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Abstract

Many generalist species consist of disparate specialized individuals, a phenomenon known as
‘individual specialization’. This within-population niche variation can stabilize population
dynamics, reduce extinction risk, and alter community composition. But, we still only vaguely
understand the ecological contexts that promote niche variation and its stabilizing effects.
Adaptive dynamics models predict that intraspecific variation should be greater in environments
with two or more equally-profitable resources, but reduced in environments dominated by one
resource. Here, we confirm this prediction using a comparison of threespine stickleback in 33
lakes in on Vancouver Island, Canada. Stickleback consume a combination of benthic and
limnetic invertebrates, focusing on the former in small lakes, the latter in large lakes.
Intermediate-sized lakes support generalist populations, which arise via greater among-individual
diet variation, not by greater individual diet breadth. These intermediate lakes exhibit
correspondingly greater morphological diversity, while genomic diversity increases linearly with
lake size. These results support the theoretical expectation that habitats with an intermediate ratio

of resources are “just right” for promoting ecologically relevant intraspecific diversification.
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Introduction

Many animal species that appear to be ecological generalists are in fact heterogeneous
assemblages of relatively specialized individuals (Bolnick ef al. 2003; Arautjo et al. 2011).
Ecologists have therefore become increasingly interested in evaluating the community and
ecosystem consequences of diet variation among co-occurring individuals (Bolnick et al. 2011;
Des Roches et al. 2018). Theory and experiments have demonstrated that this within-population
variation can increase population stability and reduce extinction risk (Agashe 2009), promote
species co-existence (Doebeli 1997; Schreiber et al. 2011), change community composition
(Ingram et al. 2011; Start & Gilbert 2017; Start 2018), and even alter ecosystem properties
(Vrede et al. 2011). As these ecological effects depend on the magnitude of among-individual
variation, we need to understand the causes of individual diet specialization, and in what settings
it will be more or less pronounced .(Aragjo ef al. 2011).

The most widely accepted explanation of individual specialization invokes frequency-
dependent selection arising from resource competition (e.g., Levene 1953; Wilson & Turelli
1986; Doebeli 1996b). Consider a consumer population inhabiting an environment with two
functionally distinct resources. The consumer might specialize entirely on whichever resource is
most profitable (taking into account nutritional value and abundance, Stephens & Krebs 1986).
But, as this preferred resource becomes scarcer due to exploitation, the newly more-abundant
under-used resource becomes relatively profitable (Bolnick 2001). Consequently, the consumer
should evolve an intermediate phenotype that uses both resources (even if modest trade-offs
penalize generalists). In population genetic models of a diploid organism, this leads to a balanced
polymorphism dominated by heterozygotes that may or may not be especially well suited to

either resource (Levene 1964; Hedrick 1986; Wilson & Turelli 1986). In quantitative genetic
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models, the population trait mean converges towards an intermediate generalist (Doebeli 1996a;
Schreiber et al. 2011) . If trade-offs limit efficient use of both resources, that generalist may
experience persistent disruptive selection that increases trait variation and individual
specialization (Nuismer et al. 2005). Thus, the equilibrium trait mean and variance should both
depend on the relative availability of alternative resources.

This diversification process is thought to be especially relevant when populations invade
new environments. In such settings, the invading population can be released from the constraints
of interspecific competition (Costa et al. 2008; Bolnick et al. 2010), permitting niche expansion.
Meanwhile, intraspecific competition can be strong, which acts to favor individuals who adopt
new kinds of resources and thereby mitigate competition with their own species. The ‘niche
variation hypothesis’ (NVH) posits that this niche expansion arises not via greater individual
niche breadt, but via increased among-individual variation (Van Valen 1965; Bolnick ef al.
2007). Experiments have confirmed this: increased intraspecific resource competition drives
disruptive selection (Swanson et al. 2003; Bolnick 2004; Svanbick et al. 2008) that promotes
increased diet variation among individuals (Svanbick & Bolnick 2005, 2007a). Some other
comparative and experimental studies have challenged this NVH model (e.g., Parent et al. 2014;
Jones & Post 2016).

So far, most studies seeking to explain variation in individual specialization have focused
on the effects of competition (reviewed in Aratijo et al. 2011). But, a growing number of
comparative studies have found that resource diversity (often termed ‘ecological opportunity”)
leads to greater population niche breadth via increased individual specialization (Parent & Crespi
2009; Martin & Pfennig 2010; Aratijo & Costa-Pereira 2013; Evangelista ef al. 2014; Cloyed &

Eason 2016; Yurkowski et al. 2016; Costa-Pereira et al. 2017), consistent with the NVH (Van
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80  Valen 1965). Most tests of the NVH have focused solely on either patterns of diet variation
81  (Bolnick ef al. 2007), or morphological variation as a proxy for diet variance (Rothstein 1973;
82  Patterson 1983; Meiri et al. 2005). To date, no studies have simultaneously evaluated the effects
83  of resource diversity on among-individual diet variation, morphological variance, and genetic
84  variation.
85 This study tests the hypothesis that resource diversity promotes individual specialization
86  and greater trait diversity in a single consumer species. The simplistic example described above,
87  with a balance between two resources, makes a very specific prediction. When the ratio of two
88  resources changes along an environmental gradient (or differs among habitat patches), there will
89  be an intermediate point along the gradient where the resources are equally profitable
90 (considering abundance and nutritional value), maximizing ecological opportunity. We therefore
91  expect a consumer population’s niche breadth, and individual specialization, to be greatest at
92 these intermediate points along the gradient; a “Goldilocks effect” (referencing the children’s
93  story “Goldilocks and the Three Bears”, in which a child enters the home of a family of bears
94  and searches for porridge that is “just right”, neither too hot nor too cold).
95 To test for a Goldilocks effect promoting intraspecific ecological diversity, we use lake
96 fish that balance benthic and limnetic resources. Around the world, lake fish species have
97  evolved to either specialize on large benthic prey on the lake substrate or on limnetic mid-water
98  zooplankton, or use a mixture of both (Moodie & Reimchen 1976; Lavin & McPhail 1985;
99 Robinson & Wilson 1994; Kusche ef al. 2014). Benthic prey tend to be relatively more abundant

100  in small lakes dominated by shallow littoral habitat. Limnetic prey dominate in large lakes,

101  where volumes become large relative to the shallow perimeters that support benthic prey.

102  Therefore we expect that resource diversity (the evenness of benthic and limnetic prey) is low in
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103  small and large lakes, but maximized in intermediate sized lakes (Fig. 1). Consistent with this
104  expectation, disruptive selection on trophic morphology is strongest in threespine stickleback
105  populations inhabiting intermediate-sized lakes (Bolnick & Lau 2008). As a corollary, we expect
106  individual specialization to be greatest in those intermediate-sized lakes as well. Because

107 individual specialization reflects underlying diversity in morphology (Snowberg et al. 2015), one
108  might expect morphological trait variance to also be highest in these intermediate lakes (although
109  Nosil and Reimchen (2005) argued for a positive linear trend with lake size. Using a comparative
110  study of lake populations of threespine stickleback (Gasterosteus aculeatus), this paper confirms
111  the “Goldilocks effect”: individual specialization is greatest in intermediate-sized lakes.

112

113 Methods

114  In June 2009 we collected between 60 and 100 threespine stickleback from 33 lakes on

115  Vancouver Island, British Columbia, spanning a range of lake sizes. Fish were captured in

116  unbaited minnow traps set for less than three hours, and immediately euthanized and preserved
117  in formalin. Collection and animal handling were approved by the University of Texas [ACUC
118  (Protocol # 07-032201), and a Scientific Fish Collection Permit from the Ministry of the

119  Environment of British Columbia (NA07-32612).

120 All fish were weighed, measured for standard length, and sex determined via dissection.
121 A random subset of 30 fish per lake were also measured for gape width, gill raker number, and
122 gill raker length. Gape width and gill raker length were size-adjusted by calculating residuals of
123 log transformed values regressed on log length. We calculated trait means and variances for each
124  lake. These data also form the basis of two other studies focused on parasite metacommunity

125  structure, and methods are explained in greater detail in Bolnick et al. (BioRxiv, a,b).
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126 For a random subset of 23 lakes we also enumerated stomach contents on the same subset
127  of 30 fish. We recorded presence or absence of prey taxa in each fish’s stomach. Stomach

128  contents are an admittedly coarse and cross-sectional sample of individuals’ diet, in stickleback
129  reflecting approximately the previous 6 hours of foraging (Svanbéck & Bolnick 2007). However,
130  previous work has demonstrated that stomach content variation among individuals is a robust
131  measure of diet variation in the population, being correlated with individual morphology, and
132 with variance in stable isotope signatures that reflect long-term diet over months (Matthews et al.
133 2010; Snowberg ef al. 2015). Direct observation of foraging individuals also confirms there is
134  variation in foraging microhabitat (benthos versus limnetic zone), which is correlated with those
135  individuals’ stomach contents and stable isotopes (Snowberg et al. 2015).

136 We categorized prey as benthic or limnetic, and, per fish, calculated the proportion of
137  present prey taxa that were benthic. Non-metric multidimensional scaling analysis yielded a first
138  major axis that was tightly correlated with the proportion benthic prey, so we used the latter,

139  more intuitive, metric. The total number of prey taxa observed per fish provides a metric of diet
140  richness, with the recognition that this is a brief cross-sectional sample (for discussion of such
141  caveats, see Bolnick ef al. 2002; Aratjo et al. 2007; Aradjo et al. 2011). We calculated

142  individual specialization using the metric £, which measures among-individual diet disparity. £
143  ranges from 0 when there is complete diet overlap between individuals, to 1.0 when every

144  individual uses unique resources with no overlap with other individuals (Aragjo et al. 2008).

145  This is simply 1.0 minus the mean pairwise diet overlap (IS, Bolnick et al. 2002). We calculated
146  E using RInSp (Zaccarelli et al. 2013).

147 We sampled fin clips from each fish before preservation in formalin, and extracted DNA

148  from a random subsample of 12 fish per population. We genotyped 175,350 single nucleotide
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149  polymorphisms (SNPs) from 336 fish (107,698 SNPs scored per fish on average), using

150 ddRADseq (Peterson et al. 2012). Lab and bioinformatic protocols are detailed in (Stuart et al.
151  2017). We calculated genome-wide heterozygosity for each fish and then averaged these to

152  obtain the average heterozygosity for each lake.

153

154  Statistical Analyses

155  The focal hypothesis of this study is that individual specialization (measured by the metric E)
156  will be maximized in intermediate-sized lakes, mid-way along the benthic-limnetic diet

157  continuum. We first tested the assumption that lake size is associated with population mean diet,
158 by linear regression of the mean proportion benthic prey as a function of log lake area. Having
159  confirmed this linear trend, we next ran a quadratic regression of diet variation, E, as a function
160  of log lake area, anticipating a negative quadratic gradient. To confirm this, we also used

161  quadratic regression relating £ to mean proportion benthic prey, and a larger model with linear
162  and quadratic effects of both lake area and mean proportion benthic prey.

163 Increased population niche breadth could instead arise via increased individual niche
164  breadth. To test this possibility, we used quadratic regression to test the relationship between
165  individual diet breadth (prey richness) and either log lake area, or mean proportion benthic prey.
166  The NVH predicts this relationship to be flat.

167 To test the role of morphological variation in diet diversification, we calculated the

168  standard deviation of each morphological trait (standard length, gill raker number, size-adjusted
169  gill raker length, and size-adjusted gill raker number). We used multiple regression to test

170  whether E increases with these traits’ standard deviations. We then used quadratic regression to

171  test whether each trait standard deviation is highest in intermediate-sized lakes.
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172 Most genetic variation is expected to be approximately neutral, and so genomic diversity
173  (mean heterozygosity) should be associated with population size rather than ecological or

174  morphological variation. We therefore used linear regression to test for a positive relationship
175  between mean heterozygosity and log lake area, whereas we expected no relationship between
176  mean heterozygosity and E, or trait standard deviations. In contrast, loci involved in adaptation
177  to benthic or limnetic environments should show allele frequency correlations with lake size. If
178 these allele frequencies span from near 0 to near 1 across the range of lake sizes, then

179  polymorphism should be greatest in intermediate sized lakes. To test this prediction, we iterated
180  through SNPs, focusing on loci genotyped in at least 50 individuals and with minor allele

181  frequencies exceeding 0.1 in the entire dataset (to ensure reasonable power and minimize

182  multiple test corrections). For each SNP we used a binomial general linear model to regress

183  allele frequency (out of the number of genotyped individuals in each population) as a function of
184  log lake area. We also tested for correlations between SNP allele frequency variance, and diet
185  variation (E).

186

187  Results

188  As commonly assumed, stickleback in larger lakes tended to consume relatively more limnetic
189  than benthic prey (Fig. 2A; linear regression log lake effect P < 0.0001; all regression results
190 summarized in Table 1). This trend confirms past studies (Lavin and McPhail, 1986). Because
191 the populations range from 10% to 90% benthic prey, intermediate populations are indeed

192  ecological generalists that use roughly equal mixtures of benthic and limnetic resources.

193 Individual specialization was most pronounced (highest £ values) in intermediate-sized

194  lakes, as predicted (Fig. 2B. quadratic effect P = 0.014, Table 1). As a follow-up confirmation,
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195  we calculated the among-individual standard deviation in their proportion benthic prey for each
196 lake, which is also quadratically related to lake area (P = 0.0159, Table 1, Fig. 2C). This trend
197  exists because mid-sized lakes contained stickleback with an intermediate diet (Fig. 2A), and
198  individual specialization (E) is strongest in populations with an intermediate diet (Fig. 2D).

199  When we shifted to a multiple regression to simultaneously consider how individual

200  specialization (E) depends on quadratic effects of lake size and benthic diet, we found statistical
201  support only for the latter effect (diet P = 0.0002, diet* P = 0.0001, area P = 0.945, area? P =
202  0.188, model r= =0.727). Thus, intermediate-sized lakes have intermediate-diet stickleback,

203  which promotes greater individual specialization.

204 In contrast, individual diet breadth does not contribute to the trends described above.
205  There is no detectable correlation (linear or quadratic) between individual niche breadth and log
206 lake size, or with £ (both P >0.5; Table 1, Figs. S1 & S2). This result thus corroborates the

207  central tenet of the Niche Variation Hypothesis, that generalist populations arise via increased
208  among-individual variation, while individual niche breadth remains unchanged.

209 There was no linear correlation between individual specialization (£) and genome-wide
210  heterozygosity (r =-0.174, P = 0.425; Fig. S3). However, heterozygosity was greater in larger
211 lakes, as would be expected with greater effective population sizes (Fig. 2E; P = 0.030, Table 1).
212 For 2149 of the 41,284 SNPs examined, allele frequency was correlated with log lake size,

213 including 5 loci that survived Bonferroni correction (Fig. S4). None of these alleles exhibited
214  significant watershed covariate effects. Some of the loci exhibited a wide range of allele

215  frequencies, ranging from 0 (fixed with the reference genome nucleotide) to 1.0 (fixed for the
216  derived allele) across the range of lake sizes. Such SNPs were most polymorphic in intermediate-

217  sized lakes. The strongest association was found in two neighboring SNPs on linkage group 4

10
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218  (bases 19204072 and 19204307, P = 0.0000096 and 0.000068, respectively), which are within
219 100 kb of four genes, foxp2, gpr83, tmem168a and ifrdl. A second site, on linkage group 20 (site
220 15807116, P =0.000074) lies between the genes bolal and nr2f5, and within 100 kb of sv2a. A
221  site on linkage group 1 (site 7503783, P = 0.000092) sits between cluha and tlcd?.

222 There was no linear correlation between individual specialization and the standard

223 deviation of any single phenotypic trait (standard length, r = 0.178, P = 0.414; size-adjusted gape
224 width r =0.327, P = 0.128; size-adjusted gill raker length r = 0.137, P = 0.532; gill raker number
225 r=-0.004, P =0.985). However, some traits were more variable in intermediate-sized lakes: both
226  standard deviation body length (Fig. S5) and size-adjusted gape width (Fig. S6) were greater in
227  mid-sized lakes. However, the standard deviations of gill raker number and size-adjusted gill
228  raker length were unrelated to lake area (Table 1). Some of this trait diversity was, surprisingly,
229  negatively correlated with mean heterozygosity (gill raker length r = -0.402, P = 0.0278), while
230  other traits were marginally correlated with heterozygosity (standard length r = -0.335, P =

231  0.066) or uncorrelated (gape width r = 0.106, P = 0.576; gill raker number r =-0.082, P = 0.666).
232 The most noteworthy correlation between individual specialization and population phenotypes
233 actually involved parasitism. As described elsewhere (Bolnick et al, BioRxiv a,b), we also

234 enumerated parasite infection loads for all sampled fish. Populations with greater individual

235  specialization exhibited greater among-individual variation in per-fish parasite richness (Fig. 2F,
236 r=0.666, P =0.0005).

237

238  Discussion

239  Many theoretical models suggest that increasing resource diversity can lead to the evolution of a

240  polymorphic generalist consumer (Levene 1953; Wilson & Turelli 1986; Rueftler et al. 2006).

11
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241  The ecological generalization may arise via greater among-individual variation rather than

242 greater individual niche width (Van Valen 1965). Our results confirm this expectation, providing
243 clear observational evidence that resource diversity (‘ecological opportunity’) promotes within-
244 population variation in diet and morphology but not neutral genomic variation.

245 Like many lake fish, stickleback consum both benthic and limnetic resources (Lavin &
246  McPhail 1985; Lavin & McPhail 1986). The ratio of these resources is dictated by the ratio of the
247  lake perimeter to open water, which increases with lake size. We confirmed Lavin and McPhail’s
248  (1985) finding that stickleback diet changes linearly with log lake area: small lakes contain

249  predominantly benthic-feeding stickleback, and large lakes contain mainly limnetic-feeding

250  stickleback.

251 At some intermediate lake area, the ratio of benthic to limnetic prey must be roughly

252  balanced. In the absence of trade-offs, a consumer might evolve a generalist strategy in which all
253  individuals use both prey. But, we do not see a correspondingly higher individual diet breadth in
254  the intermediate-sized lakes where stickleback have a generalist diet. This observation is

255  consistent with previous experiments which found that individual niche breadth was relatively
256  insensitive to inter- and intraspecific competition (Svanbédck & Bolnick 2007b; Araujo ef al.

257  2008; Bolnick et al. 2010). Instead, stickleback in intermediate-sized lakes are more likely to
258  experience disruptive selection on trophic morphology (Bolnick and Lau 2008), which should
259  promote diet diversity (Svanback and Bolnick 2007). Accordingly, the present results

260  demonstrate that the generalist stickleback in these lakes achieve their broader ecological niche
261  via greater among-individual diet variation and morphological variation. Variation in body size
262  and gape width is correspondingly higher in intermediate-sized lakes as well, consistent with a

263  previous study reporting that morphological and dietary variance within populations are

12
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264  positively correlated (Snowberg et al. 2015). However, this result contrasts with Nosil and

265  Reimchen (2005), who found a positive relationship between trait variance and lake size in other
266  stickleback populations from smaller islands in coastal British Columbia. They used lake volume
267  rather than area, so we cannot directly compare our results, but it appears that their survey

268  sampled just the smaller half of the quadratic trend we examine here; very large lakes are not
269  found on the islands they surveyed. Their positive trend may thus be reconciled with the results
270  here, whose slope is positive in the smaller half of the lakes studied.

271 An alternative explanation is that diet variation is effectively neutral, arising simply from
272  neutral genetic diversity. This hypothesis is not supported, as genome-wide genetic diversity
273  increases linearly with lake size. This positive trend is expected as larger lakes should contain
274  larger effective population sizes, and matches previous results from microsatellites (Caldera &
275  Bolnick 2008). Consistent with the mostly neutral behavior of most genomic markers, genome-
276  wide diversity is unrelated to phenotypic or diet variation.

277 Although genome-wide heterozygosity should be roughly neutral, there were some

278  apparently non-neutral loci whose allele frequency was strongly correlated with lake area. SNPs
279  whose frequencies spanned from 0 to 1.0 across the range of lake sizes were most polymorphic
280 in intermediate-sized lakes. These loci therefore exhibit positive correlations between their

281  genetic diversity and the degree of individual specialization. Whether these loci have direct

282  phenotypic effects on diet, or confer adaptations to other aspects of lake size, is unclear. It is

283  noteworthy that the genomic locus most strongly linked to lake size (on LG4) contains multiple
284  genes potentially involved in learning and behavior. Of these, foxp2 is best known for its role in
285 language and brain development (Enard et al. 2002). gpr85 is also associated with brain size

286  (Matsumoto et al. 2008), and tmem168a is a newly discovered gene possibly linked with

13
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287  behavior (Fu et al. 2017). This locus is also close to ifrd! (interferon-related developmental

288  regulator 1) which regulates both neutrophil effector function in immune response, and skeletal
289  muscle differentiation and regeneration (Gu ef al. 2009). The locus on LG20 is close to genes
290 involved in protection against oxidative stress (bolal, (Qin et al. 2015)) and development of the
291  vertebrate jaw (nr2f5 (Barske ef al. 2018)). Any of these genes would require extensive follow-
292  up study with experimental genetics to evaluate their potential phenotypic effects and adaptive
293  value. For now, we make two observations. First, genome-wide heterozygosity is unrelated to
294  individual specialization. Secondly, there are putatively non-neutral loci whose functions are
295  plausibly associated with habitat adaptation, and whose polymorphism is greatest in the most
296  diet-variable populations. This raises the enticing, previously-unreported possibility of

297  eventually finding genetic variants associated with increases in among-individual diet variation
298  in natural populations.

299 Individual-level diet variation within stickleback populations can have appreciable

300 community-wide effects. Co-occurring individuals with different diets will experience different
301 levels of intraspecific competition (Bolnick 2004). Individuals also have different overlap with
302  other species of fish such as trout and sculpin, common intraguild predators on stickleback

303 (Bolnick et al. 2010). Here, we found that populations with greater individual specialization also
304  exhibited greater among-individual variation in parasite richness. Many stickleback parasites are
305 trophically transmitted, so such a connection between diet and infection disparity is to be

306  expected. This trend (plotted in Fig. 2F) illustrates a broader point that the degree of diet

307  variation among individual stickleback can expand to affect the entire community in which they
308 are embedded. Ingram et al (Ingram et al. 2011) manipulated stickleback body size variance

309  while keeping mean size constant, in cages in a natural lake. The degree of diet variation differed
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310 among cages, and was correlated with shifts in benthic and limnetic invertebrate abundance and
311 community structure, indicating that diet variation within one consumer species has community-
312 wide effects. Other studies in stickleback generated even greater trait variation by mixing

313  together divergent populations (lake and stream, or benthic and limnetic species and their

314  hybrids), and also found dramatic shifts in prey community structure and ecosystem properties
315 (Harmon et al. 2009; Matthews et al. 2016).

316 Population genetics (Levene 1953; Wilson & Turelli 1986), adaptive dynamics (Doebeli
317  1996b; Ackermann & Doebeli 2004), and quantitative genetic eco-evolutionary models

318  (Schreiber ef al. 2011) all suggest that resource diversity can promote within-population

319  variation, in the form of polymorphism, adaptive branching, and disruptive selection. A simple
320 corollary is that when there exists a gradient in the ratio of two resources (e.g., benthic:limnetic
321 availability), individual specialization should be greatest in the middle of the gradient, where the
322 resources are most evenly balanced. The results presented here represent the first test of this
323  theory, confirming that individual specialization (and some facets of morphological variation)
324  are greatest in intermediate-sized lakes where stickleback populations are generalists using both
325  benthic and limnetic prey. The implication of this finding is that certain geographic settings are
326  more favorable to resource polymorphism and perhaps even adaptive speciation. This fits into a
327  broader emerging literature supporting the notion that ecological opportunity promotes

328  variability within populations (Parent & Crespi 2009; Martin & Pfennig 2010; Aratijo & Costa-
329  Pereira 2013; Evangelista et al. 2014; Cloyed & Eason 2016; Yurkowski et al. 2016; Costa-
330  Pereira et al. 2017). These shifts in individual specialization should have cascading effects on
331 prey, competitor, and parasite community structure (Des Roches et al. 2018), most pronounced

332  (in this instance) in intermediate-sized lakes. However, we do not know yet whether these
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333  community effects then reciprocate by changing patterns of disruptive selection, which would
334  represent an eco-evolutionary feedback loop mediated by changes in variance, rather than
335 changes in trait means. Such variance-mediated eco-evolutionary dynamics are not as well
336  understood as their mean-mediated counterparts (Hendry 2017).

337
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585  Figure 1. A schematic diagram of the hypothesis tested in this study. Row A: three lakes of

586 increasing size, with shoreline benthic habitat (green) and mid-water limnetic habitat (blue). Row
587  B: the corresponding resource availabilities of the three lakes, with decreasing relative

588 abundance of benthic prey in larger lakes. Row C: Because of the resource availability shifts in
589 Row B, the populations’ diets shift from benthic (in a small lake) to limnetic (in the large lake).
590  The diet distribution of the population as a whole is represented by the thick taller line, and is
591 made of up diets of individuals (smaller lines, color coded to represent relative use of benthic
592  and limnetic prey). Row D: As a result of the shifting diet distributions in Row C, among-

593 individual diet variation is expected to be greatest in the intermediate-sized lake.

594

23


https://doi.org/10.1101/678276
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/678276; this version posted June 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

.
© _| w
> o 2
3 8
= (=
L o
= ()
T o ] E
o ° ©
o -
c o
o &)
5 3
o = o2
Q & |
5 = £
Q. (]
s c
3 3
S N [}
S =
.
.
T T T T
2 4 6 8
Log lake surface area
.
gl C
o
w
("! —
o

Mean pairwise diet difference, E

Standard deviation, proportion benthic prey

T T T T
0.2 04 0.6 0.8

Log lake surface area Mean proportion benthic prey

18
1
-n

Mean hetrozygosity (normalized)

Standard deviation of parasite richness

Log lake surface area Pairwise diet dissimilarity

595

596  Figure 2. Linear and quadratic regressions examining predicted relationships between

597  population mean diet, diet variation, genetic diversity, parasite diversity, and lake area (log
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hectares). Points represent lakes as the level of replication. Lines are linear or quadratic

regression estimates, shaded regions are one standard error confidence intervals. Statistical

support for the trends reported here are provided in Table 1.

Table 1. Results of linear and quadratic regressions between focal variables. Correlation tests

(where the direction of causation is ambiguous) are reported only in the main text. Some models

test a priori linear predictions, so quadratic effects are omitted. For each model, the table lists the

figure where the relationship is ploted, the linear (and where relevant quadratic) slope estimate,

its standard error, and a P-value testing the null hypothesis of zero slope, and for each model

there is an r? value provided as well. NA denotes relationships not plotted as a figure.

Figure | Dependent Independent Linear | Linear Linear Quadratic Quadratic Quadratic | r?
effect | se P effect se P
1A Mean proportion Log lake surface | -0.086 | 0.013 <0.0001 | - - - 0.66
benthic prey area
1B E Log lake surface | 0.084 | 0.040 0.0481 | -0.012 0.004 0.0140 0.36
area
1C SD proportion Log lake surface | 0.058 | 01019 0.0066 | -0.006 0.002 0.0159 0.35
benthic prey area
1D E Mean proportion | 1.540 | 0.325 0.0001 | -1.25 0.31 0.0005 0.58
benthic prey
1E Heterozygosity Log lake surface | 0.0003 | 0.001 0.0297 |49 €3 6.5¢* 0.939 0.15
area
IF SD per fish E 1.662 | 0.406 0.0005 | - - - 0.44
parasite richness
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S1 Individual diet Log lake surface | 0.056 | 0.132 0.677 -0.006 0.015 0.651 0.01
breadth area

S2 Individual diet E 0.221 | 0.581 0.707 - - - 0.01
breadth

NA Individual diet Mean proportion | -0.245 | 1.336 0.857 0.184 1.258 0.885 0.00
breadth benthic prey

S3 E heterozygosity -1.456 | 1.79 0.425 - - - 0.03

S5 SD standard Log lake surface | 1.42 0.716 0.0567 | -0.197 0.081 0.0217 0.21
length area

S6 SD size-adjusted Log lake surface | 0.015 | 0.008 0.0675 | -0.002 0.001 0.0495 0.13
gape width area

NA SD size-adjusted Log lake surface | 0.051 | 0.067 0.451 -0.009 0.007 0.241 0.11
gill raker length area

NA SD gill raker Log lake surface | 0.005 | 0.100 0.963 0.003 0.011 0.777 0.05
number area
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613

614  Supplemental Figure S1. There is no significant linear or quadratic relationship between

615  individual diet breadth and lake size. A quadratic relationship is expected if population niche
616  expansion in intermediate-sized lakes is achieved by increased individual niche breadth (e.g., in
617 intermediate lakes all individuals are generalists that use both limnetic and benthic prey).

618  Statistical results in Table 1. The line is a quadratic regression estimate, the shaded region

619  represents a one standard error confidence interval.

620
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622  Supplemental Figure S2. There is no significant linear relationship between individual diet

623  breadth and the degree of individual specialization (E). A negative linear relationship is expected
624  if among-individual diet variation occurs via a decrease in individual niche breadth, while

625  between-individual differences remain constant. The lack of negative trend suggests that

626 individual specialization arises by divergence among individuals, rather than a narrowing of

627  individual niches. Statistical results in Table 1. The line is a linear regression estimate, the

628  shaded region represents a one standard error confidence interval.

629
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632  Supplemental Figure S3. There is no significant linear or quadratic relationship between diet
633  variation and genome-wide genetic diversity. A positive relationship might be expected if niche
634  variation promoted genetic diversity even at neutral loci (for instance by permitting persistently
635  higher population density), but in general we expect no effect on neutral genetic variation.

636  Statistical results in Table 1. The line is a linear regression estimate, the shaded region represents
637  aone standard error confidence interval.

638
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LG4 site 19204307 Supplemental Figure S4. The three strongest
associations between derived allele frequency
(relative to reference genome) and log lake area.
Points represent estimated allele frequency, the
trendline and shaded region represent a binomial

general linear model estimate with 95%

0.2

confidence interval. The focal SNP linkage group

0.0

and position is listed above each figure panel.

LG20 site 15807116

o » Statistical results are provided in Supplemental

Table S1.
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SNP derived allele frequency
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656  Supplemental Figure S5. Intermediate-sized lakes support stickleback populations with greater
657  size variation. Statistical results in Table 1. The line is a quadratic regression estimate, the
658  shaded region represents a one standard error confidence interval.

659
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661  Supplemental Figure S6. Intermediate-sized lakes support stickleback populations with greater
662  variation in size-adjusted gape width. Statistical results in Table 1. The line is a quadratic

663  regression estimate, the shaded region represents a one standard error confidence interval.
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