

1 **Show me your secret(ed) weapons: a multifaceted approach**
2 **reveals novel type III-secreted effectors of a plant pathogenic**
3 **bacterium**

4

5 Irene Jiménez Guerrero^{1¶}, Francisco Pérez-Montaño^{1,2¶}, Gustavo Mateus da Silva¹,
6 Naama Wagner³, Dafna Shkedy³, Mei Zhao⁴, Lorena Pizarro⁵, Maya Bar⁵, Ron
7 Walcott⁴, Guido Sessa⁶, Tal Pupko³, Saul Burdman^{1*}

8

9 ¹ Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of
10 Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot,
11 Israel

12 ² Department of Microbiology, University of Seville, Seville, Spain

13 ³ The School of Molecular Cell Biology and Biotechnology, The George S. Wise
14 Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel

15 ⁴ Department of Plant Pathology, University of Georgia, Athens GA, USA

16 ⁵ Department of Plant Pathology and Weed Research, Agricultural Research
17 Organization, The Volcani Center, Bet Dagan, Israel

18 ⁶ School of Plant Sciences and Food Security, The George S. Wise Faculty of Life
19 Sciences, Tel Aviv University, Tel Aviv, Israel

20

21 *Corresponding author

22 E-mail: saul.burdman@mail.huji.ac.il

23

24 [¶]These authors contributed equally to this work.

25

26 **Abstract**

27 Many Gram-negative plant and animal pathogenic bacteria employ a type III
28 secretion system (T3SS) to secrete protein effectors into the cells of their hosts and
29 promote disease. The plant pathogen *Acidovorax citrulli* requires a functional T3SS for
30 pathogenicity. As with *Xanthomonas* and *Ralstonia* spp., an AraC-type transcriptional
31 regulator, HrpX, regulates expression of genes encoding T3SS components and type III-
32 secreted effectors (T3Es) in *A. citrulli*. A previous study reported eleven T3E genes in
33 this pathogen, based on the annotation of a sequenced strain. We hypothesized that this
34 was an underestimation. Guided by this hypothesis, we aimed at uncovering the T3E
35 arsenal of the *A. citrulli* model strain, M6. We carried out a thorough sequence analysis
36 searching for similarity to known T3Es from other bacteria. This analysis revealed 51 *A.*
37 *citrulli* genes whose products are similar to known T3Es. Further, we combined
38 machine learning and transcriptomics to identify novel T3Es. The machine learning
39 approach ranked all *A. citrulli* M6 genes according to their propensity to encode T3Es.
40 RNA-Seq revealed differential gene expression between wild-type M6 and a mutant
41 defective in HrpX. Data combined from these approaches led to the identification of
42 seven novel T3E candidates, that were further validated using a T3SS-dependent
43 translocation assay. These T3E genes encode hypothetical proteins, do not show any
44 similarity to known effectors from other bacteria, and seem to be restricted to plant
45 pathogenic *Acidovorax* species. Transient expression in *Nicotiana benthamiana*
46 revealed that two of these T3Es localize to the cell nucleus and one interacts with the
47 endoplasmic reticulum. This study not only uncovered the arsenal of T3Es of an
48 important pathogen, but it also places *A. citrulli* among the "richest" bacterial pathogens
49 in terms of T3E cargo. It also revealed novel T3Es that appear to be involved in the
50 pathoadaptive evolution of plant pathogenic *Acidovorax* species.

51 **Author summary**

52 *Acidovorax citrulli* is a Gram-negative bacterium that causes bacterial fruit
53 blotch (BFB) disease of cucurbits. This disease represents a serious threat to cucurbit
54 crop production worldwide. Despite the agricultural importance of BFB, the knowledge
55 about basic aspects of *A. citrulli*-plant interactions is rather limited. As many Gram-
56 negative plant and animal pathogenic bacteria, *A. citrulli* employs a complex secretion
57 system, named type III secretion system, to deliver protein virulence effectors into the
58 host cells. In this work we aimed at uncovering the arsenal of type III-secreted effectors
59 (T3Es) of this pathogen by combination of bioinformatics and experimental approaches.
60 We found that this bacterium possesses at least 51 genes that are similar to T3E genes
61 from other pathogenic bacteria. In addition, our study revealed seven novel T3Es that
62 seem to occur only in *A. citrulli* strains and in other plant pathogenic *Acidovorax*
63 species. We found that two of these T3Es localize to the plant cell nucleus while one
64 partially interacts with the endoplasmic reticulum. Further characterization of the novel
65 T3Es identified in this study may uncover new host targets of pathogen effectors and
66 new mechanisms by which pathogenic bacteria manipulate their hosts.

67 **Introduction**

68 The genus *Acidovorax* (class Betaproteobacteria) contains a variety of species
69 with different lifestyles. While some species are well adapted to soil and water
70 environments, others have developed intimate relationships with eukaryotic organisms,
71 including as plant pathogens [1]. Among the latter, *Acidovorax citrulli* is one of the
72 most important plant pathogenic species [2]. This bacterium infects all aerial parts of
73 cucurbit plants, causing bacterial fruit blotch (BFB) disease. The unavailability of
74 effective tools for managing BFB, including the lack of resistance sources, and the
75 disease's high destructive potential, exacerbate the threat BFB poses to cucurbit (mainly
76 melon and watermelon) production [3, 4]. Despite the economic importance of BFB,
77 little is known about basic aspects of *A. citrulli*-plant interactions.

78 On the basis of genetic and biochemical features, *A. citrulli* strains are divided
79 into two main groups: group I strains have been generally isolated from melon and other
80 non-watermelon cucurbits, whereas group II strains have been mainly isolated from
81 watermelon [5-7]. *Acidovorax citrulli* M6 is a group I strain that was isolated in 2002
82 from a BFB outbreak of melons in Israel [5], and subsequently became a model group I
83 strain for investigation of basic aspects of BFB. The *A. citrulli* M6 genome has been
84 sequenced, first by Illumina MiSeq [8] and recently, by PacBio [9], which allowed its
85 complete closure.

86 As many Gram-negative plant and animal pathogenic bacteria, *A. citrulli* relies
87 on a functional type III secretion system (T3SS) to promote disease [10]. This complex
88 secretion system is employed by these pathogens to deliver protein effectors into target
89 eukaryotic cells. Collectively, type III-secreted effectors (T3Es) promote disease by
90 modulating a variety of cellular functions for the benefit of the pathogen [11-13]. In the
91 case of plant pathogenic bacteria, type III-secreted effectors (T3Es) were shown to

92 promote virulence through alteration of the plant cell metabolism and/or suppression of
93 host immune responses [14, 15]. As part of their defence mechanism, plants recognize
94 some effectors by corresponding disease resistance (R) proteins, mostly belonging to
95 the nucleotide-binding (NB)-leucine-rich repeat (LRR) type of immune receptors
96 (NLRs) [16, 17]. Upon effector recognition, the R protein elicits a battery of defense
97 responses collectively referred to as effector-triggered immunity (ETI). ETI is often
98 accompanied by the hypersensitive response (HR), a rapid death of plant cells at the
99 infection site that arrests pathogen spread in the plant tissue [18]. Therefore, elucidating
100 the arsenal of effectors and their contribution to virulence, are of critical importance for
101 the understanding of basic aspects of pathogenicity but also for translational research in
102 the crop protection field.

103 Due to the requirement of type III secretion (T3S) for pathogenicity in
104 susceptible plants and HR elicitation in resistant plants, the genes encoding key T3SS
105 regulators and structural components in plant pathogenic bacteria are named *hrp* genes
106 (for HR and pathogenicity) or *hrc* genes, in the case of *hrp* genes that are conserved
107 among different bacterial genera, including in animal pathogens [19]. On the basis of
108 gene content, operon organization and regulation, *hrp* clusters are divided into two
109 classes: class I contains the *hrp* clusters of *Pseudomonas syringae* and enteric plant
110 pathogenic bacteria, while class II contains the clusters of *Xanthomonas* species,
111 *Ralstonia solanacearum* and plant pathogenic *Acidovorax* spp. [10, 19, 20].

112 In *Xanthomonas* spp. and *R. solanacearum*, the expression of *hrp*, *hrc* and *hrp*-
113 associated (*hpa*) genes, as well as of some T3E genes, is regulated by HrpG and
114 HrpX/HrpB (HrpX in *Xanthomonas* spp. and HrpB in *R. solanacearum*). HrpG belongs
115 to the OmpR family of two-component system response regulators and controls
116 expression of *hrpX/hrpB* [21-23]. *hrpX* and *hrpB* encode AraC-type transcriptional

117 activators that directly mediate the expression of most *hrp/hrc* operons and many T3E
118 genes, via binding to DNA motifs that are present in their promoter regions. These
119 DNA motifs are named plant-inducible promoter (PIP) box (TTCGB-N15-TTCGB; B
120 being any nucleotide except adenine) in *Xanthomonas* spp. [24] and *hrp*_{II} box (TTCG-
121 N16_TTCG) in *R. solanacearum* [25]. Recently, Zhang *et al.* showed that the *hrpG* and
122 *hrpX/hrpB* (thereafter *hrpX*) orthologous genes of the *A. citrulli* group II strain Aac5 are
123 required for pathogenicity [26]. They also showed that HrpG activates expression of
124 *hrpX*, which in turn, regulates the expression of a T3E gene belonging to the YopJ
125 family.

126 Until recently, based on the annotation of the genome of the *A. citrulli* group II
127 strain AAC00-1, we were aware of eleven genes showing similarity to known T3E
128 genes from other bacteria [27]. Considering the higher numbers of T3E genes in several
129 other plant pathogenic bacteria, we hypothesized that this is an underestimation of the
130 actual number of T3Es in *A. citrulli*. We also hypothesized that *A. citrulli* may carry
131 novel T3E genes that were not previously described in other bacteria. Guided by these
132 hypotheses, we carried out a detailed sequence analysis of *A. citrulli* M6 open reading
133 frames (ORFs) to identify genes with similarity to known T3E genes from other
134 bacteria. We also combined machine-learning (ML) and RNA-Seq approaches to
135 identify putative, novel *A. citrulli* T3Es. Further, we adapted a T3E translocation assay
136 to verify T3S-dependent translocation of candidate effectors. Combining these
137 approaches allowed identification of seven new T3Es that appear to be unique to plant
138 pathogenic *Acidovorax* species. Subcellular localization of three of these T3Es in *N.*
139 *benthamiana* leaves was also determined by *Agrobacterium*-mediated transient
140 expression.

141

142 **Results**

143 **Identification of new T3E genes of *A. citrulli* by genome annotation, machine
144 learning and sequence analyses**

145 Analysis of the genome of the group II *A. citrulli* strain AAC00-1 (GenBank
146 accession CP000512.1) revealed eleven genes similar to T3E genes of other plant
147 pathogenic bacteria [27]. These genes were present in all tested group II strains. In
148 contrast, all assessed group I strains, including M6, lacked the effector gene *Aave_2708*
149 (gene ID according to the AAC00-1 annotation), encoding a *Xanthomonas*
150 *euvesicatoria* XopJ homolog. Group I strains also had disrupted open reading frames
151 (ORFs) in the genes *Aave_3062*, encoding an effector similar to *Xanthomonas oryzae*
152 pv. *oryzicola* AvrRx01, and *Aave_2166*, encoding a *X. euvesicatoria* AvrBsT homolog
153 [27].

154 To identify new putative T3E genes of *A. citrulli* we applied a machine learning
155 (ML) approach, that was successfully utilized for identification of new T3E genes of *X.*
156 *euvesicatoria* [28] and *Pantoea agglomerans* [29]. Using this algorithm, all ORFs of a
157 bacterial genome are scored according to their propensity to encode T3Es. The scoring
158 is based on a large set of features including similarity to known T3E genes, genomic
159 organization, amino acid composition bias, characteristics of the putative N-terminal
160 translocation signal and GC content, among others (see Methods).

161 An initial ML run was used to classify all ORFs of strain AAC00-1 according to
162 their probability to encode T3Es. This strain, rather than M6, was used for learning and
163 prediction, because at the time this ML was conducted, the AAC00-1 genome was fully
164 assembled with better annotation. For training, the positive set included 12 AAC00-1
165 genes that encoded T3E homologs: the eleven genes described by Eckshtain-Levi *et al.*
166 [27] and one additional gene, *Aave_2938* that is identical to *Aave_2708*. The negative

167 set included genes that showed high sequence similarity to ORFs of a non-pathogenic
168 *Escherichia coli* strain. The output of this ML run was a list of all annotated genes of *A.*
169 *citrulli* AAC00-1 ranked by their propensity to encode T3Es (S1 Table). For each ORF,
170 we searched for the homolog in *A. citrulli* M6. Among the top predictions from
171 AAC00-1, many genes did not have homologs in M6. As expected, the aforementioned
172 12 positive T3E genes of AAC00-1 were ranked high in this list (among the 36 highest
173 scoring predictions, with eight being ranked among the top 10, and eleven among the
174 top 15; S1 Table). Results from this first ML run served, together with RNA-Seq data,
175 as the basis for selection of candidate T3E (CT3E) genes for experimental validation
176 (see below).

177 In parallel, we performed an extensive homology search, using BlastP, to
178 identify additional putative T3E genes of *A. citrulli* M6. This analysis led to the
179 identification of many additional genes with significant similarity to T3E genes from
180 other plant pathogenic bacteria. Table 1 summarizes the arsenal of putative T3E genes
181 of *A. citrulli* M6, based on its genome annotation and sequence similarity analysis.
182 Overall, we found 51 putative T3E genes in the *A. citrulli* M6 genome, in support of the
183 notion that *A. citrulli* has a larger T3E repertoire than previously estimated. Most of
184 these genes also received high scores in the ML search ranking among the top 100
185 ORFs (Table 1 and S1 Table). With that said, ten genes encoding T3E homologs were
186 ranked in very low positions in the ML run (positions 231 to 1161; Table 1). On the
187 other hand, many top ranked genes were annotated as encoding hypothetical proteins,
188 some of which could encode yet unknown T3Es.

189

190 **Table 1. List of putative T3E genes of *Acidovorax citrulli* M6 based on genome**
191 **annotation and sequence similarity (BlastP) to known T3E genes from other plant**
192 **pathogenic bacteria.**

Locus_tag M6 ¹	Annotation in M6 ¹	Similarity ²	ML1 ³	ML2 ³	Locus_tag AAC00-1 ⁴	X ⁵	R ⁵	P ⁵
APS58_0030	<i>HP</i>	Type III effector HopBN1	171	8	<i>Aave_2531</i>	+	+	+
APS58_0167₆	<i>avrBsT</i>	Avirulence protein AvrBsT	3	15	<i>Aave_2166</i>	+	+	+
APS58_0178	<i>HP</i>	Type III effector HopF2	not in ML1	131	-	+	(+)	+
APS58_0492	<i>avrPphE</i>	Avirulence protein AvrPphE family	14	32	<i>Aave_3452</i>	+	+	+
APS58_0502	<i>yopJ</i>	Type III effector YopP/ AvrRvx family	5	23	<i>Aave_3462</i>	+	+	(+)
APS58_0506	<i>HP</i>	Avirulence protein AvrPphE family	not in ML1	12	-	+	+	+
APS58_0542	<i>hopD2</i>	Type III effector HopD2/HopAO1	28	26	<i>Aave_3502</i>	+	+	+
APS58_0658	<i>HP</i>	Type III effector XopN	103	13	<i>Aave_3621</i>	+	+	+
APS58_0664	<i>HP</i>	Type III effector XopQ	86	107	<i>Aave_3626</i>	+	+	+
APS58_0885	<i>HP</i>	Type III effector (<i>R. solanacearum</i>)	231	81	<i>Aave_3847</i>	(+)	+	-
APS58_1000	<i>HP</i>	Type III effector protein	814	98	<i>Aave_3961</i>	+	+	-
APS58_1023	<i>xopD</i>	Type III effector XopD	265	38	<i>Aave_4359</i>	+	(+)	(+)
APS58_1209	<i>HP</i>	Type III effector YopP/ AvrRvx family	not in ML1	3	-	-	+	-
APS58_1255	<i>HP</i>	Type III effector XopAE	161	18	<i>Aave_4254</i>	+	-	-
APS58_1433	<i>HP</i>	Type III effector HopBD1	367	42	<i>Aave_4427</i>	+	-	+
APS58_1482	<i>HP</i>	Type III effector XopF1	241	28	<i>Aave_4472</i>	+	-	(+)
APS58_1627	<i>HP</i>	Type III effector protein	223	143	<i>Aave_4606</i>	-	+	-
APS58_1634	<i>HP</i>	Type III effector XopR	51	24	<i>Aave_4612</i>	+	-	-
APS58_1657	<i>HP</i>	LRR protein, type III effector PopP	73	110	<i>Aave_4631</i>	+	+	-
APS58_1658	<i>HP</i>	LRR protein, outer protein XopAC	43	52	<i>Aave_4632</i>	+	(+)	(+)
APS58_1676	<i>HP</i>	Type III effector protein	not in ML1	25	-	+	+	(+)
APS58_1760	<i>T3E protein</i>	Type III effector protein	8	16	<i>Aave_4728</i>	+	+	+
APS58_1921	<i>avrPph3</i>	Cysteine protease avirulence protein YopT/AvrPphB	61	4	<i>Aave_0085</i>	+	+	+
APS58_1966	<i>xopJ</i>	Type III effector XopJ	not in ML1	9	-	+	+	+
APS58_2045	<i>avrRpt2</i>	Cysteine protease avirulence protein AvrRpt2	156	14	<i>Aave_0201</i>	-	-	+
APS58_2122	<i>xopAG</i>	Type III effector HopG1/AvrGf1/XopAG	6	10	<i>Aave_0277</i>	+	+	+
APS58_2156	<i>HP</i>	Type III effector XopC2	951	100	<i>Aave_0310</i>	+	+	-
APS58_2228	<i>HP</i>	Type III effector SspH1	not in	45	-	(+)	(+)	-

		family	ML1					
APS58_2229	<i>putative T3E, E3 ligase domain</i>	Type III effector SspH1 family	not in ML1	50	-	(+)	(+)	-
APS58_2287	<i>HP</i>	Type III effector XopK	235	11	<i>Aave_0433</i>	+	-	+
APS58_2313	<i>LRR ribonuclease inhibitor</i>	LRR type III effector protein (GALA5)	24	71	<i>Aave_0458</i>	-	+	-
APS58_2345	<i>HP</i>	Type III effector XopP	1161	17	<i>Aave_0588</i>	+	+	-
APS58_2589	<i>HP</i>	Type III effector YopP/ AvrRvx family	32	5	<i>Aave_0889</i>	+	+	(+)
APS58_2767	<i>HP</i>	Type III effector protein	not in ML1	64	-	+	+	-
APS58_2799	<i>HP</i>	Putative AWR type III effector protein	33	34	<i>Aave_1090</i>	-	+	-
APS58_3109	<i>HP</i>	Avirulence protein AvrXv3	40	36	<i>Aave_1373</i>	+	+	+
APS58_3252	<i>HP</i>	Outer protein XopAC	56	118	<i>Aave_1508</i>	+	+	-
APS58_3261	<i>HP</i>	Type III effector HopBF1	37	60	<i>Aave_1520</i>	-	(+)	+
APS58_3289	<i>hopW1-1</i>	Type III effector HopW1-1/HopPmaA	15	19	<i>Aave_1548</i>	+	+	+
APS58_3303	<i>HP</i>	Type III effector XopE2	not in ML1	1	-	+	+	+
APS58_3344	<i>HP</i>	Type III effector XopAI	27	93	<i>Aave_1647</i>	+	-	(+)
APS58_3751	<i>mltB_2</i>	Lytic murein transglycosylase, type III effector HopAJ2	36	285	<i>Aave_3237</i>	+	+	+
APS58_3909	<i>HP</i>	Type III effector XopV	193	21	<i>Aave_3085</i>	+	+	-
APS58_3930	<i>HP</i>	Type III effector AvrRxo1-ORF2	655	31	<i>Aave_3063</i>	+	-	-
APS58_3931₆	-	Type III effector AvrRxo1	13	-	<i>Aave_3062</i>	+	-	-
APS58_3943	<i>HP</i>	Type III effector AvrPphF/HopF2	not in ML1	37	-	-	+	+
APS58_4070	<i>HP</i>	Type III effector HopH1	7	6	<i>Aave_2876</i>	+	+	+
APS58_4101	<i>HP</i>	Type III effector, lipase domain	22	22	<i>Aave_2844</i>	+	+	-
APS58_4112	<i>avrBs1</i>	Avirulence protein AvrBs1/AvrA1	4	7	<i>Aave_2173</i>	+	-	+
APS58_4113	<i>HP</i>	Avirulence protein AvrBs1/AvrA1	16	2	<i>Aave_2174</i>	+	-	+
APS58_4317	<i>HP</i>	Type III effector HopD1	34	33	<i>Aave_2802</i>	+	+	-

193 ¹ Locus_tag and annotation according to GenBank accession CP029373 [9]. Bolded genes were
 194 found to be significantly regulated by HrpX based on RNA-Seq results (S2 Table). *HP*,
 195 hypothetical protein.

196 ² Similarity based on BlastP analysis of the gene product.

197 ³ Ranking of the genes in machine learning (ML) runs 1 and 2. ML1 was done with ORFs of *A.*
 198 *citrulli* AAC00-1 (GenBank accession CP000512.1) and ML2 was done with the ORFs of *A.*

199 *citrulli* M6 (GenBank accession CP029373). In column ML1, "not in ML1" means that this M6
200 gene was not detected in ML1 because it has no homologous gene in strain AAC00-1.

201 ⁴ Corresponding locus_tag in *A. citrulli* AAC00-1. Underlined genes are the T3E genes that
202 were known prior to this study, based on the annotation of the *A. citrulli* group II strain AAC00-
203 1 [27], in addition of gene *Aave_2708*, which is not present in strain M6.

204 ⁵ Similarity to gene products of *Xanthomonas* spp. (X), *Ralstonia* spp. (R) and *Pseudomonas*
205 *syringae* group (P). + indicates significant similarity to at least one gene product; (+) indicates
206 significant similarity to hits with relatively low query coverage (below 60%); – indicates that no
207 significant hits were detected.

208 ⁶ These genes are probably non-functional in strain M6 and in all group I strains assessed so far
209 [27].

210

211 An additional insight of this analysis was that most predicted T3E genes of *A.*
212 *citrulli* share levels of similarity with T3E genes of *Xanthomonas* spp. and *R.*
213 *solanacearum* (41 and 40 genes, respectively; Table 1). A smaller number of genes, 31,
214 shared similarity with T3E genes of *P. syringae* strains. We also assessed the
215 occurrence of these T3Es in other plant pathogenic *Acidovorax* species (S2 Table).
216 Except for the HopBD1 homolog APS58_1433 that could be detected only in *A. citrulli*
217 strains, the other predicted T3Es occur in other pathogenic *Acidovorax* species, with
218 some of them being widely distributed. For instance, the putative effectors
219 APS58_0492, APS58_0506, APS58_1482, APS58_1657, APS58_1658, APS58_2228,
220 APS58_2313, APS58_2345, APS58_2799, APS58_3303 and APS58_3751 could be
221 detected, at different levels of similarity, in all species. The other putative effectors were
222 restricted to fewer species, with most of them being detected in *A. avenae* strains. While
223 this may reflect the close relatedness between *A. citrulli* and *A. avenae* [30], it is
224 important to consider that, at the time of this analysis, the public database contained 7
225 and 18 genomes of *A. citrulli* and *A. avenae* strains, respectively, but only two draft
226 genomes of *A. oryzae* and one draft genome for each of the other species.

227 Interestingly, of the 51 putative T3E genes of *A. citrulli* M6, ten were not present
228 in the genome of the group II strain AAC00-1 (Table 1). Besides M6 and AAC00-1, the
229 NCBI database includes draft genomes of one additional group II strain, KAAC17055,
230 and four group I strains (pslb65, tw6, DSM 17060 and ZJU1106). BlastN analyses
231 revealed that these ten genes are also absent in strain KAAC17055, but present in most
232 of the group I strains. The only exceptions were *APS58_0506* that was not detected in
233 strains tw6 and DSM 17060, *APS58_1209* that was not detected in tw6, and
234 *APS58_2767* that was not detected in DSM 17060. The inability to detect these T3E
235 genes in the genomes of strains tw6 and DSM 17060 could reflect true absence in these
236 strains but also could be due to the draft nature of these genomes. In any case, these
237 results strongly suggest that the ten M6 T3E genes that are absent in the group II strains
238 AAC00-1 and KAAC17055 could be specific to group I strains of *A. citrulli*. Yet, this
239 assumption should be verified on a larger collection of strains. Interestingly, among
240 these ten T3E genes, *APS58_0506*, *APS58_2228* and *APS58_3303*, were detected in
241 strains of all other plant pathogenic *Acidovorax* species (S2 Table). In the case of
242 *APS58_2228*, it should be mentioned that the group II strains AAC00-1 and
243 KAAC17055 possess genes (*Aave_0378* in AAC00-1) that encode short products (140
244 a.a.) and partially align with the C-terminal region of the group I product (with
245 predicted length of 538 a.a.). In our analysis we did not consider them as ortholog
246 genes.

247

248 **HrpX is required for pathogenicity of *A. citrulli* M6 and regulates the expression of**
249 **T3SS components and T3E genes**

250 In *Xanthomonas* spp. and *R. solanacearum*, the transcriptional regulator HrpX
251 (HrpB in *R. solanacearum*) plays a key role in regulation of *hrp* and T3E genes. We

252 hypothesized that this is also the case in *A. citrulli* M6. To assess this hypothesis, we
253 first generated an *A. citrulli* M6 strain mutated in *APS58_2298*, the *hrpX* orthologous
254 gene. This mutant lost the ability to cause disease in melon (Fig 1A) and induce HR in
255 pepper leaves (Fig 1B), as previously observed for a strain carrying a mutation in the
256 *hrcV* gene, which encodes a core component of the T3SS [10]. A similar loss of
257 pathogenicity was observed for a mutant defected in the *hrpG* homolog gene,
258 *APS58_2299* (S1 Fig). Complementation of both *hrpX* and *hrpG* mutations restored
259 pathogenicity, although necrotic symptoms induced by the complemented strains were
260 less severe than those induced by the wild-type strain (S1 Fig).

261

262 **Fig 1. HrpX is required for pathogenicity and regulates expression of T3S and T3E**
263 **genes in Acidovorax citrulli M6.** (A) Disease lesions produced in a melon leaf
264 inoculated with wild-type M6, but not with mutant strains defective in *hrpX* or *hrcV*
265 (encoding a core component of the T3SS) genes. The picture was taken at 3 days after
266 infiltration (d.a.i.). (B) Cell death observed in a pepper leaf following inoculation with
267 wild-type M6, but not with *hrpX* and *hrcV* mutants. The picture was taken at 4 d.a.i. In
268 (A) and (B), leaves were syringe-infiltrated with bacterial suspension of 10^8 CFU/ml.
269 (C) Qualitative assessment of differential gene expression between wild-type M6 and
270 the M6 *hrpX* mutant after 72 h of growth in XVM2 minimal medium at 28 °C. gDNA,
271 amplification of genomic DNA. cDNA, reverse-transcriptase (RT)-PCR of RNA
272 extracts. Genes: *hrcV* (*APS58_2306*), *hrcT* (*APS58_2309*), *hrcJ* (*APS58_2321*) and
273 *hrcC* (*APS58_2331*), encoding core components of the T3SS; *APS58_3289*, encoding a
274 T3E similar to *Pseudomonas syringae* *hopW1-1*; and *GADPH*, glyceraldehyde-3-
275 phosphate dehydrogenase (*APS58_1610*; control gene).

276

277 Further, we used reverse transcription-PCR (RT-PCR) to compare expression of
278 four genes encoding T3SS components and one T3E gene (*APS58_3289*, encoding a *P.*
279 *syringae* *hopW1-1* homolog of *hopW1-1*) between the *hrpX* mutant and wild-type M6
280 following growth in XVM2 medium. This medium was optimized for expression of T3S

281 genes in *X. euvesicatoria*, as it simulates, to some extent, the plant apoplast environment
282 [31]. After 72 h of growth, expression of the tested genes was reduced in the *hrpX*
283 mutant relative to wild-type M6 (Fig 1C).

284

285 **Identification of HrpX-regulated genes by RNA-Seq**

286 Based on RT-PCR results, we carried out RNA-Seq analysis to compare gene
287 expression between wild-type M6 and the *hrpX* mutant, after 72 h of growth in XVM2
288 medium. This approach revealed 187 genes showing significant differential expression
289 (significant fold-change of ± 2) between the strains (Fig 2A). Of these, 159 genes had
290 significantly reduced expression in the *hrpX* mutant relative to wild-type M6, while 28
291 genes showed the opposite pattern (S3A and S3B Tables). RNA-Seq results were
292 validated by qPCR experiments that confirmed lower expression of 10 tested genes in
293 the *hrpX* mutant under the same conditions (Fig 2B).

294

295 **Fig. 2. Comparative transcriptomics analysis between *Acidovorax citrulli* M6 and**
296 **the M6 *hrpX* mutant.** (A) Relative gene expression profile as assessed by RNA-Seq of
297 cells grown for 72 h at 28 °C in minimal XVM2 medium (2 and 3 replicates for the
298 *hrpX* mutant and wild-type strain, respectively). The *A. citrulli* M6 genome map is
299 represented in the external circle. Internal red line shows differential gene expression
300 between the strains. Genes within the gray zone: no significant differences between the
301 strains. The -8 to 2 scale indicates relative expression of the mutant compared with the
302 wild-type. Genes with significantly reduced or increased expression in the mutant
303 relative to the wild-type strain are in the inner and outer regions relative to the gray
304 zone, respectively. Arrows indicate the Hrp-T3SS cluster as well as genes with
305 homology to known effectors from other plant pathogenic bacteria. (B) Relative
306 expression of selected genes by qRT-PCR following bacterial growth under identical
307 conditions as for the RNA-Seq experiment (3 biological replicates per strain). Asterisks
308 indicate significant differences between wild-type and *hrpX* mutant at $\alpha = 5\%$ by the
309 Mann-Whitney non-parametrical test. All tested genes except *APS58_2764* showed

310 significantly reduced expression in the mutant relative to strain M6 in the RNA-Seq
311 analysis.

312

313 Most HrpX-regulated genes could not be assigned to Gene Ontology (GO)
314 categories using Blast2GO. Of the 159 genes that showed reduced expression in the
315 *hrpX* mutant, only 47 were assigned to at least one biological process category.
316 Blast2GO results are detailed in S3C and S3D Tables, and Fig 3 shows the number of
317 biological process categories of genes with reduced expression in the mutant. Among
318 the most frequent categories, 10 hits were found for transmembrane transport proteins,
319 including several ABC transporters and permeases, and 6 matched with regulation of
320 transcription. Nine hits belonged to protein secretion/protein secretion by the T3SS and
321 these corresponded to genes encoding Hrp/Hrc components. Notably, most T3S and
322 T3E genes could not be assigned to any specific GO biological process; this was the
323 case for 11 *hrp/hrc/hpa* genes and for 24 T3E genes (S3C Table). Overall, RNA-Seq
324 revealed 20 *hrp/hrc/hpa* genes and 27 genes encoding putative T3Es (including the
325 seven new effectors identified in this study; see below) that had significantly reduced
326 expression in the *hrpX* mutant relative to wild-type M6 (S3B and S3C Tables).
327 Importantly, almost 60 genes that showed reduced expression in the *hrpX* mutant are
328 annotated as hypothetical proteins and did not show similarity to known T3Es. It is
329 possible that some of these genes encode novel T3Es.

330

331 **Fig. 3. Distribution of *Acidovorax citrulli* M6 HrpX-regulated genes among**
332 **categories of biological processes.** Of the 159 genes that showed reduced expression in
333 the *hrpX* mutant relative to wild-type M6, only 47 could be assigned to at least one
334 Gene ontology (GO) biological process category (blue columns). HrpX-regulated genes
335 encoding T3S structural and accessory proteins (red column) and putative T3Es (green
336 column) were manually assigned to these categories.

337

338 Interestingly, the *hrpX* mutant also showed reduced expression of several genes
339 encoding proteins that are putatively secreted by the type II secretion system (T2SS).
340 We used SignalP, Pred-Tat and Phobius tools to detect putative Tat or Sec type II
341 secretion (T2S) signals in the ORFs of all genes that showed significantly lower
342 expression in the *hrpX* mutant relative to the wild-type strain. While T2S signals were
343 predicted in 39 genes by at least one of the tools (not shown), 14 genes were predicted
344 to encode products with T2S signals by the three different tools (S3E Table). Among
345 these genes were *APS58_0633* (*xynB*) encoding 1-4- β -xylanase, *APS58_2599* (*pelA_2*),
346 encoding pectate lyase, and *APS58_3722*, encoding a family S1 extracellular serine
347 protease. These three genes were also shown to contain PIP boxes in their promoter
348 region (S3B Table).

349 Of the 28 genes showing increased expression in the *hrpX* mutant relative to
350 wild-type M6, only ten could be assigned to GO categories, most of which belonged to
351 regulatory genes (regulation of transcription, phosphorelay signal transduction system,
352 signal transduction; S3D Table).

353

354 **Identification of PIP boxes in HrpX-regulated genes**

355 We used fuzznuc to search for perfect PIP boxes in the *A. citrulli* M6 genome,
356 using the consensus sequence TTCGB-N15-TTCGB. Based on Koebnik *et al.* [32], we
357 considered only those cases for which the distance between the end of the PIP box and
358 the putative start codon was shorter than 650 nucleotides. This screen revealed a total of
359 78 PIP boxes (S4 Table), of which 41 correlated with significant regulation by HrpX
360 (Table 2 and S4 Table). We used the PIP boxes of the aforementioned 41 genes/operons
361 to determine the consensus PIP box of *A. citrulli* using the MEME suite (Fig 4).

362 Importantly, some of the PIP boxes are upstream of operons, thus probably regulating
363 the expression of more than one gene. We detected additional 25 genes [marked as (+)
364 in the PIP box column of S3B Table] that are likely in PIP box-containing operons and
365 showing higher expression in the wild-type strain relative to the *hrpX* mutant. It is also
366 worth mentioning that eleven additional genes (some of which encoding T3Es) carrying
367 PIP boxes showed higher expression values in the wild-type relative to the *hrpX* mutant
368 in the RNA-Seq experiment, but were slightly below the level of statistical significance
369 (S3A and S4 Tables).

370

371 **Table 2. Perfect plant-inducible promoter (PIP) box sequences in genes that were**
372 **shown to be regulated by HrpX in *Acidovorax citrulli* M6.**

Gene_ID ¹	Annotation ¹	Strand	PIP box ²	Start of PIP box	End of PIP box	Gene start codon	Distance (bp) ³
APS58_0030	HP	-	ttcgtttgttggattggaaattcgc	34554	34578	34553	1
APS58_0077	HP	-	ttcgcaattcgagaaatttgtccg	93187	93211	93022	165
APS58_0185	HP	-	ttagtgttgaaggcattcgttcg	216423	216447	216315	108
APS58_0197	puuD_I	-	ttagtgtcatcggtttccatcg	227069	227093	226515	554
APS58_0218	HP	-	ttcgctgtgtgtgaactttcg	254146	254170	254075	71
APS58_0500	HP	-	ttcgccccggctgecgactcgc	579574	579598	579502	72
APS58_0502	yopJ	-	ttcgccggcaggcaccgttcgc	583025	583049	582809	216
APS58_0543	HP	-	ttcgcatgtgtggggattcgg	631454	631478	630839	615
APS58_0633	xynB	-	ttcggtgtgttcacgggttcgc	715951	715975	715863	88
APS58_0886	HP	-	ttcgcatcgggtgtcatgggttcgc	1015878	1015902	1015701	177
APS58_0986	HP	+	ttcgcatccggcgactgttcgc	1113649	1113673	1113709	36
APS58_1000 ⁴	HP	+	ttcgccacccggggcaccgttcgt	1129783	1129807	1129817	10
APS58_1026	HP	-	ttcggtcacggccatgggttcgc	1161953	1161977	1161806	147
APS58_1255	HP	+	ttcgccggccacggcccccgtcgc	1409795	1409819	1410119	300
APS58_1340	HP	+	ttcgcatgtccggcgagtcgttcgg	1511860	1511884	1512052	168
APS58_1448	HP	-	ttcgcgaggccacgcattgttcgc	1632395	1632419	1632309	86
APS58_1483	HP	-	ttcgcatcccgatggccggcttcgg	1669735	1669759	1669644	91
APS58_1760	T3E protein	+	ttcggtctccgggcacgttgc	1970321	1970345	1970408	63
APS58_1954	HP	+	ttcgcaaggttcccgattttcgg	2174442	2174466	2174654	188
APS58_1986	HP	-	ttcgcccgccggggacttcgc	2212320	2212344	2212063	257
APS58_2304	hrcQ	-	ttcgccatcgccatggccatccgg	2546196	2546220	2546073	123
APS58_2307	hrcU	-	ttcgccggggccgaaaccgttcgc	2550224	2550248	2550146	78
APS58_2308	hrpB7	+	ttcgcatccgggtgcgggatccgg	2550284	2550308	2550387	79
APS58_2312	hrpW	+	ttcgcatccggatggccatccgg	2553056	2553080	2553423	343
APS58_2314	HP	+	ttcgcgatggccatggccatccgg	2556756	2556780	2556924	144
APS58_2329	HP	-	ttcgcaagccatggcaacttcgt	2567741	2567765	2566734	7
APS58_2331	hrcC	-	ttcgcaagccgtcgccggatccgc	2569879	2569903	2569803	76
APS58_2345	HP	+	ttcgccaaagggtggccatccgg	2581209	2581233	2581585	352
APS58_2347	HP	+	ttcgccacccgtcgccggatccgg	2585239	2585263	2585399	136
APS58_2599	pelA_2	-	ttcggtcgatggccggatccgg	2862541	2862565	2862501	40
APS58_2771	HP	+	ttcggtccggatggccggatccgg	3052001	3052025	3052432	407
APS58_2974	HP	-	ttcggtccggatggccggatccgg	3262651	3262675	3262590	61
APS58_3261	HP	+	ttcgccggccatggccggatccgg	3574633	3574657	3574825	168
APS58_3289	hopW1-1	-	ttcgccggggaggccatggccgg	3605458	3605482	3605197	261

APS58_3297	HP	-	ttcgccccgtggcactccgcttcgg	3611673	3611697	3611575	98
APS58_3344	HP	-	ttcgccatccccccggcacttcgc	3656278	3656302	3656147	131
APS58_3685	HP	-	ttcgcacgttggacatgcatttcgc	3989762	3989786	3989700	62
APS58_3722	HP	+	ttcgtttaagacgaaagaaatcg	4030992	4031016	4031209	193
APS58_4095	HP	+	ttcgcatccatggggccggcttcgc	4442672	4442696	4443213	517
APS58_4116	HP	-	ttcgccgaggcgcatgcgcgttcgc	4476037	4476061	4475953	84
APS58_4317	HP	-	ttcgcacccgtggccatcgcttcgc	4692889	4692913	4692529	360

373 ¹ Locus_tag and annotation according to GenBank accession CP029373. HP, hypothetical

374 protein.

375 ² PIP box consensus: TTCGB-N15-TTCGB (where B is any nucleotide except adenine).

376 ³ Distance between the end of the PIP box and the first nucleotide of the start codon.

377 ⁴ Gene APS58_1000*: this gene was not annotated in the new M6 annotation. It is located
378 between genes APS58_0999 and APS58_1000 (positions 1129817-1130383), and its expression
379 was confirmed by RNA-Seq.

380

381 **Fig. 4. Sequence logo of the *Acidovorax citrulli* M6 plant-inducible promoter (PIP)**
382 **box motif.** The logo was generated with MEME-ChIP based on multiple alignment of
383 the 41 perfect PIP boxes that were found to be associated with HrpX-regulated genes by
384 RNA-Seq (see Table 2).

385

386 **Establishment of a translocation assay for validation of *A. citrulli* T3Es**

387 A critical prerequisite for the discovery of new T3Es is the availability of a
388 suitable translocation assay. We assessed the possibility of exploiting the *avrBs2-Bs2*
389 gene-for-gene interaction to test translocation of predicted *Acidovorax* T3Es into plant
390 cells. The *X. euvesicatoria* AvrBs2 effector elicits an HR in pepper plants carrying the
391 *Bs2* resistance gene [33]. A truncated form of this effector, carrying amino acids 62-574
392 (AvrBs2₆₂₋₅₇₄), lacks the N-terminal T3S translocation signal, but retains the ability to
393 elicit the HR when expressed in *Bs2* pepper cells [34]. The *avrBs2-Bs2* translocation
394 assay is thus based on generation of plasmids carrying the candidate T3E (CT3E) genes
395 fused upstream and in frame to the AvrBs2₆₂₋₅₇₄. The plasmid is then mobilized into a *X.*
396 *euvesicatoria* 85-10 *hrpG*ΔavrBs2* strain, that constitutively expresses *hrpG* and lacks
397 *avrBs2*. The resulting strain is used to inoculate leaves of the pepper line ECW20R that

398 carries the *Bs2* gene. If the AvrBs2₆₂₋₅₇₄ domain is fused with a T3E gene, this elicits a
399 *Bs2*-dependent HR [34]. Teper *et al.* recently used this reporter system to validate novel
400 T3Es of the *X. euvesicatoria* strain 85-10 [28].

401 Given the close similarity between the T3SSs of *A. citrulli* and *Xanthomonas*
402 spp., we hypothesized that the *X. euvesicatoria* T3S apparatus would recognize and
403 translocate *A. citrulli* T3Es, and therefore, that the *avrBs2-Bs2* reporter system would be
404 suitable for validating *A. citrulli* CT3E genes. To assess this hypothesis, we tested
405 translocation of eight T3Es of *A. citrulli* showing similarity to known T3Es of other
406 plant pathogenic bacteria. All tested fusions were translocated into pepper cells in a
407 T3S-dependent manner and induced a *Bs2*-dependent HR in ECW20R pepper leaves. In
408 contrast, HR was not detected when the fusions were tested in ECW30 leaves (lacking
409 the *Bs2* gene), and when a *X. euvesicatoria* *hrpF* mutant (impaired in T3S) was used in
410 these assays (Fig 5A). Overall, these results demonstrated the suitability of the *avrBs2-*
411 *Bs2* assay for validation of *A. citrulli* CT3Es.

412

413 **Fig. 5. Translocation assays of T3Es of *Acidovorax citrulli* M6.** (A) Selected T3Es
414 based on sequence similarity to T3Es from other plant pathogenic bacterial species (see
415 Table 1). (B) Candidate T3Es (CT3Es) selected from ML and RNA-Seq analyses.
416 T3E/CT3E ORFs were cloned in plasmid pBBR1MCS-2 upstream to the AvrBs2₆₂₋₅₇₄
417 domain, which elicits HR in ECW20R pepper plants carrying the *Bs2* gene, but not in
418 ECW30R pepper plants that lack this gene. The plasmids were transformed into
419 *Xanthomonas euvesicatoria* 85-10-*hrpG*^{*}-*avrBs2*, and the resulting strains were used
420 to inoculate pepper plants. All known T3Es (A) and seven among eleven tested CT3Es
421 (B) elicited HR in ECW20R but ECW30R leaves, similarly to the positive control
422 XopS-AvrBs2₆₂₋₅₇₄. Infiltrated areas are surrounded by red circles. No HR was induced
423 when leaves were inoculated with a *X. euvesicatoria* mutant impaired in T3S (*ΔhrpF*)
424 expressing T3E/CT3E-AvrBs2₆₂₋₅₇₄ fusions. Also, no HR was induced following
425 inoculation with *X. euvesicatoria* 85-10-*hrpG*^{*}-*avrBs2* without any plasmid (not
426 shown) or with a plasmid expressing the AvrBs2₆₂₋₅₇₄ domain alone (*ΔN*-terminal).

427 Numbers at the top correspond to the locus_tag in strain M6 (for example, 0492 is gene
428 *APS58_0492*).
429

430 **Seven novel T3Es of *A. citrulli* are translocated into plant cells**

431 Following validation of the *avrBs2-Bs2* reporter assay for *A. citrulli* T3Es, we
432 selected seven CT3Es based on results from the first ML run and RNA-Seq analysis.
433 Four genes that were ranked relatively low in the ML were also included in these
434 experiments to evaluate the quality of the ML prediction (Table 3 and S1 Table). All
435 seven CT3E genes, but not the low-ranked ML genes, were translocated (Fig 5B). The
436 validated genes were annotated as hypothetical proteins, had a predicted PIP box, were
437 shown to be positively regulated by HrpX, and ranked high in the ML run (Table 3 and
438 S1 Table). Importantly, the gene *APS58_1340*, which contains a PIP box in its promoter
439 region and its expression is regulated by HrpX (Table 3) was not translocated,
440 indicating that these two parameters alone are not sufficient for accurate prediction of
441 T3Es.

442

443 **Table 3. Candidate T3E genes of *Acidovorax citrulli* M6 that were tested in the**
444 ***avrBs2-Bs2* translocation assays.**

Gene ID ¹	Product	ML ²	PIP ³	RSEQ ⁴	TRA ⁵
<i>APS58_0500</i>	Hypothetical protein ⁷	39/48	+	+	+
<i>APS58_0705</i>	GrxD, glutaredoxin-4	91/2203	-	-	-
<i>APS58_0863</i>	Hypothetical protein	64/749	-	-	-
<i>APS58_1000*</i> ⁶	Hypothetical protein ⁷	21/*	+	+	+
<i>APS58_1340</i>	Hypothetical protein	84/535	+	+	-
<i>APS58_1448</i>	Hypothetical protein ⁷	17/104	+	+	+
<i>APS58_2974</i>	Hypothetical protein ⁷	19/29	+	+	+
<i>APS58_3297</i>	Hypothetical protein ⁷	20/61	+	+	+
<i>APS58_4095</i>	Hypothetical protein ⁷	31/46	+	+	+
<i>APS58_4116</i>	Hypothetical protein ⁷	11/43	+	+	+
<i>APS58_4399</i>	Hypothetical protein	174/739	-	-	-

445 ¹ Gene IDs are according to the annotation of the *A. citrulli* M6 chromosome (GenBank
446 accession CP029373).

447 ² ML: rankings in first/second machine learning (ML) runs. *, gene *APS58_1000** was not
448 included in the second ML run (see below).

449 ³ PIP: presence (+) or absence (-) of perfect plant-inducible promoter (PIP) box in the promoter
450 region.

451 ⁴ RSEQ: significantly reduced expression in the *hrpX* mutant relative to the wild type (+)/no
452 significant differences between strains (-).

453 ⁵ TRA: translocated (+)/non-translocated (-) in *avrBs2-Bs2* translocation assays (rows of
454 validated genes are shaded with gray).

455 ⁶ *APS58_1000**: this gene ranked high in the first ML but was not annotated in the recent
456 annotation of *A. citrulli* M6, although its expression was confirmed by RNA-Seq. Its ORF is
457 located between genes *APS58_0999* and *APS58_1000* (positions 1129817-1130383).

458 ⁷ These genes were detected only in plant pathogenic *Acidovorax* species.

459

460 BlastP analyses of the seven newly identified T3E genes revealed strong
461 similarity only to hypothetical proteins of plant pathogenic *Acidovorax* species. The fact
462 that no homologs for these genes were detected in non-pathogenic *Acidovorax* strains
463 (despite the availability of more than 70 genomes of such spp.) or in other plant
464 pathogenic bacterial species suggests a specific and unique role for their products in
465 *Acidovorax* pathogenicity. These seven genes were detected also in AAC00-1 (S2
466 Table) and in all other group I and II genomes available in NCBI. Some of them were
467 widely distributed among other plant pathogenic *Acidovorax* species. For instance,
468 *APS58_4095* was also detected in *A. oryzae* and in *A. cattleyae*, and homologs with less
469 than 60% query coverage were also present in *A. konjacii*, *A. anthurii* and *A.*
470 *valerianellae*. In contrast, *APS58_2974* was not detected in *Acidovorax* spp., other than
471 *A. citrulli* and *A. avenae* (S2 Table). Searches for conserved domains in these T3Es did
472 not provide any insight.

473

474 **Assessment of localization of three of the newly identified T3Es**

475 We attempted to assess the subcellular localization of three of the newly
476 identified T3Es, APS58_0500, APS58_1448 and APS58_4116. Prediction of
477 subcellular localization using the Plant-mPLoc server indicated that the three effectors
478 could localize to the nucleus. Browsing these T3Es with the LogSigDB server revealed
479 endoplasmic reticulum (ER) localization signals in the three effectors, and nuclear
480 localization signals in APS58_0500 and APS58_4116.

481 We assessed localization of these effectors fused to the yellow fluorescent
482 protein (YFP) in *Nicotiana benthamiana* leaves following transient expression by
483 agroinfiltration. Based on the aforementioned predictions, in first experiments the
484 leaves were co-infiltrated with *A. tumefaciens* carrying the ER marker mRFP-HDEL,
485 and were also stained with DAPI for nucleus localization. Representative images from
486 these experiments are shown in Fig 6. The results suggested that the three effectors
487 could interact with the ER, but only APS58_0500 and APS58_1448 partially localized
488 to the nucleus, including in clearly visible nuclear foci (Fig 6).

489

490 **Fig. 6. Transient expression of *Acidovorax citrulli* T3Es in *Nicotiana benthamiana*.**
491 The T3E genes APS58_0500, APS58_4116 and APS58_1448, identified by ML and
492 RNA-Seq and validated in translocation assays, were cloned in the binary vector
493 pEarleyGate101, fused to the C-terminus of YFP. The plasmids were transformed into
494 *Agrobacterium tumefaciens* GV3101, and the resulting strains were used for transient
495 expression in *N. benthamiana*. Leaves were co-inoculated with *A. tumefaciens* GV3101
496 carrying the mRFP-HDEL endoplasmic reticulum marker and stained with DAPI for
497 visualization of plant cell nuclei. Samples were visualized in a Leica SPE confocal
498 microscope 48 h after inoculation. Bars at the right bottom of each picture, 20 μ m.
499

500 In a second set of experiments, the YFP-fused effectors were co-infiltrated with
501 free-mCherry, localized mainly in the cytosol and in the nucleus, HDEL-mCherry,
502 localized to the ER, and the membrane-bound protein S1DRP2A (L. Pizarro and M. Bar,

503 unpublished results). Representative images from these experiments are shown in S2-
504 S4 Figs for APS58_0500, APS58_1448 and APS58_4116, respectively. The three
505 effectors partially co-localized with the membrane-bound protein SIDRPA, as
506 evidenced by the Pearson correlation coefficients (0.40±0.024 for APS5_0500,
507 0.49±0.040 for APS58_1448, and 0.53±0.037 for APS58_4116). Since APS58_0500
508 appeared to have a stronger membrane localization, we used the classical plasma
509 membrane microdomain protein Flot1 [35] as an additional membrane control marker.
510 Indeed, APS58_0500 had an expression pattern that was highly similar to that of Flot1
511 (compare top and bottom panels in S2 Fig). In agreement with the first set of
512 experiments (Fig 6), APS58_0500 (S2 Fig) and APS58_1448 (S3 Fig) partially
513 localized to the nucleus. On the other hand, these experiments confirmed that only
514 APS58_4116 partially interacted with the ER, mostly at the nuclear envelope (Fig 6 and
515 S4 Fig; Pearson coefficient with HDEL-mCherry 0.53±0.037). None of the effectors
516 was shown to have a significant cytosolic presence: the Pearson coefficient with
517 mCherry was lower than 0.12 for APS_0500 and APS_4116, while for APS_1448 the
518 coefficient was 0.53±0.037, due to the strong nuclear presence of this effector, as
519 indicated above. Overall, we can conclude that the three effectors are associated with
520 the plasma membrane, APS58_0500 and APS58_1448 partially localize to the nucleus,
521 and APS_4116 partially interacts with the ER.

522

523 **Generating an improved list of candidate T3Es of *A. citrulli* M6 with a second ML
524 run**

525 Machine learning can be improved after refinement of features specific to the
526 studied pathogen. Thus, we carried out a second ML run using the *A. citrulli* M6
527 genome. The main differences between the first and second ML runs were: (i) the

528 second run was done on the M6 genome [9], which by this time was fully assembled;
529 (ii) we included the seven novel T3Es identified in this study in the positive set and the
530 four ORFs that were found not to be translocated were added to the negative set; (iii) in
531 the positive set we included ORFs with high sequence similarity to known effectors
532 from other bacteria, based on our homology search results (Table 1); and (iv) we used
533 HrpX-mediated regulation as an additional feature used to train the classifier. The
534 results are summarized in S5 Table. Most known/validated T3Es ranked among the top
535 100 hits, and among the top 40 hits, 34 were known/validated T3Es. Importantly, some
536 genes with high propensity to encode T3Es (ranking among the top 60 in the second ML
537 run) did not appear among the top 200 hits in the first ML list (Table 1 and S1 Table),
538 thus supporting the higher reliability of the new list relative to the first prediction.

539 Among the top 100 hits of the second ML run, there were 37 genes that matched
540 to hypothetical proteins from the public database, with no similarity evidence to suggest
541 a T3E nature. Since this was the case of the seven T3Es validated in this study, it is
542 possible that some of these genes encode previously undiscovered T3Es. In this regard,
543 it is worth mentioning genes *APS58_1954*, *APS58_1986*, *APS58_3685*, *APS58_0987*
544 and *APS58_1694* (ranking at positions 20, 27, 57, 62 and 83 in the second ML,
545 respectively). While *APS58_1694* shares similarity only with hypothetical proteins of
546 plant pathogenic *Acidovorax* species, the first four also share similarities to hypothetical
547 proteins of other plant pathogenic genera (eg., *Xanthomonas*, *Ralstonia*, *Pseudomonas*
548 and/or *Erwinia*). These genes also showed increased expression in wild-type M6
549 relative to the *hrpX* mutant, and have PIP boxes in their promoter region. Therefore,
550 these genes are strong candidates for further experimental validations.

551

552 **Discussion**

553 Type III effectors (T3Es) play a dual role in the interaction between many Gram-
554 negative plant pathogenic bacteria and plants: while they collectively promote virulence
555 on susceptible plants, some may induce effector-triggered immunity (ETI) in plants
556 carrying the corresponding resistance (*R*) genes. *R* genes provide resistance against
557 economically important pathogens and have been mobilized to commercial crop
558 varieties by breeding programs. Thus, this is one of the most important means of disease
559 management [36, 37].

560 *Acidovorax citrulli* requires a functional type III secretion (T3S) system for
561 pathogenicity [10]. The main objective of this study was to significantly advance the
562 current knowledge about the arsenal of T3Es of *A. citrulli*. Among well-investigated
563 plant pathogenic bacteria, the pools of T3Es vary from only few effectors in
564 phytopathogenic bacteria from the *Enterobacteriaceae* family, to approximately 20 to
565 40 in strains of *P. syringae* and *Xanthomonas* spp. [21, 28, 40-44] and an average of
566 over 75 in *R. solanacearum* isolates [45, 46]. Thus, we hypothesized that the repertoire
567 of *A. citrulli* T3Es could be much larger than the eleven T3E genes identified in the
568 group II strain AAC00-1 [27].

569 As a first approach to uncover the arsenal of *A. citrulli* T3Es, we used a genome-
570 wide machine learning (ML) algorithm to determine the propensity of ORFs to encode
571 T3Es. In parallel, we looked carefully at the annotation of the group I model strain of *A.*
572 *citrulli*, M6, and carried out BlastP analyses of the genes encoding hypothetical proteins
573 or functions that could infer effector activity. These analyses revealed 51 putative T3E
574 genes that shared different levels of similarity with known effector genes from
575 *Xanthomonas* spp., *R. solanacearum* and/or *P. syringae* strains (Table 1). Homologs for
576 most of these T3E genes and for those identified in the present study were also detected
577 in other plant pathogenic *Acidovorax* species (S2 Table).

578 To identify new T3E genes of *A. citrulli*, we also used RNA-Seq to identify
579 HrpX-regulated genes. Based on the knowledge accumulated with *Xanthomonas* spp.
580 and *R. solanacearum* [22, 32, 47, 48], we expected that most genes encoding T3SS
581 components and some T3Es of *A. citrulli* would be under the direct regulation of HrpX.
582 This assumption was strengthened in preliminary experiments comparing gene
583 expression between a wild-type and a *hrpX* mutant strain (Fig 1C). As previously
584 mentioned, Zhang *et al.* recently showed that HrpX controls the expression of one T3E
585 gene in the group II strain, Aac5 [26].

586 The RNA-Seq approach revealed 159 genes showing significantly reduced
587 expression in the *hrpX* mutant, while 28 genes had significantly increased expression in
588 the mutant (S3 Table). These numbers are similar to those reported in gene expression
589 studies carried out with *Xanthomonas* spp. HrpX and with *R. solanacearum* HrpB. For
590 instance, microarray analyses of *Xanthomonas axonopodis* pv. *citri* (*Xac*) in XVM2
591 medium revealed that 181 genes were up-regulated by HrpX, while 5 to 55 genes
592 (depending on the time point) were down-regulated by this transcriptional regulator
593 [47]. Occhialini *et al.* found 143 HrpB up-regulated genes and 50 HrpB down-regulated
594 genes in *R. solanacearum* [48]. In these, as well as in several other studies, HrpX/HrpB
595 was found to regulate the expression of most genes encoding T3S components and
596 accessory proteins as well as several T3E genes [21, 22, 49]. In line with this
597 background, among the 159 HrpX up-regulated genes found in our study, 20 encoded
598 *hrp/hrc/hpa* genes and 27 encoded T3E genes. Interestingly, *hrcC* was a member of the
599 *A. citrulli* HrpX regulon. *hrcC* expression in *X. euvesicatoria* is directly regulated by
600 HrpG, in an HrpX-independent manner [31]. In contrast, in *R. solanacearum*, *hrcC* is
601 regulated by HrpX [49, 50] as we found in *A. citrulli* M6.

602 In *Xanthomonas* spp. and in *R. solanacearum*, the HrpX/HrpB regulon includes
603 many genes that are not involved in T3S [21, 47, 49]. A similar picture emerged from
604 our study, where HrpX was shown to regulate genes involved in transmembrane
605 transport, including several ABC transporters and permeases as well as transcriptional
606 regulators. Among the HrpX up-regulated genes we also detected several genes whose
607 products are putatively secreted by type II secretion (T2S). These included genes
608 encoding 1-4- β -xylanase (*xynB*), pectate lyase and a protein with similarity to a family
609 of S1 extracellular serine proteases (S3E Table). HrpX regulation of genes encoding
610 type II-secreted enzymes was also demonstrated in *Xanthomonas* spp. and in *R.*
611 *solanacearum* [22, 47, 51-54].

612 Among the 159 HrpX up-regulated genes in *A. citrulli*, more than 60 carried
613 perfect PIP boxes in their promoter region or were part of operons carrying perfect PIP
614 boxes (Table 2; S3 and S4 Tables). Although some other genes may carry imperfect PIP
615 boxes and may be directly regulated by HrpX, this result suggests that many of the
616 HrpX up-regulated genes are indirectly regulated by this transcriptional factor. This is a
617 reasonable assumption, considering that among the genes that are up- and down-
618 regulated by HrpX, there are several transcriptional regulators. For instance, genes
619 encoding transcriptional factors belonging to the LysR (*APS58_0949* and *APS58_2039*),
620 IclR (*APS58_1263*), FmbD (*APS58_1340*) and TetR (*APS58_3638*) families were
621 shown to be up-regulated by HrpX. In contrast, two genes encoding DNA-binding
622 response regulators, homologous to PhoP (*APS58_0821*) and FixJ (*APS58_1682*) were
623 HrpX-down-regulated (S2B Table).

624 After demonstrating the suitability of the *avrBs2-Bs2* T3E translocation assay
625 with eight known T3Es, we used the data obtained from the first ML run and the RNA-
626 Seq analysis to select seven *A. citrulli* M6 ORFs for experimental validation (Fig 5). We

627 validated translocation of the seven candidates, thus demonstrating the strength of
628 combining ML and RNA-Seq for identifying T3E genes. Importantly, the lack of
629 translocation of the four ORFs that received relatively low scores in the first ML run
630 strengthened the suitability of our combined computational/experimental approach.

631 Remarkably, the seven effectors identified in this study were up-regulated by
632 HrpX and carried PIP boxes in their promoter regions, while among the four non-
633 validated genes, only one had these traits (Table 3). An interesting trait of the seven new
634 T3Es was that they share significant similarity only with hypothetical proteins of other
635 plant pathogenic *Acidovorax* strains (Table 3 and S2 Table). This strongly supports that
636 these effectors are unique to plant pathogenic *Acidovorax*. Importantly, a second ML
637 run, informed by the knowledge accumulated from this study, revealed additional genes
638 that were ranked in relatively high positions and encoded hypothetical proteins that
639 occur only in plant pathogenic *Acidovorax* or in other plant pathogenic bacteria (S5
640 Table). These represent high priority CT3Es for future experimental validation assays.
641 This emphasizes one benefit of the ML approach: its ability to integrate novel
642 knowledge in the prediction algorithm.

643 Another interesting characteristic of the new T3Es discovered in this study is
644 their relatively small size. Based on the annotation of the M6 genome, the average and
645 median lengths of *A. citrulli* M6 T3Es are 387.7 and 345 amino acids (a.a.),
646 respectively. Except for *APS_4116* that encodes a 347-a.a. protein, the size of the six
647 other new T3Es ranged from 113 a.a. (APS58_4095) to 233 a.a. (APS58_0500) (S5
648 Fig). In the public database (GenBank), there are several examples of small T3Es from
649 plant pathogenic bacteria, including *Xanthomonas* AvrXv3 (most having 119 a.a.),
650 *Pseudomonas syringae* HopAF1 (112-291 a.a.), HopBF1 (125-207 a.a.), HopF2 (177-

651 280 a.a.), HopH1 (201-218 a.a.) and AvrRpt2 (222-255 a.a.), and the *R.*
652 *solanacearum/Xanthomonas* HopH1 homologs (155-218 a.a.).

653 In this study we assessed plant cell localization of three of the new T3Es
654 validated in translocation assays, APS58_0500, APS58_1448 and APS58_4116.
655 Utilization of subcellular localization prediction tools and confocal microscopy of *N.*
656 *benthamiana* agro-infiltrated leaves strongly suggest that the three tested effectors
657 interact with the plasma membrane (S2-S4 Figs), with APS58_0500 remarkably
658 mimicking the localization of the classical non-clathrin mediated endocytic system
659 protein, Flot1 [35]. While APS58_4116 interacted with the endoplasmic reticulum (Fig
660 6 and S2 Fig), effectors APS58_0500 and APS58_1448 partially localized to the
661 nucleus (Fig 6; S3 and S4 Figs). Interestingly, and in line with the predicted nuclear
662 localization of these effectors, BlastP showed that APS58_0500 has low similarity with
663 an ATP-dependent RNA helicase of the Metazoa organism *Clonorchis sinensis* (query
664 cover, 38%; e-value, 0.23), while APS58_1448 has low similarity to a transcriptional
665 regulator of the bacterium *Hoeflea halophila* (query cover, 54%; e-value, 0.19-0.53),
666 suggesting possible functions the *Acidovorax* effectors might execute upon entrance
667 into the plant cell nucleus.

668 In conclusion, we have combined sequence analysis, ML and RNA-Seq
669 approaches to uncover the arsenal of T3Es of the group I model strain of *A. citrulli*, M6,
670 including discovery of new T3Es that appear to be unique to plant pathogenic
671 *Acidovorax* spp. Further characterization of the novel T3Es identified in this study may
672 uncover new host targets of pathogen effectors and new mechanisms by which
673 pathogenic bacteria manipulate their hosts. We also demonstrated the suitability of a
674 translocation reporter system for validation of *A. citrulli* T3Es, which we expect, will be
675 very helpful to the *Acidovorax* research community. Until recently it was assumed that

676 *A. citrulli* strains (and in general plant pathogenic *Acidovorax* strains) possess little over
677 ten T3E genes. However, from this study it is clear that the *A. citrulli* pan-genome
678 encodes more than 50-60 T3Es. Therefore, the *A. citrulli* T3E repertoire is larger than
679 those of most well-characterized plant pathogenic bacteria, including plant pathogenic
680 *Enterobacteri*a, *P. syringae* pathovars, *Xanthomonas* spp. and, and closer in numbers to
681 the T3E repertoires of *R. solanacearum*. Moreover, the second ML run suggested that *A.*
682 *citrulli* may possess yet unrevealed T3E genes. Importantly, among the 58 known T3E
683 genes of *A. citrulli* M6, ten (17.2%) appear to be unique to group I strains. On the other
684 hand, the group II model strain, AAC00-1, carries T3E genes that are absent or non-
685 functional in group I strains as shown in our previous report [27] and in this study
686 (Table 1 and S1 Table). Thus, it is logical to assume that the variability in T3E content
687 between group I and II strains plays a critical role in shaping the differences in host-
688 preferential association between the groups. Despite this, more research is needed to test
689 this hypothesis, and to understand the mode of action and contribution of individual
690 effectors to the virulence of *A. citrulli*.

691

692 **Methods**

693 **Bacterial strains and plasmids**

694 Bacterial strains and plasmids used in this study are listed in S6 Table. Unless
695 stated otherwise, *Acidovorax citrulli* strains were grown at 28 °C in nutrient broth (NB;
696 Difco Laboratories, Detroit, Michigan) or nutrient agar (NA; NB containing 15 g/L
697 agar). For RT-PCR, qRT-PCR and RNA-seq experiments, *A. citrulli* strains were grown
698 in XVM2 medium [31]. *Xanthomonas euvesicatoria*, *Agrobacterium tumefaciens* and
699 *Escherichia coli* strains were cultured on Luria-Bertani (LB) medium [55] at 28 °C for
700 *X. euvesicatoria* and *A. tumefaciens*, and 37 °C for *E. coli*. When required, media were

701 supplemented with the following antibiotics: ampicillin (Ap, 100 µg/mL for *E. coli* and
702 200 µg/mL for the others), rifampicin (Rif, 50 µg/mL), kanamycin (Km, 50 µg/mL),
703 and gentamycin (Gm, 50 µg/mL for *A. citrulli* and 10 µg/mL for the others).

704

705 **Molecular manipulations**

706 Routine molecular manipulations and cloning procedures were carried out as
707 described [55]. T4 DNA ligase and restriction enzymes were purchased from Fermentas
708 (Burlington, Canada). AccuPrep® Plasmid Mini Extraction Kit and AccuPrep® PCR
709 Purification Kit were used for plasmid and PCR product extraction and purification,
710 respectively (Bioneer Corporation, Daejeon, Republic of Korea). DNA was extracted
711 with the GeneElute bacterial genomic DNA Kit (Sigma-Aldrich, St. Louis, MO, USA).
712 PCR primers were purchased from Sigma-Aldrich and are listed in S7 Table. PCR
713 reactions were performed with the Readymix Red Taq PCR reactive mix (Sigma-
714 Aldrich) or with the Phusion high-fidelity DNA polymerase (Fermentas, Waltham, MA,
715 USA) using an Eppendorf (Hamburg, Germany) thermal cycler. Sequencing of PCR
716 fragments and constructs was performed at Hy Laboratories (Rehovot, Israel).
717 *Escherichia coli* S17-1 λpir, DH5-α and DB3.1 strains were transformed using an
718 Eppendorf 2510 electroporator according to manufacturer's instructions. Plasmid
719 mobilizations to *A. citrulli* and *X. euvesicatoria* strains were done by bi-parental mating
720 as described [56]. *A. tumefaciens* cells were transformed by the heat shock method [57].

721

722 **Machine learning classifications**

723 In order to predict T3Es, we applied ML classification algorithms, which are
724 similar to the ones we have previously described [28, 29, 58, 59]. The first ML run was
725 used to search for T3Es in the AAC00-1 genome (GenBank accession CP000512.1).

726 The training data included 12 ORFs that were known as T3Es (see in Results). The
727 negative set included 2,680 ORFs that had high similarity (E-value less than 0.001) to
728 ORFs in the non-pathogenic *E. coli* K12 genome (accession number NC_000913.3).
729 The positive and negative ORFs are marked in S1 Table. For this ML, 71 features were
730 used, including homology (to known effectors or to bacteria without T3SS),
731 composition (amino acid composition, GC content), location in the genome (e.g.,
732 distance from known T3Es), and the presence of a PIP box in the promoter region. The
733 complete list of features is given in S8 Table. Features were extracted using in-house
734 Python scripts. The outcome of the ML run is a score for each ORF, reflecting its
735 likelihood to encode a T3E. We evaluated several classification algorithms: random
736 forest [60], naïve Bayes [61], support vector machine (SVM; [62]), K nearest neighbors
737 (KNN), linear discriminate analysis (LDA), logistic regression (all three described in
738 Hastie *et al.* [63]), and Voting, which aims to predict averaging over all other ML
739 algorithms. For each run, feature selection was performed. The ML algorithms and
740 feature selection were based on the Scikit-learn module in Python [64]. The area under
741 the curve (AUC) score over 10- fold cross- validation was used as a measure of the
742 classifier performance. The first ML run was based on the random forest classifier
743 which gave the highest AUC (0.965).

744 The second ML run was similar to the first, with the following modifications.
745 First, the classifiers were run on the M6 genome (GenBank accession CP029373).
746 Second, the positive set included ORFs that were validated as T3Es in this study and
747 ORFs with high sequence similarity to known effectors as described in Table 1. The
748 negative set included 2,570 ORFs (S5 Table). The four ORFs that were experimentally
749 shown not to be T3Es were also included in this negative set. Third, the expression data
750 from the RNA-Seq analysis (HrpX regulation) were added as a feature. Fourth, the PIP

751 box feature was updated to reflect the PIP box as inferred from promoter regions of
752 *Acidovorax* T3Es (see additional bioinformatics tools below). The second ML run was
753 based on Voting classifier, which included all the classifiers specified above, as it gave
754 the highest AUC among all the classifiers. The AUC for this second ML run was 0.999.

755

756 **Generation of *A. citrulli* mutants and complemented strains**

757 *Acidovorax citrulli* M6 mutants disrupted in *hrpX* (*APS58_2298*) and *hrpG*
758 (*APS58_2299*) genes were generated by single insertional mutagenesis following single
759 homologous recombination. Internal fragments of the *hrpX* (383 bp) and *hrpG* (438 bp)
760 ORFs carrying nucleotide substitutions that encode early stop codons, were PCR-
761 amplified and inserted into the *Bam*HI/*Eco*RI site of the suicide plasmid pJP5603 [65].
762 The resulting constructs were transformed into *E. coli* S17-1 λpir, verified by
763 sequencing, and mobilized into *A. citrulli* M6 by bi-parental mating. Transconjugants
764 were selected by Km selection. Disruption of the target genes by single homologous
765 recombination and plasmid insertion was confirmed by PCR and sequencing of
766 amplified fragments. To generate complemented strains for mutants disrupted in *hrpX*
767 and *hrpG* genes, the full ORFs of these genes (1407 pb and 801 bp, respectively) were
768 PCR-amplified and cloned into the *Eco*RI/*Bam*HI sites of pBBR1MCS-5 [66]. The
769 generated plasmids were transformed into *E. coli* S17-1 λpir, verified by sequencing,
770 and transferred by bi-parental mating into the corresponding M6 mutant strains.
771 Complemented strains were selected by Gm resistance and validated by PCR.

772

773 **Infiltration of melon and pepper leaves with *A. citrulli* strains**

774 Melon (*Cucumis melo*) cv. HA61428 (Hazera Genetics, Berurim, Israel) plants
775 were grown in a greenhouse at ~28 °C. Pepper (*Capsicum annuum*) cv. ECW20R and

776 ECW30 [67] plants were grown in a growth chamber (16 h/26 °C in the light; 8 h/18 °C
777 in the dark; relative humidity set to 70%). The three youngest, fully expanded leaves of
778 3-week-old melon and 5-week-old pepper plants were syringe-infiltrated in the abaxial
779 side with bacterial suspensions of *A. citrulli* strains containing 10^8 colony forming units
780 (cfu)/mL in 10 mM MgCl₂. Phenotypes were recorded 3 and 4 days after inoculation
781 (d.a.i.), for melon and pepper leaves, respectively. For a better visualization of HR
782 symptoms in pepper leaves, the infiltrated leaves were soaked in an acetic
783 acid:glycerol:water solution (1:1:1 v/v) for 4 h and then transferred to ethanol and
784 boiled for 10 min. Experiments were repeated twice with similar results.

785

786 **RNA isolation, cDNA synthesis and reverse transcription-PCR (RT-PCR)**

787 *Acidovorax citrulli* M6 and *hrpX* mutant were grown at 28 °C in 5 mL of XVM2
788 medium for 72 h. Total RNA was isolated using TRI reagent (Sigma-Aldrich) and
789 Direct-zol RNA miniprep kit (Zymo Research, Irvine, CA, USA) according to
790 manufacturer's instructions. Samples were treated with RNase free DNase using Turbo
791 DNA-free kit (Invitrogen, Carlsbad, CA, USA). RNA concentration was quantified
792 using a Nanodrop DS-11 FX (Denovix, Wilmington, Delaware) and RNA integrity was
793 assayed on 1% agarose gels. RNA was reverse transcribed into cDNA using a High
794 Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Semiquantitative RT-
795 PCR analysis was performed using 1 µg of cDNA or gDNA (as positive control for
796 amplification), 0.6 pmol of selected primer, the Phusion High-Fidelity DNA Polymerase
797 (ThermoFisher Scientific, Waltham, MA, USA), and the following conditions: 98 °C for
798 15 min, followed by 35 cycles of 98 °C for 30 s, 60 °C for 30 s and 72 °C for 15 s. The
799 *A. citrulli* *GADPH* housekeeping gene [68] was used as reference. The relative amount
800 of amplified DNA was assayed on 2% agarose gels.

801

802 **RNA-Seq and quality analysis**

803 Total RNA of wild-type M6 and *hrpX* mutant strains was isolated as described
804 above for RT-PCR experiments. Three independent RNA extractions were obtained for
805 each strain. Ribosomal RNA was depleted using the MICROB Express Bacterial
806 mRNA Purification kit (Ambion, Foster City, CA, USA). The integrity and quality of
807 the ribosomal depleted RNA was checked by an Agilent 2100 Bioanalyzer chip-based
808 capillary electrophoresis machine (Agilent Technologies, Santa Clara, CA, USA). RNA
809 sequencing was carried out at the Center for Genomic Technologies at The Hebrew
810 University of Jerusalem (Jerusalem, Israel). The samples were used to generate whole
811 transcriptome libraries using the NextSeq 500 high output kit (Illumina, San Diego, CA,
812 USA) with a NextSeq 2000 sequencing instrument (Illumina). The cDNA libraries were
813 quantified with a Qubit 2.0 Fluorometer (Invitrogen) and their quality was assessed with
814 an Agilent 2200 TapeStation system (Agilent Technologies). One of the *hrpX* mutant
815 libraries was removed from further analysis due to low quality. Raw reads (fastq files)
816 were further inspected with FastQC v0.11.4 [69]. They were trimmed for quality and
817 adaptor removal using Trim Galore default settings: trimming mode, single-end; Trim
818 Galore version 0.4.3; Cutadapt version 1.12; Quality Phred score cutoff, 20; quality
819 encoding type selected, ASCII+33; adapter sequence, AGATCGGAAGAGC (Illumina
820 TruSeq, Sanger iPCR; auto-detected); maximum trimming error rate; 0.1; minimum
821 required adapter overlap (stringency), 1 bp. An average of 0.6% of the reads were
822 quality trimmed and 57% of the reads were treated for adaptor removal.

823

824 **Mapping of RNA-Seq reads on the *A. citrulli* M6 genome and differential
825 expression analysis**

826 Cleaned reads (~20 million per sample) were mapped against the latest version
827 of the *A. citrulli* M6 genome (CP029373) using STAR v 2.201 [70]. Mapping files were
828 further processed for visualization by Samtools Utilities v 0.1.19 [71]. The resulting
829 Bam files were used to improve gene and operon predictions along the genome using
830 cufflinks v2.2.1 followed by cuffmerge without a guiding reference file [72]. Uniquely
831 mapped reads per gene were counted twice [once using the original submitted
832 annotation file (orig.gff), and then using the merged annotations by cufflinks-cuffmerge
833 (merged.gff)] using HTSeq-count [73]. Differential expression analysis was performed
834 using the DESeq2 R package [73]. Differentially expressed genes were defined as those
835 genes with a fold-change higher than 2, and a *P* value lower than 0.05.

836

837 **Validation of RNA-Seq results by quantitative real-time PCR (qRT-PCR)**

838 RNA-seq data were verified by qRT-PCR using specific primers of selected
839 genes (S7 Table). Bacterial growth, RNA isolation and cDNA synthesis were as
840 described above for RT-PCR and RNA-Seq experiments. qRT-PCR reactions were
841 performed in a Light Cycler 480 II (Roche, Basel, Switzerland) using 1 µg of cDNA,
842 0.6 pmol of each primer and the HOT FIREPol EvaGreen qPCR Mix Plus (Solis
843 BioDyne, Tartu, Estonia), and the following conditions: 95 °C for 15 min (1 cycle); 95
844 °C for 15 s, 60 °C for 20 s and 72 °C for 20 s (40 cycles); melting curve profile from 65
845 to 97 °C to verify the specificity of the reaction. The *A. citrulli* *GADPH* gene was used
846 as an internal control to normalize gene expression. The threshold cycles (C_t) were
847 determined with the Light Cycler 480 II software (Roche) and the fold-changes of three
848 biological samples with three technical replicates per treatment were obtained by the
849 ΔΔC_t method [74]. Significant differences in expression values were evaluated using
850 the Mann-Whitney non-parametrical test ($\alpha = 5\%$).

851

852 Additional bioinformatics tools

853 BlastP analyses for search of T3E homologs were done at the NCBI server
854 against the non-redundant protein sequences (nr) database, selecting the organisms
855 *Acidovorax* (taxid: 12916), *Xanthomonas* (taxid: 338), *Ralstonia* (taxid: 48736) or
856 *Pseudomonas syringae* group (taxid: 136849), with default parameters. Gene ontology
857 (GO) assignments were done using Blast2GO software v5.2
858 (<https://www.blast2go.com/>). SignalP4.1 [75], Phobius [76] and Pred-Tat [77] were
859 used for detection of N-terminal type II secretion signal peptides. The program fuzznuc
860 (EMBOSS package; <http://www.bioinformatics.nl/cgi-bin/emboss/fuzznuc>) was used to
861 detect perfect PIP box sequences (TTCGB-N15-TTCGB; [32]) in the *A. citrulli* M6
862 genome. A logo of the PIP box motif of *A. citrulli* M6 was done with MEME-ChIP [78]
863 at the MEME Suite website (<http://meme-suite.org/>). Domain search of T3Es was
864 carried out using the following databases/tools: Protein Data Bank (PDB) and
865 UniProtKB/Swiss-Prot (through NCBI Blast), PFAM (<https://pfam.xfam.org/>), Prosite
866 (<https://prosite.expasy.org/>) and InterPro
867 (<https://www.ebi.ac.uk/interpro/search/sequence-search>). LogSidDB [79] and Plant-
868 mPLoc [80] were used for detection of protein localization signals and for prediction of
869 subcellular localization of T3Es, respectively.

870

871 Translocation assays

872 The ORFs without the stop codon of candidate genes were amplified using
873 specific primers (S7 Table) and cloned into the *Sall/Xba*I sites of pBBR1MCS-
874 2::*avrBs2*₆₂₋₅₇₄, upstream to and in frame with the *avrBs2*₆₂₋₅₇₄ HR domain of *avrBs2*
875 and an haemagglutinin (HA) tag [28], except for ORFs of genes *APS58_0500* and

876 *APS58_1760*, which were cloned into the *Xba*I/*Xba*I sites of the same vector. The
877 resulting plasmids were mobilized into *X. euvesicatoria* strains 85-10 *hrpG*ΔavrBs2*
878 [81] and 85-10 *hrpG*ΔhrpF* [82]. Expression of recombinant T3E/CT3E-*AvrBs2*₆₂₋₅₇₄₋
879 HA proteins was verified by Western blot using the iBlot Gel Transfer Stacks
880 Nitrocellulose kit (Invitrogen), and anti- hemagglutinin (HA)-tag and horseradish
881 peroxidase (HRP) antibodies (Cell Signaling Technology, Danvers, MA, USA) (S6
882 Fig). For translocation assays, *X. euvesicatoria* strains were grown overnight in LB
883 broth with Km, centrifuged and resuspended in 10 mM MgCl₂ to a concentration of 10⁸
884 cfu/mL. These suspensions were used to infiltrate the three youngest, fully expanded
885 leaves of 5-week-old ECW20R and ECW30R [83] pepper plants, carrying and lacking
886 the *Bs2* gene, respectively, using a needleless syringe. The plants were kept in a growth
887 chamber at 25 °C, ~50% relative humidity, 12 h day/12 h night. HR was monitored 36 h
888 after inoculation (h.a.i.). For visualization of cell death, the infiltrated leaves were
889 treated as described above for pepper leaves infiltrated with *A. citrulli* strains. Each
890 candidate gene was tested in three independent experiments with at least three plants,
891 with similar results being obtained among replicates and experiments.

892

893 ***Agrobacterium*-mediated transient expression and confocal imaging**

894 The ORFs of genes *APS58_0500*, *APS58_1448* and *APS58_4116* were amplified
895 with specific primers (S7 Table) and cloned into pEarlyGate101 binary vector [84],
896 upstream of a Yellow Fluorescence Protein (YFP) encoding gene and an HA tag using
897 the Gateway cloning system (ThermoFisher Scientific). The resulting plasmids were
898 verified by sequencing and mobilized into *A. tumefaciens* GV3101 as indicated above.
899 Transient expression experiments were performed following the protocol described by
900 Roden *et al.* [81] with few modifications. Briefly, overnight cultures of *A. tumefaciens*

901 GV3101 carrying the different plasmids were centrifuged, and pellets were resuspended
902 in induction solution containing 10 mM MgCl₂, 10 mM 2-(N-morpholino)-
903 ethanesulfonic acid (MES), and 200 mM acetosyringone (pH 5.6). The suspensions
904 were incubated at 25 °C without shaking for 3 h. Bacterial cultures were then diluted to
905 OD_{600nm}~0.6 and infiltrated with a needleless syringe into leaves of 4-week-old *N.*
906 *benthamiana* plants [85] that were grown in a growth chamber (16 h/26 °C in the light,
907 8 h/18 °C in the dark; relative humidity set to 70%). Subcellular localization of tested
908 T3Es coupled to YFP were investigated by co-infiltration with *A. tumefaciens* GV3101
909 carrying monomeric Red Fluorescence Protein fused in frame with the endoplasmid
910 reticulum (ER) marker HDEL (mRFP-HDEL; [86, 87]), the membrane associated
911 SIDRP2A (L. Pizarro and M. Bar, unpublished results) fused to monomeric Cherry
912 fluorescent protein, and by staining with 1 mg/mL 4',6-diamidino-2-phenylindole
913 (DAPI), that was used to detect the nucleus of the plant cells [88]. As controls, plants
914 were infiltrated with *A. tumefaciens* GV3101 carrying pEarlyGate104 (YFP-encoding
915 gene). Infiltrated plants were kept in the growth chamber at similar conditions as above,
916 and 48 h.a.i., functional fluorophores were visualized using a SPE (Leica Microsystems,
917 Wetzlar, Germany) or a LSM 780 (Zeiss, Oberkochen, Germany) confocal microscope.
918 Images were acquired using two tracks: track 1 for YFP detection, exciting at 514 nm
919 and collecting emission from the emission range 530-560 nm; track 2 for RFP and
920 mCherry detection, exciting at 561 nm and collecting from the emission range 588-641
921 nm. Images of 8 bits and 1024X1024 pixels were acquired using a pixel dwell time of
922 1.27, pixel averaging of 4 and pinhole of 1 airy unit. Analysis of colocalization was
923 conducted with Fiji-ImageJ using the Coloc2 tool. For calculating the Pearson
924 correlation coefficient, 15-18 images were analysed. Signal profiles were analysed using
925 the Plot Profile tool [89].

926

927 **Acknowledgements**

928 We thank Dr. Einat Zelinger from the Interdepartmental Core Facility of the
929 Robert H. Smith Faculty of Agriculture, Food and Environment Hebrew University
930 Interdepartmental Core Facility for her assistance with confocal microscopy. We also
931 thank Dr. Inbar Plaschkes from the Bioinformatics Unit of the Hebrew University of
932 Jerusalem for her assistance with the RNA-Seq data.

933

934 **References**

- 935 1. Rosenberg T, Eckshtain-Levi N, Burdman S. Plant pathogenic *Acidovorax* species.
936 In: Murillo J, Jackson R, Vinatzer B, Arnold D, editors. Bacterial-plant
937 interactions: advanced research and future trends. Poole: Caister Academic Press;
938 2015. pp 83-99.
- 939 2. Burdman S, Walcott R. Plant-pathogenic *Acidovorax* species. Saint Paul: American
940 Phytopathological Society; 2018
- 941 3. Burdman S, Walcott R. *Acidovorax citrulli*: generating basic and applied
942 knowledge to tackle a global threat to the cucurbit industry. Mol Plant Pathol. 2012;
943 13:805-815.
- 944 4. Zhao M, Walcott R. *Acidovorax citrulli*: History, epidemiology, and management
945 of bacterial fruit blotch of cucurbits. In: Burdman S, Walcott R., editors. Plant-
946 pathogenic *Acidovorax* species. Saint Paul: American Phytopathological Society;
947 2018. pp. 39-57.
- 948 5. Burdman S, Kots N, Kritzman G, Kopelowitz, J. Molecular, physiological, and
949 host-range characterization of *Acidovorax avenae* subsp. *citrulli* isolates from
950 watermelon and melon in Israel. Plant Dis. 2005; 89:1339-1347.

951 6. Walcott RR, Fessehaie A, Castro AC. Differences in pathogenicity between two
952 genetically distinct groups of *Acidovorax avenae* subsp. *citrulli* on cucurbit hosts. *J*
953 *Phytopathol.* 2004; 152:277-285.

954 7. Walcott RR, Langston JDB, Sanders FH, Gitaitis RD. Investigating intraspecific
955 variation of *Acidovorax avenae* subsp. *citrulli* using DNA fingerprinting and whole
956 cell fatty acid analysis. *Phytopathology*. 2000; 90:191-196.

957 8. Eckshain-Levi N, Shkedy D, Gershovitz M, da Silva GM, Tamir-Ariel D, Walcott
958 R, et al. Insights from the genome sequence of *Acidovorax citrulli* M6, a group I
959 strain of the causal agent of bacterial fruit blotch of cucurbits. *Front Microbiol.*
960 2016; 7:430.

961 9. Yang R, Santos-Garcia D, Pérez-Montaño F, da Silva GM, Zhao M, Jiménez-
962 Guerrero I, et al. Complete assembly of the genome of an *Acidovorax citrulli* strain
963 reveals a naturally occurring plasmid in this species. *Front Microbiol.* Forthcoming
964 (doi: 10.3389/fmicb.2019.01400).

965 10. Bahar O, Burdman S. Bacterial fruit blotch: a threat to the cucurbit industry. *Israel J*
966 *Plant Sci.* 2010; 58:19-31.

967 11. Block A, Li GY, Fu ZQ, Alfano JR. Phytopathogen type III effector weaponry and
968 their plant targets. *Curr Opin Plant Biol.* 2008; 11:396-403.

969 12. Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant
970 cells. *FEMS Microbiol Rev.* 2016; 40:894-937.

971 13. Galan JE, Lara-Tejero M, Marlovits TC, Wagner S. Bacterial type III secretion
972 systems: specialized nanomachines for protein delivery into target cells. *Ann Rev*
973 *Microbiol.* 2014; 68:415-438.

974 14. Feng F, Zhou JM. Plant-bacterial pathogen interactions mediated by type III
975 effectors. *Curr Opin Plant Biol.* 2012; 15:469-476.

976 **15.** Macho AP, Zipfel C. Targeting of plant pattern recognition receptor-triggered
977 immunity by bacterial type-III secretion system effectors. *Curr Opin Microbiol.*
978 2015; 23: 14-22.

979 **16.** Duxbury Z, Ma Y, Furzer OJ, Huh SU, Cevik V, Jones, JDG, et al. Pathogen
980 perception by NLRs in plants and animals: Parallel worlds. *Bioessays.* 2016;
981 38:769-781.

982 **17.** Jones JD, Dangl JL. The plant immune system. *Nature.* 2006; 444:323-329.

983 **18.** Flor HH. Current status of the gene-for-gene concept. *Ann Rev Phytopathol.* 1971;
984 9:275-296.

985 **19.** Bogdanove AJ, Beer SV, Bonas U, Boucher CA, Collmer A, Coplin DL, et al.
986 Unified nomenclature for broadly conserved *hrp* genes of phytopathogenic bacteria.
987 *Mol Microbiol.* 1996; 20:681-683.

988 **20.** Büttner D, Bonas U. Getting across-bacterial type III effector proteins on their way
989 to the plant cell. *EMBO J.* 2002; 21:5313-5322.

990 **21.** Büttner D, Bonas U. Regulation and secretion of *Xanthomonas* virulence factors.
991 *FEMS Microbiol Rev.* 2010; 34:107-133.

992 **22.** Genin S, Denny TP. Pathogenomics of the *Ralstonia solanacearum* species
993 complex. *Annu Rev Phytopathol.* 2012; 50:67-89.

994 **23.** Wengelnik K, Ackerveken G, Bonas U. HrpG, a key *hrp* regulatory protein of
995 *Xanthomonas campestris* pv. *vesicatoria* is homologous to two-component
996 response regulators. *Mol Plant-Microbe Interact.* 1996; 196:704-712.

997 **24.** Wengelnik K, Bonas U. HrpXv, an AraC-type regulator, activates expression of
998 five of the six loci in the *hrp* cluster of *Xanthomonas campestris* pv. *vesicatoria*. *J*
999 *Bacteriol.* 1996; 178:3462-3469.

1000 25. Cunnac S, Boucher C, Genin S. Characterization of the *cis*-acting regulatory
1001 element controlling HrpB-mediated activation of the type III secretion system and
1002 effector genes in *Ralstonia solanacearum*. *J Bacteriol*. 2004; 186:2309-2318.

1003 26. Zhang XX, Zhao M, Yan JP, Yang LL, Yang YW, Guan W., et al. Involvement of
1004 *hrpX* and *hrpG* in the virulence of *Acidovorax citrulli* strain Aac5, causal agent of
1005 bacterial fruit blotch in cucurbits. *Front Microbiol*. 2018; 9:507.

1006 27. Eckshain-Levi N, Munitz T, Zivanovic M, Traore SM, Sproer C, Zhao B, et al.
1007 Comparative analysis of type III secreted effector genes reflects divergence of
1008 *Acidovorax citrulli* strains into three distinct lineages. *Phytopathology*. 2014;
1009 104:1152-1162.

1010 28. Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G. Identification
1011 of novel *Xanthomonas euvesicatoria* type III effector proteins by a machine-
1012 learning approach. *Mol Plant Pathol*. 2016; 17:398-411.

1013 29. Nissan G, Gershovits M, Morozov M, Chalupowicz L, Sessa G, Manulis-Sasson S,
1014 et al. Revealing the inventory of type III effectors in *Pantoea agglomerans* gall-
1015 forming pathovars using draft genome sequences and a machine-learning approach.
1016 *Mol Plant Pathol*. 2018; 19:381-392.

1017 30. De Vos P, Willems A, Jones JB. Taxonomy of the *Acidovorax* genus. In: Burdman
1018 S, Walcott R., editors. *Plant-pathogenic Acidovorax species*. Saint Paul: American
1019 Phytopathological Society; 2018. pp. 5-37.

1020 31. Wengelnik K, Marie C, Russel M, Bonas U. Expression and localization of HrpA1,
1021 a protein of *Xanthomonas campestris* pv. *vesicatoria* essential for pathogenicity and
1022 induction of the hypersensitive reaction. *J Bacteriol*. 1996; 178:1061-1069.

1023 32. Koebnik R, Krüger A, Thieme F, Urban A, Bonas U. Specific binding of the
1024 *Xanthomonas campestris* pv. *vesicatoria* AraC-type transcriptional activator HrpX
1025 to plant-inducible promoter boxes. *J Bacteriol.* 2006; 188:7652-7660.

1026 33. Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, et al.
1027 Expression of the *Bs2* pepper gene confers resistance to bacterial spot disease in
1028 tomato. *Proc Natl Acad Sci USA.* 1999; 96:14153-14158.

1029 34. Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB. A genetic screen
1030 to isolate type III effectors translocated into pepper cells during *Xanthomonas*
1031 infection. *Proc Natl Acad Sci USA.* 2004; 101:16624-16629.

1032 35. Li R, Liu P, Wan Y, Chen T, Wang Q, Mettbach U, et al. A membrane
1033 microdomain-associated protein, *Arabidopsis* Flot1, is involved in a clathrin-
1034 independent endocytic pathway and is required for seedling development. *Plant*
1035 *Cell.* 2012; 24:2105-2122.

1036 36. Alfano JR, Collmer A. Type III secretion system effector proteins: double agents in
1037 bacterial disease and plant disease. *Annu Rev Phytopathol* 2004; 42:385-414.

1038 37. Boller T, He SY. Innate immunity in plants: an arms race between pattern
1039 recognition receptors in plants and effectors in microbial pathogens. *Science.* 2009;
1040 324:742-744.

1041 38. Castiblanco LF, Triplett LR, Sundin GW. Regulation of effector delivery by type
1042 III secretion chaperone proteins in *Erwinia amylovora*. *Front Microbiol.* 2018;
1043 9:146.

1044 39. Kim HS, Thammarat P, Lommel SA, Hogan CS, Charkowski AO. *Pectobacterium*
1045 *carotovorum* elicits plant cell death with DspE/F, but does not suppress callose or
1046 induce expression of plant genes early in plant-microbe interactions. *Mol Plant-*
1047 *Microbe Interact.* 2011; 24:773-786.

1048 40. Chang JH, Urbach JM, Law TF, Arnold LW, Hu A, Gombar S, et al. A high-
1049 throughput, near-saturating screen for type III effector genes from *Pseudomonas*
1050 *syringae*. Proc Natl Acad Sci USA. 2005; 102:2549-2554.

1051 41. Kvitko BH, Park DH, Velasquez AC, Wei CF, Russell AB, Martin GB, et al.
1052 Deletions in the repertoire of *Pseudomonas syringae* pv. *tomato* DC3000 type III
1053 secretion effector genes reveal functional overlap among effectors. PLoS Pathog.
1054 2009; 5:e1000388.

1055 42. O'Brien HE, Thakur S and Guttman DS. (2011) Evolution of plant pathogenesis in
1056 *Pseudomonas syringae*: a genomics perspective. Ann Rev Phytopathol. 2011;
1057 49:269-289.

1058 43. Schechter LM, Vencato M, Jordan KL, Schneider SE, Schneider DJ, Collmer A.
1059 Multiple approaches to a complete inventory of *Pseudomonas syringae* pv. *tomato*
1060 DC3000 type III secretion system effector proteins. Mol Plant-Microbe Interact.
1061 2006; 19:1180-1192.

1062 44. White FF, Potnis N, Jones JB, Koebnik R. The type III effectors of *Xanthomonas*.
1063 Mol Plant Pathol. 2009; 10:749-766.

1064 45. Deslandes L, Genin S. (2014) Opening the *Ralstonia solanacearum* type III effector
1065 tool box: insights into host cell subversion mechanisms. Curr Opin Plant Biol.
1066 2014; 20:110-117.

1067 46. Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S. Repertoire,
1068 unified nomenclature and evolution of the type III effector gene set in the *Ralstonia*
1069 *solanacearum* species complex. BMC Genomics. 2013; 14:859.

1070 47. Guo Y, Figueiredo F, Jones J, Wang N. HrpG and HrpX play global roles in
1071 coordinating different virulent traits of *Xanthomonas axonopodis* pv. *citri*. Mol
1072 Plant-Microbe Interact. 2011; 24:649-661.

1073 48. Occhialini A, Cunnac S, Reymond N, Genin S, Boucher C. Genome-wide analysis
1074 of gene expression in *Ralstonia solanacearum* reveals that the *hrpB* gene acts as a
1075 regulatory switch controlling multiple virulence pathways. Mol. Plant-Microbe
1076 Interact. 2005; 18:938-949.

1077 49. Valls M, Genin S, Boucher C. Integrated regulation of the type III secretion system
1078 and other virulence determinants in *Ralstonia solanacearum*. PLoS Pathog. 2006;
1079 2:e82.

1080 50. Brito B, Marenda M, Barberis P, Boucher C, Genin S. *prhJ* and *hrpG*, two new
1081 components of the plant-signal dependent regulatory cascade controlled by PrhA in
1082 *Ralstonia solanacearum*. Mol Microbiol. 1999; 31:237-251.

1083 51. Furutani A, Tsuge S, Ohnishi K, Hikichi Y, Oku T, Tsuno K, et al. Evidence for
1084 HrpXo-dependent expression of type II secretory proteins in *Xanthomonas oryzae*
1085 pv. *oryzae*. J Bacteriol. 2004; 186:1374-1380.

1086 52. Szczesny R, Jordan M, Schramm C, Schulz S, Cogez V, Bonas U, et al. Functional
1087 characterization of the Xcs and Xps type II secretion systems from the plant
1088 pathogenic bacterium *Xanthomonas campestris* pv. *vesicatoria*. New Phytol. 2010;
1089 187:983-1002.

1090 53. Wang L, Rong W, He C. Two *Xanthomonas* extracellular polygalacturonases,
1091 PghAxc and PghBxc, are regulated by type III secretion regulators HrpX and HrpG
1092 and are required for virulence. Mol Plant-Microbe Interact. 2008; 21:555-563.

1093 54. Yamazaki A, Hirata A, Tsuyumu S. HrpG regulates type II secretory proteins in
1094 *Xanthomonas axonopodis* pv. *citri*. J Gen Plant Pathol. 2008; 74:138-150.

1095 55. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold
1096 Spring Harbor: Cold Spring Harbor Laboratory; 1989.

1097 **56.** Bahar O, Goffer T, Burdman S. Type IV pili are required for virulence, twitching
1098 motility, and biofilm formation of *Acidovorax avenae* subsp. *citrulli*. *Mol Plant-*
1099 *Microbe Interact.* 2009; 22:909-920.

1100 **57.** Zhou H, Morgan RL, Guttman DS, Ma W. Allelic variants of the *Pseudomonas*
1101 *syringae* type III effector HopZ1 are differentially recognized by plant resistance
1102 systems. *Mol Plant-Microbe Interact.* 2009; 22:176-189.

1103 **58.** Burstein D, Zusman T, Degtyar E, Viner R, Segal G, Pupko T. Genome- scale
1104 identification of *Legionella pneumophila* effectors using a machine learning
1105 approach. *PLoS Pathog.* 2009; 5:e1000508.

1106 **59.** Lifshitz Z, Burstein D, Schwartz K, Shuman HA, Pupko T, Segal G. Identification
1107 of novel *Coxiella burnetii* Icm/Dot effectors and genetic analysis of their
1108 involvement in modulating a mitogen- activated protein kinase pathway. *Infect*
1109 *Immun.* 2014; 82:3740-3752.

1110 **60.** Breiman L. Random forest. *Mach Learn.* 2001; 45:5-32.

1111 **61.** Langley P, Iba W, Thompson K. An analysis of Bayesian classifiers. In: *Aaai- 92*,
1112 Proceedings of the tenth national conference on artificial intelligence. San Jose:
1113 AAAI Press; 1992. pp. 223-238.

1114 **62.** Burges CJC. A tutorial on support vector machines for pattern recognition. *Data*
1115 *Min Knowl Discov.* 1998; 2:121-167.

1116 **63.** Hastie T, Tibshirani R, Friedman J. *The elements of statistical learning*. New York:
1117 Springer; 2001

1118 **64.** Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
1119 *Scikit-learn: machine learning in Python.* *J Mach Learn Res.* 2011; 12:2825-2830.

1120 **65.** Penfold RJ, Pemberton JM. An improved suicide vector for construction of
1121 chromosomal insertion mutations in bacteria. *Gene.* 1992; 118:145-146.

1122 66. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, et al. Four
1123 new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying
1124 different antibiotic-resistance cassettes. *Gene*. 1995; 166:175-176.

1125 67. Kearney B, Staskawicz BJ. Widespread distribution and fitness contribution of
1126 *Xanthomonas campestris* avirulence gene *avrBs2*. *Nature*. 1990; 346:385-386.

1127 68. Shavit R, Lebendiker M, Pasternak Z, Burdman S, Helman Y. The *vapB-vapC*
1128 operon of *Acidovorax citrulli* functions as a *bona-fide* toxin-antitoxin module. *Front*
1129 *Microbiol*. 2016; 6:1499.

1130 69. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing
1131 reads. *EMBnet J*. 2011; 17:10.

1132 70. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
1133 ultrafast universal RNA-seq aligner. *Bioinformatics*. 2013; 29:15-21.

1134 71. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence
1135 alignment/map format and SAMtools. *Bioinformatics*. 2009; 25:2078-2079.

1136 72. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren M, et al.
1137 Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts
1138 and isoform switching during cell differentiation. *Nat Biotechnol*. 2010; 28:511-
1139 515.

1140 73. Anders S, Huber W. Differential expression analysis for sequence count data.
1141 *Genome Biol*. 2010; 11:R106.

1142 74. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-
1143 PCR. *Nucleic Acids Res*. 2001; 29:e45.

1144 75. Petersen N, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal
1145 peptides from transmembrane regions. *Nat Methods*. 2011; 8:785-786.

1146 76. Käll L, Krogh A, Sonnhammer ELL. Advantages of combined transmembrane
1147 topology and signal peptide prediction - the Phobius web server. *Nucleic Acids*
1148 *Res.* 2007; 35:W429-432.

1149 77. Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD. Combined prediction of
1150 Tat and Sec signal peptides with Hidden Markov Models. *Bioinformatics*. 2010;
1151 26:2811-2817.

1152 78. Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets.
1153 *Bioinformatics*. 2011; 27:1696-1697.

1154 79. Negi S, Pandey S, Srinivasan SM, Mohammed A, Guda C. LogSigDB: a database
1155 of protein localization signals. *Database*. 2015; bav003
1156 (doi:10.1093/database/bav003).

1157 80. Chou KC, Shen HB. Cell-PLoc: A package of web-servers for predicting
1158 subcellular localization of proteins in various organisms. *Nat Protoc.* 2008; 8:135-
1159 162.

1160 81. Roden J Eardley L, Hotson A, Cao Y, Mudgett MB. Characterization of the
1161 *Xanthomonas* AvrXv4 effector, a SUMO protease translocated into plant cells.
1162 *Mol. Plant-Microbe Interact.* 2004; 17:633-643.

1163 82. Casper-Lindley C, Dahlbeck D, Clark ET, Staskawicz BJ. Direct biochemical
1164 evidence for type III secretion-dependent translocation of the AvrBs2 effector
1165 protein into plant cells. *Proc Natl Acad Sci USA.* 2002; 99:8336-8341.

1166 83. Minsavage GV, Dahlbeck D, Morales CQ, Whalen MC, Kearny B, Bonas U, et al.
1167 Gene-for-gene relationships specifying disease resistance in *Xanthomonas*
1168 *campestris* pv. *vesicatoria*-pepper interactions. *Mol Plant-Microbe Interact.* 1990;
1169 3:41-47.

1170 84. Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, et al. Gateway-
1171 compatible vectors for plant functional genomics and proteomics. *Plant J.* 2006;
1172 45:616-629.

1173 85. Goodin MM, Zaitlin D, Naidu RA, Lommel SA. *Nicotiana benthamiana*: its history
1174 and future as a model for plant-pathogen interactions. *Mol Plant-Microbe Interact.*
1175 2008; 21:1015-1026.

1176 86. Runions J, Brach T, Kühner S, Hawes C. Photoactivation of GFP reveals protein
1177 dynamics within the endoplasmic reticulum membrane. *J Exp Bot.* 2006; 57:43-50.

1178 87. Schoberer J, Vavra U, Stadlmann J, Hawes C, Mach L, Steinkellner H, et al.
1179 Arginine/lysine residues in the cytoplasmic tail promote ER export of plant
1180 glycosylation enzymes. *Traffic.* 2009; 10:101-115.

1181 88. Kapuscinski J, Skoczylas B. Simple and rapid fluorimetric method for DNA
1182 microassay. *Anal Biochem.* 1977; 83:252-257.

1183 89. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.
1184 Fiji: an open-source platform for biological-image analysis. *Nat Methods.* 2012;
1185 9:676-682.

1186

1187 Supporting information

1188 **S1 Fig. HrpX and HrpG are required for pathogenicity of *Acidovorax citrulli* M6.**
1189 Lesions induced in a melon (cv. HA61428) leaf syringe-infiltrated with 10^8 cfu/mL
1190 suspensions of wild-type M6, but not of M6 mutants defective in *hrpX* and *hrpG* genes.
1191 Partial restoration of the wild-type phenotype was observed following transformation of
1192 the mutants with plasmids pBBR1MCS-5::*hrpX* and pBBR1MCS-5::*hrpG*
1193 (complementation plasmids), respectively. The picture was taken 3 days after
1194 infiltration.

1195 **S2 Fig. Subcellular localization of APS_0500.** (A) Confocal microscopy images of *N.*
1196 *benthamiana* epidermal cells transiently expressing APS_0500-YFP and different
1197 endomembrane compartment markers as indicated. Representative images show
1198 APS_0500-YFP (green), the subcellular marker: HDEL-RFP, Free-mCherry or
1199 S1DRP2A (magenta) and the superimposed image of both channels (merge). Pearson
1200 correlation coefficient of the co-localization between APS_0500-YFP and the markers
1201 (N=15-18) was determined using the Coloc2 function from ImageJ. Data represented as
1202 mean \pm SEM. (B) Confocal microscopy images of *N. benthamiana* epidermal cells
1203 transiently expressing the plasma membrane protein Flot1-GFP and Free-mCherry. All
1204 the images were acquired 48 h after *A. tumefaciens* infiltration using Zeiss LSM780
1205 (40x/1,2 W Korr). Scale bar 20 μ m.

1206 **S3 Fig. Subcellular localization of APS_1448.** Confocal microscopy images of *N.*
1207 *benthamiana* epidermal cells transiently expressing APS_1448-YFP and different
1208 endomembrane compartment markers as indicated. Representative images show
1209 APS_1448-YFP (green), the subcellular markers HDEL-RFP, Free-mCherry or
1210 S1DRP2A (magenta), and the superimposed image of both channels (merge). Pearson
1211 correlation coefficient of the co-localization between APS_1448-YFP and the markers
1212 (N=15–18) was determined using the Coloc2 function from ImageJ. Data represented as
1213 mean \pm SEM. All the images were acquired 48 h after *A. tumefaciens* infiltration using
1214 Zeiss LSM780 (40x/1,2 W Korr). Scale bar, 20 μ m.

1215 **S4 Fig. Subcellular localization of APS_4116.** Confocal microscopy images of *N.*
1216 *benthamiana* epidermal cells transiently expressing APS_1448-YFP and different
1217 endomembrane compartment markers as indicated. Representative images show
1218 APS_1448-YFP (green), the subcellular markers HDEL-RFP, Free-mCherry or
1219 S1DRP2A (magenta), and the superimposed image of both channels (merge). Pearson

1220 correlation coefficient of the co-localization between APS_1448-YFP and the markers
1221 (N=15–18) was determined using the Coloc2 function from ImageJ. Data represented as
1222 mean \pm SEM. All the images were acquired 48 h after *A. tumefaciens* infiltration using
1223 Zeiss LSM780 (40x/1,2 W Korr). Scale bar, 20 μ m.

1224 **S5 Fig. Distribution of *Acidovorax citrulli* M6 type III effectors (T3Es) according to**
1225 **their amino acid length.** The data are from the annotation (GenBank accession
1226 CP029373) of the *A. citrulli* M6 ORFs.

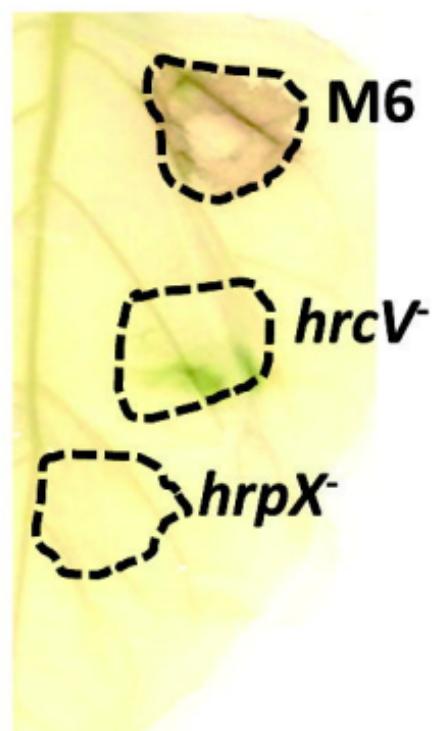
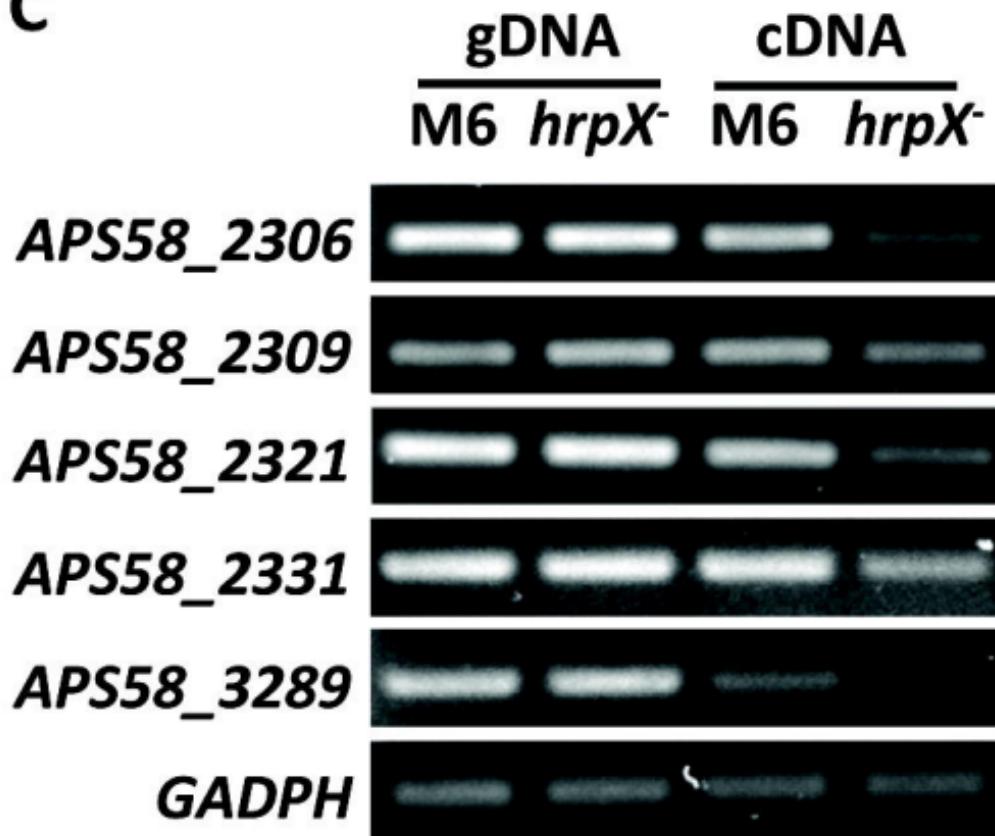
1227 **S6 Fig. Expression of effector-AvrBs2₆₂₋₅₇₄::HA fusion proteins of T3Es that were**
1228 **tested in translocation assays.** Total protein was extracted from overnight cultures of
1229 *Xanthomonas euvesicatoria* 85-10-*hrpG*^{*}-Δ*avrBs2* expressing CT3E-AvrBs2₆₂₋₅₇₄-HA
1230 fusions in plasmid pBBR1MCS-2::*avrBs2*₆₂₋₅₇₄. Proteins were analysed by Western blot
1231 using HA-tag antibody. XopS (*X. euvesicatoria* effector)-AvrBs2₆₂₋₅₇₄::HA was
1232 included as positive control. Asterisks indicate the size of the expected bands.

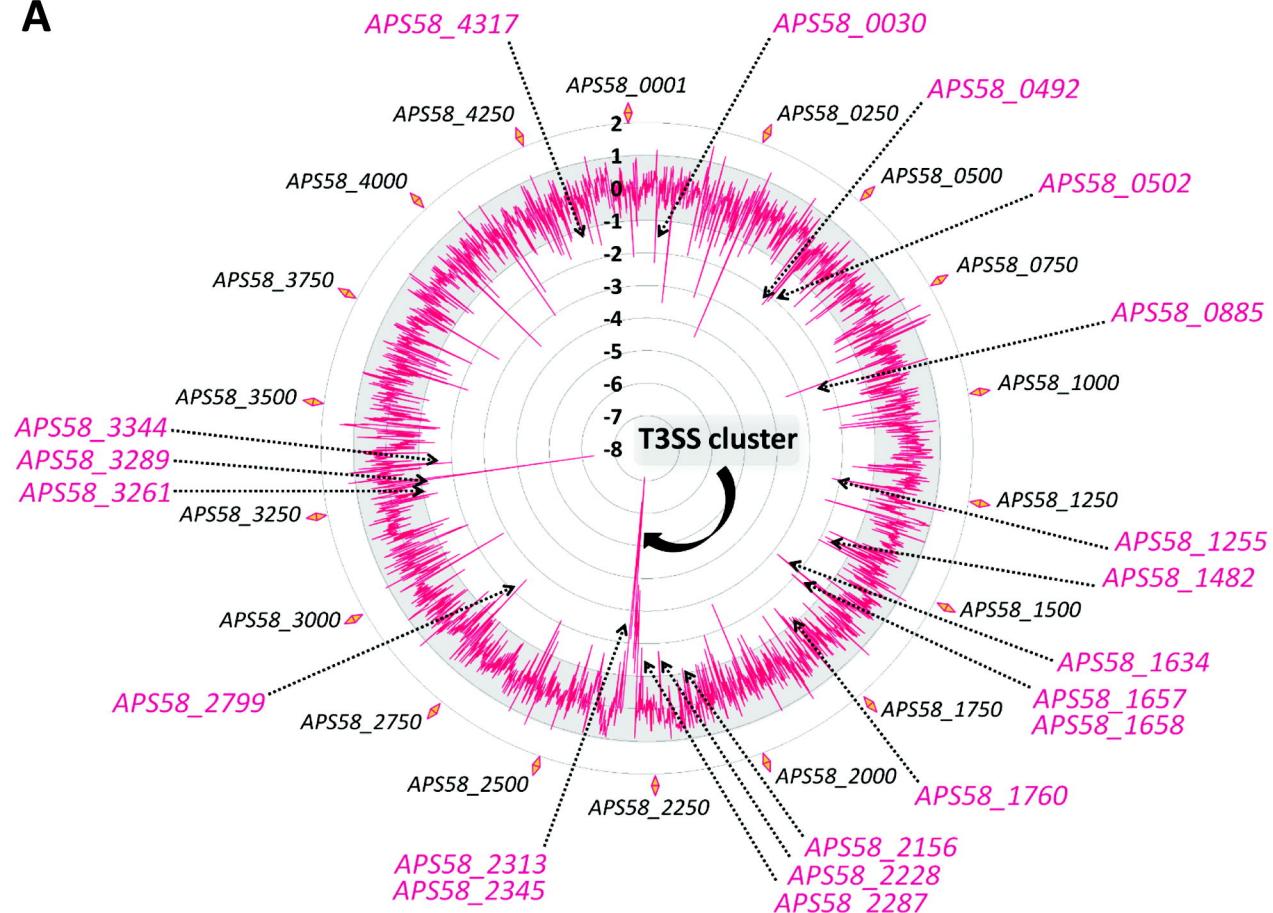
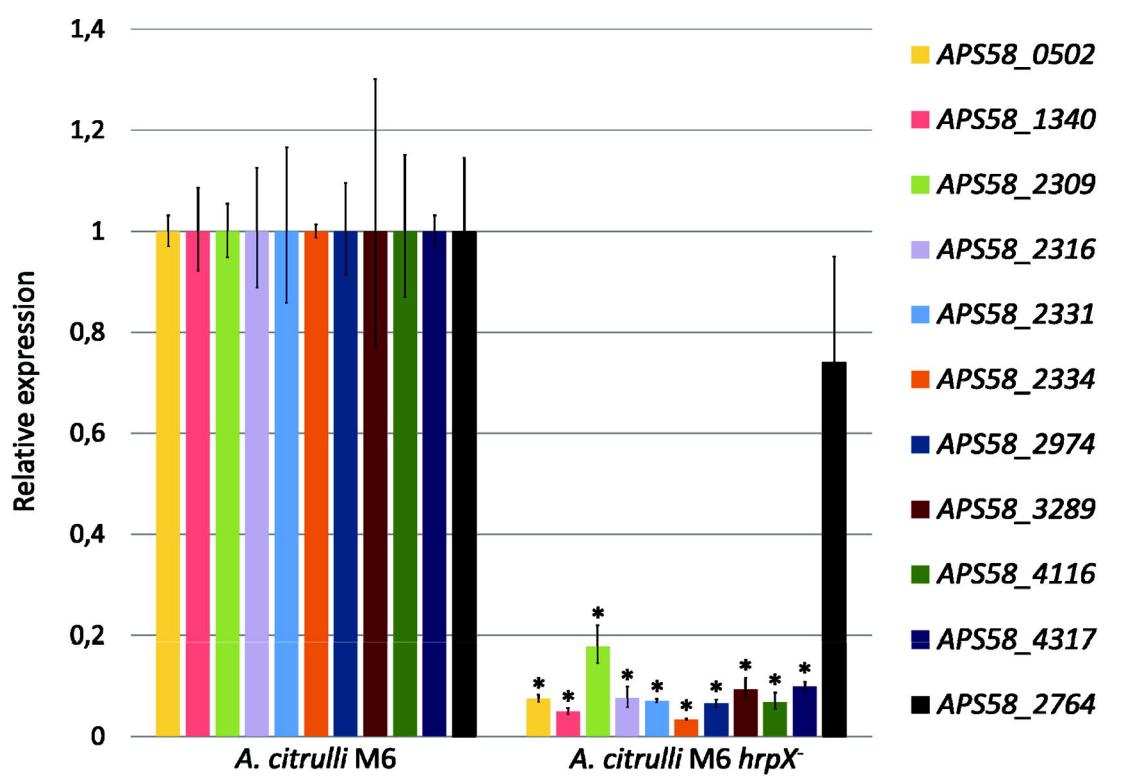
1233 **S1 Table.** Ranking and prediction scores of open reading frames of *Acidovorax citrulli*
1234 AAC00-1 (GenBank accession CP000512.1) in the first machine learning run.

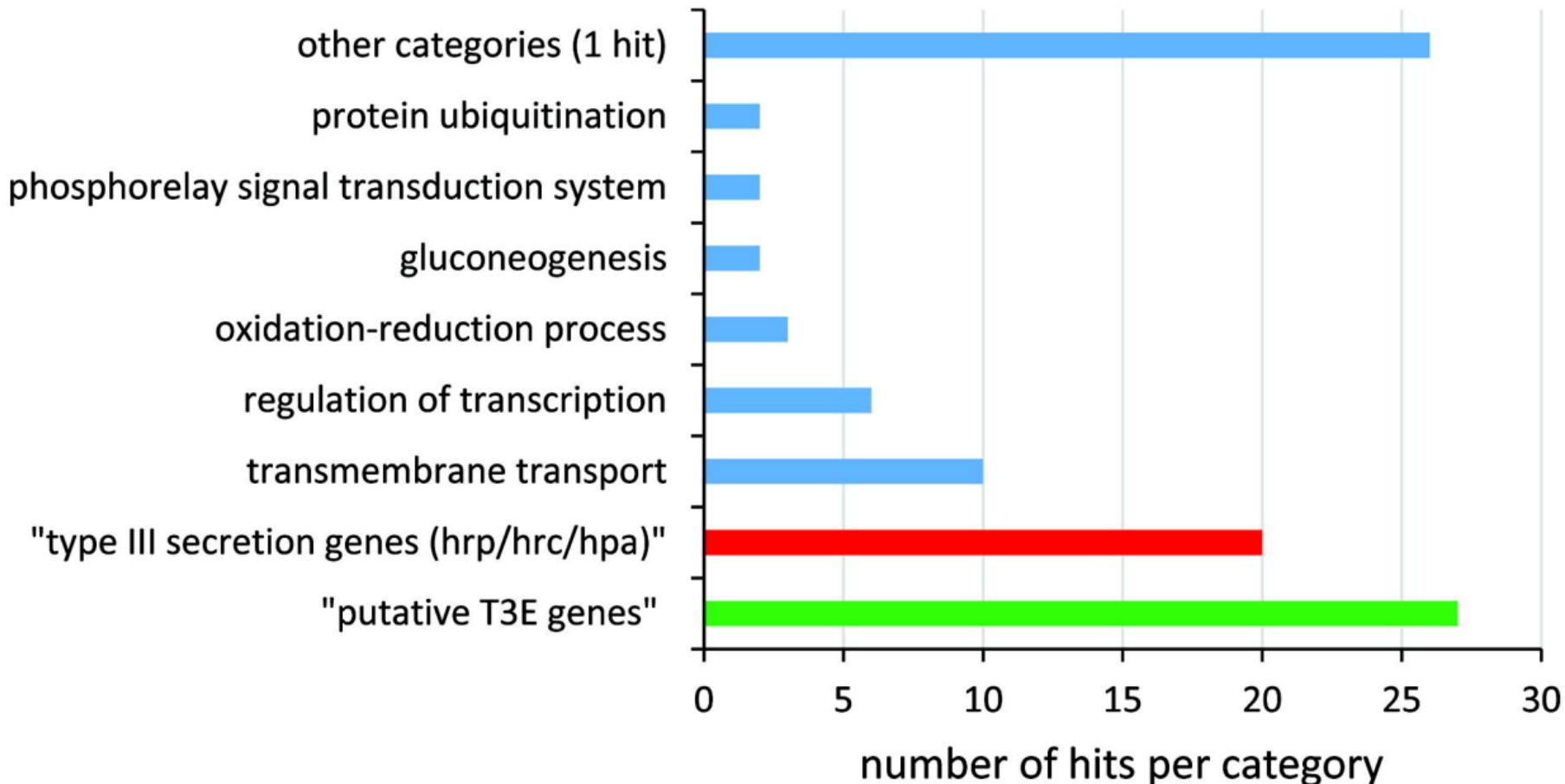
1235 **S2 Table.** Occurrence of *Acidovorax citrulli* M6 type III effectors in other plant
1236 pathogenic *Acidovorax* species.

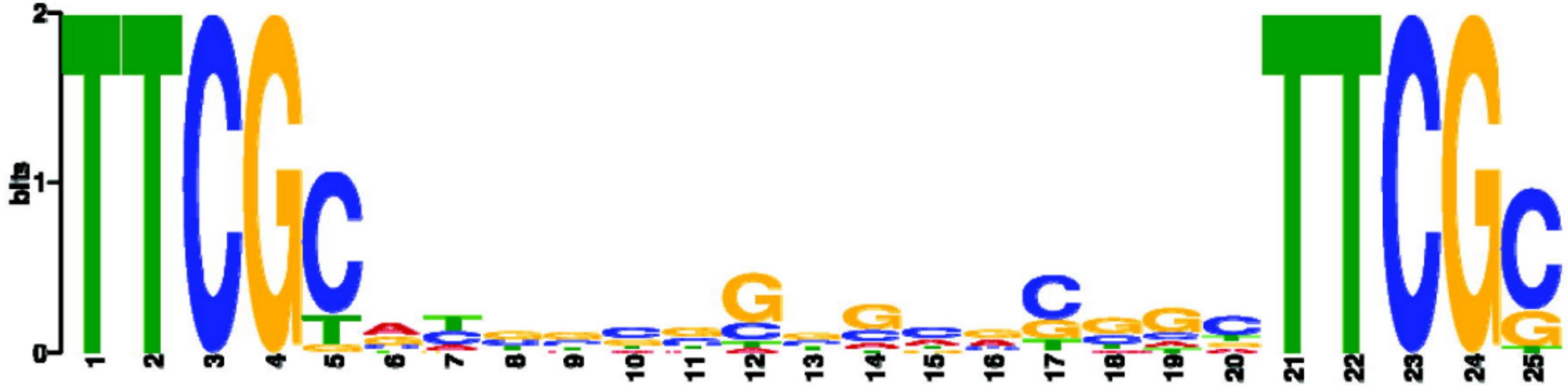
1237 **S3 Table.** Differential gene expression as determined by RNA-Seq between *Acidovorax*
1238 *citrulli* M6 and an M6 mutant strain defective in *hrpX* gene, after 72 h of growth in
1239 XVM2 minimal medium at 28 °C.

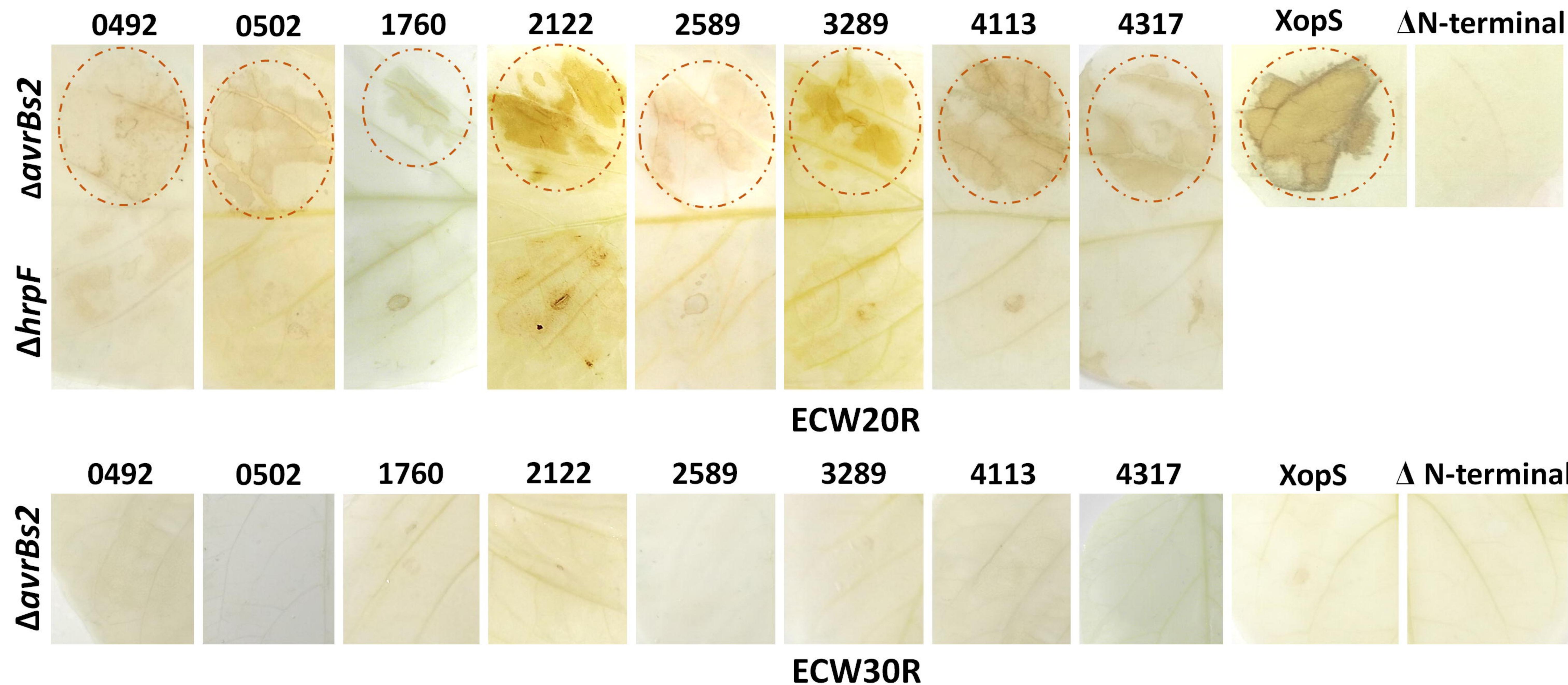
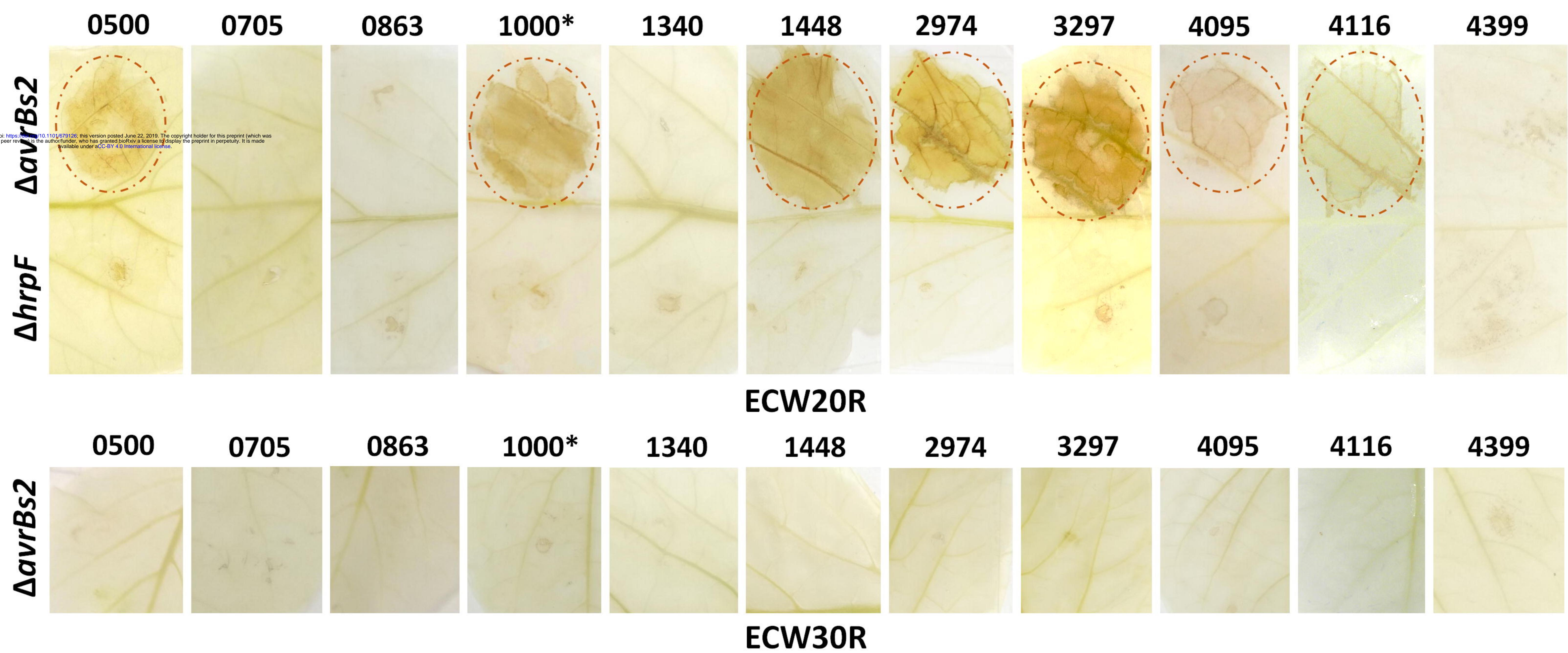
1240 **S4 Table.** Perfect plant-inducible promoter (PIP) boxes in the *Acidovorax citrulli* M6
1241 genome.

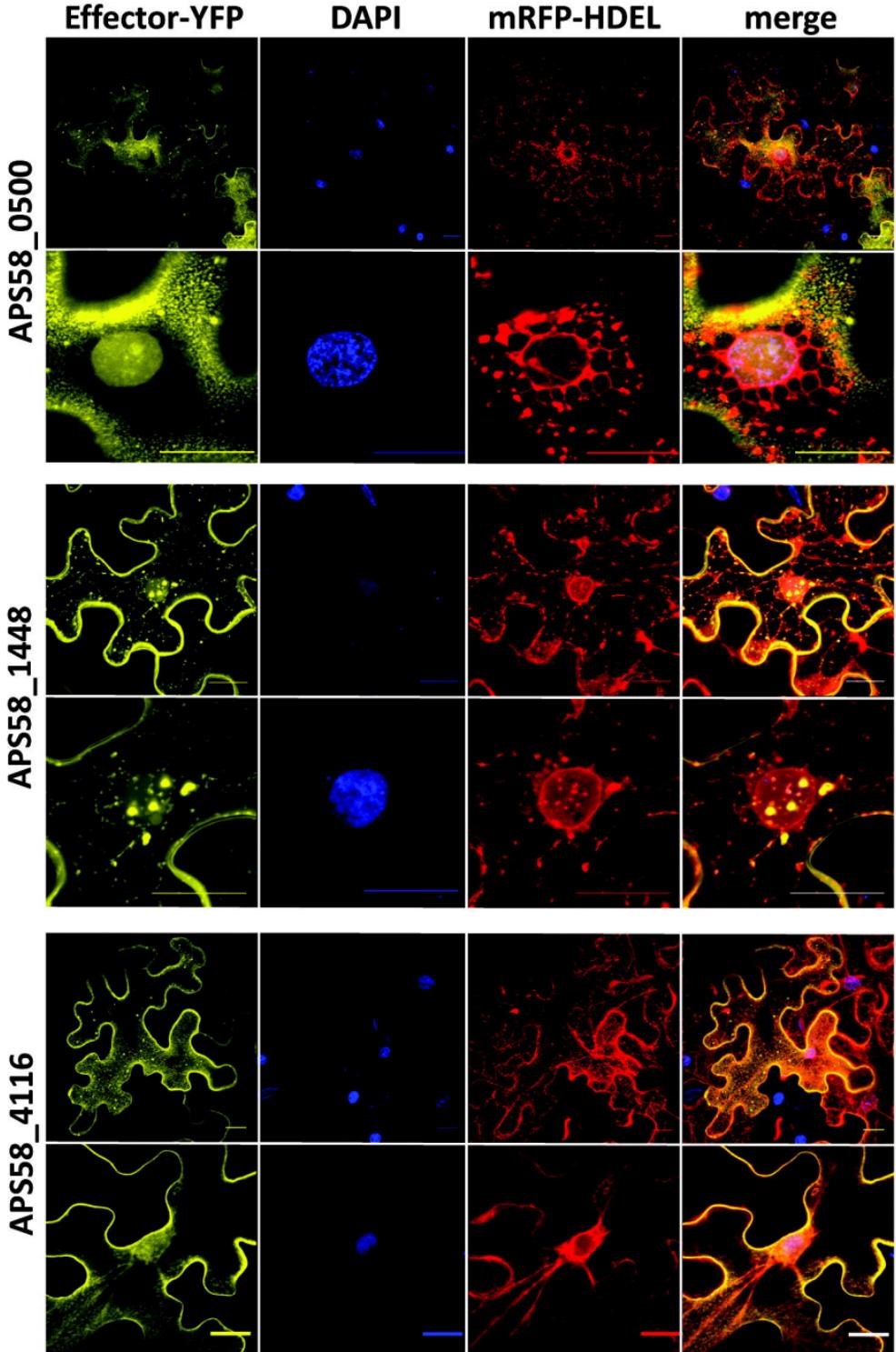


1242 **S5 Table.** Ranking and prediction scores of open reading frames of *Acidovorax citrulli*
1243 M6 (GenBank accession CP029373) in the second machine learning run.



1244 **S6 Table.** Bacterial strains and plasmids used in this study.


1245 **S7 Table.** DNA oligonucleotide primers used in this study.


1246 **S8 Table.** List and description of the features used for the first and second machine



1247 learning runs.


A**B****C**

A**B**

A**B**

