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Abstract  31 

Background 32 

Selecting the best genome assembly from a collection of draft assemblies for the same 33 

species remains a difficult task. Here, we combine new and existing approaches to 34 

help to address this, using the non-model plant Eucalyptus pauciflora (snow gum) as a 35 

test case. Eucalyptus pauciflora is a long-lived tree with high economic and 36 

ecological importance. Currently, little genomic information for Eucalyptus 37 

pauciflora is available. 38 

Findings 39 

We generated high coverage of long- (Nanopore, 174x) and short- (Illumina, 228x) 40 

read data from a single Eucalyptus pauciflora individual and compared assemblies 41 

from four assemblers with a variety of settings: Canu, Flye, Marvel, and MaSuRCA. 42 

A key component of our approach is to keep a randomly selected collection of ~10% 43 

of both long- and short-reads separate from the assemblies to use as a validation set 44 
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with which to assess the assemblies. Using this validation set along with a range of 45 

existing tools, we compared the assemblies in eight ways: contig N50, BUSCO scores, 46 

LAI scores, assembly ploidy, base-level error rate, computing genome assembly 47 

likelihoods, structural variation and genome sequence similarity. Our result showed 48 

that MaSuRCA generated the best assembly, which is 594.87 Mb in size, with a contig 49 

N50 of 3.23 Mb, and an estimated error rate of ~0.006 errors per base. 50 

Conclusions 51 

We report a draft genome of Eucalyptus pauciflora, which will be a valuable resource 52 

for further genomic studies of eucalypts. These approaches for assessing and 53 

comparing genomes should help in assessing and choosing among many potential 54 

genome assemblies for a single species.  55 

 56 

 57 
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genome polishing 60 
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Data Description 67 

Introduction 68 

Eucalypts are widely distributed in Australia, including three genera Eucalyptus, 69 

Corymbia and Angophora, and have around 900 species [1]. Eucalyptus pauciflora (E. 70 

pauciflora) (Fig. 1), also known as snow gum, is a highly variable eucalyptus species 71 

that inhabits diverse landscapes in south-eastern Australia [1]. E. pauciflora can 72 

survive from close to sea level to up to the tree line of the Australian Alps, displaying 73 

the broadest altitudinal range in the Eucalyptus genera [2-4]. Due to its wide 74 

distribution and drought and cold tolerance, E. pauciflora is used for carbon offset 75 

plantings, ecological restoration, honeybee food source, and also has medicinal uses 76 

[1, 5-11]. However, genomic resources for E. pauciflora are currently very limited: 77 

there exists a single chloroplast genome [12], two sets of microsatellite markers [13, 78 

14], and two nuclear loci used for phylogenetics [15]. The assembly of E. pauciflora 79 

genome will assist in elucidating the genetic basis of cold tolerance in Eucalyptus. 80 

 81 

Across the ~900 extant eucalypt species, there are only two genomes published: those 82 

for E. grandis and E. camaldulensis [16, 17]. Both of these genomes were sequenced 83 

with a combination of Sanger sequencing and short-read sequencing, and as a result 84 

both assemblies are somewhat fragmented. There are 81,246 scaffolds in E. 85 

camaldulensis assembly [17]. While the E. grandis genome is highly contigous, 86 

assembled to chromosom e level, it still has 4,941 unplaced scaffolds [16]. New 87 

technologies, such as third-generation long-read sequencing, have the potential to 88 
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produce less fragmented assemblies at a fraction of the cost of previous methods. 89 

Nevertheless, many challenges still remain, not least of which is that different genome 90 

assembly software, and small changes to the parameters of a single piece of software, 91 

can produce substantially different assemblies. In light of this, methods for choosing 92 

the most accurate assembly from a set of possible assemblies have become 93 

increasingly important. 94 

 95 

Two metrics are commonly used to assess and compare genome assemblies: contig 96 

N50 and Benchmarking Universal Single-Copy Orthologs (BUSCO [18], 97 

RRID:SCR_015008) scores. The contig N50 is the size of the contig where at least 50% 98 

of the assembled nucleotides can be found in contigs of that size or larger. The N50 is 99 

a measure of genome contiguity, where a higher N50 suggests a genome that has been 100 

assembled into fewer and larger contigs. All else being equal, we should prefer 101 

genome assemblies with a larger N50, up to the point where the N50 is equal to the 102 

N50 of the chromosomes themselves. Perhaps because of this, the N50 is one of the 103 

most widely reported metrics in genome assembly. However, it is important to 104 

remember that the N50 measures contiguity, not accuracy. For example, N50 scores 105 

may be artificially inflated by incorrectly linking contigs [19, 20]. The BUSCO score 106 

estimates the proportion of highly conserved orthologous genes that are present in 107 

assemblies. The underlying assumption is that there exists a certain set of highly 108 

conserved single-copy genes, the vast majority of which we should expect to observe 109 

in single copies in any given haploid genome assembly. BUSCO scores provide a very 110 
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useful measure of genome assembly completeness (a component of accuracy), and in 111 

principle we should prefer genome assemblies with BUSCO scores closer to 100%. 112 

One limitation of BUSCO scores is that they assess only a very small proportion of 113 

the genome, typically around 1000 highly conserved genes which represent less than 114 

1% of the total genome. Furthermore, by their nature these protein-coding regions of 115 

the genome tend to be among the easiest to assemble because they are usually 116 

single-copy regions of high complexity. Hence, assemblies can have very similar 117 

BUSCO scores even if they differ considerably in their assembly of the non-BUSCO 118 

genomic regions, which means that it is sometimes difficult to use BUSCO scores to 119 

distinguish among competing assemblies [21]. In this study, we complement these 120 

commonly-used measures with a range of other metrics to assess and compare 121 

genome assemblies, and we use these measures to choose the best draft assembly of E. 122 

pauciflora.  123 

 124 

One measure we propose is the assembly ploidy: the proportion of the genome that is 125 

represented by haploid contigs. One important problem in genome assembly is that 126 

we commonly represent the genome of diploid (or polyploid) organisms as a haploid 127 

sequence. Traditionally, genome projects would alleviate this problem by sequencing 128 

highly inbred individuals [22, 23], thus reducing the discrepancy between the diploid 129 

individual and the haploid representation. However, as genome assembly has become 130 

more commonplace, we often want to assemble the genomes of highly heterozygous 131 

individuals. For example, heterozygosity in Eucalyptus is around 1% [24], and varies 132 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/678730doi: bioRxiv preprint 

https://doi.org/10.1101/678730
http://creativecommons.org/licenses/by-nd/4.0/


 

7 

 

substantially along the genome [16]. The consequence of this is that regions of low 133 

heterozygosity tend to be assembled into a single collapsed haploid sequence, whereas 134 

regions of high heterozygosity tend to be assembled into two haplotypes of the same 135 

region, which are usually labelled the ‘primary contig’ (referring to the longer of the 136 

two contigs) and the ‘haplotig’ (referring to the shorter of the two contigs) [25]. 137 

Although there has been some progresses in estimating truly diploid assemblies [25, 138 

26], most assemblers still produce primary contigs and haplotigs without labelling 139 

them as such [27, 28]. Crucially, unidentified haplotigs may cause issues in the 140 

downstream analyses, because many analyses assume that we have a haploid 141 

representation of the genome. Because of this, we propose a novel and simple (but 142 

imperfect) metric to measure the assembly ploidy, which is simply the ratio of the 143 

assembly size to the estimated haploid genome size. If the aim is to produce a haploid 144 

representation of a genome, then an assembly ploidy of 1 is preferable (i.e. the 145 

assembly size should equal the estimated haploid genome size). If the aim is to 146 

produce a diploid representation of a genome, then an assembly ploidy of 2 is 147 

preferable (i.e. the assembly size should be double the estimated haploid genome size). 148 

One limitation of this metric is that it is sensitive to errors in the estimation of haploid 149 

genome size, and it is also sensitive to errors in genome assembly (e.g. highly 150 

incomplete assemblies) that might affect the numerator. Nevertheless, in combination 151 

with other measures, we show below that the assembly ploidy provides a useful 152 

metric with which to compare genome assemblies. 153 

 154 
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We also apply a suite of measures designed to provide a genome-wide assessment of 155 

contiguity and accuracy that can complement the widely-used contig N50 and 156 

BUSCO scores. The advantages of these measures lie in the fact that they assess more 157 

of the genome than BUSCO scores, though each also has its limitations. The first 158 

measure is the long-terminal repeat (LTR) assembly index, or LAI [21]. The LAI 159 

score is the proportion LTR sequences in the genome that are intact, and is 160 

independent of genome size and repeat content. In general, a higher LAI score 161 

suggests a more contiguous and complete assembly [21]. The second measure we use 162 

is the base-level error rate evaluated by remapping independent sets of long and short 163 

validation reads (around 10% of all reads, randomly selected) to the assembly. 164 

Previous studies have evaluated the base-level error rate by remapping all reads to the 165 

assembly [29, 30]. Here, we use validation reads which are not involved in the 166 

assembly, in order to avoid any possible biases introduced by validating an assembly 167 

with the same data that was used to produce it. For a perfect assembly in which the 168 

ploidy of the entire assembly matches the ploidy of the individual, a lower base-level 169 

error rate is preferable, with a theoretical minimum of the error rate of the sequencing 170 

technology (e.g. ~0.3% for raw Illumina reads [31], and ~10-15% for raw Nanopore 171 

reads [32, 33]). For a haploid representation of a diploid assembly, the minimum 172 

possible base-level error rate will be higher, because by necessity a haploid 173 

representation of a heterozygous site will not match approximately half of the reads. 174 

In this case, the theoretical minimum base-level error rate is the sum of the error rate 175 

of the sequencing technology and half of the heterozygosity. The third measure is the 176 
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computing genome assembly likelihoods (CGAL) score [20]. The CGAL score is the 177 

likelihood of an assembly calculated from a model that accounts for errors in reads, 178 

read coverage across the assembly, and the proportion of reads that do not contribute 179 

to the assembly. A higher likelihood suggests that a genome assembly is a better 180 

representation of the truth. The fourth measure we use is the number of structural 181 

variants detected when re-mapping our long validation reads to assemblies. As with 182 

the base-level error rate, if the ploidy of the assembly matches the ploidy of the 183 

individual, then the theoretical minimum of this metric is the structural error rate 184 

introduced into sequencing reads by the sequencing technology. For a haploid 185 

representation of a diploid genome, the theoretical minimum is the sum of the error 186 

rate of the technology plus half of the structural heterozygosity. These two quantities 187 

are rarely known, but nevertheless, a very high structural error rate of validation reads 188 

mapped to a haploid assembly may indicate cases in which the assembly has a large 189 

proportion of incorrectly linked contigs. The final measure is the genome sequence 190 

similarity of each assembly when compared to all other assemblies. This measure 191 

does not provide any information relative to an underlying truth, but it may help to 192 

identify significant differences between otherwise plausible genome assemblies that 193 

can aid in choosing the best assembly. The selection of the best assembly should 194 

consider all measures together. 195 

 196 

Here, we used long- and short-reads to create a draft haploid assembly of the E. 197 

pauciflora genome. We use the metrics we describe above to compare a range of 198 
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assemblies from a range of different assemblers. We performed different assemblies 199 

with long-read-only assemblers (Canu (Canu, RRID:SCR_015880) [34], Flye [35] 200 

and Marvel [36]) and hybrid assembler MaSuRCA (MaSuRCA, RRID:SCR_010691) 201 

[37], using long-read datasets with different minimum read lengths in each case (1 kb 202 

and 35 kb). 203 

 204 

 205 

Sample collection, DNA sequencing and quality control 206 

We collected leaves from the single E. pauciflora tree near Thredbo, Kosciuszko 207 

National Park, New South Wales, Australia (36° 29′ 39.58″ N, 148° 16′ 58.73″ E) in 208 

March 2016 (for Illumina sequencing) and June 2017 (for MinION sequencing). We 209 

stored leaves at 4°C when transported them to the laboratory.  210 

 211 

For long-read sequencing, we extracted high molecular weight genomic DNA from 212 

leaves following a protocol optimized for Eucalyptus nanopore sequencing [38]. We 213 

prepared ONT 1D ligation libraries according to the manufacturer’s protocol 214 

(SQK-LSK108) and sequenced the reads using MinKNOW v1.7.3 with R9.5 215 

flowcells on a MinION sequencer. We performed basecalling with Albacore v.2.0.2 216 

(Albacore, RRID:SCR_015897). This resulted in 12,584,100 raw long-reads (106.96 217 

Gb) with average read length of 8.5 kb. We removed adapters from long-reads with 218 

Porechop v0.2.1 (Porechop, RRID: SCR_016967) [39]. Next, we trimmed bases with 219 

quality <10 on both ends of the reads using NanoFilt (NanoFilt, RRID:SCR_016966) 220 
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[40] and discarded reads shorter than 1 kb after trimming. This recovered 96.66 Gb of 221 

long-read data comprising 7,711,141 filtered reads with an average read length of 222 

12.53 kb (minimum 1 kb and maximum ~150 kb). Given an estimated genome size of 223 

500 Mb (see below), this represents a coverage of 193x.  224 

  225 

For short-read sequencing, we extracted genomic DNA from freeze-dried leaves using 226 

a CTAB protocol [41] followed by purification with a Zymo kit (Zymo Research 227 

Corp). We constructed TruSeq Nano libraries with an insert size of 400 bp using 228 

protocol provided by Illumina, then sequenced the reads (paired-end 150 bp) using an 229 

Illumina Hiseq2500 platform (Illumina Inc., San Diego, CA). This Illumina 230 

sequencing generated 506,840,789 paired raw reads (152.05 Gb). We used BBDuk 231 

v37.31 (BBmap, RRID:SCR_016965) [42] to remove adapters and to trim both sides 232 

of raw short-reads which quality was lower than 30. We discarded filtered reads with 233 

a length under 50 bp. Around 122.69 Gb short-read data containing 414,697,585 234 

paired reads were left, representing 246x coverage with an estimated genome size of 235 

500 Mb (see below). 236 

 237 

Genome size and heterozygosity estimation 238 

We used GenomeScope (GenomeScope, RRID:SCR_017014) [43] and SGA-preqc 239 

(SGA, RRID:SCR_001982) [44] to estimate the E. pauciflora genome size. We first 240 

generated a 32-mer distribution using Jellyfish v1.1.12 (Jellyfish, RRID:SCR_005491) 241 

[45] from all of our short-reads, then ran GenomeScope using this 32-mer distribution 242 
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with a maximum k-mer coverage of 1000x. This gave a genome size estimate of 243 

408.16 Mb (Additional file 1: Fig. S1), which is lower than expected for other 244 

Eucalyptus species [16, 17]. However, it is known that genomic repeats can lead to 245 

underestimation of genome sizes from uncorrected kmer distributions [46], and the 246 

Eucalyptus genome is repeat-rich, for example around 50% of genome was annotated 247 

as repeats in E. grandis [16], suggesting that 408.16 Mb may be a significant 248 

underestimate of the genome size. SGA-preqc estimates genome size from k-mer 249 

distributions that are corrected to attempt to better account for repeat content, in line 250 

with this, SGA-preqc gave a genome size estimate of 529.40 Mb. Because of this, we 251 

expect that the SGA-preqc genome size is likely to be more accurate, and in what 252 

follows we assume that the E. pauciflora genome size is roughly 500 Mb. This 253 

suggests that the E. pauciflora genome may be around ~30% smaller than that of the 254 

other two sequenced Eucalyptus species, E. grandis (691.43 Mb) [16] and E. 255 

camaldulensis (654.92 Mb) [17]. However, the genome sizes of E. grandis and E. 256 

camaldulensis may be overestimated due to the assembly and scaffolding of both 257 

haplotypes at heterozygous regions. 258 

 259 

Creation of assembly and validation datasets 260 

We separated our long-read and short-read data into assembly dataset (~90% of reads) 261 

and validation dataset (~10% of reads) by randomly assigning the trimmed and 262 

filtered reads into the two datasets. The assembly dataset comprised 86.94 Gb of 263 

long-read data (174x coverage) and 114.10 Gb of short-read data (228x coverage). 264 
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The validation dataset comprised and 9.67 Gb of long-read data (19x coverage) and 265 

8.59 Gb of short-read data (17x coverage).  266 

 267 

Genome assembly 268 

Here, we compared five long-read-only assemblies and two hybrid assemblies. For 269 

each combination of data and genome assembler, we followed the same genome 270 

assembly pipeline. We first used the assembler to produce an initial assembly. 271 

Following this, we identified and removed contigs from contaminant sequences, and 272 

then polished the resulting assembly. We then identified and removed haplotigs from 273 

the assembly, and finally re-polished each assembly after haplotig removal. To select 274 

the best assembly, we calculated the contig N50 with Quast [19], BUSCO scores with 275 

BUSCO, and LAI scores using the LTR_retriever pipeline [47]. After mapping the 276 

long- and short- validation reads to the final assemblies (using Ngmlr [48] for the 277 

former and Bowtie2 (Bowtie2, RRID:SCR_016368) [49] for the latter), we calculated 278 

the base-level error rate using Qualimap [50] the structural variant error rate using 279 

Sniffles [48], and CGAL scores using CGAL. Finally, we performed whole genome 280 

alignment between different assemblies with NUCmer module of MUMmer [51]. 281 

 282 

Oxford Nanopore reads tend to have error rates of ~10-15%, which can make 283 

assembly of uncorrected reads very challenging. To alleviate this, we first corrected 284 

the long-reads assembly dataset with Canu v1.6 with default parameters except for 285 

setting corMinCoverage to 8, meaning that read correction would only be applied 286 
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where at least 8 reads overlapped. We deemed this reasonable given the very high 287 

coverage of our data (174x). We then put the corrected long-read datasets into two 288 

sets for assembly. The first dataset contained all corrected long-reads, such that the 289 

minimum read length was 1 kb (174x of coverage). The second dataset contained all 290 

corrected reads longer than 35 kb (~40x of coverage). We refer to these datasets as the 291 

1 kb and the 35 kb datasets, respectively. 292 

 293 

We attempted six long-read-only assemblies and two hybrid assemblies. Assemblies 294 

solely with long-read data were performed on corrected reads of two read lengths (1 295 

kb and 35 kb) using three long-read assemblers: Canu v1.6 and v1.7, Flye v2.3.5 and 296 

Marvel v1.0. The Marvel assembly with 1kb dataset was not feasible because it 297 

required more disk space than we had available, resulting in five successful long-read 298 

only assemblies. We used MaSuRCA v3.2.6 to perform hybrid assemblies with both 299 

read length datasets (1 kb and 35 kb) each combined with the short-read dataset. In 300 

what follows, we refer to these assemblies as Canu_1kb, Canu_35kb, Flye_1kb, 301 

Flye_35kb, Marvel_35kb, MaSuRCA_1kb and MaSuRCA_35kb. We used default 302 

settings in all assemblers, and an estimated genome size of 500 Mb where this setting 303 

was required. For Canu assemblies, the 1 kb dataset was assembled using Canu v1.6, 304 

whereas the 35 kb dataset was assembled using Canu v1.7. We did not repeat the 305 

Canu_1kb assembly after Canu v1.7 was released, because we no longer had 306 

sufficient computational resources. The chloroplast genome and mitochondrial 307 

genome were removed from each assembly. For each assembly, we recorded the 308 
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runtime in CPU hours, the raw assembly length, and the N50 (Table 1). 309 

 310 

Contamination detection 311 

Following initial assembly, we used Blobtools [52] to assess contamination in each 312 

genome assembly. To do this, we first generated a hit file for each assembly by 313 

searching all contigs against the National Center for Biotechnology Information 314 

(NCBI) non-redundant nucleotide database using BLASTN v2.7.1+ (BLASTN, 315 

RRID:SCR_001598) [53] ( E-value ≤ 1e-20). We then analysed the hit file for each 316 

assembly using Blobtools, which provides taxonomic annotations and other diagnostic 317 

plots to detect contamination in raw genome assemblies. The top-hit was streptophyta 318 

phylum, comprising 99.72% to 100% of the hits in different assemblies (Additional 319 

file 2: Fig. S2), indicating that there was no potential contamination from a non-plant 320 

origin in each raw assembly. 321 

 322 

Genome polishing 323 

We polished each initial genome assembly in order to improve its accuracy. For the 324 

Canu, Flye, and Marvel assemblies (i.e. those built from long-reads only), we 325 

polished first with Racon [54] using Ngmlr v0.2.6 using the long-read assembly 326 

dataset, and then with Pilon v1.22 (Pilon, RRID:SCR_014731) [55] using Bowtie 327 

v2.3.4.1 with the short-read assembly dataset. For the MaSuRCA assemblies, we 328 

polished only with Pilon because MaSuRCA is a hybrid assembler, and using 329 

error-prone long-reads to polish hybrid assemblies tends to induce more errors rather 330 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/678730doi: bioRxiv preprint 

https://doi.org/10.1101/678730
http://creativecommons.org/licenses/by-nd/4.0/


 

16 

 

than remove them (Additional file 3: Table S1).  331 

 332 

We ran each polishing algorithm for multiple iterations until the accuracy of the 333 

resulting assembly stopped improving or improving slightly. We assessed the 334 

improvements using BUSCO scores and the base-level error rate by re-mapping 335 

validation long- and short-reads to each assembly (mapped as above). We evaluated 336 

the BUSCO scores using BUSCO v3.0.2 with the embryophyta_odb9 lineage (1440 337 

genes in total). Polishing with Racon took between 4 and 12 iterations, and with Pilon 338 

between 6 and 10 iterations (Additional file 3: Table S1).  339 

 340 

Polishing with both Racon and Pilon significantly improved all of the raw genome 341 

assemblies, measured with base-level errors in long- and short- reads, and with 342 

BUSCO scores (Additional file 3: Table S1). Polishing with Racon improved 343 

long-read base level accuracy by up to 0.83% (in the Marvel_35kb assembly), 344 

short-read base level accuracy by up to 1.51% (also in the Marvel_35kb assembly), 345 

and the BUSO completeness scores by up to 30.76% (in the Flye_35 assembly). 346 

Polishing with Pilon further improved the long-read base level accuracy by up to 0.40% 347 

(in the Marvel_35kb assembly), the short-read base level accuracy by up to 1.41% (in 348 

the Flye_35kb assembly), and the BUSO completeness scores by up to 24.44% (in the 349 

Flye_1kb assembly).  350 

 351 

Assembly ploidy and haplotig removal 352 
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Comparison of the polished genome assemblies revealed large variation in assembly 353 

size (Table 2). We calculated the assembly ploidy of each assembly as above, 354 

assuming a genome size of 500 Mb. The assembly ploidy ranges from 1.12 355 

(Flye_35kb assembly) to 1.79 (Canu_1kb assembly) (Table 2), suggesting that the 356 

Canu_1kb assembly is close to a diploid assembly (i.e. ~80% of the genome is 357 

represented by two contigs) and that the Flye_35kb assembly is close to a haploid 358 

assembly (i.e. only ~12% of the genome is represented by two contigs). To attempt to 359 

produce haploid representations of the genome from all assemblies, we used Purge 360 

Haplotigs [28] and a custom pipeline, which we call gene conservation informed 361 

contig alignment (GCICA) (script available on github from [56]) to find and remove 362 

haplotigs from all the assemblies (Fig. 2A). 363 

 364 

Purge Haplotigs assigns contigs to primary contigs and haplotigs depending on both 365 

coverage information generated by long-read mapping and pairwise alignments of all 366 

contigs. To run Purge Haplotigs, we first mapped the long-read assembly dataset to 367 

each polished assembly using Ngmlr v0.2.6, and then separated the contigs into 368 

primary contigs and haplotigs with default settings. 8% to 29% of each genome 369 

assembly was annotated as haplotigs, and removing these haplotigs reduced the 370 

assembly ploidy from 1.12 – 1.79 to 1.03 – 1.29 (Table 2). 371 

 372 

The high assembly ploidy for some assemblies after running Purge Haplotigs 373 

suggested that these assemblies retained haplotigs that covered up to 29% of the 374 
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genome. We therefore further filtered possible haplotigs using a custom approach, 375 

GCICA. If a pair of contigs comprise a primary contig and a haplotig, we would 376 

expect most of regions of the haplotig to be very similar to that of the primary contig. 377 

To find putative pairs of primary contigs and haplotigs, we therefore looked for pairs 378 

of contigs with similar gene content, and then examined these pairs in more detail. To 379 

do this, we first mapped the nucleotide sequences of all E. grandis genes to all contigs 380 

in an assembly using BLASTN v2.7.1+. If >70% of mapped markers in a contig could 381 

also be mapped to another contig, and at least 80% of sequence of the smaller contig 382 

could be aligned to the other contig (detecting with NUCmer module of MUMmer 383 

v4.0.0beta2), we considered these two contigs as a putative primary contig and 384 

haplotig pair. We then examined the alignments of all such pairs by eye and removed 385 

any pairs in which the smaller contig appeared to be completely contained within the 386 

larger, i.e. in which the smaller contig was an unambiguous haplotig. This process 387 

identified a further ~2% of each assembly as haplotigs (Table 2). 388 

 389 

Following removal of haplotigs, we re-evaluated each assembly using BUSCO scores 390 

(Fig. 2). We noted that, depending on the genome assembly, the number of complete 391 

BUSCO genes sometimes dropped and sometimes increased slightly after removing 392 

haplotigs (Fig. 2B). We hypothesised that BUSCO scores could drop either because 393 

haplotig removal mistakenly removed a contig that was not a haplotig, or because 394 

haplotig removal correctly removed a haplotig which contained a more conserved 395 

representation of a BUSCO gene. BUSCO scores could increase because they are 396 
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based on E-value scores of alignments, which may be affected by the total length of 397 

the assembly. To attempt to alleviate some of these potential issues, we re-polished all 398 

of the genome assemblies with multiple rounds of Pilon using the short-read assembly 399 

dataset, as above. BUSCO scores recovered across all assemblies with additional 400 

Pilon polishing (Fig. 2B). As expected, the number of duplicated BUSCO genes 401 

decreased substantially (~50%-70%) after haplotigs were removed from the 402 

assemblies and this did not change substantially after additional polishing (Fig. 2C 403 

and Additional file 4: Table S2). Together, these results suggest that our haplotig 404 

removal pipelines largely succeeded in removing haplotigs, although some haplotigs 405 

likely remain if the true genome size is around 500 Mb (Fig. 2A).  406 

 407 

Assessment of assembly quality with eight measures 408 

After haplotig removal and polishing, we considered the primary contigs of each 409 

assembly as the final assembly, and evaluated each of the final assembly in using the 410 

eight statistics we describe above: contig N50, BUSCO scores, LAI scores, assembly 411 

ploidy, base-level error rate, CGAL scores, structural variation and genome sequence 412 

similarity (Table 3 and Fig. 4). 413 

 414 

Comparison of the eight metrics we used suggested that the MaSuRCA_35kb 415 

assembly was likely to be the most accurate assembly overall and that the 416 

Marvel_35kb assembly was the least accurate. However, we note that the MaSuRCA 417 

assembly did not receive the best scores for all metrics, suggesting that the choice of 418 
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which assembly to use will sometimes be question-specific. Also, in most of cases, 419 

performances of the two MaSuRCA assemblies are very similar.  420 

 421 

N50 scores varied from 295 kb (Flye_1kb) to 3.2 Mb (MaSuRCA_35kb), with Flye 422 

achieving notably lower N50 values than the other assemblers (Table 3). BUSCO 423 

scores ranged from 1180 complete genes (81.94%, Marvel_35kb) to 1362 complete 424 

genes (94.58%, MaSuRCA assemblies), although all assemblies except the 425 

Marvel_35kb assembly had scores >92%. The MaSuRCA_35kb assembly also 426 

achieved the highest LAI score (9.31), which was substantially higher than the best 427 

assembly from any other assembler (Canu_1kb, LAI score: 7.04). The lowest LAI 428 

score (3.77) was observed in Marvel_35kb assembly. The assembly ploidy was the 429 

closest to one for the Flye assemblies (e.g.1.03 for the Flye_35kb assembly vs. 1.19 430 

for the MaSuRCA_35kb assembly). Although these scores have to be interpreted with 431 

caution, because the true genome size remains unknown, they are to some extent 432 

corroborated by the lower number of duplicated BUSCO genes in the assemblies with 433 

the lower assembly ploidy (e.g. 90 duplicated BUSCO genes in the Flye_35kb 434 

assembly, vs. 200 in the MaSuRCA_35 assembly). Nevertheless, given that gene 435 

duplication is common in Eucalyptus species, all such measures need to be interpreted 436 

with some caution, since the BUSCO genes themselves could be duplicated in the E. 437 

pauciflora genome. Taken together, these four metrics suggest that the 438 

MaSuRCA_35kb assembly is the most complete, most contiguous, and among the 439 

most accurate of the assemblies we produced. 440 
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 441 

The other three metrics assess the entirety of every assembly, and also suggest that the 442 

best assemblies for our data are produced by MaSuRCA (Table 3). The MaSuRCA 443 

assemblies (1kb and 35kb) had the lowest error rates (0.006 errors per base for 444 

short-read mapping and 0.166 for long-read mapping in both assemblies), and the 445 

smallest total number of structural variants estimated from the long validation reads 446 

(4017 structural variants for the MaSuRCA_35KB assembly). Flye tended to perform 447 

the worst on these metrics, although we note that these results will be affected by the 448 

fact that the MaSuRCA assemblies contain more duplicated genome regions (see 449 

above), which will tend to reduce the estimated error rates and number of structural 450 

variants, because duplicated regions can accurately represent heterozygous variants 451 

that will be present in the reads. CGAL ranked MaSuRCA assemblies as the best (1kb: 452 

lnL -1774303 and 35kb: lnL -1790386) as the best, and the Marvel_35kb assembly as 453 

the worst (lnL -4450742). 454 

 455 

Finally, to further investigate the different assemblies, we compared the genome 456 

sequence similarity between different assemblies using NUCmer module of MUMmer 457 

v4.0.0beta2 (Fig. 4), with the minimum identity set to 75. Notably, around 10% of the 458 

sequence of Canu/Flye/MaSuRCA assemblies failed to align to Marvel_35kb 459 

assembly (Fig. 4), which, along with the low genome completeness (BUSCO scores) 460 

of the Marvel_35kb assembly (Table 3), suggest that the Marvel_35kb assembly may 461 

contain many more small duplicated regions than other assemblies. In turn, these 462 
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duplicated regions may explain the fact that Marvel_35kb assembly has the lowest 463 

genome completeness but not the smallest genome size compared to other assemblies 464 

(Table 3). Other assemblies have rough 98% - 99% of similarity to each other.  465 

 466 

Based on the eight metrics we used above (Table 3), we suggest that the 467 

MaSuRCA_35kb assembly represents the most accurate representation of the E. 468 

pauciflora genome. We note, though, that the Flye assembler only took 1-3% of 469 

runtime of the other assemblers used in this paper (Table 1), and produced genome 470 

assemblies that were of similar quality to the MaSuRCA_35kb assembly in many 471 

respects. The Marvel_35kb assembly received the worst scores on many metrics, and 472 

also appears to be missing roughly ~10% of the genome according to BUSCO scores 473 

and genome sequence similarity analyses (Table 3).   474 

 475 

Comparative genome analysis between E. pauciflora and E. grandis 476 

Using the MaSuRCA_35KB assembly, we estimate that the E. pauciflora genome is 477 

594,871,467 bp in length, with 416 contigs and a contig N50 of 3,235 kb. The genome 478 

has up to 0.006 errors per base. Around 94% of complete BUSCO genes were 479 

identified in this E. pauciflora genome assembly.  480 

 481 

E. grandis is the only published Eucalyptus genome that is assembled to chromosome 482 

level. We therefore compared E. grandis with our E. pauciflora genome. The E. 483 

grandis contains 691.43 Mb of sequence, roughly 16% larger than the E. pauciflora 484 
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genome. We compared these two genome assemblies using the NUCmer module of 485 

MUMmer v4.0.0beta2 to perform whole genome alignment as described above. This 486 

alignment shows that the E. pauciflora genome assembly covers just 61.56% of the E. 487 

grandis genome sequence, leaving approximately 265 Mb of the E. grandis genome 488 

sequence not covered by the E. pauciflora assembly, and 113 Mb of the E. pauciflora 489 

assembly not covered by the E. grandis assembly. Despite this, the coverage of the E. 490 

pauciflora assembly when mapped to the 11 chromosome-scale scaffolds of the E. 491 

grandis genome is fairly constant (Fig. 5A), suggesting either that many of these 492 

differences result from small errors in both assemblies, and/or from relatively 493 

small-scale differences in the underlying genomes.  494 

 495 

To examine whether the differences between E. pauciflora and E. grandis could be 496 

explained by their repeat content, we annotated repetitive elements of E. pauciflora 497 

and E. grandis with RepeatMasker v4.0.7 [57]. Although the repeats of E. grandis 498 

have been annotated before [16], we reannotated them here to enable us to make a 499 

direct comparison of the repeat content using an identical pipeline for both genomes. 500 

First, we created the custom consensus repeat library using RepeatModeler v1.0.11 501 

[58] with parameter “-engine ncbi”. The classifier was built upon Repbase v20170127 502 

[59]. Then we merged the repeat libraries from RepeatModeler and LTR 503 

retrotransposon candidates from LTR retriever to create a comprehensive repeat 504 

library as the input for RepeatMasker. We ran the RepeatMasker with “-engine ncbi” 505 

model. We used the ‘calcDivergenceFromAlign.pl” script in RepeatMasker pipeline to 506 
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calculate the Kimura divergence values, and plotted the repeat landscape with repeats 507 

presented in both E. pauciflora and E. grandis genomes.  508 

 509 

The repeat content of the two genomes is similar. The E. pauciflora genome contains 510 

44.77% of repetitive elements, compared to 41.22% in E. grandis. Retrotransposons 511 

account for 29.53% of E. pauciflora genome, and 26.94% in E. grandis, and DNA 512 

transposons account for 6.04% and 4.80% of the genome in E. pauciflora and E. 513 

grandis, respectively. The repeat landscapes of the two genomes are also similar, 514 

showing roughly two waves of repeat expansion, which is most likely explained by a 515 

shared inheritance of most of the repeats in the two genomes (Fig. 5B).  516 

 517 

 518 

Conclusions 519 

Here, we report a high-quality draft haploid genome of E. pauciflora. It is the first 520 

Eucalyptus genome assembled with third-generation sequencing reads (Nanopore 521 

sequencing), and is the third nuclear genome of Eucalyptus species. Due to the 522 

economic and ecological importance of Eucalyptus, this high-quality genome will 523 

support further analysis on Eucalyptus and its related species. Additionally, this study 524 

will provide useful information for de novo plant genome assembly with Nanopore 525 

sequencing reads. Finally, the approaches using in this study to assess and compare 526 

different assemblies should help in assessing and choosing among many potential 527 

genome assemblies 528 
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Table 1. The statistics information of raw assemblies. 32 

Long-read^ Short-read Assembler 

Assembly time 

(CPU hours)* Length (bp) contigs Largest contig (bp) N50 (bp) L50 GC Percent Ns 

Canu_1kb ≥1 kb (~174x) X Canu ~300,000 871,577,052 2,867 7,123,373 629,835 259 39.18% 0.00% 

Canu_35kb ≥35 kb (~40x) X Canu ~50,000 825,916,527 2,550 10,153,603 962,598 158 39.18% 0.00% 

Flye_1kb ≥1 kb (~174x) X Flye ~700 596,007,484 5,930 2,755,662 255,434 652 39.12% 0.00% 

Flye_35kb ≥35 kb (~40x) X Flye ~500 561,349,738 4,145 2,407,003 352,050 448 39.17% 0.00% 

Marvel_35kb ≥35 kb (~40x) X Marvel ~28,000 649,061,435 1,181 6,453,759 795,971 182 39.07% 0.00% 

MaSuRCA_1kb ≥1 kb (~174x) ~228x MaSuRCA ~23,000 778,288,575 1,311 12,224,271 1,885,174 95 39.35% 0.04% 

MaSuRCA_35kb ≥35 kb (~40x) ~228x MaSuRCA ~21,000 773,035,614 1,703 8,684,546 1,304,720 146 39.39% 0.09% 

^all long-reads were corrected by Canu before assembly. The Canu correction step took around 200,000 CPU hours, which has not been calculated into the assembly runtime. 33 

*with around 1 Tb of RAM. 34 

 35 

Table 2. Genome size and assembly ploidy  36 

  Genome size  Assembly ploidy  Genome size after Assembly ploidy Genome size after Purge Haplotigs and  Assembly ploidy  

  (bp) Purge Haplotigs (bp) GCICA (bp)* 

Canu_1kb 893,781,515 1.79  645,703,255 1.29  622,473,836 1.24  

Canu_35kb 847,395,928 1.69  605,520,689 1.21  586,032,599 1.17  

Flye_1kb 593,219,654 1.19  529,107,244 1.06  528,619,533 1.06  

Flye_35kb 561,597,192 1.12  517,329,093 1.03  517,061,277 1.03  

Marvel_35kb 666,317,308 1.33  547,630,224 1.10  537,813,575 1.08  

MaSuRCA_1kb 778,307,850 1.56  608,764,671 1.22  594,680,200 1.19  

MaSuRCA_35kb 773,071,231 1.55  608,629,204 1.22  595,020,257 1.19  

*Result before final genome polishing. 37 

 38 
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 39 

 0 

Table 3. The comparison of final assemblies. 1 

        BUSCO score (1440 genes in total)     Short-read mapping Long-read mapping     

  Length (bp) 
Contig 

number 

Contig 

N50 (bp) 

Complete  

genes 

Duplicated 

genes 

Fragmented 

genes 

LAI 

scores 

Assembly 

ploidy 

Mapping 

rate 

Error 

rate 

Mapping 

rate 

Error 

rate 

CGAL 

scores 

Structural 

variants 

Canu_1kb 622,218,742 895 1,502,325 1,346 93.47% 183 12.71% 23 1.60% 7.04 1.24  96.02% 0.0061  91.73% 0.1661 -1.959E+06 4,243 

Canu_35kb 585,785,283 655 2,258,674 1,345 93.40% 138 9.58% 29 2.01% 5.34 1.17  95.52% 0.0066  92.64% 0.1677 -2.226E+06 5,043 

Flye_1kb 528,563,896 2,947 295,613 1,344 93.33% 100 6.94% 31 2.15% 5.7 1.06  94.86% 0.0077  93.04% 0.1694 -2.536E+06 7,137 

Flye_35kb 516,992,152 2,548 385,290 1,336 92.78% 90 6.25% 31 2.15% 6.5 1.03  94.24% 0.0080  92.34% 0.1699 -2.726E+06 7,458 

Marvel_35kb 537,615,613 730 1,202,845 1,180 81.94% 153 10.63% 32 2.22% 3.77 1.08  87.37% 0.0075  85.18% 0.1689 -4.451E+06 5,162 

MaSuRCA_1kb 594,528,099 415 3,234,447 1,362 94.58% 201 13.96% 21 1.46% 9.27 1.19  94.91% 0.0060  91.57% 0.1656 -1.774E+06 4,020 

MaSuRCA_35kb 594,871,467 416 3,234,549 1,362 94.58% 200 13.89% 21 1.46% 9.31 1.19  94.92% 0.0060  91.49% 0.1655 -1.790E+06 4,017 

 2 

 3 
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Availability of supporting data 544 

The E. pauciflora genome project was deposited at NCBI under BioProject number 545 

PRJNA450887. The whole genome sequencing data are available in the Sequence 546 

Read Archive with accession number SRR7153044-SRR7153116. The scripts we used 547 

in this paper, including the genome assembly, genome polishing, repeat annotation 548 

and genome assessments are available in the Github 549 

(https://github.com/asdcid/Eucalyptus-pauciflora-genome-assembly).  550 

 551 

Additional files 552 

Additional file 1: A png format with Fig. S1 (GenomeScope result of E. pauciflora.) 553 

Additional file 2: A png format with Fig. S2 (Genome contamination detection. 554 

Almost all sequences were matched the sequences in streptophyta phylum group. No 555 

contamination was found.) 556 

Additional file3: A xlsx format with Table S1 (The comparison of polishing results of 557 

raw assemblies.) 558 

Additional file4: A xlsx format with Table S2 (The comparison of polishing result of 559 

each genome after haplotig removal.) 560 

 561 

Abbreviations 562 

BUSCO: Benchmarking Universal Single-Copy Orthologs; CGAL: computing genome 563 

assembly likelihoods; Eucalyptus grandis: E. grandis; Eucalyptus pauciflora: E. 564 

pauciflora; the National Center for Biotechnology Information: NCBI; long-terminal 565 
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repeat: LTR; long-terminal repeat assembly index: LAI. 566 
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Nanopore sequencing. MS and BS performed DNA extraction, library preparation, 588 

and Nanopore sequencing. DK performed long-read polishing and Canu 1kb assembly, 589 

whereas AD performed Canu_35kb, Flye_1kb Flye_35kb and Marvel_35kb 590 

assemblies and contamination detection. AD and WW conducted the whole genome 591 

alignment analysis. WW conducted all the remaining analyses. AD, BS, DK, RL and 592 

WW were involved in data interpretation. AD, RL and WW drafted the original 593 

manuscript. RL and WW finalized the manuscript. All authors read and approved the 594 

final manuscript. 595 
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 767 

 768 

Figure legends 769 

Figure 1: The E. pauciflora sequenced in this study. This E. pauciflora is located in 770 

Thredbo, Kosciuszko National Park, New South Wales, Australia (36° 29′ 39.58″ N, 771 

148° 16′ 58.73″ E). 772 

Figure 2: A. The length of primary contigs and haplotigs between different 773 

assemblies. B. The comparison of complete BUSCO genes (1440 in total) between 774 

different primary contigs. C. The comparison of duplicated BUSCO genes between 775 

different primary contigs. 776 

Figure 3: Structural variation analysis of different assembly primary contigs. Each 777 

variant was supported by at least 10 long-reads. A. The total event of each structural 778 

variances of each assembly. B. The insertion event of each assembly. C. The 779 

translocation event of each assembly. D. The Deletion event of each assembly.  780 

Figure 4: The sequence coverage of whole genome alignment among different 781 

assemblies. The sequence coverage was calculated by the length of aligned reference 782 

sequence / the total length of reference genome. 783 

Figure 5: A. The histogram of location and coverage of E. pauciflora genome aligned 784 

to the 11 chromosomes of E. grandis. The scale of y-axis is 0x-2x of coverage. Every 785 
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bar is 1 Mb. The coverage was calculated by the total aligned length of E. grandis in 786 

each bar / the length of bar. If a site in E. grandis is aligned by E. pauciflora twice or 787 

more, this site will be counted twice or more. B. Repeat landscape comparison 788 

between E. pauciflora and E. grandis. Only repeats that are found in both genomes 789 

are shown. Older repeat insertions could accumulate more mutations compared to new 790 

repeat insertions. This leads to older repeat insertions to have accumulated a higher 791 

level of divergence (shown on the right size of the graph). 792 
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