

1 **Title**

2 **Themetagenomics: Exploring Thematic Structure and Predicted Functionality of 16s rRNA**

3 **Amplicon Data**

4

5 **Authors**

6 Stephen Woloszynek (sw424@drexel.edu) [1] [corresponding author]

7 Joshua Chang Mell (joshua.mell@drexelmed.edu) [2]

8 Zhengqiao Zhao (zz347@drexel.edu) [1]

9 Gideon Simpson (grs53@drexel.edu) [3]

10 Michael P. O'Connor (mike.oconnor@drexel.edu) [4]

11 Gail L. Rosen (gailr@coe.drexel.edu) [1]

12

13 **Affiliations**

14 [1] Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA,

15 United States of America.

16 [2] Department of Microbiology and Immunology, Drexel University College of Medicine,

17 Philadelphia, PA, United States of America.

18 [3] Department of Mathematics, Drexel University, Philadelphia, PA, United States of America

19 [4] Department of Biodiversity, Earth, and Environmental Science, Drexel University,

20 Philadelphia, PA, United States of America

21

22 **Abstract**

23

24 Analysis of microbiome data involves identifying co-occurring groups of taxa associated with

25 sample features of interest (e.g., disease state). Elucidating such relations is often difficult as

26 microbiome data are compositional, sparse, and have high dimensionality. Also, the

27 configuration of co-occurring taxa may represent overlapping subcommunities that contribute

28 to sample characteristics such as host status. Preserving the configuration of co-occurring

29 microbes rather than detecting specific indicator species is more likely to facilitate biologically

30 meaningful interpretations. Additionally, analyses that use taxonomic relative abundances to

31 predict the abundances of different gene functions aggregate predicted functional profiles

32 across taxa. This precludes straightforward identification of predicted functional components

33 associated with subsets of co-occurring taxa. We provide an approach to explore co-occurring

34 taxa using “topics” generated via a topic model and link these topics to specific sample features

35 (e.g., disease state). Rather than inferring predicted functional content based on overall

36 taxonomic relative abundances, we instead focus on inference of functional content within

37 topics, which we parse by estimating interactions between topics and pathways through a

38 multilevel, fully Bayesian regression model. We apply our methods to three publicly available

39 16S amplicon sequencing datasets: an inflammatory bowel disease dataset from Gevers et al., an

40 oral cancer dataset from Schmidt et al., and a time-series dataset from David et al. Using our
41 topic model approach to uncover latent structure in 16S rRNA amplicon surveys, investigators
42 can (1) capture groups of co-occurring taxa termed topics; (2) uncover within-topic functional
43 potential; (3) link taxa co-occurrence, gene function, and environmental/host features; and (4)
44 explore the way in which sets of co-occurring taxa behave and evolve over time. These methods
45 have been implemented in a freely available R package:

46 <https://github.com/EESI/themetagenomics>.

47

48 **Introduction**

49 High-throughput sequencing now permits for the analysis of multiple large datasets on the
50 microbiome and diseases of interest. Historically, researchers have sought to reduce the
51 dimensionality of the data and/or perform feature selection to identify species (or other taxa) of
52 interest that are correlated with sample/community-level attributes (which we will refer to as
53 “phenotypic” attributes or “phenotypes”) like host health status. Unfortunately, these
54 phenotype-associated species may co-occur with the same or different proportions across
55 samples within the same phenotype. Capturing these configurations is of interest to us, as we
56 contend it is more informative than merely finding specific taxa [1,2].

57 Nevertheless, obtaining meaningful configurations or subsets of taxa is often a daunting task.
58 These high-dimensional microbiome datasets include categorical and numeric features
59 associated with each sample. These, in turn, may be linked to a set of taxonomic abundances
60 that are derived from clustering similar sequencing reads. Typically, taxonomic markers, such

61 as variable regions of the 16S rRNA gene common to all prokaryotes, are used to perform the
62 clustering based on a fixed degree of sequence similarity among reads. Such clusters are termed
63 Operational Taxonomic Units (OTUs), and each OTU is usually assigned to some level of
64 taxonomy, such as a genus. Identifying OTUs correlating with specific sample features (e.g.,
65 body site, disease presence, diet, age) can be done via unsupervised exploratory methods [3].
66 Unfortunately, complexities inherent to taxonomic abundance data hinders many of these
67 methods. These complexities include vastly more OTUs relative to the number of available
68 samples [4], substantial sparsity in the OTU counts (absence of organisms in most samples), and
69 differences in sampling depth among samples. The sampling depth issue then requires
70 normalization, introducing additional challenges. In particular, the normalization transforms
71 the abundances into relative abundances within each sample (compositional data) [5,6].
72 Common approaches (e.g., differential abundance analysis [3,7,8] and regularized regression
73 [9,10]) associate indicator taxa with sample information, leading to overly simplified biological
74 interpretations.
75 From an ecological perspective, co-occurring OTUs may represent related subcommunities of
76 taxa, which consist of OTUs that are common to (or overlap with) each sample. This overlap is
77 due to taxa that covary with host or environmental factors; thus, identifying important
78 subcommunities (groups of taxa) and configurations of taxa (the grouping and ratios/relative
79 abundances of co-occurring taxa) may allow for a more biologically meaningful interpretation
80 than identifying indicator OTUs, because identifying subcommunities preserves the groupings
81 and abundances of taxa [2,11–13]. Developing techniques for identifying subcommunities is a
82 fundamental goal of this work.

83 Methods that predict functional profiles from 16S rRNA survey data usually report the overall
84 function of a sample and do not provide granularity on how each subcommunity provides
85 specific functions (Fig 1). Standard methods that predict function from 16S rRNA survey data
86 include PICRUSt, Tax4fun, Piphillin, and SINAPS [14–17]. These simulate gene abundances
87 from the OTU relative abundance profile by assigning pre-existing gene ontologies, based on
88 whole genome sequences, to the OTUs. The simulation is trivial for known microbes, but for
89 novel OTUs, gene content is interpolated through its neighbors' genes. These are determined
90 via an unsupervised phylogenetic tree reconstruction. However, after the gene abundance
91 profiles are simulated for an entire sample, a user cannot view which functional content
92 associates with which taxa, nor how subcommunities contribute to function.

93

94 Fig 1. (Thematic Approach) Given a 16S rRNA gene abundance table, a topic model is used to
95 uncover the thematic structure of the data in the form of two latent distributions: the samples-
96 over-topics frequencies and the topics-over-OTUs frequencies. The samples-over-topics
97 frequencies are regressed against sample features of interest to identify the strength of a topic-
98 covariate relationship to rank topics (top). The topics-over-OTUs frequencies are used in a gene
99 function prediction (FP) algorithm to predict gene content. Important functional categories are
100 identified via a fully Bayesian multilevel negative binomial (NBR) regression model (middle).
101 The topics-over-OTUs distribution is hierarchically clustered to infer relationships between
102 clusters of co-occurring OTUs and topics (bottom). The result is the ability to identify key topics
103 that associate clusters of bacteria and their associated functional content to sample information

104 of interest. (Alternative Approach). A common alternative approach currently used in the
105 literature involves independently (1) characterizing the taxonomic configuration and (2)
106 predicting the functional configuration of the OTU abundance table. Gene function prediction is
107 performed on the full OTU abundance table, followed by a differential abundance analysis to
108 infer differences in specific genes between sample features of interest (top). The OTU table is
109 normalized to overcome library size inconsistencies and then analyzed via two methods: (1) an
110 elastic net (EN) to find sparse sets of OTUs that are predictive for the sample feature of interest
111 (middle) and (2) a multivariate (MV) analysis to identify relationships between beta diversity
112 and the sample feature of interest (bottom). The result are three analyses that summarize the
113 entire OTU relative abundance table, unlike the thematic approach, which characterizes co-
114 occurring sets of OTUs (configurations) in three ways.

115

116 We consequently have developed `themetagenomics`, a novel pipeline for analyzing 16S
117 rRNA amplicon surveys that (1) identifies subcommunities associated with specific sample
118 features and (2) uncovers functional profiles that further characterize these subcommunities.
119 We use a topic model approach to uncover subcommunity structure by estimating taxonomic
120 co-occurrence. Topic models are dimensionality reduction techniques that have had
121 considerable use in natural language processing to represent, as topics, co-occurrence
122 relationships between words from a corpus of documents. They have more recently shown
123 promise as a method for exploring taxonomic abundance data [2,18], where topics act as low-
124 dimensional representations of co-occurring sets of taxa given a set of samples, i.e., far fewer

125 topics than OTUs (Table 1). Unlike other dimensional reduction techniques common to
126 microbiome data analysis (e.g., principal coordinate analysis), topic models provide a new set of
127 features (topics) that should be familiar to microbiome researchers in that they have a form
128 similar to relative abundances: each sample is represented as a vector of frequencies across
129 topics and each topic is represented as a vector of frequencies across taxa. Lower dimensional
130 features that are also familiar may ease their interpretation.

131

132 Table 1. Relationship of Terms

Topic Model	Pipeline	Description
Document	Sample	Collection of reads from subject m at time t
Topic	Topic	Collection of co-occurring taxa, subcommunity
Word	OTU, Gene, Taxa	Features from taxonomic abundance table or predicted functional content
Document-Level Covariate	Sample information, Sample class	Sample-level variable of interest – e.g., disease presence, diet, rainfall, time
θ	Samples-Over-Topics Distribution	Vector of topic frequencies in a given sample; probability of a topic occurring in a given sample
β	Topics-Over-OTUs Distribution	Vector of OTU frequencies in a given topic; probability of an OTU occurring in a given topic

134

135 Our pipeline aims to concisely summarize high-dimensional data in the form of OTU
136 abundances as low-dimensional sets of co-occurring taxa (topics) with their corresponding
137 predicted functional potential. When additional high-dimensional data is available (e.g.,
138 predicted gene function abundances), interpretability becomes increasingly difficult. Although
139 topic models have been applied to microbiome data because of their interpretable features, no
140 work has been done to leverage their interpretability to link low-dimensional representations of
141 OTU and predicted gene function abundances. In addition, little research addresses ways to
142 fully leverage the latent features topic models extract from microbiome data. For example,
143 correlated topic models [19] not only capture taxonomic co-occurrence but also topic co-
144 occurrence, such that the frequency of two topics, with different sets of co-occurring taxa,
145 occurring in any given sample, may be positively correlated. This is the basis of our novel
146 approach to exploit the correlation structure of topics across samples to resolve long-term
147 temporal behavior of subcommunities (represented as topics) in microbiome time-series
148 datasets.

149 Our approach at linking taxonomic composition to predicted functional content (obtained via
150 methods that leverage preexisting gene ontologies) within topics is unique. We apply a recently
151 developed structural topic model (STM) [20] to a novel domain (16S rRNA amplicon surveys),
152 where each topic represents a cluster of co-occurring OTUs and each OTU can occur in multiple
153 topics with varying frequency. Functional content is then predicted within-topic, allowing the
154 topics to act as low-dimensional taxonomic and functional summaries of the input data. The

155 topics are then linked to sample-information that reflects host or environment status. Topics-of-
156 interest (e.g., those that contain differentially-enriched functional profiles) can easily be
157 identified in our pipeline via a fully Bayesian multilevel regression model. We also apply our
158 approach to empirical time-series data where we characterized events in terms of sets of
159 correlated topics to explore how the taxonomic configurations evolved over time.
160 Our pipeline has been implemented in the R package `themetagenomics`:
161 <https://github.com/EESI/themetagenomics>.

162

163 **Results and Discussion**

164

165 Here we explore the use of `themetagenomics` on publicly available datasets studying Crohn's
166 disease microbiota (Gevers et al. [21]), oral cancer microbiota (Schmidt et al. [22]), and the
167 variation of microbiota as a function of time (David et al. [23]). With the larger Gevers et al.
168 Crohn's dataset, we validate the ability of `themetagenomics` to capture microbial profile
169 "signatures" (configurations of taxa which are groups with specific ratios/relative abundances
170 of co-occurring taxa). We show that (1) topics generalize well to test data not initially seen by
171 the model (generalizable topics are topics robust to overfitting, such that they avoid fitting noise
172 and thus can capture important signals representative of true taxonomic co-occurrence profiles),
173 and (2) topics capture distinct microbial signatures found in the original OTU relative
174 abundance data.

175 After validating the configuration of taxa within-topic (by assessing classification performance
176 to evaluate topic generalizability and OTU co-occurrence to evaluate topic quality) and the
177 configuration of predicted gene functions within-topic (via a permutation test using
178 metagenomic data), we assess the biological relevance of our low-dimensional summaries
179 (topics). We then apply our complete pipeline to Gevers et al. to link a topic's functional
180 content, taxonomic co-occurrence, and sample information (clinical diagnosis of Crohn's disease
181 (CD)), and we compare these results to those obtained by the original authors. We compare our
182 results to those obtained by DESeq2 and an alternative topic-model based microbiome analysis
183 tool, BioMiCo [2]. We validate the functional prediction of our pipeline with the oral cancer
184 Schmidt et al. dataset by showing the low-dimensional topic profiles identified by
185 the metagenomics are also present in complementary metagenomic shotgun (MGS) sequence
186 data. We lastly implement our approach on time-series gut microbiome data from David et al.
187 We interpret the results in terms of topics and posterior uncertainty and compare our findings
188 to those obtained by a HC approach, as well as the results reported by David et al.

189

190 **Topic Modeling Feasibility and Generalizability**

191 We assess (1) if topics correlate to sample phenotypes (e.g., disease state) and (2) whether those
192 topics generalize well – that is, can the learned topics predict phenotypes from new data. Using
193 a random forest classifier, we compared the classification performance between two different
194 sets of predictors: (1) frequencies of topics-across-samples, θ , from the STM, and (2) OTU
195 relative abundances across samples generated from QIIME [24]. For this analysis, we focused on

196 the Crohn's disease study from Gevers et al. given its large sample size (555 terminal ileum
197 samples).

198 To assess generalizability, we used a training/testing approach. We randomly selected 80% of
199 samples as our training set; the remaining 20% were set aside for testing (Table S1). Class labels
200 were binary, with positive (CD+) and negative (CD-) clinical diagnoses acting as the positive
201 and negative classes, respectively. For classifying CD diagnosis, we hypothesized that using
202 topics as predictors would outperform using relative abundances of OTUs, since the relative
203 abundance-based predictors are sparser, whereas topic modeling performs dimensionality
204 reduction, resulting in a relatively smaller set of topics that are less sparse relative to OTUs.

205 There was little difference between the topic model with at least 25 topics and the OTU table to
206 train the classifier (S1 Fig, Table S2). During testing, however, using topics as features
207 outperformed relative abundances, particularly in the F1 score, with relative abundances
208 achieving 80.8% and at least 25 topics achieving greater than 82.1% (Table S3). Using OTU
209 relative abundances as predictive features resulted in a larger proportion of false negatives,
210 which was likely due to its reliance on few, relatively rare taxa. Topics, on the other hand, are
211 less reliant on rare taxa because dimensionality reduction generates less sparse features (S2
212 appendix).

213 **Correlation Between Topics and Phenotype**

214 To identify topics of interest that were strongly associated with phenotype, we again
215 implemented `themetagenomics` on the Crohn's disease dataset, using the same binary
216 indicator for CD diagnosis as above. We then performed posterior inference. The primary

217 output of the topic model, as with any Bayesian analysis, is a posterior distribution of quantities
218 that estimate latent variables-of-interest (e.g., the frequencies of topics, θ , in a particular sample)
219 given the observed data (e.g., OTU abundances). Posterior inference involves sampling these
220 latent variables-of-interest from the posterior distribution of the fitted topic model to calculate
221 expected means and assess uncertainty in those expectations.

222 With the posterior distribution, we identified topics-of-interest based on their “topic-sample-
223 effects” – the regression coefficients that represent differences in topic frequencies between CD+
224 and CD- samples. We performed permutation tests to ensure that detected topic-sample-effects
225 were not spurious (S2 appendix). For the model with 25 topics (K25), we performed 25
226 permutations, where we randomly permuted class label assignments (CD+, CD-), refit the topic
227 model, and calculated the mean regression coefficient for each topic. Of the 25 topics, 8 topics
228 had 95% uncertainty intervals for the effect size (differences between CD+ and CD-) that did not
229 span 0 (S2 Fig). We consider these “high-ranking-topics.” Topics T15, T12, T2, and T14 had
230 estimates greater than 0 (implying robust associations with CD+), whereas topics T11, T25, T13,
231 and T19 had estimates less than 0 (implying robust associations with CD-). Increasing the
232 number of fitted topics gave similar results; for K75, 14 topics did not span 0 (S3 Fig).

233 We next tested how well a topic model (fit with the binary CD encoding) could capture the
234 severity of disease using the Pediatric Crohn's Disease Activity Index (PCDAI) associated with
235 CD+ that increases as CD severity increases (CD- samples were set to PCDAI=0). The frequency
236 of a sample containing a particular topic given its PCDAI is shown in Fig 2A for models K25
237 and K75. Topics are color-coded based on their association with CD, which is estimated using

238 their topic-sample-effects (yellow and violet represent topics most and least associated with CD,
239 respectively). Each overlapping line represents one of 25 replicate simulations. Both panels
240 demonstrate that as PCDAI increases, the thematic profile shifts from one dominated by a single
241 CD- associated topic (T8) to a set of CD+ topics (T12, T15, T45). The transition occurs at
242 approximately PCDAI=35. Because the K25 model had greater separation of high probability
243 topics, it will be the focus for the remainder of analyses involving Gevers et al. data.

244

245 Fig 2A. The relationship between topic frequency within a sample and that sample's Crohn's
246 Disease (CD) severity (PCDAI score) for the 25-topic STM. Each line represents the frequency of
247 a topic as a function of sample PCDAI score. High frequency topics are labeled. Violet and
248 yellow color-coded trajectories designate CD- and CD+ associated topics, respectively. Posterior
249 sampling was performed across 25 replicates, with each line plotted to represent the
250 distribution of the topic frequency trajectories. Fig 2B. Trajectories for the 75-topic model. Fig
251 2C. The relative abundance of OTUs in the (input) OTU relative abundance table for
252 "noteworthy" OTUs from high-ranking-topics. The left and right panels show the relative
253 abundance of these OTUs in each CD- and CD+ sample, respectively. Noteworthy OTUs are
254 defined as high-frequency OTUs, sampled from the posterior distribution, that concentrate into
255 high-ranking-topics (yellow=CD+ topic group, violet=CD- topic group, green=unassociated
256 topic group). The horizontal line marks a subset of samples that contain a large proportion of
257 the OTU profile associated with CD+ high-ranking-topics.

258

259 From the posterior topics-over-OTUs distribution (β) for the K25 model, we identified OTUs
260 highly associated with CD, that is, OTUs with high frequency in high-ranking-topics (CD+
261 associated topics T19, T13, T25, T11; CD- associated topics T14, T2, T12, T15) in more than 99%
262 of posterior samples (arbitrary threshold). We categorized these OTUs as CD+ associated OTUs,
263 CD- associated OTUs, and unassociated OTUs. Fig 2C shows the relative abundances of the 3
264 groups for each sample in the QIIME-generated OTU abundance table. Of CD+ samples (right
265 of vertical black bar), approximately 25% were characterized by a greater proportion of CD+
266 associated OTUs relative to CD- (marked by the horizontal black bar). The ratio of CD-
267 associated OTUs to unassociated OTUs had a similar distribution among CD+ and CD- samples,
268 suggesting that the OTU profile from CD+ high-ranking-topics is specific for the CD+ disease
269 status. Lastly, when we regressed PCDAI against the relative abundances of the CD+ associated
270 OTU profile, we found a significant positive relationship ($\beta=0.057$, $p=0.01$, 100 permutations),
271 albeit explanatory for only a small portion of the variation ($R^2=8.64\%$), suggesting that presence
272 of this OTU profile may be weakly indicative of severe cases of CD (S2 appendix).

273 **Comparison to BioMiCo.** We compared our approach's performance to BioMiCo, a topic model
274 that identifies meaningful sets of "assemblages" (analogous to topics – i.e., sets of cooccurring
275 taxa) by directly incorporating sample- or environmental level features (labels) during the
276 training procedure. It is fully supervised and assumes that a sample is comprised of a mixture
277 of communities that share sample- or environmental level features. These communities are
278 described by a set of high probability assemblages which are in turn described by a set of high
279 probability taxa.

280 We fit BioMiCo using 25 and 50 assemblages and compared its ability to distinguish CD from
281 control using held-out testing data (same train/test splits as described previously) and then
282 compared these results to the prediction performance of the STM. Testing performance was
283 similar between the two approaches (Table S3, S6). The balanced accuracy was highest for the
284 25-topic STM model, but the STM's performance varied as a function of topic number. F1 score,
285 however, was much worse for BioMiCo due to its low precision.

286 For the 25-assemblage model, there were roughly four assemblages with high posterior
287 probability for CD samples and low posterior probability for controls. If we focused on the taxa
288 with the top-10 highest posterior probability of belonging to these assemblages, no more than 2
289 taxa were present in the top-10 highest probability taxa in the STM's CD-topics that were most
290 associated with CD, suggesting little correspondence between the composition of assemblages
291 and topics. Alternatively, when focusing on assemblages with high posterior probability for
292 control but not CD, one assemblage had 4 genera in common with the STM's topic 13:
293 *Parabacteroides*, *Bacteroides*, *Ruminococcus*, and *Roseburia*.

294 It is worth noting, however, that the STM and BioMiCo aim to characterize data differently and
295 hence the distribution of taxa within a given topic are expected to be different. Still, both
296 approaches show they similarly generalize to new data. An advantage of *themetagenomics* is
297 that it leverages output inherent to the design of the STM that is not available via BioMiCo,
298 notably topic-topic correlation. Also, the STM is appreciably faster, taking minutes to run on the
299 Gevers data whereas BioMiCo took days. Unlike BioMiCo – as well as the STM which is aimed
300 for more general use – *themetagenomics* delivers a framework that facilitates ease-of-use

301 microbiome analysis using a topic model via an R package with a variety of intuitive functions
302 for preprocessing, analyses, and visualizations. It also provides novel downstream approaches
303 such as time series analysis which leverages the STM's estimation of topic-topic correlation, as
304 well as methods to associate a topic's taxonomic composition to its predicted gene functions.

305

306 **Linking Function to Taxonomy with Topics**

307 We wanted to discern whether the topics would continue to identify meaningful relationships
308 upon introducing another layer of information: predicted function (via abundances of metabolic
309 pathways). Consequently, we applied our full *themetagenomics* pipeline to the Crohn's
310 disease dataset and compared our findings to those of the original authors. To further
311 characterize topics, we applied PICRUSt to the topics-over-OTUs distribution, β , to predict the
312 functional gene content within topics. The genes were then annotated in terms of their KEGG
313 functional hierarchy designation [25], thereby providing each gene with a metabolic pathway
314 label. We then performed a fully Bayesian multilevel regression analysis on the predicted
315 abundances of each gene to identify strong topic-pathway interactions.

316 Like Gevers et al., we identified an increase in membrane transport associated with CD+
317 subjects' gut microbiome; however, using *themetagenomics*, we were able to pinpoint the
318 specific topics associated with the enrichment of these functional categories, T2 and T12 (Fig
319 3A). We then could link enrichment of membrane transport genes to the taxa that were also
320 enriched in this topic. For example, topics T2 and T12 were dominated by Enterobacteriaceae.
321 These Enterobacteriaceae-enriched topics were also enriched for siderophore and secretion

322 system related genes. Like T2 and T12, T15 was highly associated with CD+; however, it was
323 less enriched for membrane transport genes. This suggests that the cluster of bacteria found in
324 T15 (*Haemophilus* spp., *Neisseria*, and *Fusobacteria*) may have contributed less to the shift of
325 transport genes reported by Gevers et al. and instead have distinct pathway associations with
326 CD.

327

328 **Fig 3A.** Level-3 pathway category-topic interaction regression coefficients from the multiple
329 level negative binomial model. Red asterisks indicate estimated pathway-topic interaction
330 weights that do not span 0 at 80% uncertainty (pathways lacking robust interactions are
331 omitted). Green=large positive coefficients thus enrichment for that pathway in that topic,
332 Violet=large negative coefficients thus depletion for that pathway in that topic. Topics are
333 ordered from CD- associated (left, T19) to CD+ associated (right, T15). High-ranking-topics are
334 delineated by the vertical dotted lines (CD-: T19-T11; CD+: T14-T15). **Fig 3B.** Volcano plot
335 showing DESeq2 results for differentially abundant predicted level-3 KEGG categories.
336 Functions were predicted using PICRUSt on the copy number normalized OTU abundance
337 table. Blue points represent categories significantly enriched for CD- and red points are
338 categories enriched for CD+, respectively. Gray points are categories with p-values greater than
339 0.1 after Bonferroni correction.

340

341 The strongest topic-pathway interaction was found in T19 for genes encoding bacterial motility
342 proteins. For T19, three motility-related pathways (bacterial motility proteins, bacterial

343 chemotaxis, flagellar assembly) had topic-pathway interactions that did not span 0 at 80%
344 uncertainty, suggesting that T19 was more enriched in cell motility genes relative to all other
345 topics. The pathways inferred from T19 are consistent with this taxonomic profile, which
346 consisted of motile bacteria belonging to Lachnospiraceae, Roseburia, and Clostridiales.
347 Enrichment of two lipopolysaccharide (LPS) synthesis categories were associated with CD+
348 topics; however, one of these categories was specific for only T15 (Table S4).

349 **Comparison to DeSeq2.** We compared the topics' functional profiles to the results obtained by
350 performing a DESeq2 differential abundance analysis on functional predictions obtained by
351 applying PICRUSt to the QIIME-generated OTU abundance table. Of the 160 (level-3) KEGG
352 pathway categories, more than half (87) were found significant ($\alpha < 0.1$) in the DESeq2
353 approach, despite using Bonferroni correction (a conservative approach to correct for multiple
354 comparisons), complicating interpretation (Fig 3B). Despite minor differences in specific
355 pathway enrichment between *themetagenomics* and the DESeq2 approach (S2 appendix) the
356 major difference was the greater number of low-uncertainty/significant pathway categories
357 found by DESeq2. While one could reduce the significance level when applying DESeq2 to
358 achieve a smaller subset of significant pathway categories, the choice is arbitrary. Moreover, the
359 predicted functional abundances (via PICRUSt, Tax4fun, etc.) are scaled based on the
360 abundance of taxa from which they were derived. Thus, high taxonomic abundances will often
361 yield high functional abundances. Many of the significant pathway categories identified by
362 DESeq2 may be driven by a small subset of highly abundant taxa. *Themetagenomics*, on the
363 other hand, first groups co-occurring taxa into topics. Because functional prediction is
364 performed within a topic, taxa that are highly abundant in the input OTU abundance table can

365 only affect the topics in which they are present at high frequency. Thus, this prevents high
366 abundance taxa associated with a subset of samples (e.g., CD+), and their corresponding
367 predicted pathway abundances, from disproportionately influencing the statistical significance
368 of these pathways.

369

370 **Validating the Functional Predictions of Themetagenomics via Paired MGS Samples**

371 Using sample-matched (N=12) oral cancer microbiome samples from Schmidt et al. that
372 underwent both 16S rRNA amplicon sequencing and metagenomic shotgun sequencing, we
373 verified enrichment or depletion of predicted functional content (collapsed into metabolic
374 pathway categories) of the themetagenomics pipeline. The pipeline processed the 16S rRNA
375 samples and compared the results to metagenome-based gene functional abundance data. Fig
376 4A shows the relative enrichment/depletion of various topic-pathway combinations identified
377 by themetagenomics. For example, bacterial motility genes were enriched in topic 25
378 (positive coefficient, shaded green), whereas bacterial motility genes were depleted in topics 3
379 and 9 (negative coefficients, shaded violet).

380

381 Fig 4A. KEGG (level-3) pathway category-topic interaction regression coefficients from the
382 multilevel negative binomial model as a measure of association between pathway and topic.
383 Only pathways present in both the themetagenomics analysis of 16S rRNA data and
384 HUMANN2 analysis of the metagenomics shotgun sequencing data are shown.

385 Green=associated samples with positive cancer diagnosis, Purple=associated with healthy
386 samples. Fig 4B. Pathway category-topic interaction regression coefficients for metagenomic
387 data. Topics were generated based on KOs that belonged to high frequency taxa in the
388 themetagenomics pipeline. Fig 4C. Example topic-pathway heatmaps, similar to Fig 4A and 4B
389 from four of the 100 permuted metagenomic datasets using in the permutation test. Fig 4D.
390 Distribution of root-mean-squared-error (RMSE) scores (between the topic-pathway interaction
391 regression coefficients between themetagenomics and the metagenomic data) from the 100
392 permuted metagenomic datasets. The RMSE score (0.56) for the unpermuted metagenomic
393 dataset is delineated by the red dotted line.

394

395 To compare the results from themetagenomics to gene function abundances inferred from
396 metagenomic shotgun sequencing for each topic, we first identified high frequency taxa (those
397 with frequencies greater than 1% in that topic) then identified all reads belonging to these taxa
398 in the metagenomic shotgun data. To identify pathway-topic enrichment/depletion, we then
399 applied a multilevel regression model. The results indicate that the taxa belonging to a topic are
400 associated with an enrichment/depletion of genes present in the shotgun data (Fig 4B). Notably,
401 LPS biosynthesis proteins and porphyrin metabolism pathways were depleted in multiple
402 topics in both sets of results. The relative enrichment/depletion of phosphotransferase system
403 genes was also similar.

404 We performed a permutation test to determine whether the similarities in gene
405 enrichments/depletions between themetagenomics and the metagenomic data were spurious.

406 We randomly permuted the topic and gene pathway labels in the metagenomic data, refit the
407 multilevel regression model, and then calculated the root mean square error (RMSE) for each
408 topic-pathway interaction regression weight between the *themetagenomics* and permuted
409 metagenomic models. After 100 replicate simulations, the RMSE for the unpermuted
410 metagenomic model was smaller than every permuted metagenomic model ($p < 0.05$) (Fig 4C-
411 D). Therefore, the apparent similarities in the gene enrichment/depletion profiles between
412 *themetagenomics* and the shotgun data were not due to random chance, indicating that
413 using predicted gene enrichment/depletion from 16S rRNA amplicon surveys resulted in
414 similar within-topic predicted functional profiles to those obtained by directly measuring
415 functional content via metagenomic shotgun sequencing.

416

417 **Detection of Events in Subject B from David et al.**

418 The David et al. dataset contains fecal and salivary 16S rRNA gene surveys from two subjects.
419 We focused on fecal samples from subject B. We compared our results to the three profiles
420 described by David et al., which consisted of a pre-food-poisoning profile (days 1-150), food-
421 poisoning profile (151-159), and post-food-poisoning profile (150-318).

422 **The topic model approach identified 3 distinct gut configurations.** In the topic correlation
423 network (Fig 5A), we identified a small subnetwork of three topics (marked by violet bracket)
424 and two large subnetworks that contained 24 and 14 topics each (red and green brackets,
425 respectively). The large subnetworks were connected by a chain of four topics (T9, T24, T2, T37)
426 (blue bracket). We defined the four sets of correlated topics as topic clusters and sampled topic

427 frequencies (across samples) and taxa frequencies (across topics) from the topic model's
428 posterior distribution to assess how often topics and taxa occurred within these clusters.

429

430 **Fig 5 Application of the topic model approach to David et al. data. (A)** The topic-to-topic
431 correlation graph showing two topic clusters (clusters 1 and 3) connected by a linear chain of
432 topics (cluster 2) that follow the time progression of the taxonomic change due to the food
433 poisoning infection. **(B)** Distribution of topic assignments as a function of day and cluster
434 (panels), indicating 3 distinct profiles. The interval in which food poisoning symptoms
435 presented (per David et al.) are marked with dotted vertical lines. Gray shading indicated 80%
436 uncertainty intervals. **(C)** Frequency of cluster assignments as a function of day, indicated day
437 153 marking the shift from profiles 1 to 2 and day 159 marking the shift from profiles 2 to 3. **(D)**
438 Frequency of taxa assignments given a cluster assignment. Cluster 2 is shown in terms of its
439 topics (9, 24, 2, 37). Topic 20 is also shown (misc. cluster), which lacked any edges in the
440 correlation graph, but marks the initial appearance of *Enterobacteriaceae* on day 153
441 (representing the start of the infection). **(E)** The probability of the topic assignments given each
442 day for cluster 2. The progression of topics also follows the progression of taxonomic change
443 shown in the correlation graph.

444

445 Fig 5B shows the posterior frequency in which the topic clusters occurred given the day in
446 which the sample was collected (the estimated posterior probability of a cluster occurring on a
447 given day). There were two clear periods of rapid change in cluster frequency, specifically when

448 transitioning from cluster 1 to 2 (days 152-154) and clusters 2 to 3 (day 161). Our intervals are
449 similar to the original study's transition points at days 144-145 and 162-163, where the shift
450 from a topic cluster 1 to topic cluster 2 corresponded with subject B's food poisoning diagnosis.
451 The transition between topic clusters 1 and 2 is abrupt and likely occurred around day 153.
452 Taxonomically, this transition is marked by a shift from Bacteroidaceae (posterior
453 frequency=0.338), Lachnospiraceae (0.276), and Ruminococcaceae (0.266) to Enterbacteriaceae
454 (0.246) and Clostridiaceae (0.195) families (Fig 5D). In particular, day 153 was distinctive for
455 topic 20. This rare topic was not correlated with any other topics and hence did not belong to
456 any topic cluster. While its taxonomic profile was quite similar to topic cluster 1, it was
457 distinctly enriched for *Enterobacteriaceae* spp., which is consistent with the subject's *Salmonella*
458 diagnosis. Topic 20 likely marks the event of initial exposure to the pathogen.
459 The distribution of topic assignments for topic cluster 2 followed the order in which its topics
460 were positioned in the topic correlation network (the linear chain of topics) (Fig 5E). The start of
461 topic cluster 2, day 155, was dominated by topic 9, characterized by taxa substantially different
462 from topic cluster 1. Bacteria enriched in this topic included *Haemophilus parainfluenzae*,
463 *Clostridium perfringens*, and, notably, *Enterobacteriaceae* spp. Thus, topic 9 likely represented the
464 disrupted configuration of microbiota due to exposure to *Salmonella*. Enterbacteriaceae spp. and
465 *C. perfringens*, via topic 24, continued to dominate on day 156. Day 157 was best described by
466 topic 2, a topic rich in *Enterobacteriaceae* spp. as well as *Veillonella* spp. It should be noted,
467 however, that our results were more conservative than David et al. in that we confidently
468 estimated that topic cluster 2 lasted roughly 4 days (155 to 158), which is much shorter than the
469 original study's estimate (145 to 162). Our estimated length of illness (153 to 158) was more

470 consistent to David et al. (151 to 159), however. At approximately day 159, the taxonomic profile
471 shifted toward cluster 3, which was similar to cluster 1 in terms of Bacteroidaceae (0.369), but
472 enriched in Lachnospiraceae (0.360) and depleted in Rumunoicoccaceae (0.165) (Fig 5D).

473

474 **HC was unable to separate the transition between during- and post-illness periods.** We
475 compared our approach to one using HC. HC cluster 4 contained 360 taxa and corresponded
476 well to the pre-illness period, spanning days 1 to 150. The set of taxa was similar to the taxa
477 identified in topic cluster 1 (S4 Fig). The post-illness period was captured by HC clusters 1 and
478 3, but these clusters failed to completely separate the during- and post-illness periods; they
479 spanned days 151 to 318.

480

481 **Limitations**

482 There are limitations to our approach. First, the topic-pathway inference step currently scales
483 poorly in terms of computation time for large numbers of topics, which may be more important
484 as datasets grow. Regularization and sparsity-inducing priors help limit the number of
485 important topics; hence, exploring only a subset of topics during the final regression step can
486 offer substantial speed improvements at little cost, but utilizing the complete set of topic
487 information would be ideal. Second, we are capable of separately estimating the uncertainty in
488 our topic model, the multilevel regression model, and the functional predictions from PICRUSt,
489 but we currently do not propagate the uncertainty throughout the pipeline. Doing so would

490 improve downstream interpretation with better estimation of the uncertainty in topic-sample
491 covariates and topic-pathway interactions, which in turn would greatly improve one's
492 confidence in focusing on within-topic gene sets. Third, we do not incorporate phylogenetic
493 branch length information, which could lead to more meaningful topics.

494

495

496 **III. Conclusion**

497 We present our approach at a time when easily-to-interpret analyses for complex microbiome
498 data are direly needed. Current methods often link the relative abundance of a single OTU to a
499 sample information of interest (e.g., disease state). These methods routinely identify important
500 subsets of taxa but ignore OTU co-occurrence and ratios. Network methods can overcome this
501 concern, but typically don't incorporate phenotypic information within the model;
502 consequently, they are incapable of directly linking sections of the OTU correlation network
503 with sample metadata of interest. Constrained ordination methods, such as canonical
504 correspondence analysis, do in fact couple inter-community distance with sample information,
505 but the user is limited to specific distance metrics (e.g., Chi-squared) and must follow key
506 assumptions (e.g., the distributions of taxa along environmental gradients are unimodal) [26].
507 Moreover, interpretation of biplots becomes increasingly difficult as more covariates are
508 included. While linking key taxa to functional content can be accomplished via sparse canonical
509 correlation analysis [27], this approach is susceptible to many of the interpretability problems

510 found in other ordination approaches, and exploring inferred relationships in the context of
511 taxonomic co-occurrence is not straightforward.

512 The ability to make meaningful inferences using current methods is further limited by the fact
513 that microbiome data is often inadequately sampled (thus justifying some type of normalization
514 procedure), compositional (due to normalization), sparse, and overdispersed. Thus, recent work
515 has explored the use of Dirichlet-Multinomial models, which are well equipped at managing
516 overdispersed count data [28–30]. The fact that Dirichlet-Multinomial conjugacy is exploited in
517 many topics models hints at their applicability for relative abundance data. We selected the
518 recently developed STM for our workflow because of its ability to not only utilize sample data
519 as prior information as in the Dirichlet-Multinomial regression topic model [31], but also
520 capture topic correlation structure and apply partial pooling over samples or regularization
521 across regression weights.

522 Thus, we have proposed an approach for uncovering latent thematic structure in 16S rRNA
523 amplicon data that provides a low-dimensional, biologically interpretable representation of
524 taxonomic and predicted functional content. Rather than inferring functional content
525 independently of taxonomic relative abundances, our approach shifts the focus to investigating
526 within-topic functional content. Unlike other methods, by exploring our topics, we can link
527 categories of functional content to specific clusters of taxa which can in turn be linked to sample
528 features of interest. For example, like Gevers et al., we detected a relationship between
529 membrane transport genes and CD+, but our approach also allowed us to determine which
530 bacteria (OTUs belonging to Enterobacteriaceae) were the prime contributors to the enrichment

531 of membrane transport genes. Moreover, the pathogenic set of bacteria reported by Gevers et al.
532 (*Haemophilus* spp., *Neisseria*, and *Fusobacteria*) contributed less to the predicted abundance of
533 membrane transport genes. By independently applying statistical approaches to the OTU and
534 predicted functional content, as is typical, the apparent relationship between membrane
535 transport genes and specific configurations of bacteria would be lost.

536 We have also shown that our approach drastically reduces the dimensionality of two high-
537 dimensional sources of information, taxonomic relative abundances and predicted functional
538 content, increasing the ease in which these data can be interpreted. For Gevers et al., we
539 determined that T15 is (1) associated with CD+ samples; (2) dominated by a cluster of bacteria
540 previously associated with CD; and (3) uniquely enriched for a subset of LPS synthesis genes.
541 With a gene profile from a topic of interest, one could focus on gene subsets associated with
542 topic-specific bacterial clusters that are known disease biomarkers, which in turn may facilitate
543 targeted approaches for future research endeavors.

544 Lastly, our complete pipeline is computationally manageable. Fitting the topic model to a
545 dataset with nearly 5000 samples reached convergence in minutes. Functional prediction via
546 PICRUSt also only takes minutes (using our C++ implementation in `themetagenomics`).
547 Inferring topic-pathway interactions via our multilevel, negative binomial regression approach
548 is comparatively slower, however, taking hours for large datasets. However, this is still
549 manageable. Thus, we offer a viable package that can help researchers discover configurations
550 of taxa and functions that correlate to sample metadata. This is because we implement this
551 model in the probabilistic programming language Stan, which uses Hamiltonian Monte Carlo.

552 Maximum likelihood (a much faster alternative) does not provide estimates of uncertainty and
553 generally fails to converge for these data, although the regression weight estimates tend to be
554 quite similar based on our experience.

555

556

557 **Methods**

558

559 **Review of the Structural Topic Model**

560 The STM [20] is a Bayesian generative topic model. It begins with a given a set of M samples,
561 each consisting of N OTUs. These N OTUs are, in turn, elements of a fixed vocabulary of V
562 unique OTU IDs. From this, K (a fixed number chosen a priori) latent topics are assumed to be
563 generated from the data. These topics consist of overlapping sets of co-occurring OTUs. Note
564 that we will describe the STM in the context of the analyses perform herein; for a complete
565 description of the STM, see [20]. The observations include the presence of OTU w_n occurring in
566 sample m and an $M \times P$ matrix of sample-level information such as disease state or age.

567 For our purposes, the posterior distribution of unobserved (latent) parameters given the
568 observed data is given by:

569 Posterior Distribution: $p(\theta, \beta, \Sigma, \Gamma, z \mid w, X)$.

570 The generative process is formulated by first specifying the probability

571 $P(\text{Topic } k \text{ occurs in Sample } m) = \theta_{m,k}, \sum_{k=1}^K \theta_{m,k} = 1$

572 and, for each of the samples, is assumed to follow logistic normal distributions,

573 $\theta \sim LN_{K-1}(\Gamma^T X_m^T, \Sigma)$

574 where Γ is a $P \times (K - 1)$ matrix of regression coefficients that estimate the degree of influence a

575 covariate X_p has on θ ; and Σ is a $K \times K$ covariance matrix. In addition to θ , the probability

576 $P(\text{OTU } n \text{ occurs in Topic } k) = \beta_{k,n}, \sum_{n=1}^N \beta_{k,n} = 1$

577 For each topic, β_k is assumed to be Dirichlet distributed. Finally, both topic assignments $z_{m,n}$ for

578 each OTU $w_{m,n}$, along with each OTU, obey multinomial distributions,

579
$$z_{m,n} \sim \text{Multinomial}(\theta_m)$$
$$w_{m,n} \sim \text{Multinomial}(\beta, z_{m,n})$$

580 For the relationships between topic model nomenclature and our terminology, see Table

581 1. The posterior distribution is estimated by a semi-collapsed variational expectation

582 maximization procedure. Convergence is reached when the relative change in the variational

583 objective (i.e., the estimated lower bound) in successive iterations falls below a predetermined

584 tolerance.

585

586 **Empirical Datasets**

587 The Gevers et al. dataset (PRJNA237362, 03/30/2016) is a multicohort, IBD dataset that includes

588 16S rRNA amplicon data from control, CD, and ulcerative colitis samples taken from multiple

589 locations throughout the gastrointestinal tract [21]. The Schmidt et al. dataset (PRJEB4953,
590 08/14/2017) consists of human oral microbiota obtained from control subjects and subjects
591 diagnosed with oral cancer. These samples underwent 16S rRNA amplicon sequencing, and a
592 subset (N=12) also underwent metagenomic shotgun sequencing.

593

594 **16S rRNA Amplicon Data Preparation and OTU Picking**

595 Paired-end reads were joined and quality filtered via QIIME v 1.9.1 and dada2 for Gevers et al.
596 and Schmidt et al. data, respectively. Closed-reference OTU picking was performed with QIIME
597 using SortMeRNA against GreenGenes v13.5 at 97% sequence identity. This was followed by
598 copy number normalization via PICRUSt version 1.0.0 [32]. Samples with fewer than 1000 total
599 reads were omitted. OTUs that lacked a known classification at the phylum level were removed.
600 For Gevers et al., we selected only terminal ileum samples and filtered OTUs with fewer than 10
601 total reads across samples, yielding 555 samples over 1500 OTUs. For Schmidt et al., we filtered
602 any OTU with non-zero abundances in fewer than two samples, yielding 81 samples over 1029
603 OTUs.

604

605 **Metagenomic Shotgun Sequence Data Preparation and Functional Genomic Profiling**

606 Low quality reads and human genomic sequences were filtered via KneadData. Functional
607 profiles were then generated using HUMAnN2 with the ChocoPhlAn nucleotide database and
608 UniRef90 protein database. The UniRef90 protein families were collapsed into KEGG

609 orthologies (KOs), yielding abundances (copies per million (CPM)) for 12 samples over 36,806
610 KOs.

611

612 **Structural Topic Model Fitting**

613 The OTU abundance tables consisted of counts normalized by 16S rRNA gene copy number. No
614 other normalization was performed based on the simulation results in [33]. STMs with different
615 parameterizations in terms of topic number ($K \in 15, 25, 50, 75, 100, 150, 250$) and sample
616 features (e.g., no features, indicators for presence of disease, diet type, etc.) were fit to the OTU
617 tables generated from Gevers et al. data via the R package *stm* [34]. We evaluated each model
618 fit for presence of overdispersed residuals and conducted permutation tests (*permTest* in the
619 *stm* package) where the sample feature of interest is randomly assigned to a sample prior to
620 fitting the STM. To compare parameterizations between models, we evaluated predictive
621 performance using held-out likelihood estimation [35].

622

623 **Assessing Topic Generalizability**

624 We performed classification to assess the generalizability of the extracted topics. No sample
625 information was used as covariates in the logistic normal component of the STM. Samples were
626 split into 80/20 training-testing datasets. For different number of topics ($K \in 15, 25, 50, 75, 100,$
627 150), an STM was trained to estimate the topics-over-OTUs distribution (β). We then held this
628 distribution fixed; hence, only the testing set's samples-over-topics distribution (θ) was

629 estimated. For both the training and testing sets, simulated posterior samples from the samples-
630 over-topics distribution (θ) were averaged. The resulting posterior topic frequencies in the
631 training set were then used as features to classify sample labels, similar to using \bar{Z} in supervised
632 LDA [36]. Generalization (testing) error was assessed using the optimal parametrization based
633 on cross-validation performance on the test set topic frequencies. Classification was performed
634 using a random forest classifier, which underwent parameter tuning to determine the number
635 of variables for each split. This was accomplished through repeated (10x) 10-fold cross-
636 validation, using up-sampling to overcome class imbalance. We performed a parameter sweep
637 over the number of randomly selected OTU features, while setting the number of trees fixed at
638 128. The optimal parameterizations were selected based on maximizing ROC area under the
639 curve.

640 The performance of the STMs was compared to the performance using OTUs as features from
641 the original OTU abundance table. Separately, training and testing set OTU abundances were
642 converted to relative abundances with the following equation: $OTU_{n,m}/\sum_n OTU_{n,m}$. In words,
643 OTU n for sample m is scaled by the library size of sample m (the total abundance of sample m).
644 The resulting OTU relative abundance tables were separately z-score normalized. Training
645 cross-validation and testing using a random forest was then performed as above.

646

647 **Identifying Within-Topic Clusters of High Frequency OTUs**

648 Using the topics-over-OTUs distribution, we performed hierarchical clustering via Ward's
649 method on Bray-Curtis distances. We refer to high frequency groups of OTUs as "clusters."

650

651 **Inferring Within-Topic Functional Potential**

652 We obtained the topics-over-OTUs distribution (β) for each fitted model and mapped the
653 within-topic OTU probabilities to integers (“pseudo-counts”) using a constant: $10000 \times \beta$. A
654 large constant was chosen to prevent low frequency OTUs from being set to zero, although their
655 contribution to downstream analysis was likely negligible. Gene prediction was performed on
656 each topic-OTU pseudo-count table using PICRUSt version 1.0.0 [14]. (Normalization of 16S
657 copy number was performed prior to topic model fitting using PICRUSt.) Predicted gene
658 content was classified in terms of KOs [37].

659

660 **Identifying Topics of Interest**

661 Topics of interest were identified using the samples-over-topics distribution, where each
662 column represents the frequency of topic k for each sample. Each column was regressed against
663 CD diagnosis. We calculated 95% uncertainty intervals using an approximation that accounts
664 for uncertainty in estimation of both the sample covariate coefficients and the topic frequencies.
665 We refer to these coefficients as “topic-sample-effects.” Coefficients whose 95% uncertainty
666 intervals do not span 0 are referred to as “high-ranking-topics.”

667

668 **Validating Within-Topic Co-Occurrence**

669 To determine how well the high-ranking-topics captured co-occurrence in the original OTU
670 relative abundance table, we sampled the top-10 highest frequency taxa in each high-ranking
671 topic's topics-over-OTUs distribution (β). We then normalized the original OTU table using the
672 centered-log-ratio transformation and then evaluated how the high frequency taxa vary as a
673 function of CD diagnosis and PCDAI.

674

675 **Posterior Inference**

676 To determine how well the high-ranking-topics captured the taxonomic profile associated with
677 CD, we performed the following posterior simulation over R=1000 iterations. First, for iteration
678 r , for all samples $m \in M$ (e.g., subject 134), we obtained 100 posterior samples ($i \in \{1, \dots, 100\}$) of
679 $\theta_m^{(i)}$ from the posterior distribution, $p(\theta, \beta, \Sigma, \Gamma, z \mid w, X)$. For each of these $\theta_m^{(i)}$, we sampled topic
680 assignments $z_{m,n}^{(i)} \sim \text{Multinomial}(\theta_m^{(i)})$, and then OTUs $\hat{w}_{m,n}^{(i)} | z_{m,n}^{(i)} \sim \text{Mulinomial}(z_{m,n}^{(i)}, \beta)$.

681 We then recorded whether the topic assignments $z_{m,n}^{(i)}$ belonged to one of the high-ranking-
682 topics and whether they have a positive or negative association with sample covariates of
683 interest, resulting in positive-, negative-, and no-association topic groups. We calculated the
684 frequency $f_n^{(g)}$ in which OTUs $\hat{w}_{m,n}^{(i)}$ were sampled from a given topic group g :

$$685 f_n^{(g)} = \sum_i \sum_{\hat{w}_{m,n}^{(i)} | z_{m,n}^{(i)}} 1[z_{m,n} \in g]$$

686 where $1[\cdot]$ is the indicator function. For each OTU, we calculated which group had the largest
687 sampling frequency:

688
$$f_n^{(g)*} = 1 \left[f_n^{(g)} = \operatorname{argmin}_g f_n \right]$$

689 After 1000 iterations, we calculated

690
$$F_n^{(g)*} = \frac{1}{R} \sum_r f_n^{(g)*}(r)$$

691 For each topic group, we extracted a subset of OTUs that had frequencies above 0.99. In the
692 original relative abundance table, for each sample, we calculated the relative abundance of each
693 group of OTUs.

694 **Identifying Functional Content that Distinguishes Topics**

695 To determine which predicted functional gene content best distinguished topics, we used the
696 following multilevel negative binomial regression model:

697
$$\theta_{k,c} = \exp [\mu + \beta_k + \beta_c + \beta_{k,c}]$$

698
$$y_{k,c} \sim \text{NB}(\theta_{k,c}, \lambda)$$

699 where μ is the intercept, β_k is the per topic weight, β_c is the per level-3 gene category weight, $\beta_{k,c}$
700 is the interaction weight for a given topic-function (gene category) combination, $y_{k,c}$ is the count
701 for a given topic-function combination, and λ is the dispersion parameter. The intercept μ was
702 given a $\text{Normal}(0, 10)$ prior; all weights were given $\text{Normal}(0, 2.5)$ priors; and the dispersion
703 parameter λ was given a $\text{Cauchy}(0, 5)$ prior. Model inference was performed using Hamiltonian
704 Monte Carlo in the R package `rstanarm` [38]. Convergence was evaluated across four parallel
705 chains using diagnostic plots to assess mixing and by evaluating the Gelman-Rubin
706 convergence diagnostic [39]. To reduce model size, we used genes belonging to only 15

707 (arbitrary number) level-2 KEGG pathway categories (Table S5). For large topic models, we fit
708 only the top 25 topics, ranked in terms of topic-sample-effects that measure the degree of
709 association between samples-over-topics probabilities and our sample feature of interest.

710

711 **Assessing Relationships Between Sample Information of Interest and Taxonomic Relative
712 Abundance**

713 To quantify the relationship between taxonomic relative abundance and continuous sample
714 features (such as PCDAI), we performed negative binomial regression (log-link), using sample
715 library size (sum of OTU abundances across samples) as an offset. The family-wise error rate
716 was adjusted via Bonferroni correction. Significance levels for hypothesis testing was set at 0.05.

717

718 **Comparing Within-Topic Functional Profiles to an OTU-Relative-Abundance-Based
719 Approach**

720 We compared the results from the hierarchical negative binomial model to a differential
721 abundance approach. We performed predicted functional content using PICRUSt on copy
722 number normalized OTU abundances. The resulting functional abundances were collapsed into
723 level-3 KEGG pathways. Note that, for consistency, we again restricted the KOs to the 15 level-2
724 KEGG pathways used previously. The resulting level-3 pathway abundances underwent
725 DESeq2 differential abundance analysis, which uses negative binomial regression and variance
726 stabilizing transformations to infer the difference log-fold change of OTU relative abundance

727 [7,8]. The resulting p-values were corrected via the Bonferroni method. Adjusted p-values
728 below 0.1 were considered significant.

729 **Fitting BioMico**

730 The same training and testing sets were used as described above. Assemblages of 25 and 50
731 were trained with default parameters unless specified: burnin=5000, delay=500 (25 assemblages)
732 or delay=100 (50 assemblages), rarefaction_depth=1000. Parameters were adjusted to decrease
733 training time to less than 3 days. Posterior distributions were evaluated to ensure MCMC
734 convergence.

735

736 **Validating Extracted Functional Profiles using Metagenomic Shotgun Sequencing Data**

737 The themetagenomics pipeline was applied to the Schmidt et al. OTU table: (1) data were
738 normalized for 16S rRNA gene copy number; (2) normalized OTU abundances were fit using a
739 25 topic STM with cancer diagnosis as a binary covariate; (3) within-topic functional content
740 was predicted using PICRUSt; and then (4) topic-pathway effects were detected using the
741 multilevel regression model.

742 For each topic, we identified the high probability OTUs (those with frequencies greater than 1%
743 in that topic), obtained their genus classification, and then subset the metagenomic KO table
744 such that only KOs corresponding to these genera are present. Then, for each level-3 KEGG
745 pathway, we summed the abundances of all remaining KO members. Topic-pathway effects
746 were then detected with the following multilevel regression model:

747 $\theta_{k,c} = \exp [\mu + \beta_1 X + \beta_k + \beta_c + \beta_{k,c} + \log Z]$

748 $y_{k,c} \sim \text{NB}(\theta_{k,c}, \lambda)$

749 where X is a binary column vector indicating positive cancer diagnosis, β_1 is the coefficient for
750 cancer diagnosis, and $\log Z$ is an offset accounting for sample library size (sample sum). The
751 remaining parameters are analogous to the model described above.

752 A permutation test was performed to compare the similarity in topic-pathway effects between
753 themetagenomics and the metagenomic model to random sampling. In the metagenomic KO
754 table, topic and pathway labels were randomly permuted. The permuted table was then refit
755 with the regression model described. The root mean squared error was calculated between the
756 topic-pathway regression coefficient $\beta_{k,c}$ for themetagenomics and the metagenomic model:

757
$$RMSE = \sqrt{\frac{\sum_{k,c} (\beta_{k,c}^{(theme)} - \beta_{k,c}^{(meta)})^2}{n}}$$

758 This process was repeated over 100 permuted replicates to calculate a null distribution of RMSE
759 scores, which was then compared to the true RMSE between the unpermuted metagenomic KO
760 table and *themetagenomics*. A p-value ($\alpha=0.05$) was calculated as the proportion of RMSE
761 scores from the 100 permuted metagenomic KO tables that were less than the RMSE score for
762 the unpermuted metagenomic KO table.

763

764 **Exploring Thematic Structure in David et al.**

765

766 **Data Preparation and OTU Picking.** The David et al. dataset contains fecal and salivary 16S
767 rRNA surveys from two subjects. The samples were obtained at uneven sampled times from 318
768 days. Data from were downloaded from the European Bioinformatics Institute (EBI) European
769 Nucleotide Archive (ENA) (accession number ERP006059). It consisted of 1.7 million 16S rRNA
770 gene (V4 region) sequencing reads, 100 bp in length. The reads were quality filtered using the
771 fastqFilter command in the dada2 package [40]. Closed reference OTU picking was then
772 performed with QIIME version 1.9.1. using SortMeRNA again GreenGenes v13.5 at 97%
773 sequence identity [24].

774 **Data Preprocessing and STM Fitting.** From the OTU table, we removed any samples with
775 fewer than 1000 total reads, were not of fecal origin, were not from donor B, and did not include
776 sample data for day, donor, and body site. OTUs lacking a known phylum classification or
777 present in fewer than 1% of the remaining samples were removed. The remaining OTUs were
778 normalized in terms of 16S rRNA gene copy number per the table provided by PICRUSt [14].
779 The final OTU table consisted of 1562 OTUs across 189 samples.

780 We fit 7 STMs that varied in terms of topic number $K \in \{15, 25, 50, 75, 105, 155, 250\}$. To infer the
781 relationship between sample data and the samples-over-topics distribution θ , we used two
782 sample covariates: two continuous, integer valued sequences representing the day number in
783 the sequence and the DOW. Given our assumption that fluctuations in microbiota likely varied
784 nonlinearly with respect to day, we used a smoothing spline with 10 degrees of freedom on day
785 and a second-degree polynomial on DOW.

786 **Event detection.** To detect events in subject B, we repeated the approach described for
787 simulation 2 (S2 appendix).

788 **Hierarchical clustering.** We performed HC for comparison. The David et al. data were
789 normalized using the sample geometric mean to correct for library size imbalance. Each feature
790 was then centered and scaled as described for simulation 2. Clustering was performed as
791 detailed for simulation 2. The resulting tree was cut to produce 6 clusters. The choice of 6
792 clusters was based on the three profiles identified by David et al. (days 1-150, 151-159, and 160-
793 318). We included three additional clusters to account for the background taxonomic variation
794 lacking one of the three profiles of interest. Because we are basing our parameter choice on what
795 can be considered the truth, this can be considered a best-case-scenario.

796

797 **Supporting Information**

798

799 S1 supporting figures. Contains supporting figures S1-S4 and tables S1-S6.
800 S2 appendix. Contains additional information regarding the following: (1) simulation 1 which
801 explores different normalization approaches, (2) time series analysis methods for David et al.
802 data including simulation 2; and (3) additional results for Crohn's disease data as well as
803 expansion of results detailed above and comparisons to other approaches such as SPIEC-EASI

804

805 **References**

806

807 1. Kurtz ZD, Mueller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and
808 Compositionally Robust Inference of Microbial Ecological Networks. *PLoS Comput Biol.*
809 2015;11: 1–25. doi:10.1371/journal.pcbi.1004226

810 2. Shafiei M, Dunn KA, Boon E, MacDonald SM, Walsh DA, Gu H, et al. BioMiCo: a
811 supervised Bayesian model for inference of microbial community structure. *Microbiome.*
812 2015;3: 8. doi:10.1186/s40168-015-0073-x

813 3. Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. Bioconductor
814 workflow for microbiome data analysis: from raw reads to community analyses.
815 *F1000Research.* 2016;5: 1492. doi:10.12688/f1000research.8986.1

816 4. Knights D, Costello E, Knight R. Supervised classification of human microbiota. *FEMS*
817 *Microbiol Rev.* 2011;35: 343–59. doi:10.1111/j.1574-6976.2010.00251.x

818 5. Li H. Microbiome, Metagenomics, and High-Dimensional Compositional Data Analysis.
819 *Annu Rev Stat Its Appl.* 2015;2: 73–94. doi:10.1146/annurev-statistics-010814-020351

820 6. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, et al. Microbiome-wide
821 association studies link dynamic microbial consortia to disease. *Nature.* 2016;535: 94–103.
822 doi:10.1038/nature18850

823 7. McMurdie PJ, Holmes S. Waste Not, Want Not: Why Rarefying Microbiome Data Is
824 Inadmissible. *PLoS Comput Biol.* 2014;10. doi:10.1371/journal.pcbi.1003531

825 8. Love MI, Anders S, Huber W. Differential analysis of count data - the DESeq2 package

826 [Internet]. *Genome Biology*. 2014. doi:110.1186/s13059-014-0550-8

827 9. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models
828 via Coordinate Descent. *J Stat Softw*. 2010;33: 1–22. doi:10.1359/JBMR.0301229

829 10. Zou H, Hastie T. Regularization and variable selection via the elastic net. *J R Stat Soc Ser
830 B Stat Methodol*. 2005;67: 301–320. doi:10.1111/j.1467-9868.2005.00503.x

831 11. Jiang X, Dushoff J, Chen X, Hu X. Identifying enterotype in human microbiome by
832 decomposing probabilistic topics into components. 2012 IEEE Int Conf Bioinforma
833 Biomed. Ieee; 2012; 1–4. doi:10.1109/BIBM.2012.6392720

834 12. Ning J, Beiko RG. Phylogenetic approaches to microbial community classification.
835 *Microbiome*. *Microbiome*; 2015;3: 47. doi:10.1186/s40168-015-0114-5

836 13. Ren B, Bacallado S, Favaro S, Holmes S, Trippa L. Bayesian Nonparametric Ordination
837 for the Analysis of Microbial Communities. *arXiv Prepr arXiv160105156*. 2016; 1–25.
838 Available: <http://arxiv.org/abs/1601.05156>

839 14. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes J a, et al.
840 Predictive functional profiling of microbial communities using 16S rRNA marker gene
841 sequences. *Nat Biotechnol*. *Nature Publishing Group*; 2013;31: 814–21.
842 doi:10.1038/nbt.2676

843 15. Aßhauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles
844 from metagenomic 16S rRNA data. *Bioinformatics*. 2015;31: 2882–2884.
845 doi:10.1093/bioinformatics/btv287

846 16. Iwai S, Weinmaier T, Schmidt BL, Albertson DG, Poloso NJ, Dabbagh K, et al. Pipillin:
847 Improved prediction of metagenomic content by direct inference from human
848 microbiomes. *PLoS One*. 2016;11: 1–18. doi:10.1371/journal.pone.0166104

849 17. Edgar RC. SINAPS: Prediction of microbial traits from marker gene sequences. *bioRxiv*.
850 2017; doi:10.1101/124156

851 18. Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, et al. Bayesian
852 community-wide culture-independent microbial source tracking. *Nat Methods*. 2013;8:
853 761–763. doi:10.1038/nmeth.1650. Bayesian

854 19. Blei DM, Lafferty JD. A correlated topic model of Science. *Ann Appl Stat*. 2007;1: 17–35.
855 doi:10.1214/07-AOAS136

856 20. Roberts ME, Stewart BM, Tingley D, Lucas C, Leder-Luis J, Gadarian SK, et al. Structural
857 topic models for open-ended survey responses. *Am J Pol Sci*. 2014;58: 1064–1082.
858 doi:10.1111/ajps.12103

859 21. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The
860 Treatment-Naive Microbiome in New-Onset Crohn’s Disease. *Cell Host Microbe*. 2014;15:
861 382–392. doi:10.1016/j.chom.2014.02.005

862 22. Schmidt BL, Kuczynski J, Bhattacharya A, Huey B, Corby PM, Queiroz EL, et al. Changes
863 in abundance of oral microbiota associated with oral cancer. *PLoS One*. 2014;9: e98741.
864 doi:10.1371/journal.pone.0098741

865 23. David LA, Materna AC, Friedman J, Baptista MIC, Blackburn MC, Perrotta A, et al. Host

866 lifestyle affects human microbiota on daily timescales. *Genome Biol.* 2016;17: 117.

867 doi:10.1186/s13059-016-0988-y

868 24. Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman. QIIME allows analysis of
869 high-throughput community sequencing data. *Nat Methods.* 2012;7: 335–336.
870 doi:doi:10.1038/nmeth.f.303

871 25. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia
872 of genes and genomes. *Nucleic Acids Research.* 1999. pp. 29–34. doi:10.1093/nar/27.1.29

873 26. Legendre P, Legendre L. *Numerical Ecology - Second English Edition. Developments in*
874 *Environmental Modelling.* 1998. doi:10.1017/CBO9781107415324.004

875 27. Hardoon DDR, Shawe-Taylor J. Sparse canonical correlation analysis. *Mach Learn.*
876 2011;10: 1–15. doi:10.1007/s10994-010-5222-7

877 28. De Valpine P, Harmon-Threatt AN. General models for resource use or other
878 compositional count data using the Dirichlet-multinomial distribution. *Ecology.* 2013;94:
879 2678–2687. doi:10.1890/12-0416.1

880 29. Holmes I, Harris K, Quince C. Dirichlet multinomial mixtures: Generative models for
881 microbial metagenomics. *PLoS One.* 2012;7. doi:10.1371/journal.pone.0030126

882 30. Brien JDO, Record N. The power and pitfalls of Dirichlet-multinomial mixture models for
883 ecological count data. *bioRxiv.* 2016; 1–22. doi:10.1101/045468

884 31. Mimno D, McCallum A. Topic models conditioned on arbitrary features with dirichlet-
885 multinomial regression. *arXiv Prepr arXiv12063278.* 2012; doi:10.1.1.140.6925

886 32. Kembel SW, Wu M, Eisen JA, Green JL. Incorporating 16S Gene Copy Number
887 Information Improves Estimates of Microbial Diversity and Abundance. PLoS Comput
888 Biol. 2012;8: 16–18. doi:10.1371/journal.pcbi.1002743

889 33. Woloszynek S, Zhao Z, Simpson G, O'Connor MP, Mell JC, Rosen GL. Evaluating a topic
890 model approach for parsing microbiome data structure. bioRxiv. 2017; 1–36.
891 doi:10.1101/176412

892 34. Roberts, Margaret E., Stewart BM, Tingley D. *stm*: R Package for Structural Topic Models
893 [Internet]. 2017. Available: <http://www.structuraltopicmodel.com>.

894 35. Blei DM, Ng AY, Jordan MI. Latent Dirichlet Allocation. 2003;3: 993–1022.

895 36. Blei DM, McAuliffe JD, Blei DM. Supervised Topic Models. Adv Neural Inf Process Syst
896 20. 2008;21: 1–22. doi:10.1002/asmb.540

897 37. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and
898 interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40.
899 doi:10.1093/nar/gkr988

900 38. Stan Development Team. *rstanarm*: Bayesian applied regression modeling via Stan
901 [Internet]. 2016. Available: <http://mc-stan.org/>

902 39. Gelman A, Rubin DB. Inference from Iterative Simulation Using Multiple Sequences. Stat
903 Sci. 1992;7: 457–511. doi:10.1214/ss/1177011136

904 40. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High
905 resolution sample inference from amplicon data. bioRxiv. 2015;13: 0–14.

906 doi:10.1101/024034

907

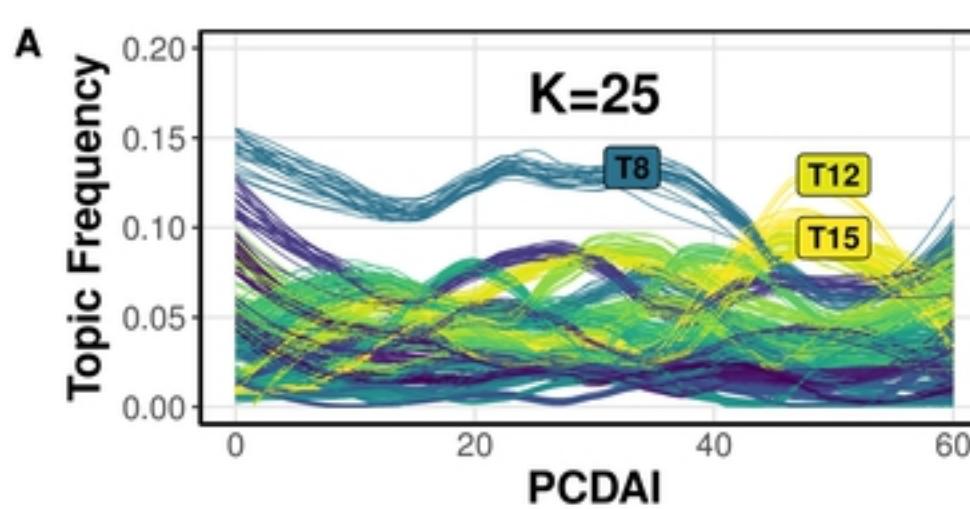
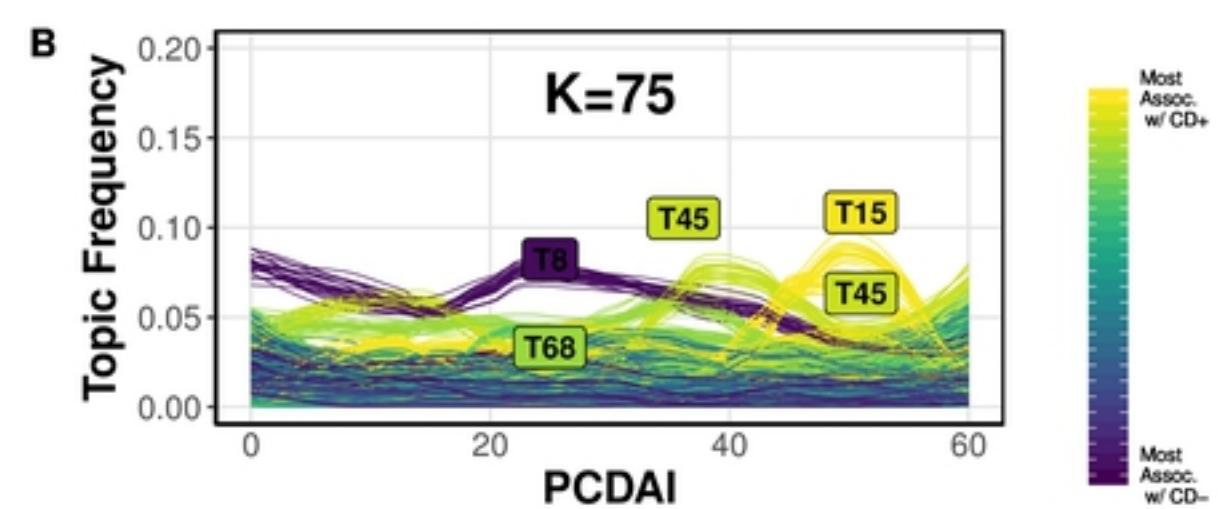
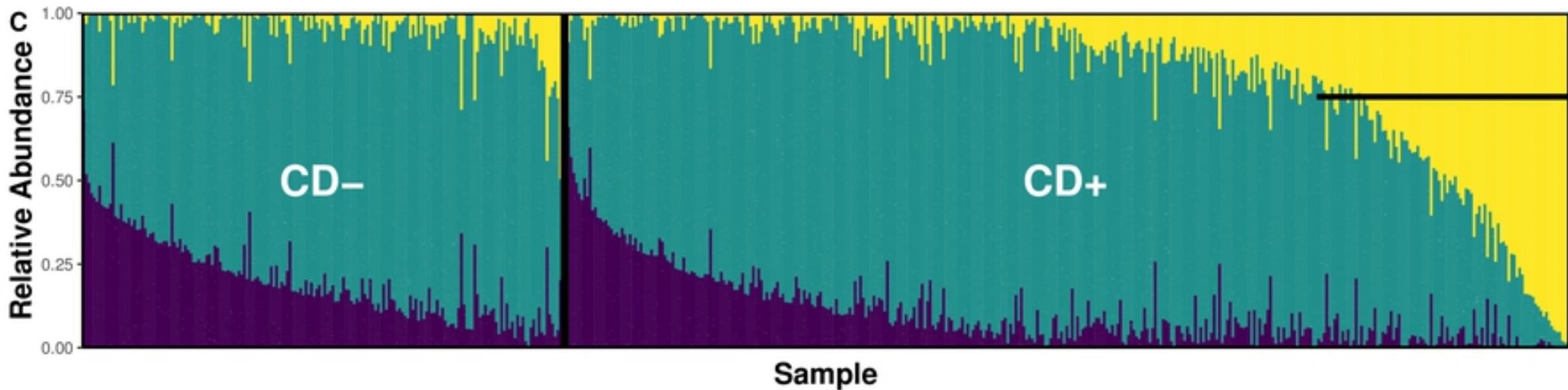
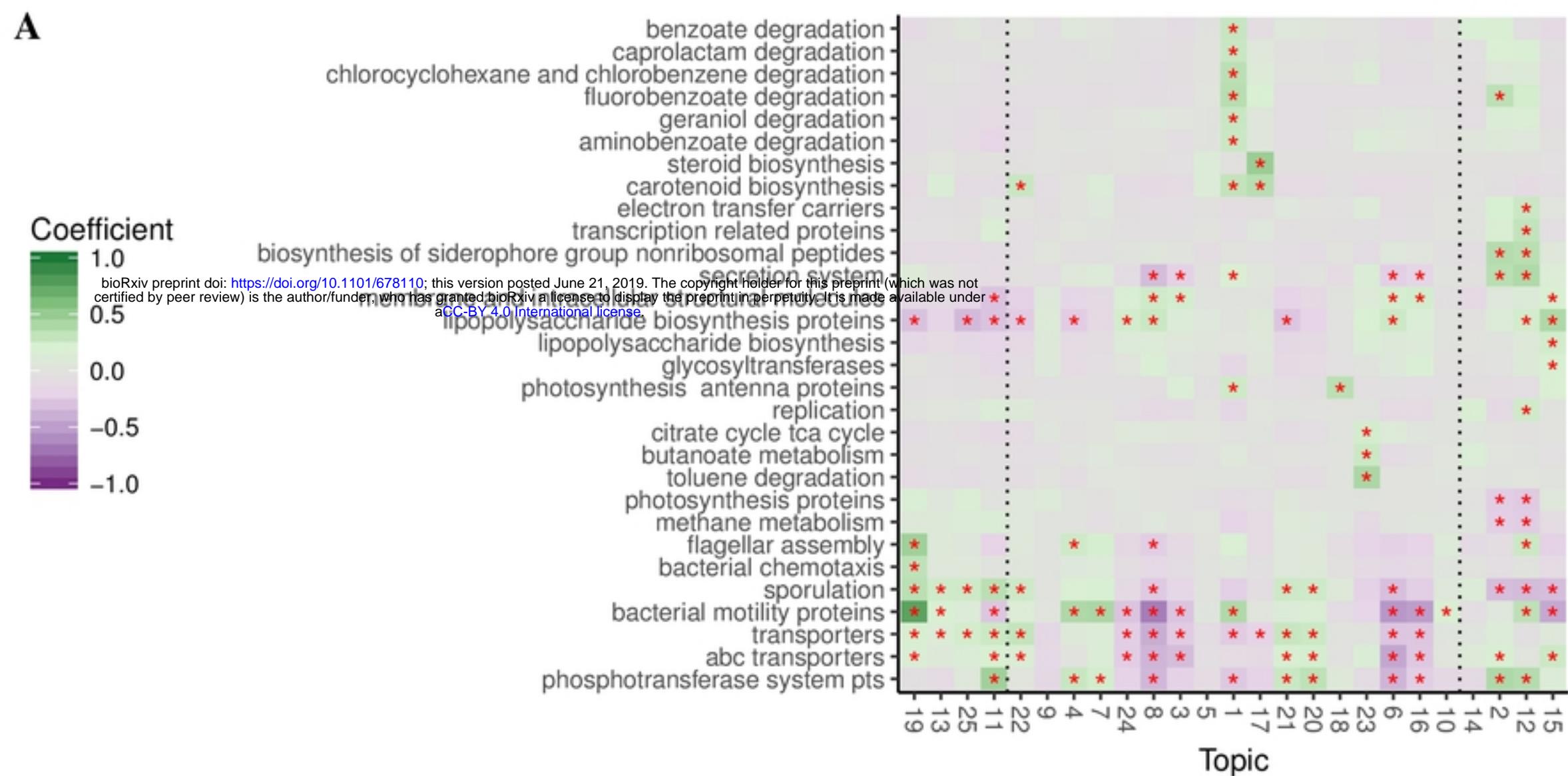
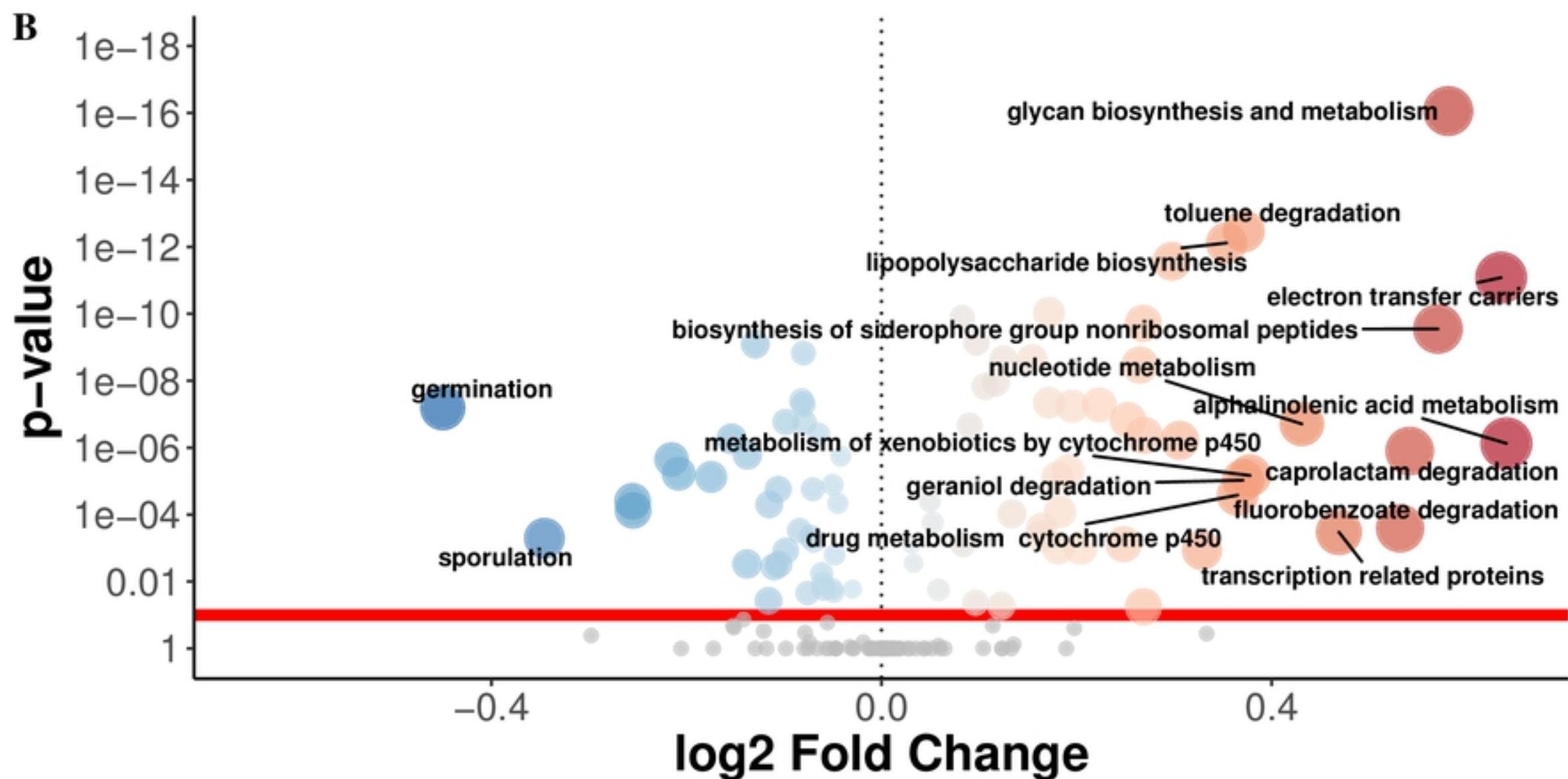
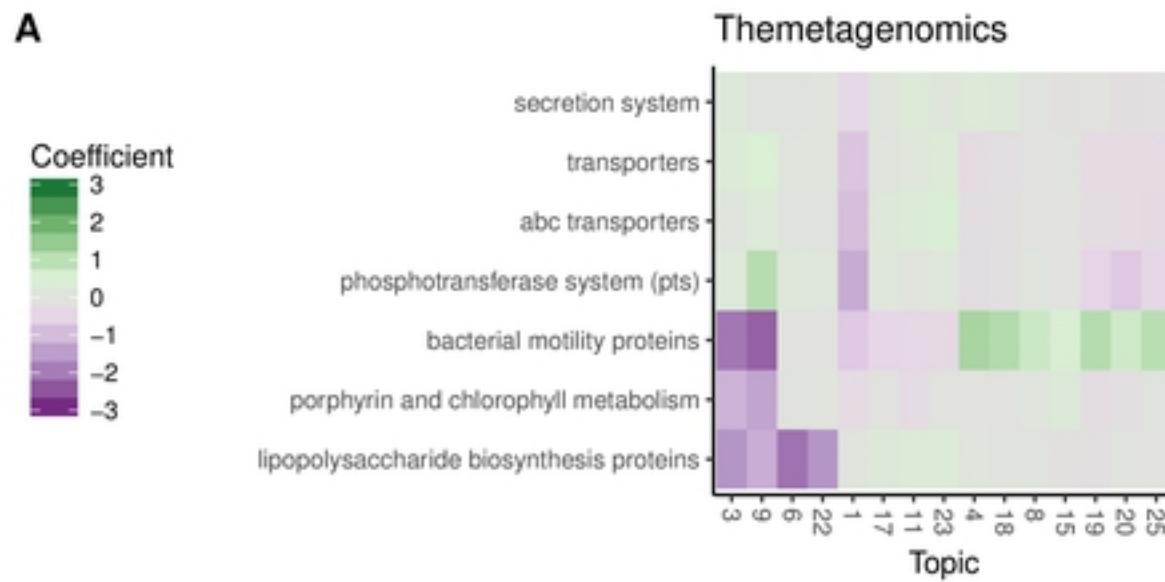
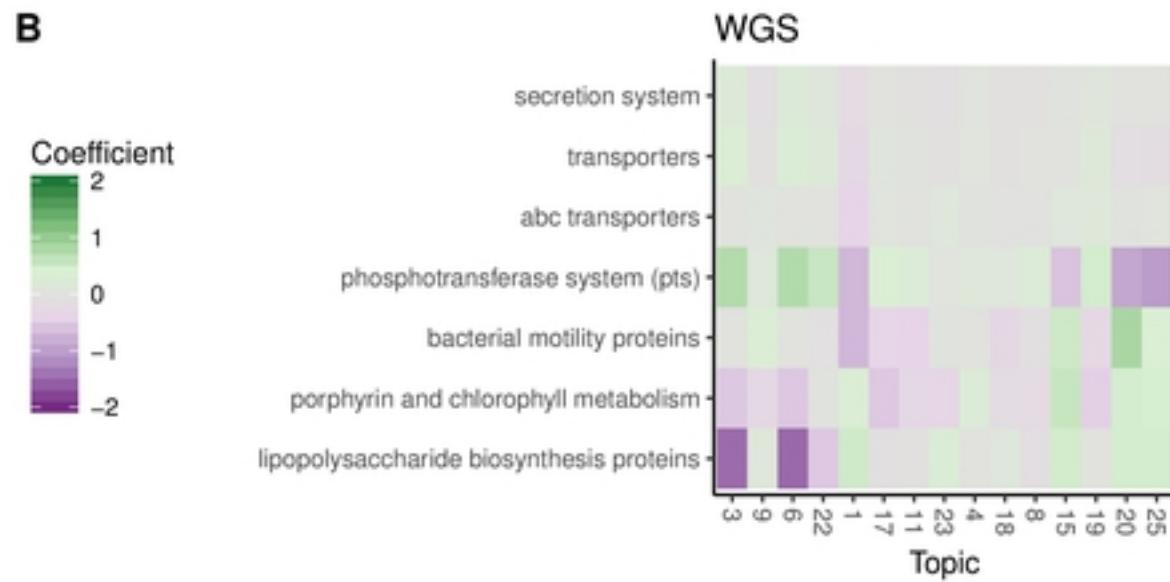
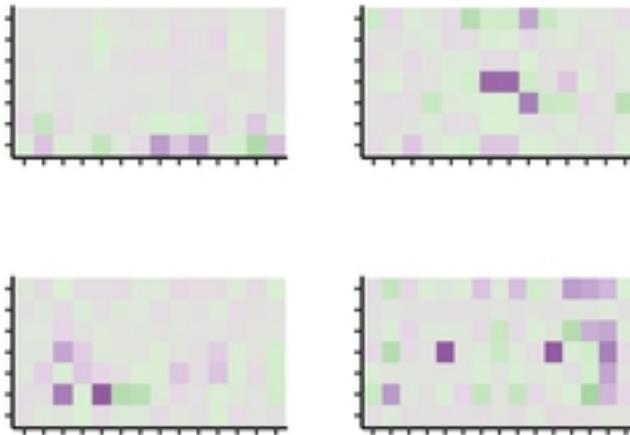
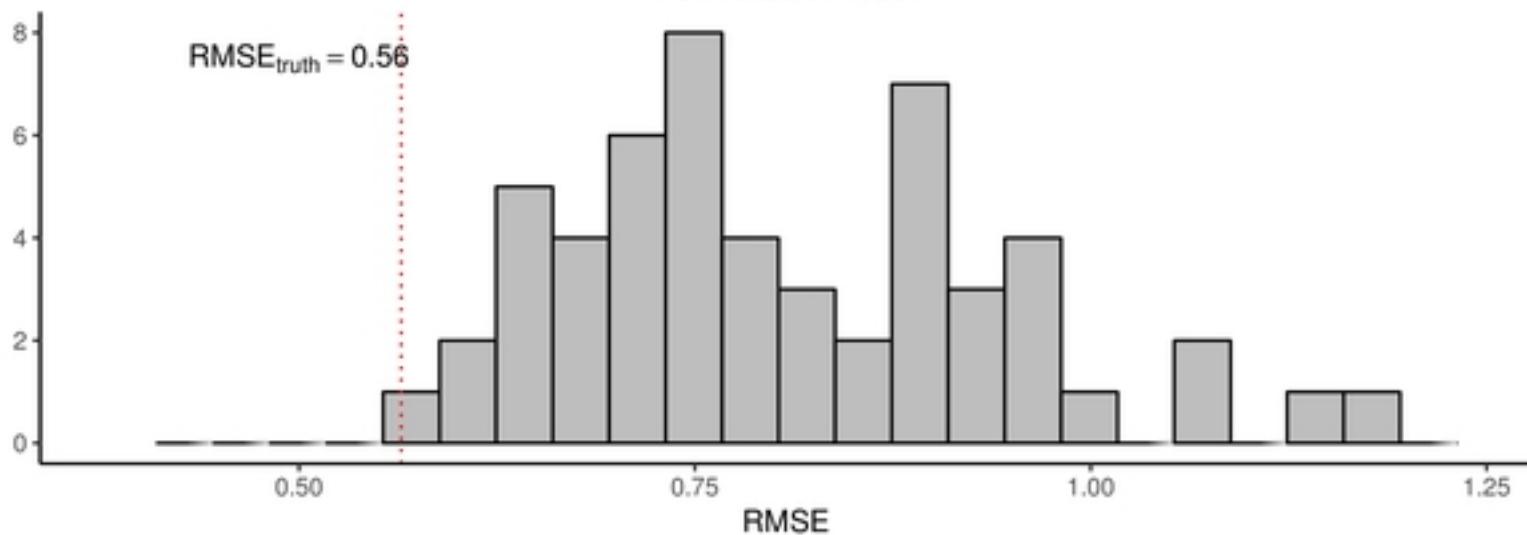


Fig 2

A**B****Fig 3**

A**B****C Example Permutation Results (R=100)****D****Fig 4**

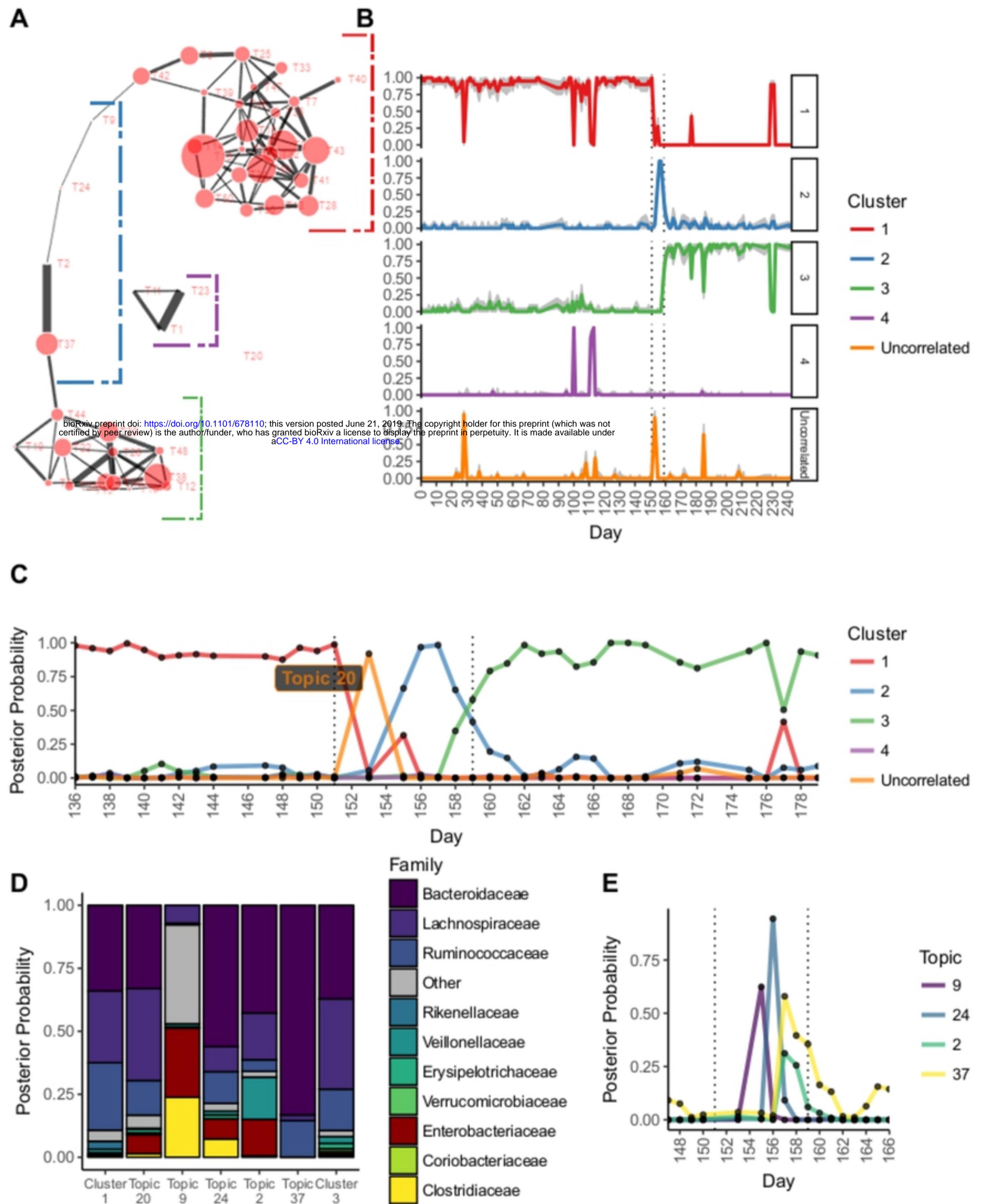
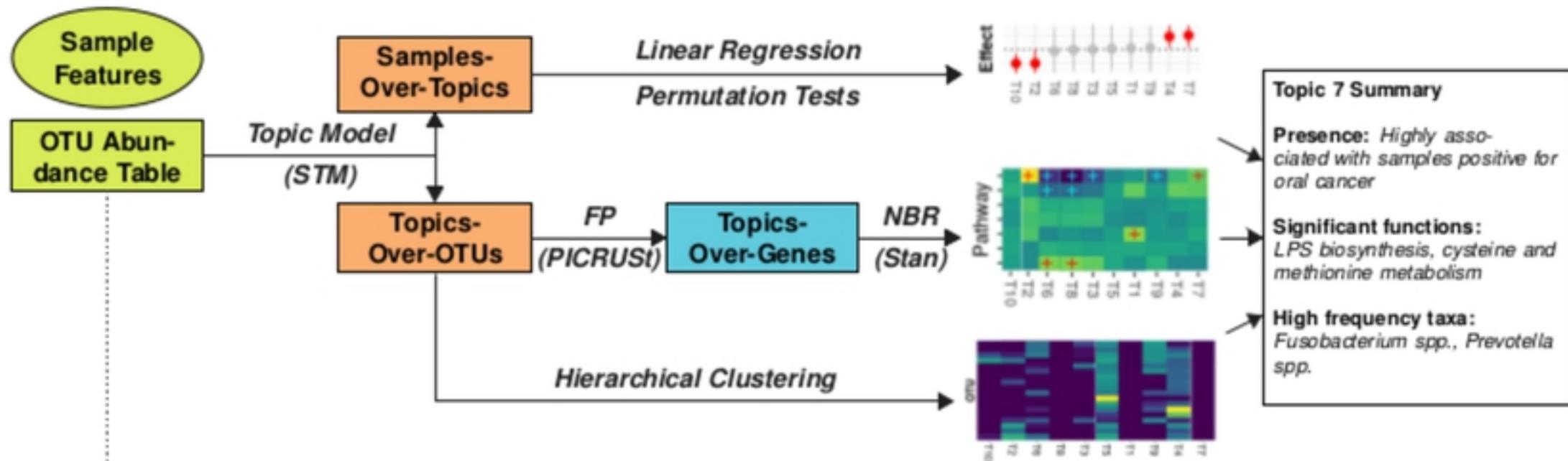
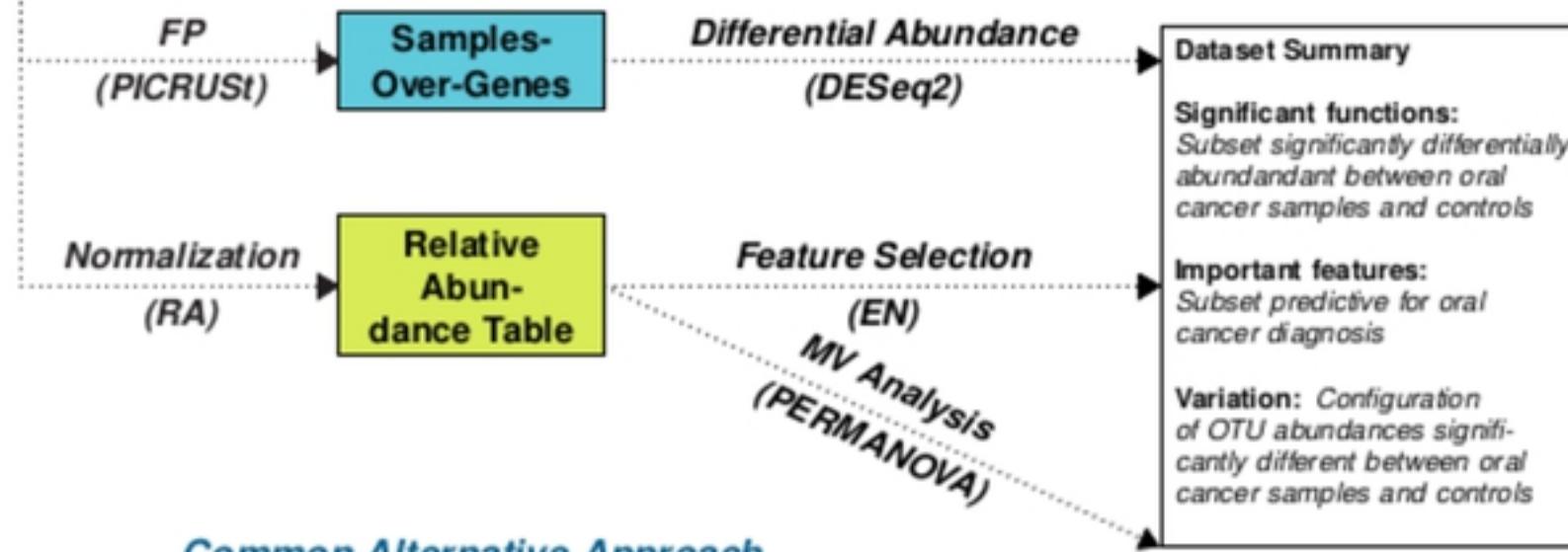


Fig 5

Thematic Approach



Common Alternative Approach