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approaches: overflow metabolism is caused by two
growth-limiting constraints
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Frank J. Bruggeman · Bas Teusink

Received: date / Accepted: date

Abstract Living cells can express different metabolic
pathways that support growth. The criteria that de-

termine which pathways are selected in which environ-
ment remain unclear. One recurrent selection is over-
flow metabolism: the simultaneous usage of an ATP-

efficient and -inefficient pathway, shown for example
in Escherichia coli, Saccharomyces cerevisiae and can-
cer cells. Many models, based on different assumptions,
can reproduce this observation. Therefore, they pro-

vide no conclusive evidence which mechanism is caus-
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ing overflow metabolism. We compare the mathemat-
ical structure of these models. Although ranging from

Flux Balance Analyses to self-fabricating Metabolism
and Expression models, we can rewrite all models into
one standard form. We conclude that all models predict

overflow metabolism when two, model-specific, growth-
limiting constraints are hit. This is consistent with re-
cent theory. Thus, identifying these two constraints is

essential for understanding overflow metabolism. We
list all imposed constraints by these models, so that
they can hopefully be tested in future experiments.

Keywords Overflow metabolism · Growth rate
maximization · Genome-scale modeling · Metabolism
and Expression · Elementary Flux Modes · Elementary

Growth Modes

1 Introduction

Many cells show overflow metabolism: the simultaneous
metabolism of nutrients by an energy-efficient and a less

energy-efficient pathway. For example, Escherichia coli,
Saccharomyces cerevisiae and cancer cells fully oxidize
carbon sources to CO2 when growing slowly. Above a
species-specific critical growth rate, a partial oxidation
pathway kicks in, resulting in the production of overflow
metabolites: acetate, ethanol and lactate respectively
[1–3]. Lactococcus lactis shows a similar metabolic shift
from mixed-acid fermentation (3 ATP per glucose) to
lactic-acid fermentation (2 ATP per glucose) under anaer-
obic conditions [4]. Besides overflow metabolism that
starts at high growth rates, Escherichia coli even pro-
duces overflow products at low growth rates when grow-
ing in ammonium-limited conditions [5].

Overflow metabolism seems wasteful because two
metabolic pathways are used that independently sup-
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port growth, and one of them is more efficient (it has a
higher ATP yield per glucose molecule) than the other.
Since cells need energy for growth, efficient usage of nu-
trients is expected to be favourable. One would there-
fore expect that cells using the efficient growth strategy
exclusively would be selected during evolution.

The counterintuitive occurrence of overflow meta-
bolism is in many studies explained using constraint-
based optimization approaches. These approaches as-
sume that cellular growth is constrained by physical
and chemical limits, and that cells are driven towards
these limits when evolutionary fitness is maximized. Ac-
cordingly, the behavior of cells results from maximizing
their growth rate given a set of constraints.

Since many models reproduce the experimental data
while using different biological assumptions, it is un-
clear what exactly causes overflow metabolism. There-
fore, we need a way to analyze and compare these dif-
ferent models to find the cause of overflow metabolism.

Minimal, growth-supporting metabolic modes are char-
acterized mathematically by identifying the smallest
subnetworks of the entire metabolic network that can

support growth. Such subnetworks are called Elemen-
tary Flux Modes (EFMs) in metabolic models [6], and
Elementary Growth Modes (EGMs) in self-fabrication

models [7] (see SI1 for a short introduction and compar-
ison of EFMs and EGMs). The gradual transition from
the usage of one metabolic subnetwork to the mixed
usage of two subnetworks that is observed in overflow

metabolism indicates the simultaneous usage of two dif-
ferent Elementary Modes.

In recent theoretical work [7,8] we derived that cells
that maximize their growth rate will only use two Ele-

mentary Modes if they are confronted with at least two
constraints. The identification of these constraints is
therefore an important step towards finding the mech-
anistic cause of overflow metabolism. In this review, we
use this theory to compare the various models of over-
flow metabolism by making the growth-limiting con-
straints explicit.

Although the models range from relatively simple
Flux Balance Analyses to genome-scale self-fabrication
models, we will show that they can all be written in
the same concise standard form. Thus, the models are
highly similar: (a proxy for) the cellular growth rate is
maximized subject to two constraints. However, the bi-
ological assumptions underlying the imposed constraints
differ between those models. Hence, the success of these
models is dependent on the existence of two constraints
and not on the precise biological interpretation of those
constraints. Finding the causes of overflow metabolism

therefore amounts to identifying the two active growth-

limiting constraints and experimentally testing them.
We shall conclude that the models each offer a hypoth-
esis that needs to be tested in falsification experiments
in the future.

2 A standard form for overflow metabolism
models

We will show that, to our knowledge, all existing models
that use growth rate maximization to explain overflow
metabolism, can be rewritten in a standard form.

We will assume that a cell adapts its state to grow
as fast as possible whenever it encounters a new envi-
ronment. The cellular state is specified by optimization
variables, for example the reaction rates (v) or the en-
zyme concentrations (e). We will denote the optimiza-
tion variables by the vector x, the ith entry of which is
denoted by xi. The growth rate is modeled as a linear
function: the objective function:

objective(x) =
n∑
i=1

wixi,

where wi is the weighting factor of variable i. The growth

rate maximization of the cell is modeled mathemati-
cally by searching for the set of optimization variables
that maximizes the objective function, given constraints

to be specified later. Because the objective function is
linear, there is a certain direction in the space of op-
timization variables in which the objective always in-
creases. The optimal solution is the set of optimization

variables that is as far in that direction as possible.

Not all combinations of optimization variables can

be chosen due to constraints, for example a limited up-
take rate, or a limited available area for membrane pro-
teins. These constraints are formalized by inequalities
acting on a weighted sum of the variables:

n∑
j=1

ajxj ≤ b,

where aj determines the ‘cost’ of increasing the jth vari-
able. In the special case that aj = 0, xj is not bounded
by this constraint. In general, we could have several,
say m, constraints. These constraints can be collected
in an m×n matrix A, where the ith row captures the ith

constraint. All constraints can then be written together
as:

A · x ≤ b.

The constraints can be viewed as planes bounding the
feasible combinations of variables (see Figure 1). After
all constraints have been implemented, we are left with
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Fig. 1 A general view on overflow metabolism and how it is modeled. In general, overflow metabolism is the
simultaneous usage of two independent growth-supporting subnetworks with different substrate yields. In the top left subfigure,
the blue pathway produces more energy equivalents per gram nutrient than the red pathway. Together with the non-depicted
rest of the metabolic network, the blue and red pathway can separately lead to steady state growth. In the top right
subfigure, we illustrate that imposing homogeneous constraints, in this case a steady state assumption, gives rise to relations
between optimization variables. The optimization variables can for example be reaction rates or enzyme concentrations, but
for simplicity, we only show one variable here. The model objective is here visualized along the y-axis, so that the combination
of variables that gives the highest y-coordinate is optimal. In the bottom figures, we add inhomogeneous constraints on the
optimization variables. These affect which combination of variables is optimal. Under one constraint, exclusive usage of the
high-yield pathway is optimal. Adding the second constraint leads to the optimality of a combination of the two pathways.

an angular space called the solution space. Solving the
optimization problem amounts to selecting the point
in this space that maximizes the objective function. It
can be shown that there is always a corner point of the

solution space (called vertex) in which this optimum is
attained.

In this review, we will use these concepts to extract
the mathematical cores of all overflow metabolism mod-
els (that we could find) and rewrite them in the follow-
ing standard form.1

maximize
x

n∑
i=1

wixi

subject to A · x ≤ b (1)

xi ≥ 0.

The constraints in A can be homogeneous and inhomo-
geneous, see Figure 1 and its caption. A constraint is

1 We use a different standard form than the standard form
that is used in Linear Programming. We found that our form
better serves our purposes, but in SI2 we show that the two
forms are equivalent.

called homogeneous when the corresponding weighted

sum of the variables equals zero, i.e., b = 0, and inho-
mogeneous otherwise. Examples of homogeneous con-
straints that we will define later in this review are the
steady state constraint and irreversibility constraints.
When all constraints of A are homogeneous, the solu-
tion space is unbounded; it can be visualized as an in-
finitely stretched angular cone. The optimization prob-
lem will in this case not have a finite maximum. Inho-
mogeneous constraints can make the cone bounded; this
will be especially important in modeling overflow meta-
bolism. We will therefore highlight them by presenting
them separate from the rest of the constraints.

3 Current explanations of mixed behaviour and
their mathematical background

Next, we will discuss published models made to explain

overflow metabolism that use growth rate maximiza-
tion. We will start with the modeling approaches that
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are the easiest to understand, and gradually build up
complexity, ending with self-fabrication models.

3.1 Flux Balance Analysis models

Flux Balance Analysis studies the sets of reaction rates
(fluxes) through a metabolic network (say withmmetabo-
lites and r reactions) that can reach a steady state. A
steady state is attained when the net rate of produc-
tion of each metabolite is equal to the net rate of its
consumption. The stoichiometry of all reactions is de-
scribed by the stoichiometric matrix, N , which has m
rows and r columns. Each row corresponds to the mass
balance of a metabolite and contains the stoichiomet-
ric coefficients of this metabolite in all reactions. When
N is multiplied by the rate vector, we get the ‘mass-
balance constraints’:

N · v = 0.

In this review we will consider all reactions to be ir-
reversible; we can always split up a reversible reaction
into one forward and one backward reaction, resulting
in:

vi ≥ 0.

These steady state and irreversibility constraints are
the homogeneous constraints. As mentioned before, the
space of flux vectors that satisfy these constraints is
unbounded.

In addition, flux bounds can be imposed. Upper
bounds, denoted ubi, are for example imposed to model
a limited capacity of the cell for the corresponding re-
action. Lower bounds, denoted lbi, are for instance used
to model the production of ATP for non-growth asso-
ciated maintenance. This gives

lbi ≤ vi ≤ ubi.

In FBA, we are mostly interested in those flux vectors,
v, that maximize some proxy for the growth rate. For
this, the so-called biomass reaction, vBM [9], is added
to the model: a phenomenological reaction that pro-
duces all cellular compounds in the right proportions,
and thereby approximates the demands for cell synthe-
sis.

The full problem can now be written as

maximize
v

vBM

subject to N · v = 0 (2)

vi ≥ 0

lbi ≤ vi ≤ ubi,

which is equivalent to the standard form that we intro-
duced in Equation (1) (see the Supporting Information
for the appropriate choice of w, A,x, b).

FBA models have been used to explain overflow meta-
bolism, mathematically capturing the reasoning of An-
dersen and von Meyenburg [10] in 1980: ”If, however,
respiration is limited, by-product formation can lead
to extra ATP production and to faster growth, pro-
vided the by-product can be generated with a net gain
of ATP.” The imposed flux bounds differ between the
models, although all models consider a limited uptake
rate for the carbon source. For example, Majewski and
Domach [11] further propose that E. coli might have
a limited electron transfer capacity, while Varma and
Palsson [12] assume that oxygen uptake is limited, and
that a certain amount of ATP should be produced even
if the cell is not growing. This leads to the following
FBA problem:

maximize
v

vBM

subject to N · v = 0 (3)

vi ≥ 0

vO2,uptake ≤ 15

vGlc,uptake ≤ 10.5

vATP,maintenance ≥ 7.6.

Carlson and Srienc [13,14] also model growth rate maxi-
mization under glucose- and oxygen-limitation, but take

a different approach. Instead of finding only the opti-
mal solution, they characterize the whole steady-state
solution space by enumerating the EFMs of a coarse-
grained E. coli network (see SI1 for an explanation

about EFMs). Using their acquired knowledge of all
possible solutions, the authors select four Elementary
Flux Modes. Under any level of glucose and oxygen lim-
itation, two of these EFMs together form the optimal
solution. The simultaneous usage of these EFMs leads
to overflow metabolism.

3.2 FBA models with thermodynamic constraints

FBA models can be refined by adding thermodynamic
constraints [15, 16]. The laws of thermodynamics dic-
tate that a chemical reaction can only have a positive
rate if the summed Gibbs free energy of the reaction
substrates is higher than of the reaction products, i.e.,

if the free energy change due to the reaction is neg-
ative, denoted by: ∆rG

′ < 0. By using this, one for
example excludes cycles like A → B → C → A from

carrying a positive flux, since such a cycle has zero ther-
modynamic driving force [17]. The free energy change
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due to a reaction depends on the concentrations of the
involved metabolites, but these are usually not mod-
eled in FBA approaches. Most thermodynamic FBA
approaches thus need some way to estimate either these
metabolite concentrations, or the ∆rG

′-values directly.
There are also some methods where this estimation step
can be avoided, at the expense of the thermodynamic
constraints becoming less restrictive (see [16] for an
overview of thermodynamic FBA methods).

Recently, Niebel et al. combined growth rate max-
imization and a thermodynamic constraint to describe
overflow metabolism [18]. In their approach, the metabo-
lite concentrations and the reaction rates are free vari-
ables, although the metabolite concentrations are pro-
vided with an upper and lower bound based on experi-
mental measurements. The authors search for the opti-
mal concentrations and rates so that the biomass pro-
duction rate is maximized. This search is constrained
by the second law of thermodynamics, implying that
the free energy change induced by an active reaction
should be negative: ∆rG

′
j(c) < 0 for reactions with

vj > 0. These homogeneous constraints take the place

of the irreversibility constraints that were used in FBA
models, where the directionality is now based on the
sign of the Gibbs free energy change.

If we add up all these free energy changes induced

by the chemical reactions, we get the total dissipated
Gibbs energy per unit time: gdiss = −

∑
j ∆rG

′
j(c)vj .

The authors observed in experiments that this dissipa-
tion function appears to have a maximum at the onset

of overflow metabolism. Therefore, they propose that
the dissipated energy might be limited by an upper
bound,

gdiss ≤ gdisslim . (4)

In addition, another constraint is imposed ensuring that
the free energy dissipated by internal reactions equals
the free energy that is extracted from external nutri-
ents. However, after a careful examination of the math-
ematics used in [18] (see SI4), we believe that this con-
straint should be equivalent to the steady state assump-
tion, so that we could ignore it here. If it turns out
that we are wrong, the constraint can be added to the
problem below, without affecting the conclusions of this
review.

This modeling approach is no longer linear in the
variables because the ∆rG

′
j(c)-values can depend non-

linearly on the metabolite concentrations. However, for
any fixed set of metabolite concentrations, c = c0, the

model reduces to a Linear Program that can be writ-
ten in our standard form (see SI3.2 for the appropriate

choice of the variables w, A,x, b used in (1)).

maximize
v

vBM

subject to N · v = 0 (5)

vj ≥ 0

∆rG
′
j(c) < 0 for reactions vj 6= 0

vGlc,uptake ≤ bGlc

−
∑
j

∆rG
′
j(c)vj ≤ gdisslim .

3.3 Resource-allocation models

Reaction rates can almost always be increased by in-
creasing the concentration of the catalyzing enzyme
[19]. A constraint on a reaction rate can therefore not
reflect the mechanistic cause of metabolic phenomena:
if a cell would be confronted with such a constraint,
the concentration of the corresponding enzyme could
be increased, unless the enzyme concentration itself is

constrained. In that case however, it is the constraint
on enzyme concentrations that is the mechanistic cause.

In the past decade, many researchers shifted per-

spective by taking enzyme concentrations as the opti-
mization variables instead of the reaction rates. These
models are called resource allocation models [20–31].

Resource allocation models also maximize the biomass

reaction rate, vBM, while metabolism is at steady state:
N · v = 0. The rate of the objective reaction can thus
only be increased if the rates of all reactions in a com-

plete growth-supporting subnetwork are increased. Un-
like in FBA models however, each reaction rate is now
coupled to the concentration of a catalyzing enzyme,

vi = eikcat,ifi(x), (6)

where vi is the ith reaction rate and ei is the concentra-
tion of the corresponding enzyme. The activity of an

enzyme is determined by its catalytic rate kcat,i, and
the ’saturation’ of the enzyme fi(x) with its substrates
x. This saturation term is in reality a nonlinear func-
tion of the metabolite concentrations x, that also in-
cludes product inhibition. However, we split reversible
reactions, product inhibition is almost always ignored,
and fi(x) is often simplified to be constant, such that
vi = eikcat,i where kcat,i is now an effective rate con-
stant. The only way to increase the reaction rates is
then to increase the enzyme concentrations. However,
resources are limited: various limits on enzyme concen-
trations exist, which take the form of (weighted) sums
that are bounded:∑
i

ciei ≤ ub, (7)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 26, 2019. ; https://doi.org/10.1101/679019doi: bioRxiv preprint 

https://doi.org/10.1101/679019
http://creativecommons.org/licenses/by/4.0/


6 de Groot, Lischke, Muolo, Planqué, Bruggeman, Teusink

where ci is a weighting factor, and should not be con-
fused with the metabolite concentrations that were used
earlier. All enzymes for which the weighting factor is
nonzero, ci > 0, contribute to the sum. These weighting
factors can be adjusted to capture various constraints.
For example, if the membrane area is constrained, the
weight ci would reflect the area taken up by one unit
of protein i, and ci would thus be zero for all non-
membrane proteins. Since the sum is bounded, an in-
crease in the concentration of protein imust be compen-
sated by a decrease in the concentration of others. The
available resources should thus be carefully allocated in
order to maximize the biomass production rate. These
approaches can be written in a form equivalent to our
standard form (see SI3.3 for the appropriate choice of
w, A,x, b in (1))

maximize
v,e

vBM

subject to N · v = 0 (8)

vi = eikcat,i

ei ≥ 0

∑
i

c1i ei ≤ ub1

...∑
i

cni ei ≤ ubn.

With the help of Equation (6) this problem can be
solved with the reaction rates or with the enzyme con-
centrations as the optimization variables, as we show in

SI3.3.

Basan et al. [27] made a core model that shows overflow
metabolism in E. coli by dividing the proteome into
three fractions: ϕf , ϕr and ϕBM , that thus sum up to
one. These denote the fractions of the proteome catalyz-
ing a fermentation, respiration and cell synthesis reac-

tion, respectively, according to the relations: vf = εfϕf ,
vr = εrϕr, and vBM = 1

b (ϕBM − ϕ0). We will not de-
fine all unknown symbols in these and the following
relations, since their interpretation is not relevant for
this review. Note that the relation between the biomass
reaction and the associated proteome fraction is non-
standard, to include a non-growth associated mainte-

nance term. Further, reactions for the uptake of a car-
bon source and the excretion of acetate2 are included,
but these do not have an associated proteome fraction.

2 The acetate excretion reaction was not explicitly men-
tioned in [27], but must have been included. We have made it
explicit to be able to write a consistent stoichiometry matrix.

This gives the following steady state assumption

N · v =
carbon
energy
acetate

1 −1 −1 0 −β
0 nr nf 0 −σ
0 0 Sac −1 0

 ·

vuptake
vr
vf

vexcretion
vBM

 = 0.

In addition, the authors set the uptake rate of nutrient:
vuptake = cuptake. Together, this yields a set of equations
with only one solution; the variables (v and φ) can
be directly calculated, and no optimization is required.
The uniqueness of the solution is due to the small size
of the model and because the constraints on uptake
rate and the total proteome are modeled as equalities
instead of inequalities. We show in SI3.4 that, for the
appropriate choice of w, A,x, b, this is equivalent to
our standard form (1) in which the biomass production
rate is maximized and the constraints are treated as
inequalities:

maximize
v,ϕ

vBM

subject to N · v = 0 (9)

vf = εfϕf , vr = εrϕr, vBM =
1

b
(ϕBM − ϕ0)

vi ≥ 0

vuptake ≤ cuptake
ϕf + ϕr + ϕBM ≤ 1.

The authors assume that the yield of energy per carbon

molecule is higher for respiration than for fermentation:
nr > nf

3, but that fermentation is more proteome-
efficient: εf > εr. The enzyme cost of a certain reac-

tion is the protein fraction necessary to attain one unit
flux. We thus see that the enzyme costs of respiration
are higher than fermentation: 1

εf
< 1

εr
. Because of this

trade-off between yield and enzyme costs, it becomes
optimal from a certain critical rate of carbon uptake to
use the respiration and fermentation reactions simulta-
neously, so that the model shows overflow metabolism.

Vazquez et al. [24] responded to the explanation of
Basan et al. by adding to the model that there is a max-
imum to the macromolecular density of a cell. They
argue that the enzyme costs, as defined in the previ-
ous paragraph, should be proportional to the enzyme
mass divided by its catalytic rate. The model that is
used to explain overflow metabolism is thus the same,
but with a different mechanistic underpinning of the
ε-parameters. This reasoning was implemented earlier
by the same authors in a genome-scale formalism called

3 The authors originally used er, ef to denote these sto-
ichiometric fractions, but we have renamed them to avoid
confusion with enzyme concentrations.
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FBA with Macromolecular Crowding (FBAwMC), with
which they already explained overflow metabolism in E.
coli [23]. This formalism was later also used to model
S. cerevisiae [29].

Another hypothesis is offered by Zhuang et al. [28]
in which overflow metabolism is explained using a mem-
brane occupancy constraint. The authors introduce pa-
rameters, mi, that capture the membrane area that is
occupied per mol/liter of enzyme i. Assuming that there
is only a limited plasma membrane budget, Bcyt, this
introduces the constraint

∑
imiei ≤ Bcyt. Together

with the steady state assumption, and a limited glu-
cose uptake rate, this gives:

maximize
v,e

vBM

subject to N · v = 0 (10)

vi = eikcat,i

ei ≥ 0

vuptake ≤ cuptake∑
i

miei ≤ Bcyt.

This hypothesis is supported by some quantitative evi-

dence collected by Szenk et al. [22].

Note that the above resource allocation approaches
differ in the mechanistic nature of the last constraint

that is added, but that the optimization function, the
steady state assumption and the limited substrate up-
take are all similar. Shlomi et al. used a similar ap-

proach with a total proteome constraint to describe the
Warburg effect in cancer cells [31].

A modeling approach that should be set slightly
apart is Constrained Allocation FBA (CAFBA) [30].
The authors use only a total proteome constraint, and
no direct limit on substrate uptake. Instead, substrate
limitation is modeled by increasing a parameter wC
that captures the protein fraction needed for carbon
catabolism to sustain one unit of carbon influx: φC =
φC,0 + wCvC . If the concentration of external nutrient
decreases, wC increases, and a larger fraction of the
proteome is thus needed in the carbon catabolic sec-
tor. Because the sum of the proteome fractions needs
to be one, this reduces the available proteome fraction
for other sectors. As such, a change in nutrient concen-
tration leads to a re-allocation of the proteome. The
genome-scale model of E. coli can reproduce a switch

from pure respiration to acetate secretion, but it does
so with small discrete jumps. The gradual switch that
is usually associated with overflow metabolism can only
be found when the results are averaged over many dif-
ferent models created by choosing random parameters.

3.4 Self-fabrication models

In the previously described modeling approaches, the
demand for cell components was approximated using a
virtual biomass reaction. However, this approximation
ignores an important nonlinear aspect of self-fabrication.
A self-fabricating cell should produce two daughters
identical to itself. The proportions in which the cell
should produce cellular components thus depend on its
own interior. If the cell reallocates resources to meet
this demand for cellular components, its interior changes
and therefore also the demand. The allocation of re-
sources thus both depends on, and determines, the de-
mand reaction.

Another inherent nonlinearity of cellular growth arises
because cellular components dilute by growth: if a com-
pound is not produced while the volume grows, its con-
centration drops. This dilution rate is equal to the growth
rate of the cellular volume, so in steady state the net
synthesis rate of all molecules should be equal to the
growth rate. In turn, the same synthesis rates of all

molecules determine how much volume is produced per
unit time, and thus how fast the cell grows. The syn-
thesis rate thus both depends on, and determines, the
growth rate.

A small number of modeling approaches incorporate

these two nonlinearities [7,32–37]. The demand for cell
synthesis components is calculated by the models in-
stead of imposed on the models, and the growth rate

can only be found after solving a nonlinear problem – or
by solving a large number of linear problems in which
the growth rate is treated as a parameter, as we will
see. To keep our treatment of these complex models as

accessible as possible, we will first describe the essential
ingredients only. Then we will, referring to SI6 for most
of the mathematical derivations, derive a set of relations
that enables us to compare these self-fabrication mod-
els to the previously described models. After that, we
will shortly discuss the various extensions that describe
overflow metabolism.

The cell is modeled as consisting of three types of

compounds: metabolites (with concentrations x4 and
possibly including macromolecules such as lipids or polynu-
cleotides), enzymes (with concentrations e), and the ri-
bosome (with concentration r). The enzymes catalyze
the conversion of metabolites into other metabolites.
The ribosomes catalyze the synthesis of enzymes and
ribosomes from metabolites. As before, it is assumed
that the rates of the conversions scale proportionally
with the concentrations of the catalysts, and kinetic

4 The usage of x here is not related to its usage in our
standard form, Equation (1)
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saturation functions are again assumed constant:

vi = eikcat,i, (11)

vsynth,j = rkcat,ribαj , (12)

vsynth,rib = rkcat,ribαrib. (13)

Here vi is a usual metabolic reaction rate, and vsynth,j
denotes the synthesis rate of enzyme j. The factor αj is
the fraction of the ribosome that is allocated to the syn-
thesis of enzyme j, and since these are fractions we must
have

∑
j αj = 1. It is further assumed that the concen-

trations of macromolecules add up to a fixed density5:

∑
j

ρjej + ρribr = 1, (14)

where the ρj are volumetric parameters.6 In a cell that
is growing exponentially with rate µ, concentrations di-
lute with this same rate, see SI5 for a derivation. For
the metabolites, this changes the steady state assump-
tion from N · v = 0 in FBA approaches to N · v = µx.
Moreover, if we explicitly model enzyme synthesis, we

should also account for the metabolites that are con-
sumed during this synthesis. Let M be the matrix that
denotes how many metabolites are needed to make a

specific enzyme, then we get a first set of constraints
on the fluxes:[
N −M

]
·
[
v

vsynth

]
= µx, (15)

vsynth,j = µej , (16)

vsynth,rib = µr. (17)

Equations (11) to (17) define the core ingredients of
the self-fabrication models. In Supporting Information
6 we show how this system can be rewritten. In short:
equations (11), (12) and (13) are used to get expressions
for the concentrations e and r in terms of the fluxes, and
these expressions are used in equations (14), (16) and
(17) to get four relations between the fluxes v,vsynth
and µ. These relations are linear in the reaction rates,
so that the system can be written in a form that looks
like a familiar Linear Program:

maximize
v,vsynth,µ

µ

subject to A(x, µ) ·

 v
vsynth
µ

 = 0 (18)

vi, vsynth,i ≥ 0.

5 In some modeling methods this density is modeled as an
upper bound [32, 33, 37]. In SI7 we explain the advantages
and disadvantages of doing this.
6 Dependent on the biochemical interpretation of the

ρ-parameters, some models include contributions of the
metabolite concentrations ρixi [7, 37].

Although this looks like a Linear Program, it is more
difficult since the constraint matrix is not constant: it
depends on the metabolite concentrations, x, and on
the growth rate, µ. The x-dependence is often “solved”
by ignoring the dilution of small metabolites and fixing
the concentrations of macromolecules based on experi-
mental data [33,36]7. The µ-dependence that makes the
problem nonlinear is overcome by fixing the growth rate
in the constraint matrix to a certain value: A(x, µ) →
A(x, µ0), and then add the constraint that the µ in the
optimization variables should equal µ0. Note that, since
it is fixed, we can no longer maximize the growth rate.
However, we can check if there is a solution that solves
the system. If there is no solution, then µ0 > µmax; if
there is a solution, we can increase µ0. The maximal
growth solution is found by repeating this procedure
until the problem is still feasible for µ0 = µmax, but
infeasible for all µ0 > µmax. So we get

maximize
v,vsynth,µ0

µ0

such that

[
A(x, µ0)

0 0 1

]
·

 v
vsynth
µ

 =

[
0
µ0

]
(19)

vi, vsynth,i ≥ 0.

Using the described mathematical core, Goelzer et al.
proposed a formalism that was named Resource Bal-

ance Analysis (RBA), with which they modeled over-
flow metabolism in Bacillus subtilis [38]. In addition
to the density constraint of Equation (14), the authors

used a constraint on the maximal concentration of macro-
molecules in the membrane; in our notation:

∑
j σjej ≤

Dmem.

In parallel, Thiele et al. [35] for E. coli, and Lerman
et al. [34] for Thermotoga maritima presented the so-
called Metabolism and Expression (ME) models. The
mathematical basis of ME-models is equal to the ba-
sis of RBA-models (Equations (11) to (17)), but ME-
models are even more comprehensive: for example, the
synthesis rates of mRNA, tRNA, and RNA-polymerases
are explicitly modeled. Moreover, some catalytic rates,
of the ribosome for example, are no longer assumed to

be independent of the growth rate; their dependence
is estimated from experimental data. These extensions
add many variables and constraints to the model, but
we show in SI8 that these additions can still be writ-
ten as relations that are linear in the reaction rates
and nonlinear in the growth rate. In short, although
the A-matrix of Equation (19) gets larger, ME-models

7 One could also solve the problem for fixed metabolite con-
centrations [7,37], and then scan over all possible sets of con-
centrations, but this becomes computationally infeasible in
large quantitative models.
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can still be written in this form. O’Brien et al. used an
ME-model to model overflow metabolism in E. coli [36].
The cytosolic density constraint was here supplemented
with an upper bound on the substrate uptake flux.

Molenaar et al. [32] were the first to present a mech-
anistic model of cellular self-fabrication, a core model
with 5 reactions and 3 metabolites. Because their model
is so small, they could use enzyme kinetics and non-
linear optimization to directly maximize the growth
rate. The optimal solutions show a discrete switch from
an efficient pathway to an inefficient pathway. This is
different from the gradual switch that is observed in
overflow metabolism, even though, just as in [33], the
authors model an upper bound on the membrane den-
sity. However, this does not effectively constrain the
concentrations of membrane proteins, since the surface-
to-volume ratio can be freely adjusted in the model.
Therefore, only the density constraint of Equation (14)
is effective. In personal correspondence, the authors
confirmed that, in hindsight, it might have been more
realistic to set a lower bound to the size of the cell. In

this case, an additional constraint would have become
active.

4 Discussion

4.1 Commonalities and differences

We reviewed many constrained optimization approaches
that describe overflow metabolism, ranging from rela-

tively simple linear Flux Balance Analysis models to
complicated nonlinear Metabolism and Expression mod-
els. Some approaches use small core models, others use
genome-scale networks comprising thousands of reac-
tions. The imposed constraints are either limits on re-
action rates, Gibbs dissipation limits or limits on en-

zyme concentrations. Despite all these differences, we
managed to write all these models in a concise stan-
dard form by focusing on their mathematical essence.
We conclude from this that these models must share a
feature, one that must be essential for describing over-
flow metabolism. In the following, we will compare the
models in their standard form using our recent theo-

retical work [7, 8] to analyze and explain this feature,
using an extremum principle that governs the solutions
of all the reviewed approaches.

4.1.1 A general extremum principle: Overflow

metabolism is caused by two growth-limiting
constraints

All reviewed approaches model a growing cell by impos-
ing a set of homogeneous constraints: a first set that

ensures a steady state, and a second set that deter-
mines the feasible direction for irreversible reactions.
There are some differences in how the first set is im-
posed. FBA and resource allocation approaches model
a system that produces cell components in the pro-
portions captured by a constant demand reaction, the
biomass reaction. The steady state assumption ensures
that no intermediate metabolite accumulates. The self-
fabrication models implement this assumption with a
balanced growth assumption: all cellular compounds
should be produced to match the rate of consumption
and dilution by growth. The demand reaction is there-
fore dependent on the growth rate, which gives rise to
nonlinear relations between the optimization variables
and the growth rate. These differences are illustrated
in Figure 2.

Despite these seemingly different setups, we can de-
fine Elementary Modes in both cases: growth-supporting
subnetworks that form the minimal building blocks of
the solution space. These are called Elementary Flux

Modes in the linear models [6], and Elementary Growth
Modes in the self-fabricator models [7], see SI1 for a
short introduction. The defining property of these modes

is that all possible solutions of the growth models can
be written as a combination of these modes. In other
words, EFMs are non-decomposable metabolic subnet-
works, and EGMs are non-decomposable self-fabrication

subnetworks. Overflow metabolism is decomposable in
an energy-efficient subnetwork, and a less energy-efficient
subnetwork, and is thus a combination of two Elemen-

tary Modes.

Using the concept of Elementary Modes we derived

an extremum principle stating that the number of flux-
carrying Elementary Modes in the optimal solution will
be smaller or equal than the number of active (i.e.
growth-limiting) constraints. These growth-limiting con-
straints are the additional constraints that are imposed
after the steady state and irreversibility constraints (this
is illustrated and explained in Figure 1). The extremum
principle implies that only one Elementary Mode will
be selected by growth rate maximization under one con-
straint. For example, in a model in which only one nu-
trient uptake rate is constrained, we will never observe a
gradual switch from a high-yield metabolic mode to the
combination with a low-yield mode. Overflow metabo-
lism must thus be a result of two constraints, see Figure

2 for an illustration of this result.

The extremum principle suggests that the success of
describing overflow metabolism might not lie in the de-
tails of the stoichiometric networks, or the exact choices
of model parameters, but rather in the mere existence
of two constraints. This implies that finding the mecha-
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Fig. 2 FBA models and self-fabrication models lead to a similar mathematical problem. In the top figures we
illustrate two of the reviewed approaches. FBA models consider steady state fluxes through networks of metabolic reactions
with constraints on the reaction rates. A virtual biomass reaction is added as a proxy for the growth rate. Self-fabricator models
make the synthesis of enzymes and the ribosome explicit, and can therefore model the growth rate as the volume increase due
to the production of components. The enzyme concentrations can now be viewed as the optimization variables, so that protein
concentration constraints can also be included. In the bottom figures we show a highly simplified illustration of the solution
space of both approaches. In the linear approaches, FBA and proteome-constrained models, all quantities depend linearly on
the growth rate, while there are nonlinear dependencies in the self-fabricator models. However, we showed that in both cases,
overflow metabolism is caused by two growth-limiting constraints.

nistic cause of overflow metabolism amounts to finding
which two constraints are actually limiting growth.

Unfortunately, the extremum principle does not pre-

dict which constraint causes overflow metabolism. It
states that there should be two constraints, but does
not reveal their identity. Moreover, overflow metabo-
lism in different species might be due to completely dif-
ferent constraints. Thus, to find out which constraints
cause overflow metabolism, we must test hypothetical
constraints.

4.1.2 Specific experiments: the mechanistic cause of
overflow metabolism can be found with falsification

experiments

Encouraged by the conclusion that the growth-limiting
constraints must be important in causing overflow meta-

bolism, we have listed all the constraints that are used
in the reviewed models (Table 1). We see that almost

all models indeed use two constraints.8 Molenaar et
al. [32] and Mori et al. [30] form exceptions to this
rule, using only one effective constraint. Our theory
thus implies that only one EFM will be used in the
optimal solutions of these models. Indeed, the models
show discrete switches between EFMs when the growth

rate increases. The model from Molenaar et al., con-
taining only two EFMs, switches at once from respira-
tion to fermentation. The genome-scale model of Mori
et al. contains many different EFMs that form interme-
diate steps between full respiration and full fermenta-
tion. Their model therefore shows many small discrete
switches, approximating a gradual switch.9 This gives

8 Only Varma and Palsson use more than two con-
straints. Their third constraint is a lower bound on an ATP-
maintenance reaction, which we have left out of the table for
clarity.
9 The authors also present a figure showing a gradual

switch, but this is the average behaviour for many mod-
els with slightly different parameters. The discontinuities are
then averaged out.
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Table 1 An overview of the models that try to explain overflow metabolism, including which constraints were
used in addition to the steady-state assumptions.

Paper Type Constraint 1 Constraint 2
Majewski et al. [11] FBA glucose uptake rate electron transfer capacity
Varma et al. [12] FBA glucose uptake rate oxygen uptake rate
Carlson et al. [14] FBA glucose uptake rate oxygen uptake rate
Niebel et al. [18] tFBA glucose uptake rate free energy dissipation
Basan et al. [27] resource glucose uptake rate total proteome
Mori et al. [30] resource total proteome
Vazquez et al. [23, 24] resource glucose uptake rate macromolecular density
Van Hoek et al. [29] resource glucose uptake rate macromolecular density
Zhuang et al. [28] resource glucose uptake rate membrane occupancy
Szenk et al. [22] resource glucose uptake rate membrane occupancy
Shlomi et al. [31] resource glucose uptake rate total proteome
Molenaar et al. [32] self-fabr macromolecular density
Goelzer et al. [38] self-fabr membrane density macromolecular density
O’Brien et al. [36] self-fabr glucose uptake rate macromolecular density

rise to a separate hypothesis that we cannot fully ex-
clude. However, we find it more probable that, upon
a change in the environment, gene expression contin-

uously tunes the proportions in which two EFMs are
used, than that it repeatedly shuts down one EFM to
upregulate another.

Among the models that use two constraints, there is

some variation in the biological underpinnings of these
constraints. The question is how to find the relevant
constraints. The genome-scale approach is to make an
extensive model and try to quantitatively match the ex-

perimental data. One risk, however, is overfitting, be-
cause a large enough model could potentially fit any
experimental data. Such an approach should therefore

be backed up by independent measurements of assumed
constraints. Still, it is hard to imagine how a model
could distinguish the effects caused by a ’total proteome

constraint’ and a ’macromolecular density constraint’.
For this, we need perturbation experiments. For exam-
ple, to artificially perturb the proteome allocation of
E. coli, Basan et al. [27,39] overexpressed the nonfunc-

tional protein LacZ in one experiment and added trans-
lation inhibitors in another. We have derived a formal-
ism in which such perturbation experiments can be an-
alyzed [8]. Basan et al. could provide evidence for their
proposed total proteome constraint. In our opinion, this
makes their proposed constraint the best-established
mechanistic cause of overflow metabolism in E. coli up
to this point. However, as we now know, there should be
a second growth-limiting constraint. Basan et al. used
a limit on the uptake rate of nutrients, which cannot
truly be considered as a mechanistic cause of overflow
metabolism, because, as described by Molenaar et al.
in 2009: ”... using an artificial maximal capacity con-

straint on substrate uptake ignores the possibility of
variable investments made in substrate transport sys-

tems.” The identity of the second constraint in E. coli,
even though a constraint on transport of glucose is gen-
erally used and thus apparently accepted, remains to be

established.

4.1.3 Towards a complete model of cellular
self-fabrication.

We observe two directions of development towards a
complete model of cellular self-fabrication in the mod-
els that we have reviewed. Along the first direction the

optimization variables are moved closer to the actual
regulatory space of the cell, and thereby closer to the
origin of overflow metabolism. Along the second direc-
tion, more and more of the inherent nonlinearity of self-

fabrication is incorporated in the models.

To explain the first direction of development, we
recall that FBA models use fluxes as variables, which
cannot be directly regulated by the cell. Instead, en-
zyme concentrations are regulated and these will, to-
gether with the metabolite concentrations, determine
the fluxes. The resource allocation models switch per-
spective to enzyme concentrations as variables with the
major advantage that constraints on enzyme concen-
trations can be formulated directly. These constraints
can be related to physically observable quantities, such
as the available membrane area or cytosolic volume,
whereas flux constraints cannot. Flux constraints can
only be determined ad hoc using experimental data,

which limits their predictive power.10 One can move
even further towards the regulatory space of the cell
because the enzyme concentrations are in fact depen-
dent on the enzyme synthesis rates, and these are regu-

10 In fact, many of the resource allocation models still use a
flux constraint for the nutrient uptake reaction, so that these
are also not entirely predictive.
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lated by the allocation of the ribosomes over the differ-
ent mRNAs. The reviewed self-fabricator models indeed
use as variables the enzyme synthesis rates [36, 38], or
the ribosome allocation fractions [32]. A final step to-
wards the regulatory space of the cell could be to model
the regulation of mRNA synthesis via gene expression
directly, but we do not know of any models that have
implemented this.

The second direction of development moves towards
incorporating three nonlinearities that are related to
self-fabrication. We already mentioned two of them:
1) the dependence of the biomass composition on the
enzyme allocation, and 2) the dependence of the de-
manded enzyme synthesis rates on the growth rate. The
incorporation of these two nonlinearities form the main
improvement of self-fabrication models with respect to
FBA type models. Here we want to raise attention for
a third nonlinearity: the kinetic dependence of enzyme
and ribosome activities on the metabolite concentra-
tions. If a cell reallocates resources, metabolite concen-

trations change as well, causing changes in the satura-
tion levels of enzymes. Including the metabolite con-
centrations in the model however, requires information
about the enzyme kinetics of all the different enzymes

in the cell. Moreover, it makes the optimization prob-
lem computationally infeasible because the problem is
no longer guaranteed to have only one local optimum.

Therefore, global optimization software has to be used
and it is difficult to ascertain that the found solution is
the actual optimum. For these reasons, enzyme kinet-
ics can so far only be included in core models [32] and

theoretical work [7, 8, 37]. The question is if there are
constraints, rules and patterns in the changes in (opti-
mal) metabolite levels that would allow us to approxi-

mate optimal solutions without global optimisation of
the full kinetic model.

4.1.4 Alternatives for growth rate maximization

We have focused on growth rate maximization mod-
els, but alternative explanations of overflow metabo-
lism cannot be fully excluded. For example, it might
be that not absolute fitness is maximized, but rather
relative fitness compared to competitors. For example,
cells could produce overflow products to intoxicate their

neighbours, or cells could maximize their uptake rate to
claim the largest share of the nutrient pool. These ex-
planations have been reviewed elsewhere [40,41].

It might even be that cells are not completely opti-
mized for anything. For example, it was shown that the
overexpression of transcriptional regulator ArcA could

increase the growth rate of E. coli on glycolytic sub-
strates [42]. This shows that metabolism was not opti-

mal in the wild type strain within the studied environ-
mental conditions.

The sub-optimality of a population of microorgan-
isms might be due to the high regulatory costs that
would be required to steer each individual cell to the
optimum. De Martino et al. [43] calculated a possible
probability distribution for the metabolic states of sin-
gle cells by maximizing the entropy of this distribution
while the average growth rate was fixed to the mea-
sured value. This approach leads to a model of single-
cell behaviour in which the least additional assumptions
were made: ‘the probability distribution is as general
as possible’. Their predicted distribution captured the
measured fluxes better than a Flux Balance Analysis
approach. Subsequently, they quantified the amount of
regulation that would be needed to get a higher average
growth rates, showing that attaining a maximal average
growth rate would bring infinite regulatory costs.

5 Conclusion

We reviewed 15 different models of overflow metabo-
lism, ranging from Flux Balance Analyses, to nonlin-
ear self-fabricator models such as Metabolism and Ex-

pression models. Despite the many differences between
the models, we could rewrite the mathematical cores of
each of them into a concise standard form. This stan-

dard form could be analyzed using an extremum prin-
ciple, stating that the number of Elementary Modes
at maximal growth is less or equal than the number
of growth-limiting constraints. The extremum principle

implies that overflow metabolism is caused by at least
two growth-limiting constraints. We therefore listed all
reviewed models with their proposed constraints. We

hope that this list will serve as a source of hypotheses
that can now be tested using falsification experiments.
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