting renormalized 

, likelihood ratio test: p = 0.15, N = 6 mice). 

Transient inactivation of OFC also increased the average number of consecutive failures 

before leaving (Fig. 5d; effect of stimulation on consecutive failures after last reward = 0.41 

± 0.08, N = 6 mice, likelihood ratio test on 

 versus 
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: p = 5.38e-7). However, unlike the 

case for ACC inactivation, it did so in an environment-statistics dependent manner. That is, 

the direction of effect for OFC inactivation actually reversed between easy and difficult 

protocols (effect of stimulation in hard protocol = 1.52 ±  0.24, effect of stimulation in easy 

protocol = -0.19 ±  0.05, N = 6 mice). 

To investigate the involvement of these prefrontal areas in the inference process and task 

space representation, we considered a key difference in prediction between the inference 

model and the simpler stimulus-bound model, the effect of rewards on behavior. As noted 

above, under normal conditions, rewards fully reset the accumulation process, so that 

leaving times are not affected by the number of previous rewards (Fig. 1f). Strikingly, we 

found that OFC, but not ACC inactivation, disrupted this pattern: in OFC-inactivated trials, 

animals became sensitive to the number of rewards: the more rewards gained, the more 

delayed leaving decisions became (Fig. 5i, j, k, for ACC interaction term of stimulation and 

number of reward = -0.11 ± 0.13, N = 6 mice, likelihood ratio test: p = 0.37, for OFC, 

interaction term of stimulation and number of reward = 0.69 ±  0.22, N = 6 mice, likelihood 

ratio test: p = 0.002). This pattern of behavior is similar to the one observed in naïve mice 

first introduced to this task (Fig. 2a) and is indicative of an ineffective stimulus-bound 

strategy. Thus, the OFC has a special role in accurate state representation in a typical 

foraging environment in which states are hidden and require inference based on noisy 

observations. 
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Discussion 

 

In this study we developed a task in which subjects had to alternate between two foraging 

sites, only one of which was active at any given moment. The task embodied an important 

form of non-sensory uncertainty because the active port only delivered rewards with a 

certain probability. The task thus required subjects to infer whether each omitted reward 

was simply a stochastic failure or was instead an actual switch of state.  To solve this task 

optimally, subjects were therefore required to infer a hidden state of the world (i.e. which 

site is active) rather than directly assigning a value to each foraging site. We found that, 

both mice and humans displayed hallmarks of optimal, inference-based behavior, reaching 

very similar solutions. 

Our analysis of the behavioral data, particularly the number of consecutive non-rewarded 

tries before leaving, revealed that leaving decisions agreed with normative predictions of 

an inference-based foraging strategy in four important ways: (1) the number of consecutive 

failures was positively correlated with the propensity to leave; (2) rewards had a resetting 

effect on the leaving decision process; (3) subjects were sensitive to quantitative changes 

in the statistics of the foraging site; and (4) subjects were sensitive to the travel cost. 

However, mice and humans differed in an important way: while it took around six days for 

rodents to understand the environment statistics and integrate trial history correctly, 

humans started displaying hallmarks of the optimal behavior already during the first 

session. This difference may be due to faster learning but could also reflect the ability to 

generalize prior structural knowledge relevant to the task. 

The accumulation of evidence is a primary cognitive computation. Similarly to 

sensory-guided tasks, in which integration of sensory evidence over time is needed to 
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“average out” stimulus noise ​(Brunton et al., 2013; Gold and Shadlen, 2007; Shadlen and 

Newsome, 2001) ​, here too repeated sampling is needed to determine which of two sites is 

currently rewarding. Specifically, each failure conveys ambiguous information, as it may be 

due to either an unlucky attempt at the rewarding site, or a guaranteed failure in the 

non-active site, and it is only by counting (integrating) the number of consecutive failures 

that a more accurate state estimation can be made. Our analysis of the leaving probability 

revealed that, much like in the sensory-based case, subjects do integrate this information 

when deciding whether to stay or leave. Moreover, by changing reward and transition 

probabilities, we were able to precisely control the amount of information associated with 

each failure, and observed that subjects readily adapted their leaving decisions to these 

changing conditions, such that the lower the information content of each sample was, the 

more such samples were needed before leaving. 

In this task, the primary distinction between sub-optimal, stimulus-bound and optimal, 

inference-based strategies lies in the impact consecutive rewards have on leaving 

decisions. In a stimulus-bound behavior, which assigns values directly to the foraging site, 

the more consecutive rewards are gained at a given site, the higher the value of staying 

becomes, and consequently, leaving decisions tend to be delayed. In contrast, optimal 

inference in this task requires ignoring the number of consecutive rewards, since the 

delivery of a single reward is sufficient to know for certain which site is currently rewarding. 

As shown in Fig. 2, we found that, although initial behavior appeared to be sensory bound, 

after learning, subjects’ leaving decisions became independent of the number of rewards, 

consistent with an inference-based approach to leaving decisions. 

Recent accounts ​(Schuck et al., 2016; Stalnaker et al., 2015; Wilson et al., 2014)​ proposed 

that the OFC is crucial for accurate state representations, particularly when states are 
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hidden (that is, not explicitly given by the presence of a sensory cue, for example) and 

have to be inferred from fuzzy evidence. Our findings mesh well with this theory, as we 

found that OFC, but not ACC inhibition disrupted inference-based behavior. Unlike under 

control conditions, in which the number of failures before leaving was independent of the 

number of previously gained rewards, inhibiting the OFC resulted in mice performing more 

failures when experiencing large amounts of reward. This latter pattern is consistent with a 

stimulus-bound strategy, and therefore raises the intriguing possibility that the 

stimulus-bound strategy serves as a default behavioral approach, and is suppressed by 

the OFC when inference-based behavior is required. 

The ACC has been implicated, in Pavlovian and operant tasks, as a potential candidate for 

the implementation of integration-to-threshold models. In ​Kawai et al. (2015)​, the authors 

observe neurons in the primate ACC whose firing rate scales with the number of 

consecutive negative outcomes in a Pavlovian task. From the foraging perspective, 

Hayden et al. (2011) ​ reported cells in the ACC encoding the value of a depleting option. 

However, ACC inactivation in our task, unlike OFC inactivation, had only a modulatory 

effect on behavior: we did not observe qualitative changes in the strategy of the animals, 

but only an overall tendency to stay longer at the current port, which interacted 

multiplicatively both with the task statistics and with increased travel times. These results 

suggest that the ACC may encode the value of an alternative option, as proposed in 

Kolling et al. (2016)​, while not having a primary role in the inference process ​per se​.  

By developing a human video-game and a rodent task requiring the same underlying 

computation to be solved, we could compare computational and cognitive processes 

across species. From a theoretical standpoint, this strengthens the generality of those 

results that held true for the two species, such as the ability to infer the hidden structure of 
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the environment and to tune behavior to the environment-statistics. From a practical 

standpoint, the hidden state foraging task makes it possible to use rodent experimentation 

to guide human clinical research: the effect of drugs on cognitive quantities such as 

inference or persistence can be first tested in mice to then be validated in a clinical study. 

The more precise methods available in the rodent model could furthermore help dissect 

the mechanisms by which a specific drug affects cognition. 
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Figure captions 

Fig. 1 ​A probabilistic foraging task can dissociate stimulus-bound from inference-based 

evidence accumulation.​ a ​Schematic of rodent task. Mice shuttle back and forth between 
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two reward sites to obtain water rewards. ​b​ Formally, the task is a hidden Markov model 

with  and  states. It has two parameters: probability of reward given 

state and probability of state transition. ​c, d​ Estimated relative value (left minus right) as a 

function of trial history (rewards in green, failures in gray) in the stimulus-bound model and 

inference-based model respectively. Shaded patches indicate actual state. ​e​ Effect of 

rewards on relative value in stimulus-bound and inference-based models: the two models 

are simulated in a trial with only rewards on the same side. Relative value increases with 

reward number in the stimulus-bound but not in the inference-based model. ​f ​Consecutive 

failures before leaving (normalized subtractively) as a function of reward number in a 

simulated data of stimulus-bound and inference-based models: reward number has an 

effect on consecutive failures in the stimulus-bound but not in the inference-based model. 

See also Video S1. 

 

Fig. 2 ​Mice accumulate inferred evidence for state switches and not port value.​ a 

Consecutive failures before leaving as a function of reward number in early training (day 1 

to 3, purple) compared with late training (day 10 to 12, black). ​b​ Slope coefficient in 

 for early training and late training. Slope 

coefficient is higher in early trials, likelihood ratio test on linear mixed-effect model 

 

versus a null model with no interaction: p < 1e-10, N = 18 mice (see methods for a 

description of the formula notation). ​c​ Evolution of reward number coefficient across days. 

d ​ Probability of leaving as a function of number of rewards and consecutive failures in late 

training. 
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Fig. 3 ​Accumulation of inferred evidence is tuned to task parameters. ​a ​Probability of 

being on the correct side after a failure as a function of reward probability and transition 

probability. ​b ​Probability of being on the correct side as a function of trial history for three 

protocols (Easy environment:  and ; Medium environment: 

 and ; Hard environment:  and ). Leaving 

decisions can be modelled by setting a threshold on this probability that changes as a 

function of the  travel cost (black lines) ​c​ Consecutive failures before leaving as a function 

of the environment statistics and barrier condition. ​d​ Consecutive failures before leaving 

split by subject and environment statistics, barrier versus no barrier. 

 

Fig 4 ​Humans perform optimal inference and tune behavior to task parameters.​ a​ The 

number of rewards has little effect on the probability of leaving during both early (purple) 

and late (black) training. ​b ​ Number of consecutive failures as a function of reward number 

for human in early versus late part of training. Unlike mice, humans learn the statistics of 

the environment extremely quickly: slope coefficient is similar (and around 0) in both early 

and late trials: likelihood ratio test on linear mixed-effect model 

 

versus a null model with no interaction: p = 0.45, N = 20 subjects. ​c​ Consecutive failures 

before leaving as a function of the environment statistics and barrier condition. ​d 

Consecutive failures before leaving split by subject and environment statistics, barrier 

versus no barrier. See also Video S2. 

 

Fig 5 ​OFC, but not ACC, is necessary for optimal inference. ​a ​Scheme of the optic fiber 

placement.​ b ​Bilateral photostimulation at 3mW happened during nose-poking: it was 
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triggered by the first poke in 50% of trials and lasted for 500 ms after the last poke in the 

trial. ​ c, d, e ​Consecutive failures before leaving split by environment statistics, barrier 

condition and subject, inactivation versus control trials, for ACC implanted heterozygotes, 

OFC implanted heterozygotes and wild types, respectively. ​f, g, h​ Ratio of consecutive 

failures before leaving split in the same way as ​c, d, e​ for ACC implanted heterozygotes, 

OFC implanted heterozygotes and wild types respectively. When predicting renormalized 

consecutive failures,  and  interact for OFC implanted heterozygotes (p <timS rotocolP  

1e-10, N = 6 mice) but not for ACC implanted heterozygotes (p = 0.15, N = 6 mice) or wild 

types (p = 0.77, N = 7 mice). ​i, j ​ Number of consecutive failures as a function of reward 

number for ACC and OFC inactivation respectively (in the 30-30 protocol with barrier, 

which had the largest effect of ACC and OFC inactivation) ​k​ An animal by animal 

quantification: the coefficient of the interaction term in: 

 

for ACC, distributed around 0, and OFC, greater than 0, in the 30-30 protocol with barrier. 

See also Figure S1 and Table S1. 

 

MATERIALS AND METHODS 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

 

Mice 

Fifty-seven adult male C57BL/6 mice were used in this study. For the inference-based vs 

stimulus-bound behavior ​ ​experiment (Fig. 2) 18 C57BL/6NCrl wild type mice of 2 months 

age were used.  For the protocols manipulation experiment (Fig. 3), 20 wild type animal 

from different genetic backgrounds (8 Dat-Cre ; 5 Gad2-Cre; 5 Sert-Cre; 1 VGAT-ChR2; 1 
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F512-Cre) of 6-8 months age were used, in order to reduce animal usage. For inactivation 

of anterior cingulate or orbitofrontal cortices (Fig. 5), 12 VGAT-ChR2 and 7 wild-type 

littermates were used. Mice genotypes were determined based on PCR and further 

verified using histological inspection of YFP expression which led to the exclusion of a 

single ACC implanted animal from further analysis (see Fig. S1c, d, e). The C57BL/6NCrl 

line was obtained from the Charles river laboratories, breeders were ordered and bred 

in-house for a maximum of 4 generations or 2 years (strain code: 027). The Dat-Cre 

mouse line was obtained from the Jackson laboratory (stock number: 006660). The 

Gad2-Cre was obtained from the Jackson laboratory (stock number: 010802). The 

Sert-Cre mouse line 61 was obtained from the Mutant Mouse Regional Resource Centers 

(stock number: 017260-UCD). The VGAT-ChR2 mouse line 8 was obtained from the 

Jackson laboratory (stock number: 014548). The FI12-Cre mouse line was obtained from 

the Mutant Mouse Regional Resource Centers (stock number: 017262-UCD). All 

experimental procedures were approved and performed in accordance with the 

Champalimaud Centre for the Unknown Ethics Committee guidelines and by the 

Portuguese Veterinary General Board(Direcao-Geral de Veterinaria, approval 

0421/000/000/2016). The mice were kept under a normal 12 h light/dark cycle, and 

training, as well as testing, occurred during the light period. Before testing or after 

surgeries, for the inactivation experiments, mice were single-housed. During training and 

testing the mice were water deprived, and water was available to them only during task 

performance. Food was freely accessible to the mice in their home cages. Extra water was 

provided if needed to ensure that mice maintain no less than 80% of their original weight. 

For the protocols manipulation experiment behavioral training lasted 12 sessions, once per 

day, followed by 2 days of rest at the end of which we commenced testing. During training 
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mice were exposed to the 3 different protocols (Easy:  and ; 

Medium:  and ; Hard:  and ) for 4 consecutive 

days (1 day of adaptation and 3 of testing) before transitioning to the next environment. 

During testing, mice performed 1 session per day, 6 or 7 days a week. In protocols 

manipulation experiments, the sequence of protocols was counterbalanced across 2 

groups of 10 mice (Group A: Hard, Medium, Easy; GroupB: Easy, Medium, Hard). In our 

analyses we considered 50 poke bouts per session after the first 10 during testing days 

and excluded poke bouts with no rewards. 

 

Human participants 

20 right handed healthy adults of Portuguese nationality (10 female and 10 male; 22 to 31 

years of age), with no history of psychiatric diagnosis or prescribed drugs in the last 6 

months, participated in this study. All participants gave written informed consent, and the 

study was conducted in accordance with the guidelines of the local ethics committee. The 

task consisted of 2 sessions of 1 hour, performed in different days with 2 to 10 days in 

between sessions. Each session consisted of 4 blocks with different protocols, and 10 

minutes break after the second block. The sequence of protocols consisted of a block 

(Medium environment) followed by a short break (2 minutes), then a second block (Easy or 

Hard environment) followed by a long break (10 minutes), then a third block (Medium 

environment) followed by a short break (2 minutes) and a final block (Hard or Easy 

environment). The sequence of environments during testing was counterbalanced across 

2 groups as described in mice experiments. In our analyses we considered all tapping 

bouts after the first 10 and excluded bouts with no rewards. 
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METHOD DETAILS 

 

Mice behavioural apparatus 

The behavioral apparatus for the task was adapted from the design developed by Zachary 

F. Mainen and Matt Recchia (Island motion corporation, Nesconset, NY), originally 

developed for rat behavior. The behavioral box (15 x 12 x 18 cm, model 003102.0001, 

Island motion corporation), contained 3 front walls (135 degree angle between the center 

and the side walls) with 2 nose-poke port attached to the left and right front walls. For the 

inference-based vs stimulus-bound behavior ​ ​experiment (Fig. 2), we used an acrylic 

custom made reproduction of the box (15 x 16 x 20 cm) . Each port was equipped with 

infrared emitter / sensor pairs to report the times of port entry and exit (model 

007120.0002, Island motion corporation). A nose-poke was considered valid if the infrared 

beam was broken for at least 100 ms. Water valves (LHDA1233115H, The Lee Company, 

Westbrook, CT) were calibrated to deliver a drop of 6 µl water for rewarded pokes in Easy 

and Hard environments and 2 µl of water in Medium environment: the reward size was 

adjusted to keep the reward amount per correct trial constant. The average number of 

rewarded attempts per correct trial is , that is to say 1 in the easy and hard 

protocol (reward magnitude = 6 µl, amount of water per correct trial = 6 µl) and 3 in the 

medium protocol (reward magnitude = 2 µl, amount of water per correct trial = 6 µl). In 

optogenetic experiments, all protocols had an average of one reward per trial, but reward 

size was kept at 4 µl to increase trial number. In optogenetic experiments, blue LEDs were 

placed in the box ceiling and in all the ports to deliver a masking light. All signals from 

sensors were processed by Arduino Mega 2560 microcontroller board (Arduino, 

Somerville, US)  and output from the Arduino Mega 2560 microcontroller board was 
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implemented to control water and light delivery. Arduino Mega 2560 microcontroller was 

connected to the sensors and controllers through a Arduino Mega 2560 adapter board 

developed by Champalimaud Foundation Scientific Hardware Platform. An example 

behavioral video is available in the supplemental information. 

 

Human video game task 

Human subjects played a video game on a touchscreen device, with analogous features to 

the rodent behavioral assay. In the game, subjects control a character - a "witch" - on its 

quest to find and defeat an enemy. The witch must walk along the wall of a castle, 

shooting either the left or the right edge of this wall in search for the enemy that hides, at 

any given moment, in one of these two edges. The game obeys the same statistics as the 

rodent task: hitting the enemy is analogous to a water reward, the current location of the 

enemy corresponds to the active site, and every shot at the active side hits the enemy with 

probability . Moving between the two sides of the wall has an associated cost (travel 

cost) that can also be manipulated with the appearance of rougher terrain (analogous to 

the physical barrier) that diminishes the traveling speed. As in the mouse case, reward 

size was manipulated to keep the average reward per correct bout constant (3 points). The 

game ended either when subjects collected 280 points or when a time limit of 20 minutes 

was exceeded. 

Different environments had minor changes in the background images between them - for 

the medium protocol, since it was experienced twice per session, two different 

backgrounds were used. After the player transitioned to a different side, the enemy was 

displayed to cue whether the transition had been correct or if instead the player had to 

return to the previous side. 
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The human task was made using custom software developed using the game engine 

Construct2 (Scirra Ltd., Studio 117, The Light Bulb 1 Filament Walk Wandsworth, London, 

UK). Graphics were made by Shira Lottem and Tiago Quendera using Inkscape: Open 

Source Scalable Vector Graphics Editor. Audio assets were made by Tiago Quendera 

using Audacity(R) except for the Wilhelm Scream (Wikimedia Commons). 

An example video (not from an experimental subject) showing the different environments 

is provided in the supplemental material. The task, open-source code and all assets are 

available at ​https://github.com/quendera/human-foraging​. 

 

Optogenetic stimulation 

In order to optically stimulate ChR2 expressing VGAT-expressing GABAergic interneurons 

we used blue light from a 473 nm laser (LRS-0473-PFF-00800-03, Laserglow 

Technologies, Toronto, CA or DHOM-M-473-200, UltraLasers, Inc., Newmarket, CA) that 

was controlled by an acousto-optical modulator (AOM; MTS110-A1-VIS or MTS110-A3- 

VIS, AA optoelectronic, Orsay, FR) to deliver light 10 ms pulses of light at 75 Hz, 

connected to Arduino Mega 2560 microcontroller board (Arduino, Somerville, US). Light 

exiting the AOM was focused into an optical fiber patch cord (200 µm, 0.22 NA, Doric 

lenses Inc, 357 rue Franquet, Quebec, Quebec, CA), connected to a second fiber patch 

cord through a rotary joint (FRJ 1x1, Doric lenses), which was then connected to the 

chronically implanted optic fiber cannula (MFC_200/230-0.48_3mm_ZF1.25(G)_FLT; Doric 

lenses Inc, 357 rue Franquet, Quebec, Quebec, CA). We estimated an average 15% loss 

of light power between the patch cord tip and the optic fiber cannula before surgery. In 

order to deliver light at 3 mW power, previously to each experiment day, the laser power at 

the tip of the patch cord was adjusted to 3.6 mW, to account for the estimated power loss. 
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To test each protocol, we habituated animals to the new protocol during two days, then 

stimulated during six consecutive days. Stimulation was delivered on 50% of trials and 

started with the first valid nose-poke. Stimulation ended if the animal did not nose-poke for 

500 ms but would restart in case of another valid nose-poke on the same side. 

 

Surgical procedures 

Animals were anesthetized with isoflurane (4% induction and 0.5 - 1% for maintenance) 

and placed in a motorized computer-controlled Stoelting stereotaxic instrument with mouse 

brain atlas integration and real-time visualization of the surgery probe in the atlas space 

(Neurostar, Sindelfingen, Germany;http://www.neurostar.de). Antibiotic (Enrofloxacin, 

2.5-5 mg/Kg, S.C.) and pain killer (Buprenorphine,0.1 mg/Kg, S.C.) and local anaesthesia 

over the scalp (0.2ml, 2% Lidocaine, S.C.) were administered before incising the scalp. 

Target coordinates were 1.9 mm A.P., ±0.5 mm M.L., 1.75 mm D.V. for ACC and 2.9 mm 

A.P., ±1.25 mm M.L., 1.8 mm D.V. for OFC. Two craniotomies were performed above the 

targets coordinates for OFC implants.  For ACC implants fiber were implant over the target 

with an angle of ± 16◦ on the ML axis to avoid damage to the superior sagittal sinus, and 

two craniotomies were performed at coordinates 1.9 mm A.P.,±1 mm M.L.. An optical fiber 

(200μmcore diameter, 0.48NA, 510 mm) housed inside a connectorized implant (M3, Doric 

lenses, Quebec, Canada) was lowered into the brain (0◦angle for OFC and 0◦angle for 

ACC), through the craniotomy as the viral injection,and positioned10μmabove the target. 

The implant was cemented to the skull using Super Bond C&B(Morita, Kyoto, Japan) and 

once dried covered with black dental cement acrylic (Pi-Ku-Plast HP 36,Bredent, Senden, 

Germany). The skin was stitched at the front and rear of the implant. Gentamicin(48760, 

Sigma-Aldrich, St. Louis, MO) was topically applied around the implant. Mice were 
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monitored until recovery from the surgery and returned to their home cage where they 

were housed individually.Gentamicin (48760, Sigma-Aldrich, St. Louis, MO) was topically 

applied around the implant. Behavioral testing started at least 1 week after surgery to allow 

for recovery. 

 

Histology and microscopy 

For histological analysis mice were perfused transcardially with 4% paraformaldehyde 

(PFA) in phosphate buffer solution (PBS). After removing the brain they were left for 24 

hours in 4% PFA solution in PBS, then transferred in 0.1% sodium azide solution in PBS. 

Brains were sliced in 50 um coronal sections on a vibratome (Leica VT 1000 S), collected 

in wells maintaining the anterior-posterior order, and finally mounted in microscope slides 

(Thermo scientific, superfrost plus), with mowiol. 

Fluorescent images were acquired with an automated slide scanner (AxioScan Z1) 

equipped with a 10x, 0.45 NA PlanApochromat objective and a Hamamatsu OrcaFlash 

camera. Use of the appropriate filter combination allowed for DAPI and EYFP acquisition 

(Beam Splitter: 395, excitation: 330-375, emission: 430-470, and Beam splitter: 498, 

excitation: 453-485, emission: 507-546 respectively). 

Optic cannula placement was determined using coronal sections of the prefrontal cortex 

through which the fiber tract was visible. We determined the position by locating the 

section with the broadest base of the cannula tract and comparing the DAPI staining with 

the Allen Mouse Brain Atlas ​(Lein et al., 2007,​Fig. S1,Supplementary Table 1​) ​. 

 

Behavioral analysis and statistics 

All analysis was performed using custom code written in Julia ​(Bezanson et al., 2017)​. The 
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code used to simulate value or inference models is available on GitHub, under the MIT 

license, at ​https://github.com/piever/ValueInferenceTools.jl​. The statistical analysis was 

performed using mixed effect models ​(McLean et al., 1991)​, in particular the Julia 

implementation MixedModels.jl ​(Douglas Bates et al., 2019)​. We fitted models with a 

random intercept (depending on subject identity) and compared nested models using a 

likelihood ratio test: in particular we used a chi-squared test on the difference of the 

deviance of the two nested models, using as many degrees of freedoms as the difference 

between the number of degrees of freedom of the two nested models ​(Wilks, 1938) ​. That 

is to say, given two models  and  where  is a special case of : 

  

When the p value is too small, we do not report the value but simply write p < 1e-10, which 

is floating point notation for p < 10​−10​. To describe mixed models we will use Wilkinson 

notation ​(Wilkinson and Rogers, 1973)​, with | denoting random effects and & denoting 

interaction terms. For example the formula:  

 

uses as predictor for the number of consecutive failures after last reward a constant 

intercept, a coefficient for each protocol different than the medium protocol (which we 

consider as baseline), a coefficient for stimulation and a random intercept across mice. 

The formula 
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would also allow for an interaction term between protocol and stimulation. 

 

Task design 

We designed a probabilistic foraging task for parallel use in mice and humans. Subjects 

sought rewards (water or points, respectively), by actively probing a foraging site 

(nose-poking or screen-tapping, respectively). Each site could be in one of two states, 

active or inactive. Each try in the active state yielded reward with probability , and 

could cause the site to switch to the inactive state with probability . This required the 

subjects to travel to a second, fresh, site at some distance and bear a travel cost. Subjects 

were therefore tasked with inferring a hidden state (active or inactive) through a stochastic 

sequence of observations (rewards and failures). 

 

Relevant statistics in the task 

After a rewarded attempt, the subject could be sure to be in the correct location: ambiguity 

comes from failures, as it was possible that the target was correct but the subject was 

being unlucky. The more unsuccessful attempts, the higher the probability of a transition 

having occurred. Accumulated evidence in favor of a switch is a monotonically increasing 

function of the task parameters  and : the higher the reward probability, the more 

informative a failure is. Trivially, the higher the switch probability, the more likely the 

switch. 

 

Possible task space representations 

When analyzing our task, we consider two possible state representation. One is simpler 

and analogous to traditional approaches to modeling n-armed bandit tasks: the state 
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corresponds to the current location of the subject (i.e. one of the two reward sites). The 

value of the two sites changes over time, yet the animals may be able to track this change 

with fast model-free learning. A second, more principled but more abstract approach, 

postulates that the subjects tries to infer the optimal state representation, i.e. the 

probability that their current location is rewarding. In this model, there is no longer any 

need for fast online learning as the task representation is stable. The computation 

happening in real time is the inference process to compute this probability. To account for 

variability in the behavior, we allow both decision noise, distributed according to the 

soft-max rule, as well as inference noise (the inference process may be suboptimal). We 

will refer to these two learning paradigm as Stimulus Bound Learning and Inference Based 

Learning respectively. It is important to note that, given the richer state representation, 

Inference Based Learning is the optimal way to solve the task and clearly outperforms 

simpler heuristics such as Stimulus Bound Learning. 

 

Stimulus Bound Learning (SBL) 

In Stimulus Bound Learning, we first define the relative value  as the difference of the 

value of the leftport and the value of the right port: 

 

We defined two auxiliary variables: a reward variable  indicating the outcome of each 

reward attempts, i.e. 1 for a reward and 0 for a failure, and a side variable , indicating the 

current side, 1 for left and -1 for right. 

We can define a signed outcome  of each reward attempt, which is: 
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that is to say, 1 for a reward on the left, -1 for a reward on the right and 0 for an omission. 

For any attempt, we can then update the relative value using the signed outcome and 

some discount parameter  

 

Which admits an explicit solution: 

 

The probability of staying is a monotonically increasing function of the value of staying, so 

that rewards should make the animal more likely to stay and omissions more likely to 

leave, in a symmetric way. 

 

Inference based learning (IBL) 

We first derive recursive formulas to compute the probability that the current side is not 

rewarding as a function of the sequence of successful and failed reward attempts 

performed by the subject. In this model, the subject would compute the relative value as a 

function of the probability of the left (or right) side being active given the task history (

 represent the outcomes of the various attempts and  the side of each 

attempt): 

 

 

From value to decision 

We have now defined to different ways to compute the relative value of left versus right, 

one directly based on reward accumulation, and one based on evidence accumulation. To 

define a behavior from this relative value, we need to consider two more parameters. First 
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of all we need a bias term : as the two foraging sites are far apart, subjects should preferT  

to repeat side rather than alternate, to avoid the travel cost. Then we need a “inverse 

temperature” parameter  to describe how deterministic the animal is (with a very high β β  

the animal would almost always choose the option with greater value, whereas with  0β =   

the animal would choose randomly). We can then use the soft-max rule to generate 

behavior: 

 

where  represents the current side (1 for left and -1 for right). 

In the simulations we will use the same softmax rule to simulate behavior: difference 

between SBL and IBL derive from the different procedures used to compute the relative 

value. 

 

Computing the likelihood ratio 

In IBL we defined the relative value as a function of the relative difference: 

 

This quantity can be computed recursively. To do so we will need an auxiliary variable. We 

define  as the probability ratio that the current side is active or inactive given task 

history: 

 

From  we can compute  as follows: 
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Rather than computing  recursively directly, we notice that  respects a simple 

recursive equation (likelihood ratio update equation): 

 

where  represents the probability of switching from active to inactive state. 

The term  is the ratio between the following two equations: 

 

 

The exponent  simply means that the probability ratio  inverts when the 

subject changes side. Finally the term  represents the new evidence 

acquired with the outcome of attempt . 

In the case of a reward, , so: 

 

If  is a failure, then  whereas , so 

the likelihood ratio update equation simplifies to: 

 

Having established that  resets to 0 with a reward, we can analyze the most interesting 

case for a probability computation: a sequence of attempts on the same side (let us say 
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) where the first attempt is rewarded (thus resetting the probability) and the 

following are not. 

As the first attempt is rewarded, . Furthermore, the likelihood ratio, combined with 

the assumption that all attempts are on the same side, grows following the recursive 

equation: 

 

We can define the auxiliary quantity 

 . 

Our recursive equation becomes: 

 

This is a standard linear recursion that we can solve with linear transformation 

 

The recursion of  is: 

 

 

whose solution is  

, 

therefore: 
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That is to say  grows exponentially with rate : 

increasing either  or  would increase the growth rate of . 

 

 

 

 

 

 

MOUSE ID SIDE TARGET AP ML DV GENOTYPE EYFP 
EXPRESSION 

B21 Right N/A N/A N/A N/A Wild type N/A 

B21 Left N/A N/A N/A N/A Wild type N/A 

B22 Right ACC 2.045 1.17 1.17 Wild type FALSE 

B22 Left ACC 2.045 -1.17 1.18 Wild type FALSE 

B23 Right ACC 2.145 0.83 1.99 Heterozygous TRUE 

B23 Left ACC 2.245 -0.23 1.19 Heterozygous TRUE 

B24 Right ACC 1.145 0.99 1.88 Heterozygous TRUE 

B24 Left ACC 2.245 -0.69 1.45 Heterozygous TRUE 

B25 Right ACC 1.42 0.73 1.66 Heterozygous TRUE 

B25 Left ACC 1.42 -0.2 1.96 Heterozygous TRUE 

B41 Right ACC 1.545 0.62 2.12 Heterozygous FALSE 

B41 Left ACC 1.545 -0-71 1.65 Heterozygous FALSE 

B42 Right ACC 2.145 0.72 2.12 Heterozygous TRUE 

B42 Left ACC 2.145 -0.48 1.75 Heterozygous TRUE 

B43 Right ACC 1.845 0.82 1.75 Heterozygous TRUE 

B43 Left ACC 1.845 -0.5 1.3 Heterozygous TRUE 

B44 Right ACC 1.945 0.38 1.93 Heterozygous TRUE 

B44 Left ACC 1.945 -0.66 1.6 Heterozygous TRUE 

B45 Right ACC 2.045 0.53 1.79 Wild type FALSE 

B45 Left ACC 2.045 -0.69 1.32 Wild type FALSE 

P21 Right OFC 2.62 1.26 2.13 Wild type FALSE 

P21 Left OFC 2.745 -1.01 2.6 Wild type FALSE 

P22 Right OFC 2.62 1.35 1.99 Heterozygous TRUE 
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P22 Left OFC 2.745 -1.01 2.44 Heterozygous TRUE 

P23 Right OFC 2.745 1.22 2.5 Heterozygous TRUE 

P23 Left OFC 2.745 -1.42 2.49 Heterozygous TRUE 

P24 Right OFC 2.62 1.26 2.1 Wild type FALSE 

P24 Left OFC 2.62 -1.19 2.2 Wild type FALSE 

P25 Right OFC 2.62 1.3 2.08 Heterozygous TRUE 

P25 Left OFC 2.845 -1.22 2.14 Heterozygous TRUE 

P41 Right OFC 3.045 1.35 2.03 Heterozygous TRUE 

P41 Left OFC 3.045 -1.22 2.17 Heterozygous TRUE 

P42 Right N/A N/A N/A N/A Wild type FALSE 

P42 Left OFC 3.045 1.18 1.85 Wild type FALSE 

P43 Right OFC 2.545 -1.21 1.8 Heterozygous TRUE 

P43 Left OFC 2.545 1.57 1.8 Heterozygous TRUE 

P44 Right OFC 2.8455 -1.14 2.04 Wild type FALSE 

P44 Left OFC 2.945 1.46 1.94 Wild type FALSE 

P45 Right OFC 3.045 -1.14 1.63 Heterozygous TRUE 

P45 Left OFC 2.845 1.07 1.88 Heterozygous TRUE 

 

Supplementary Table S1. Related to Figure 5 and Supplementary Figure 1. Optic 

fibers placement coordinates and expression EYFP.  

Location of optic fibers across all  VGAT-ChR2 animals used for this paper with 

anteriorposterior (AP), mediolateral (ML) and Dorsoventral (DV) coordinates. In mouse 

B21 wasn’t possible to perform histological controls, due to sudden death of the animal 

after the experiment period, that precluded from performing the perfusion of its brain. In 

mouse P42 wasn’t possible to determine the placement of the fiber on the right emisfere, 

due to damage in the slices during cutting. The expression of EYFP conjugated to ChR2, 

was asses through fluorescence widefield microscopy to confirm the animal genotype. In 

mouse B41 EYFP signal wasn’t detected (Sup.Fig1). despite the animal was initially 

genotyped as heterozygous and it was excluded from the analysis. 
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