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31 Abstract

32  Background

33  Selecting the best genome assembly from a collection of draft assemblies for the same
34  species remains a difficult task. Here, we combine new and existing approaches to
35  help to address this, using the non-model plant Eucalyptus pauciflora (snow gum) as a
36  test case. Eucalyptus pauciflora is a long-lived tree with high economic and
37 ecological importance. Currently, little genomic information for Eucalyptus
38 pauciflorais available.

39 Findings

40  We generated high coverage of long- (Nanopore, 174x) and short- (Illumina, 228x)
41  read data from a single Eucalyptus pauciflora individual and compared assemblies
42  from four assemblers with a variety of settings: Canu, Flye, Marvel, and MaSuRCA.
43 A key component of our approach is to keep a randomly selected collection of ~10%

44  of both long- and short-reads separate from the assemblies to use as a validation set

2


https://doi.org/10.1101/678730
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/678730; this version posted June 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

45  with which to assess the assemblies. Using this validation set along with a range of
46  existing tools, we compared the assemblies in eight ways: contig N50, BUSCO scores,
47 LAl scores, assembly ploidy, base-level error rate, computing genome assembly
48 likelihoods, structural variation and genome sequence similarity. Our result showed
49  that MaSuRCA generated the best assembly, which is 594.87 Mb in size, with a contig
50 Nb50 of 3.23 Mb, and an estimated error rate of ~0.006 errors per base.

51  Conclusions

52 We report a draft genome of Eucalyptus pauciflora, which will be a valuable resource
53  for further genomic studies of eucalypts. These approaches for assessing and
54  comparing genomes should help in assessing and choosing among many potential
55  genome assemblies for a single species.

56

57

58 Keywords: Long-read assembly; nanopore sequencing; hybrid assembly; genome
59  assessment; assembly comparison; Eucalyptus pauciflora; haplotig separation;
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67 Data Description

68 Introduction

69 Eucalypts are widely distributed in Australia, including three genera Eucalyptus,
70  Corymbia and Angophora, and have around 900 species [1]. Eucalyptus pauciflora (E.
71 pauciflora) (Fig. 1), also known as snow gum, is a highly variable eucalyptus species
72  that inhabits diverse landscapes in south-eastern Australia [1]. E. pauciflora can
73 survive from close to sea level to up to the tree line of the Australian Alps, displaying
74  the broadest altitudinal range in the Eucalyptus genera [2-4]. Due to its wide
75  distribution and drought and cold tolerance, E. pauciflora is used for carbon offset
76  plantings, ecological restoration, honeybee food source, and also has medicinal uses
77 [1, 5-11]. However, genomic resources for E. pauciflora are currently very limited:
78  there exists a single chloroplast genome [12], two sets of microsatellite markers [13,
79  14], and two nuclear loci used for phylogenetics [15]. The assembly of E. pauciflora
80  genome will assist in elucidating the genetic basis of cold tolerance in Eucalyptus.

81

82  Across the ~900 extant eucalypt species, there are only two genomes published: those
83 for E. grandis and E. camaldulensis [16, 17]. Both of these genomes were sequenced
84  with a combination of Sanger sequencing and short-read sequencing, and as a result
85 both assemblies are somewhat fragmented. There are 81,246 scaffolds in E.
86 camaldulensis assembly [17]. While the E. grandis genome is highly contigous,
87  assembled to chromosom e level, it still has 4,941 unplaced scaffolds [16]. New

88  technologies, such as third-generation long-read sequencing, have the potential to
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89  produce less fragmented assemblies at a fraction of the cost of previous methods.
90  Nevertheless, many challenges still remain, not least of which is that different genome
91  assembly software, and small changes to the parameters of a single piece of software,
92  can produce substantially different assemblies. In light of this, methods for choosing
93 the most accurate assembly from a set of possible assemblies have become
94  increasingly important.

95

96 Two metrics are commonly used to assess and compare genome assemblies: contig
97 N50 and Benchmarking Universal Single-Copy Orthologs (BUSCO [18],
98 RRID:SCR_015008) scores. The contig N50 is the size of the contig where at least 50%
99  of the assembled nucleotides can be found in contigs of that size or larger. The N50 is
100  a measure of genome contiguity, where a higher N50 suggests a genome that has been
101  assembled into fewer and larger contigs. All else being equal, we should prefer
102  genome assemblies with a larger N50, up to the point where the N50 is equal to the
103  N50 of the chromosomes themselves. Perhaps because of this, the N50 is one of the
104  most widely reported metrics in genome assembly. However, it is important to
105  remember that the N50 measures contiguity, not accuracy. For example, N50 scores
106  may be artificially inflated by incorrectly linking contigs [19, 20]. The BUSCO score
107  estimates the proportion of highly conserved orthologous genes that are present in
108  assemblies. The underlying assumption is that there exists a certain set of highly
109  conserved single-copy genes, the vast majority of which we should expect to observe

110  insingle copies in any given haploid genome assembly. BUSCO scores provide a very
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111 useful measure of genome assembly completeness (a component of accuracy), and in
112 principle we should prefer genome assemblies with BUSCO scores closer to 100%.
113 One limitation of BUSCO scores is that they assess only a very small proportion of
114  the genome, typically around 1000 highly conserved genes which represent less than
115 1% of the total genome. Furthermore, by their nature these protein-coding regions of
116  the genome tend to be among the easiest to assemble because they are usually
117  single-copy regions of high complexity. Hence, assemblies can have very similar
118  BUSCO scores even if they differ considerably in their assembly of the non-BUSCO
119  genomic regions, which means that it is sometimes difficult to use BUSCO scores to
120  distinguish among competing assemblies [21]. In this study, we complement these
121 commonly-used measures with a range of other metrics to assess and compare
122  genome assemblies, and we use these measures to choose the best draft assembly of E.
123  pauciflora.

124

125  One measure we propose is the assembly ploidy: the proportion of the genome that is
126  represented by haploid contigs. One important problem in genome assembly is that
127 we commonly represent the genome of diploid (or polyploid) organisms as a haploid
128  sequence. Traditionally, genome projects would alleviate this problem by sequencing
129  highly inbred individuals [22, 23], thus reducing the discrepancy between the diploid
130 individual and the haploid representation. However, as genome assembly has become
131 more commonplace, we often want to assemble the genomes of highly heterozygous

132 individuals. For example, heterozygosity in Eucalyptus is around 1% [24], and varies
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133  substantially along the genome [16]. The consequence of this is that regions of low
134  heterozygosity tend to be assembled into a single collapsed haploid sequence, whereas
135  regions of high heterozygosity tend to be assembled into two haplotypes of the same
136  region, which are usually labelled the ‘primary contig’ (referring to the longer of the
137  two contigs) and the ‘haplotig’ (referring to the shorter of the two contigs) [25].
138  Although there has been some progresses in estimating truly diploid assemblies [25,
139 26], most assemblers still produce primary contigs and haplotigs without labelling
140 them as such [27, 28]. Crucially, unidentified haplotigs may cause issues in the
141 downstream analyses, because many analyses assume that we have a haploid
142  representation of the genome. Because of this, we propose a novel and simple (but
143  imperfect) metric to measure the assembly ploidy, which is simply the ratio of the
144  assembly size to the estimated haploid genome size. If the aim is to produce a haploid
145  representation of a genome, then an assembly ploidy of 1 is preferable (i.e. the
146  assembly size should equal the estimated haploid genome size). If the aim is to
147  produce a diploid representation of a genome, then an assembly ploidy of 2 is
148  preferable (i.e. the assembly size should be double the estimated haploid genome size).
149  One limitation of this metric is that it is sensitive to errors in the estimation of haploid
150  genome size, and it is also sensitive to errors in genome assembly (e.g. highly
151 incomplete assemblies) that might affect the numerator. Nevertheless, in combination
152  with other measures, we show below that the assembly ploidy provides a useful
153  metric with which to compare genome assemblies.

154
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155  We also apply a suite of measures designed to provide a genome-wide assessment of
156  contiguity and accuracy that can complement the widely-used contig N50 and
157  BUSCO scores. The advantages of these measures lie in the fact that they assess more
158  of the genome than BUSCO scores, though each also has its limitations. The first
159  measure is the long-terminal repeat (LTR) assembly index, or LAI [21]. The LAI
160 score is the proportion LTR sequences in the genome that are intact, and is
161  independent of genome size and repeat content. In general, a higher LAI score
162  suggests a more contiguous and complete assembly [21]. The second measure we use
163 is the base-level error rate evaluated by remapping independent sets of long and short
164  validation reads (around 10% of all reads, randomly selected) to the assembly.
165  Previous studies have evaluated the base-level error rate by remapping all reads to the
166  assembly [29, 30]. Here, we use validation reads which are not involved in the
167  assembly, in order to avoid any possible biases introduced by validating an assembly
168  with the same data that was used to produce it. For a perfect assembly in which the
169  ploidy of the entire assembly matches the ploidy of the individual, a lower base-level
170  error rate is preferable, with a theoretical minimum of the error rate of the sequencing
171 technology (e.g. ~0.3% for raw Illumina reads [31], and ~10-15% for raw Nanopore
172 reads [32, 33]). For a haploid representation of a diploid assembly, the minimum
173  possible base-level error rate will be higher, because by necessity a haploid
174 representation of a heterozygous site will not match approximately half of the reads.
175  In this case, the theoretical minimum base-level error rate is the sum of the error rate

176  of the sequencing technology and half of the heterozygosity. The third measure is the
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177  computing genome assembly likelihoods (CGAL) score [20]. The CGAL score is the
178  likelihood of an assembly calculated from a model that accounts for errors in reads,
179  read coverage across the assembly, and the proportion of reads that do not contribute
180  to the assembly. A higher likelihood suggests that a genome assembly is a better
181  representation of the truth. The fourth measure we use is the number of structural
182  variants detected when re-mapping our long validation reads to assemblies. As with
183  the base-level error rate, if the ploidy of the assembly matches the ploidy of the
184  individual, then the theoretical minimum of this metric is the structural error rate
185 introduced into sequencing reads by the sequencing technology. For a haploid
186  representation of a diploid genome, the theoretical minimum is the sum of the error
187  rate of the technology plus half of the structural heterozygosity. These two gquantities
188  are rarely known, but nevertheless, a very high structural error rate of validation reads
189  mapped to a haploid assembly may indicate cases in which the assembly has a large
190  proportion of incorrectly linked contigs. The final measure is the genome sequence
191  similarity of each assembly when compared to all other assemblies. This measure
192  does not provide any information relative to an underlying truth, but it may help to
193  identify significant differences between otherwise plausible genome assemblies that
194  can aid in choosing the best assembly. The selection of the best assembly should
195  consider all measures together.

196

197  Here, we used long- and short-reads to create a draft haploid assembly of the E.

198  pauciflora genome. We use the metrics we describe above to compare a range of
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199  assemblies from a range of different assemblers. We performed different assemblies
200  with long-read-only assemblers (Canu (Canu, RRID:SCR_015880) [34], Flye [35]
201 and Marvel [36]) and hybrid assembler MaSuRCA (MaSuRCA, RRID:SCR_010691)
202  [37], using long-read datasets with different minimum read lengths in each case (1 kb
203 and 35 kb).

204

205

206 Sample collection, DNA sequencing and quality control

207  We collected leaves from the single E. pauciflora tree near Thredbo, Kosciuszko
208  National Park, New South Wales, Australia (36° 29’ 39.58" N, 148° 16' 58.73" E) in
209  March 2016 (for Illumina sequencing) and June 2017 (for MinlON sequencing). We
210  stored leaves at 4°C when transported them to the laboratory.

211

212 For long-read sequencing, we extracted high molecular weight genomic DNA from
213 leaves following a protocol optimized for Eucalyptus nanopore sequencing [38]. We
214  prepared ONT 1D ligation libraries according to the manufacturer’s protocol
215  (SQK-LSK108) and sequenced the reads using MinKNOW v1.7.3 with R9.5
216 flowcells on a MinlON sequencer. We performed basecalling with Albacore v.2.0.2
217  (Albacore, RRID:SCR_015897). This resulted in 12,584,100 raw long-reads (106.96
218  Gb) with average read length of 8.5 kb. We removed adapters from long-reads with
219  Porechop v0.2.1 (Porechop, RRID: SCR_016967) [39]. Next, we trimmed bases with

220 quality <10 on both ends of the reads using NanoFilt (NanoFilt, RRID:SCR_016966)

10
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221  [40] and discarded reads shorter than 1 kb after trimming. This recovered 96.66 Gb of
222  long-read data comprising 7,711,141 filtered reads with an average read length of
223 12.53 kb (minimum 1 kb and maximum ~150 kb). Given an estimated genome size of
224 500 Mb (see below), this represents a coverage of 193x.

225

226  For short-read sequencing, we extracted genomic DNA from freeze-dried leaves using
227 a CTAB protocol [41] followed by purification with a Zymo kit (Zymo Research
228  Corp). We constructed TruSeq Nano libraries with an insert size of 400 bp using
229  protocol provided by Illumina, then sequenced the reads (paired-end 150 bp) using an
230  Illumina Hiseq2500 platform (lllumina Inc., San Diego, CA). This Illumina
231  sequencing generated 506,840,789 paired raw reads (152.05 Gb). We used BBDuk
232 v37.31 (BBmap, RRID:SCR_016965) [42] to remove adapters and to trim both sides
233  of raw short-reads which quality was lower than 30. We discarded filtered reads with
234 a length under 50 bp. Around 122.69 Gb short-read data containing 414,697,585
235  paired reads were left, representing 246x coverage with an estimated genome size of

236 500 Mb (see below).

237

238 Genomesize and heterozygosity estimation

239  We used GenomeScope (GenomeScope, RRID:SCR_017014) [43] and SGA-preqc
240  (SGA, RRID:SCR_001982) [44] to estimate the E. pauciflora genome size. We first
241 generated a 32-mer distribution using Jellyfish v1.1.12 (Jellyfish, RRID:SCR_005491)

242  [45] from all of our short-reads, then ran GenomeScope using this 32-mer distribution
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243  with a maximum k-mer coverage of 1000x. This gave a genome size estimate of
244  408.16 Mb (Additional file 1. Fig. S1), which is lower than expected for other
245  Eucalyptus species [16, 17]. However, it is known that genomic repeats can lead to
246  underestimation of genome sizes from uncorrected kmer distributions [46], and the
247  Eucalyptus genome is repeat-rich, for example around 50% of genome was annotated
248  as repeats in E. grandis [16], suggesting that 408.16 Mb may be a significant
249  underestimate of the genome size. SGA-preqc estimates genome size from k-mer
250  distributions that are corrected to attempt to better account for repeat content, in line
251 with this, SGA-preqc gave a genome size estimate of 529.40 Mb. Because of this, we
252  expect that the SGA-preqc genome size is likely to be more accurate, and in what
253  follows we assume that the E. pauciflora genome size is roughly 500 Mb. This
254 suggests that the E. pauciflora genome may be around ~30% smaller than that of the
255  other two sequenced Eucalyptus species, E. grandis (691.43 Mb) [16] and E.
256  camaldulensis (654.92 Mb) [17]. However, the genome sizes of E. grandis and E.
257  camaldulensis may be overestimated due to the assembly and scaffolding of both

258  haplotypes at heterozygous regions.

259

260 Creation of assembly and validation datasets

261  We separated our long-read and short-read data into assembly dataset (~90% of reads)
262 and validation dataset (~10% of reads) by randomly assigning the trimmed and
263  filtered reads into the two datasets. The assembly dataset comprised 86.94 Gb of

264  long-read data (174x coverage) and 114.10 Gb of short-read data (228x coverage).

12
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265 The validation dataset comprised and 9.67 Gb of long-read data (19x coverage) and
266  8.59 Gb of short-read data (17x coverage).

267

268 Genome assembly

269  Here, we compared five long-read-only assemblies and two hybrid assemblies. For
270  each combination of data and genome assembler, we followed the same genome
271 assembly pipeline. We first used the assembler to produce an initial assembly.
272 Following this, we identified and removed contigs from contaminant sequences, and
273  then polished the resulting assembly. We then identified and removed haplotigs from
274  the assembly, and finally re-polished each assembly after haplotig removal. To select
275  the best assembly, we calculated the contig N50 with Quast [19], BUSCO scores with
276  BUSCO, and LAI scores using the LTR_retriever pipeline [47]. After mapping the
277  long- and short- validation reads to the final assemblies (using Ngmir [48] for the
278  former and Bowtie2 (Bowtie2, RRID:SCR_016368) [49] for the latter), we calculated
279  the base-level error rate using Qualimap [50] the structural variant error rate using
280  Sniffles [48], and CGAL scores using CGAL. Finally, we performed whole genome
281  alignment between different assemblies with NUCmer module of MUMmer [51].

282

283  Oxford Nanopore reads tend to have error rates of ~10-15%, which can make
284  assembly of uncorrected reads very challenging. To alleviate this, we first corrected
285  the long-reads assembly dataset with Canu v1.6 with default parameters except for

286  setting corMinCoverage to 8, meaning that read correction would only be applied

13
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287  where at least 8 reads overlapped. We deemed this reasonable given the very high
288  coverage of our data (174x). We then put the corrected long-read datasets into two
289  sets for assembly. The first dataset contained all corrected long-reads, such that the
290  minimum read length was 1 kb (174x of coverage). The second dataset contained all
291  corrected reads longer than 35 kb (~40x of coverage). We refer to these datasets as the
292 1 kb and the 35 kb datasets, respectively.

293

294  We attempted six long-read-only assemblies and two hybrid assemblies. Assemblies
295  solely with long-read data were performed on corrected reads of two read lengths (1
296 kb and 35 kb) using three long-read assemblers: Canu v1.6 and v1.7, Flye v2.3.5 and
297  Marvel v1.0. The Marvel assembly with 1kb dataset was not feasible because it
298  required more disk space than we had available, resulting in five successful long-read
299  only assemblies. We used MaSuRCA v3.2.6 to perform hybrid assemblies with both
300 read length datasets (1 kb and 35 kb) each combined with the short-read dataset. In
301 what follows, we refer to these assemblies as Canu_lkb, Canu_35kb, Flye 1kb,
302 Flye 35kb, Marvel 35kb, MaSuURCA 1kb and MaSuRCA 35kb. We used default
303  settings in all assemblers, and an estimated genome size of 500 Mb where this setting
304  was required. For Canu assemblies, the 1 kb dataset was assembled using Canu v1.6,
305 whereas the 35 kb dataset was assembled using Canu v1.7. We did not repeat the
306 Canu_1lkb assembly after Canu v1.7 was released, because we no longer had
307 sufficient computational resources. The chloroplast genome and mitochondrial

308 genome were removed from each assembly. For each assembly, we recorded the

14
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309 runtime in CPU hours, the raw assembly length, and the N50 (Table 1).

310

311 Contamination detection

312  Following initial assembly, we used Blobtools [52] to assess contamination in each
313 genome assembly. To do this, we first generated a hit file for each assembly by
314  searching all contigs against the National Center for Biotechnology Information
315 (NCBI) non-redundant nucleotide database using BLASTN v2.7.1+ (BLASTN,
316  RRID:SCR_001598) [53] ( E-value < 1e-20). We then analysed the hit file for each
317  assembly using Blobtools, which provides taxonomic annotations and other diagnostic
318  plots to detect contamination in raw genome assemblies. The top-hit was streptophyta
319  phylum, comprising 99.72% to 100% of the hits in different assemblies (Additional
320 file 2: Fig. S2), indicating that there was no potential contamination from a non-plant
321  origin in each raw assembly.

322

323 Genome polishing

324  We polished each initial genome assembly in order to improve its accuracy. For the
325 Canu, Flye, and Marvel assemblies (i.e. those built from long-reads only), we
326  polished first with Racon [54] using Ngmlr v0.2.6 using the long-read assembly
327 dataset, and then with Pilon v1.22 (Pilon, RRID:SCR_014731) [55] using Bowtie
328 v2.3.4.1 with the short-read assembly dataset. For the MaSuRCA assemblies, we
329 polished only with Pilon because MaSuRCA is a hybrid assembler, and using

330 error-prone long-reads to polish hybrid assemblies tends to induce more errors rather
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than remove them (Additional file 3: Table S1).

We ran each polishing algorithm for multiple iterations until the accuracy of the
resulting assembly stopped improving or improving slightly. We assessed the
improvements using BUSCO scores and the base-level error rate by re-mapping
validation long- and short-reads to each assembly (mapped as above). We evaluated
the BUSCO scores using BUSCO v3.0.2 with the embryophyta_odb9 lineage (1440
genes in total). Polishing with Racon took between 4 and 12 iterations, and with Pilon

between 6 and 10 iterations (Additional file 3: Table S1).

Polishing with both Racon and Pilon significantly improved all of the raw genome
assemblies, measured with base-level errors in long- and short- reads, and with
BUSCO scores (Additional file 3: Table S1). Polishing with Racon improved
long-read base level accuracy by up to 0.83% (in the Marvel_35kb assembly),
short-read base level accuracy by up to 1.51% (also in the Marvel_35kb assembly),
and the BUSO completeness scores by up to 30.76% (in the Flye 35 assembly).
Polishing with Pilon further improved the long-read base level accuracy by up to 0.40%
(in the Marvel_35kb assembly), the short-read base level accuracy by up to 1.41% (in
the Flye_35kb assembly), and the BUSO completeness scores by up to 24.44% (in the

Flye 1kb assembly).

Assembly ploidy and haplotig removal
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353  Comparison of the polished genome assemblies revealed large variation in assembly
354  size (Table 2). We calculated the assembly ploidy of each assembly as above,
355 assuming a genome size of 500 Mb. The assembly ploidy ranges from 1.12
356  (Flye_35kb assembly) to 1.79 (Canu_1kb assembly) (Table 2), suggesting that the
357 Canu_1kb assembly is close to a diploid assembly (i.e. ~80% of the genome is
358  represented by two contigs) and that the Flye 35kb assembly is close to a haploid
359  assembly (i.e. only ~12% of the genome is represented by two contigs). To attempt to
360 produce haploid representations of the genome from all assemblies, we used Purge
361  Haplotigs [28] and a custom pipeline, which we call gene conservation informed
362  contig alignment (GCICA) (script available on github from [56]) to find and remove
363  haplotigs from all the assemblies (Fig. 2A).

364

365  Purge Haplotigs assigns contigs to primary contigs and haplotigs depending on both
366  coverage information generated by long-read mapping and pairwise alignments of all
367  contigs. To run Purge Haplotigs, we first mapped the long-read assembly dataset to
368 each polished assembly using Ngmlr v0.2.6, and then separated the contigs into
369 primary contigs and haplotigs with default settings. 8% to 29% of each genome
370 assembly was annotated as haplotigs, and removing these haplotigs reduced the
371 assembly ploidy from 1.12 — 1.79 to 1.03 — 1.29 (Table 2).

372

373  The high assembly ploidy for some assemblies after running Purge Haplotigs

374  suggested that these assemblies retained haplotigs that covered up to 29% of the

17


https://doi.org/10.1101/678730
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/678730; this version posted June 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

375 genome. We therefore further filtered possible haplotigs using a custom approach,
376  GCICA. If a pair of contigs comprise a primary contig and a haplotig, we would
377  expect most of regions of the haplotig to be very similar to that of the primary contig.
378  To find putative pairs of primary contigs and haplotigs, we therefore looked for pairs
379  of contigs with similar gene content, and then examined these pairs in more detail. To
380 do this, we first mapped the nucleotide sequences of all E. grandis genes to all contigs
381  inanassembly using BLASTN v2.7.1+. If >70% of mapped markers in a contig could
382  also be mapped to another contig, and at least 80% of sequence of the smaller contig
383  could be aligned to the other contig (detecting with NUCmer module of MUMmer
384  v4.0.0beta2), we considered these two contigs as a putative primary contig and
385 haplotig pair. We then examined the alignments of all such pairs by eye and removed
386  any pairs in which the smaller contig appeared to be completely contained within the
387 larger, i.e. in which the smaller contig was an unambiguous haplotig. This process
388 identified a further ~2% of each assembly as haplotigs (Table 2).

389

390 Following removal of haplotigs, we re-evaluated each assembly using BUSCO scores
391 (Fig. 2). We noted that, depending on the genome assembly, the number of complete
392 BUSCO genes sometimes dropped and sometimes increased slightly after removing
393 haplotigs (Fig. 2B). We hypothesised that BUSCO scores could drop either because
394  haplotig removal mistakenly removed a contig that was not a haplotig, or because
395  haplotig removal correctly removed a haplotig which contained a more conserved

396  representation of a BUSCO gene. BUSCO scores could increase because they are
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397 based on E-value scores of alignments, which may be affected by the total length of
398  the assembly. To attempt to alleviate some of these potential issues, we re-polished all
399  of the genome assemblies with multiple rounds of Pilon using the short-read assembly
400 dataset, as above. BUSCO scores recovered across all assemblies with additional
401  Pilon polishing (Fig. 2B). As expected, the number of duplicated BUSCO genes
402  decreased substantially (~50%-70%) after haplotigs were removed from the
403  assemblies and this did not change substantially after additional polishing (Fig. 2C
404 and Additional file 4: Table S2). Together, these results suggest that our haplotig
405 removal pipelines largely succeeded in removing haplotigs, although some haplotigs
406  likely remain if the true genome size is around 500 Mb (Fig. 2A).

407

408 Assessment of assembly quality with eight measures

409  After haplotig removal and polishing, we considered the primary contigs of each
410  assembly as the final assembly, and evaluated each of the final assembly in using the
411  eight statistics we describe above: contig N50, BUSCO scores, LAI scores, assembly
412  ploidy, base-level error rate, CGAL scores, structural variation and genome sequence
413  similarity (Table 3 and Fig. 4).

414

415  Comparison of the eight metrics we used suggested that the MaSuRCA 35kb
416  assembly was likely to be the most accurate assembly overall and that the
417  Marvel_35kb assembly was the least accurate. However, we note that the MaSuURCA

418  assembly did not receive the best scores for all metrics, suggesting that the choice of

19


https://doi.org/10.1101/678730
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/678730; this version posted June 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

419  which assembly to use will sometimes be question-specific. Also, in most of cases,
420  performances of the two MaSuRCA assemblies are very similar.

421

422  N50 scores varied from 295 kb (Flye_1kb) to 3.2 Mb (MaSuRCA _35kb), with Flye
423  achieving notably lower N50 values than the other assemblers (Table 3). BUSCO
424 scores ranged from 1180 complete genes (81.94%, Marvel_35kb) to 1362 complete
425 genes (94.58%, MaSuRCA assemblies), although all assemblies except the
426 Marvel_35kb assembly had scores >92%. The MaSuRCA_35kb assembly also
427  achieved the highest LAI score (9.31), which was substantially higher than the best
428  assembly from any other assembler (Canu_1kb, LAI score: 7.04). The lowest LAI
429  score (3.77) was observed in Marvel_35kb assembly. The assembly ploidy was the
430 closest to one for the Flye assemblies (e.g.1.03 for the Flye_35kb assembly vs. 1.19
431  for the MaSuRCA _35kb assembly). Although these scores have to be interpreted with
432  caution, because the true genome size remains unknown, they are to some extent
433  corroborated by the lower number of duplicated BUSCO genes in the assemblies with
434  the lower assembly ploidy (e.g. 90 duplicated BUSCO genes in the Flye 35kb
435  assembly, vs. 200 in the MaSuRCA_35 assembly). Nevertheless, given that gene
436  duplication is common in Eucalyptus species, all such measures need to be interpreted
437  with some caution, since the BUSCO genes themselves could be duplicated in the E.
438 pauciflora genome. Taken together, these four metrics suggest that the
439 MaSuRCA_35kb assembly is the most complete, most contiguous, and among the

440  most accurate of the assemblies we produced.
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441

442  The other three metrics assess the entirety of every assembly, and also suggest that the
443  best assemblies for our data are produced by MaSuRCA (Table 3). The MaSuRCA
444  assemblies (lkb and 35kb) had the lowest error rates (0.006 errors per base for
445  short-read mapping and 0.166 for long-read mapping in both assemblies), and the
446  smallest total number of structural variants estimated from the long validation reads
447 (4017 structural variants for the MaSuRCA_35KB assembly). Flye tended to perform
448  the worst on these metrics, although we note that these results will be affected by the
449  fact that the MaSuRCA assemblies contain more duplicated genome regions (see
450  above), which will tend to reduce the estimated error rates and number of structural
451  variants, because duplicated regions can accurately represent heterozygous variants
452 that will be present in the reads. CGAL ranked MaSuRCA assemblies as the best (1kb:
453  InL -1774303 and 35kb: InL -1790386) as the best, and the Marvel _35kb assembly as
454  the worst (InL -4450742).

455

456  Finally, to further investigate the different assemblies, we compared the genome
457  sequence similarity between different assemblies using NUCmer module of MUMmMmer
458  v4.0.0beta2 (Fig. 4), with the minimum identity set to 75. Notably, around 10% of the
459  sequence of Canu/Flye/MaSuRCA assemblies failed to align to Marvel 35kb
460  assembly (Fig. 4), which, along with the low genome completeness (BUSCO scores)
461  of the Marvel_35kb assembly (Table 3), suggest that the Marvel_35kb assembly may

462  contain many more small duplicated regions than other assemblies. In turn, these
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463  duplicated regions may explain the fact that Marvel 35kb assembly has the lowest
464  genome completeness but not the smallest genome size compared to other assemblies
465  (Table 3). Other assemblies have rough 98% - 99% of similarity to each other.

466

467 Based on the eight metrics we used above (Table 3), we suggest that the
468 MaSuRCA _35kb assembly represents the most accurate representation of the E.
469 pauciflora genome. We note, though, that the Flye assembler only took 1-3% of
470  runtime of the other assemblers used in this paper (Table 1), and produced genome
471 assemblies that were of similar quality to the MaSuURCA 35kb assembly in many
472  respects. The Marvel_35kb assembly received the worst scores on many metrics, and
473  also appears to be missing roughly ~10% of the genome according to BUSCO scores
474  and genome sequence similarity analyses (Table 3).

475

476  Comparative genome analysis between E. paucifloraand E. grandis
477  Using the MaSuRCA_35KB assembly, we estimate that the E. pauciflora genome is
478 594,871,467 bp in length, with 416 contigs and a contig N50 of 3,235 kb. The genome
479 has up to 0.006 errors per base. Around 94% of complete BUSCO genes were
480 identified in this E. pauciflora genome assembly.

481

482  E. grandisis the only published Eucalyptus genome that is assembled to chromosome
483  level. We therefore compared E. grandis with our E. pauciflora genome. The E.

484  grandis contains 691.43 Mb of sequence, roughly 16% larger than the E. pauciflora
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485 genome. We compared these two genome assemblies using the NUCmer module of
486  MUMmer v4.0.0beta2 to perform whole genome alignment as described above. This
487  alignment shows that the E. pauciflora genome assembly covers just 61.56% of the E.
488 grandis genome sequence, leaving approximately 265 Mb of the E. grandis genome
489  sequence not covered by the E. pauciflora assembly, and 113 Mb of the E. pauciflora
490  assembly not covered by the E. grandis assembly. Despite this, the coverage of the E.
491  pauciflora assembly when mapped to the 11 chromosome-scale scaffolds of the E.
492  grandis genome is fairly constant (Fig. 5A), suggesting either that many of these
493  differences result from small errors in both assemblies, and/or from relatively
494  small-scale differences in the underlying genomes.

495

496  To examine whether the differences between E. pauciflora and E. grandis could be
497  explained by their repeat content, we annotated repetitive elements of E. pauciflora
498 and E. grandis with RepeatMasker v4.0.7 [57]. Although the repeats of E. grandis
499  have been annotated before [16], we reannotated them here to enable us to make a
500 direct comparison of the repeat content using an identical pipeline for both genomes.
501  First, we created the custom consensus repeat library using RepeatModeler v1.0.11
502  [58] with parameter “-engine nchi”. The classifier was built upon Repbase v20170127
503 [59]. Then we merged the repeat libraries from RepeatModeler and LTR
504  retrotransposon candidates from LTR retriever to create a comprehensive repeat
505 library as the input for RepeatMasker. We ran the RepeatMasker with “-engine nchi”

506  model. We used the “calcDivergenceFromAlign.pl” script in RepeatMasker pipeline to
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507 calculate the Kimura divergence values, and plotted the repeat landscape with repeats
508 presented in both E. pauciflora and E. grandis genomes.

509

510  The repeat content of the two genomes is similar. The E. pauciflora genome contains
511 44.77% of repetitive elements, compared to 41.22% in E. grandis. Retrotransposons
512 account for 29.53% of E. pauciflora genome, and 26.94% in E. grandis, and DNA
513  transposons account for 6.04% and 4.80% of the genome in E. pauciflora and E.
514  grandis, respectively. The repeat landscapes of the two genomes are also similar,
515  showing roughly two waves of repeat expansion, which is most likely explained by a
516  shared inheritance of most of the repeats in the two genomes (Fig. 5B).

517

518

519 Conclusions

520  Here, we report a high-quality draft haploid genome of E. pauciflora. It is the first
521  Eucalyptus genome assembled with third-generation sequencing reads (Nanopore
522  sequencing), and is the third nuclear genome of Eucalyptus species. Due to the
523  economic and ecological importance of Eucalyptus, this high-quality genome will
524  support further analysis on Eucalyptus and its related species. Additionally, this study
525  will provide useful information for de novo plant genome assembly with Nanopore
526  sequencing reads. Finally, the approaches using in this study to assess and compare
527  different assemblies should help in assessing and choosing among many potential

528  genome assemblies
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Table 1. The statistics information of raw assemblies.

Assembly time

Long-read” Short-read  Assembler  (CPU hours)* | Length (bp) contigs  Largest contig (bp)  N50 (bp) L50 GC Percent Ns
Canu_1kb >1 kb (~174x) X Canu ~300,000 871,577,052 2,867 7,123,373 629,835 259 39.18% 0.00%
Canu_35kb >35 kb (~40x) X Canu ~50,000 825,916,527 2,550 10,153,603 962,598 158 39.18% 0.00%
Flye_1kb >1 kb (~174x) X Flye ~700 596,007,484 5,930 2,755,662 255,434 652 39.12% 0.00%
Flye_35kb >35 kb (~40x) X Flye ~500 561,349,738 4,145 2,407,003 352,050 448 39.17% 0.00%
Marvel_35kb >35 kb (~40x) X Marvel ~28,000 649,061,435 1,181 6,453,759 795,971 182 39.07% 0.00%
MaSuRCA_1kb >1 kb (~174x) ~228x MaSuRCA ~23,000 778,288,575 1,311 12,224,271 1,885,174 95 39.35% 0.04%
MaSuRCA _35kb | >35 kb (~40x) ~228x MaSuRCA ~21,000 773,035,614 1,703 8,684,546 1,304,720 146 39.39% 0.09%

Mall long-reads were corrected by Canu before assembly. The Canu correction step took around 200,000 CPU hours, which has not been calculated into the assembly runtime.
*with around 1 Tb of RAM.

Table 2. Genome size and assembly ploidy

Genome size | Assembly ploidy | Genome size after Assembly ploidy | Genome size after Purge Haplotigsand ~ Assembly ploidy

(bp) Purge Haplotigs (bp) GCICA (bp)*
Canu_1kb 893,781,515 1.79 645,703,255 1.29 622,473,836 1.24
Canu_35kb 847,395,928 1.69 605,520,689 1.21 586,032,599 1.17
Flye_1kb 593,219,654 1.19 529,107,244 1.06 528,619,533 1.06
Flye_35kb 561,597,192 1.12 517,329,093 1.03 517,061,277 1.03
Marvel_35kb 666,317,308 1.33 547,630,224 1.10 537,813,575 1.08
MaSuRCA_1kb 778,307,850 1.56 608,764,671 1.22 594,680,200 1.19
MaSuRCA_35kb | 773,071,231 1.55 608,629,204 1.22 595,020,257 1.19
*Result before final genome polishing.
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Table 3. The comparison of final assemblies.

BUSCO score (1440 genes in total) Short-read mapping  Long-read mapping

Length (bp) Contig Contig Complete Duplicated Fragmented LAI Assembly | Mapping Error  Mapping Error CGAL Structural
en
g P number  N50 (bp) genes genes genes scores ploidy rate rate rate rate scores variants

Canu_1kb 622,218,742 895 1,502,325 | 1,346 9347% 183 12.71% 23 1.60% 7.04 124 96.02% 0.0061  91.73% 0.1661 | -1.959E+06 4,243
Canu_35kb 585,785,283 655 2,258,674 | 1,345 93.40% 138 958% 29 2.01% 5.34 117 95.52% 0.0066  92.64% 0.1677 | -2.226E+06 5,043
Flye_1kb 528,563,896 2,947 295,613 | 1,344 9333% 100 6.94% 31 2.15% 57 1.06 94.86% 0.0077  93.04% 0.1694 | -2.536E+06 7,137
Flye_35kb 516,992,152 2,548 385290 [ 1,336 92.78% 90 6.25% 31 2.15% 6.5 1.03 94.24% 0.0080  92.34% 0.1699 | -2.726E+06 7,458
Marvel_35kb 537,615,613 730 1,202,845 | 1,180 81.94% 153 10.63% 32 2.22% 3.77 1.08 87.37% 0.0075  85.18% 0.1689 | -4.451E+06 5,162
MaSuRCA_1kb 594,528,099 415 3,234,447 | 1,362 9458% 201 13.96% 21 1.46% 9.27 1.19 9491% 0.0060  91.57% 0.1656 | -1.774E+06 4,020
MaSuRCA_35kb | 594,871,467 416 3,234549 | 1,362 9458% 200 13.89% 21 1.46% 9.31 1.19 94.92% 0.0060  91.49% 0.1655 | -1.790E+06 4,017

'8sudl|| [euoiieulsiu] 0y AN-AG-00e
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544  Availability of supporting data

545  The E. pauciflora genome project was deposited at NCBI under BioProject number
546 PRJNA450887. The whole genome sequencing data are available in the Sequence
547  Read Archive with accession number SRR7153044-SRR7153116. The scripts we used
548 in this paper, including the genome assembly, genome polishing, repeat annotation
549 and genome assessments are available in the Github
550  (https://github.com/asdcid/Eucalyptus-pauciflora-genome-assembly).

551

552 Additional files

553  Additional file 1: A png format with Fig. S1 (GenomeScope result of E. pauciflora.)
554  Additional file 2: A png format with Fig. S2 (Genome contamination detection.
555  Almost all sequences were matched the sequences in streptophyta phylum group. No
556  contamination was found.)

557  Additional file3: A xIsx format with Table S1 (The comparison of polishing results of
558  raw assemblies.)

559  Additional filed: A xlsx format with Table S2 (The comparison of polishing result of
560  each genome after haplotig removal.)

561

562 Abbreviations

563 BUSCO: Benchmarking Universal Single-Copy Orthologs; CGAL: computing genome
564  assembly likelihoods; Eucalyptus grandis. E. grandis, Eucalyptus pauciflora: E.

565 pauciflora; the National Center for Biotechnology Information: NCBI; long-terminal
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566  repeat: LTR; long-terminal repeat assembly index: LALI.
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591  assemblies and contamination detection. AD and WW conducted the whole genome
592  alignment analysis. WW conducted all the remaining analyses. AD, BS, DK, RL and
593 WW were involved in data interpretation. AD, RL and WW drafted the original
594  manuscript. RL and WW finalized the manuscript. All authors read and approved the
595  final manuscript.
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768

769 Figurelegends

770  Figure 1: The E. pauciflora sequenced in this study. This E. pauciflora is located in
771 Thredbo, Kosciuszko National Park, New South Wales, Australia (36° 29’ 39.58" N,
772 148°16'58.73" E).

773  Figure 2: A. The length of primary contigs and haplotigs between different
774 assemblies. B. The comparison of complete BUSCO genes (1440 in total) between
775  different primary contigs. C. The comparison of duplicated BUSCO genes between
776  different primary contigs.

777  Figure 3: Structural variation analysis of different assembly primary contigs. Each
778  variant was supported by at least 10 long-reads. A. The total event of each structural
779  variances of each assembly. B. The insertion event of each assembly. C. The
780 translocation event of each assembly. D. The Deletion event of each assembly.

781  Figure 4. The sequence coverage of whole genome alignment among different
782  assemblies. The sequence coverage was calculated by the length of aligned reference
783  sequence / the total length of reference genome.

784  Figureb5: A. The histogram of location and coverage of E. pauciflora genome aligned

785  to the 11 chromosomes of E. grandis. The scale of y-axis is Ox-2x of coverage. Every
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786  bar is 1 Mb. The coverage was calculated by the total aligned length of E. grandis in
787  each bar / the length of bar. If a site in E. grandisis aligned by E. pauciflora twice or
788 more, this site will be counted twice or more. B. Repeat landscape comparison
789  between E. pauciflora and E. grandis. Only repeats that are found in both genomes
790  are shown. Older repeat insertions could accumulate more mutations compared to new
791  repeat insertions. This leads to older repeat insertions to have accumulated a higher

792  level of divergence (shown on the right size of the graph).
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