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22 Abstract

23

24 Analysis of microbiome data involves identifying co-occurring groups of taxa associated with 

25 sample features of interest (e.g., disease state). Elucidating such relations is often difficult as 

26 microbiome data are compositional, sparse, and have high dimensionality. Also, the 

27 configuration of co-occurring taxa may represent overlapping subcommunities that contribute 

28 to sample characteristics such as host status. Preserving the configuration of co-occurring 

29 microbes rather than detecting specific indicator species is more likely to facilitate biologically 

30 meaningful interpretations. Additionally, analyses that use taxonomic relative abundances to 

31 predict the abundances of different gene functions aggregate predicted functional profiles 

32 across taxa. This precludes straightforward identification of predicted functional components 

33 associated with subsets of co-occurring taxa. We provide an approach to explore co-occurring 

34 taxa using “topics” generated via a topic model and link these topics to specific sample features 

35 (e.g., disease state). Rather than inferring predicted functional content based on overall 

36 taxonomic relative abundances, we instead focus on inference of functional content within 

37 topics, which we parse by estimating interactions between topics and pathways through a 

38 multilevel, fully Bayesian regression model. We apply our methods to three publicly available 

39 16S amplicon sequencing datasets: an inflammatory bowel disease dataset from Gevers et al., an 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/678110doi: bioRxiv preprint 

https://doi.org/10.1101/678110
http://creativecommons.org/licenses/by/4.0/


3

40 oral cancer dataset from Schmidt et al., and a time-series dataset from David et al. Using our 

41 topic model approach to uncover latent structure in 16S rRNA amplicon surveys, investigators 

42 can (1) capture groups of co-occurring taxa termed topics; (2) uncover within-topic functional 

43 potential; (3) link taxa co-occurrence, gene function, and environmental/host features; and (4) 

44 explore the way in which sets of co-occurring taxa behave and evolve over time. These methods 

45 have been implemented in a freely available R package: 

46 https://github.com/EESI/themetagenomics.

47

48 Introduction

49 High-throughput sequencing now permits for the analysis of multiple large datasets on the 

50 microbiome and diseases of interest.  Historically, researchers have sought to reduce the 

51 dimensionality of the data and/or perform feature selection to identify species (or other taxa) of 

52 interest that are correlated with sample/community-level attributes (which we will refer to as 

53 “phenotypic” attributes or “phenotypes”) like host health status. Unfortunately, these 

54 phenotype-associated species may co-occur with the same or different proportions across 

55 samples within the same phenotype. Capturing these configurations is of interest to us, as we 

56 contend it is more informative than merely finding specific taxa [1,2].

57 Nevertheless, obtaining meaningful configurations or subsets of taxa is often a daunting task. 

58 These high-dimensional microbiome datasets include categorical and numeric features 

59 associated with each sample.  These, in turn, may be linked to a set of taxonomic abundances 

60 that are derived from clustering similar sequencing reads.  Typically, taxonomic markers, such 
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61 as variable regions of the 16S rRNA gene common to all prokaryotes, are used to perform the 

62 clustering based on a fixed degree of sequence similarity among reads. Such clusters are termed 

63 Operational Taxonomic Units (OTUs), and each OTU is usually assigned to some level of 

64 taxonomy, such as a genus. Identifying OTUs correlating with specific sample features (e.g., 

65 body site, disease presence, diet, age) can be done via unsupervised exploratory methods [3]. 

66 Unfortunately, complexities inherent to taxonomic abundance data hinders many of these 

67 methods. These complexities include vastly more OTUs relative to the number of available 

68 samples [4], substantial sparsity in the OTU counts (absence of organisms in most samples), and 

69 differences in sampling depth among samples. The sampling depth issue then requires 

70 normalization, introducing additional challenges.  In particular, the normalization transforms 

71 the abundances into relative abundances within each sample (compositional data)  [5,6].  

72 Common approaches (e.g., differential abundance analysis  [3,7,8] and regularized regression 

73 [9,10]) associate indicator taxa with sample information, leading to overly simplified biological 

74 interpretations. 

75 From an ecological perspective, co-occurring OTUs may represent related subcommunities of 

76 taxa, which consist of OTUs that are common to (or overlap with) each sample.  This overlap is 

77 due to taxa that covary with host or environmental factors; thus, identifying important 

78 subcommunities (groups of taxa) and configurations of taxa (the grouping and ratios/relative 

79 abundances of co-occurring taxa) may allow for a more biologically meaningful interpretation 

80 than identifying indicator OTUs, because identifying subcommunities preserves the groupings 

81 and abundances of taxa [2,11–13].  Developing techniques for identifying subcommunities is a 

82 fundamental goal of this work.
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83 Methods that predict functional profiles from 16S rRNA survey data usually report the overall 

84 function of a sample and do not provide granularity on how each subcommunity provides 

85 specific functions (Fig 1). Standard methods that predict function from 16S  rRNA survey data 

86 include PICRUSt, Tax4fun, Piphillin, and SINAPS [14–17].  These simulate gene abundances 

87 from the OTU relative abundance profile by assigning pre-existing gene ontologies, based on 

88 whole genome sequences, to the OTUs.  The simulation is trivial for known microbes, but for 

89 novel OTUs, gene content is interpolated through its neighbors’ genes.  These are determined 

90 via an unsupervised phylogenetic tree reconstruction. However, after the gene abundance 

91 profiles are simulated for an entire sample, a user cannot view which functional content 

92 associates with which taxa, nor how subcommunities contribute to function.

93

94 Fig 1. (Thematic Approach) Given a 16S rRNA gene abundance table, a topic model is used to 

95 uncover the thematic structure of the data in the form of two latent distributions: the samples-

96 over-topics frequencies and the topics-over-OTUs frequencies. The samples-over-topics 

97 frequencies are regressed against sample features of interest to identify the strength of a topic-

98 covariate relationship to rank topics (top). The topics-over-OTUs frequencies are used in a gene 

99 function prediction (FP) algorithm to predict gene content. Important functional categories are 

100 identified via a fully Bayesian multilevel negative binomial (NBR) regression model (middle). 

101 The topics-over-OTUs distribution is hierarchically clustered to infer relationships between 

102 clusters of co-occurring OTUs and topics (bottom). The result is the ability to identify key topics 

103 that associate clusters of bacteria and their associated functional content to sample information 
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104 of interest. (Alternative Approach). A common alternative approach currently used in the 

105 literature involves independently (1) characterizing the taxonomic configuration and (2) 

106 predicting the functional configuration of the OTU abundance table. Gene function prediction is 

107 performed on the full OTU abundance table, followed by a differential abundance analysis to 

108 infer differences in specific genes between sample features of interest (top). The OTU table is 

109 normalized to overcome library size inconsistencies and then analyzed via two methods: (1) an 

110 elastic net (EN) to find sparse sets of OTUs that are predictive for the sample feature of interest 

111 (middle) and (2) a multivariate (MV) analysis to identify relationships between beta diversity 

112 and the sample feature of interest (bottom). The result are three analyses that summarize the 

113 entire OTU relative abundance table, unlike the thematic approach, which characterizes co-

114 occurring sets of OTUs (configurations) in three ways.

115

116 We consequently have developed themetagenomics, a novel pipeline for analyzing 16S 

117 rRNA amplicon surveys that (1) identifies subcommunities associated with specific sample 

118 features and (2) uncovers functional profiles that further characterize these subcommunities. 

119 We use a topic model approach to uncover subcommunity structure by estimating taxonomic 

120 co-occurrence. Topic models are dimensionality reduction techniques that have had 

121 considerable use in natural language processing to represent, as topics, co-occurrence 

122 relationships between words from a corpus of documents. They have more recently shown 

123 promise as a method for exploring taxonomic abundance data [2,18], where topics act as low-

124 dimensional representations of co-occurring sets of taxa given a set of samples, i.e., far fewer 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/678110doi: bioRxiv preprint 

https://doi.org/10.1101/678110
http://creativecommons.org/licenses/by/4.0/


7

125 topics than OTUs (Table 1). Unlike other dimensional reduction techniques common to 

126 microbiome data analysis (e.g., principal coordinate analysis), topic models provide a new set of 

127 features (topics) that should be familiar to microbiome researchers in that they have a form 

128 similar to relative abundances: each sample is represented as a vector of frequencies across 

129 topics and each topic is represented as a vector of frequencies across taxa. Lower dimensional 

130 features that are also familiar may ease their interpretation.

131
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132 Table 1. Relationship of Terms

Topic Model Pipeline Description

Document Sample
Collection of reads from 

subject m at time t

Topic Topic
Collection of co-occurring 

taxa, subcommunity

Word OTU, Gene, Taxa

Features from taxonomic 

abundance table or predicted 

functional content

Document-Level Covariate
Sample information, Sample 

class

Sample-level variable of 

interest – e.g., disease 

presence, diet, rainfall, time

θ
Samples-Over-Topics 

Distribution

Vector of topic frequencies in 

a given sample; probability of 

a topic occurring in a given 

sample

β
Topics-Over-OTUs 

Distribution

Vector of OTU frequencies in 

a given topic; probability of 

an OTU occurring in a given 

topic

133
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134

135 Our pipeline aims to concisely summarize high-dimensional data in the form of OTU 

136 abundances as low-dimensional sets of co-occurring taxa (topics) with their corresponding 

137 predicted functional potential. When additional high-dimensional data is available (e.g., 

138 predicted gene function abundances), interpretability becomes increasingly difficult. Although 

139 topic models have been applied to microbiome data because of their interpretable features, no 

140 work has been done to leverage their interpretability to link low-dimensional representations of 

141 OTU and predicted gene function abundances. In addition, little research addresses ways to 

142 fully leverage the latent features topic models extract from microbiome data. For example, 

143 correlated topic models [19] not only capture taxonomic co-occurrence but also topic co-

144 occurrence, such that the frequency of two topics, with different sets of co-occurring taxa, 

145 occurring in any given sample, may be positively correlated. This is the basis of our novel 

146 approach to exploit the correlation structure of topics across samples to resolve long-term 

147 temporal behavior of subcommunities (represented as topics) in microbiome time-series 

148 datasets. 

149 Our approach at linking taxonomic composition to predicted functional content (obtained via 

150 methods that leverage preexisting gene ontologies) within topics is unique.  We apply a recently 

151 developed structural topic model (STM) [20] to a novel domain (16S rRNA amplicon surveys), 

152 where each topic represents a cluster of co-occurring OTUs and each OTU can occur in multiple 

153 topics with varying frequency. Functional content is then predicted within-topic, allowing the 

154 topics to act as low-dimensional taxonomic and functional summaries of the input data. The 
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155 topics are then linked to sample-information that reflects host or environment status. Topics-of-

156 interest (e.g., those that contain differentially-enriched functional profiles) can easily be 

157 identified in our pipeline via a fully Bayesian multilevel regression model. We also apply our 

158 approach to empirical time-series data where we characterized events in terms of sets of 

159 correlated topics to explore how the taxonomic configurations evolved over time.

160 Our pipeline has been implemented in the R package themetagenomics: 

161 https://github.com/EESI/themetagenomics. 

162

163 Results and Discussion

164

165 Here we explore the use of themetagenomics on publicly available datasets studying Crohn’s 

166 disease microbiota (Gevers et al. [21]), oral cancer microbiota (Schmidt et al. [22]), and the 

167 variation of microbiota as a function of time (David et al. [23]).  With the larger Gevers et al. 

168 Crohn’s dataset, we validate the ability of themetagenomics to capture microbial profile 

169 “signatures” (configurations of taxa which are groups with specific ratios/relative abundances 

170 of co-occurring taxa). We show that (1) topics generalize well to test data not initially seen by 

171 the model (generalizable topics are topics robust to overfitting, such that they avoid fitting noise 

172 and thus can capture important signals representative of true taxonomic co-occurrence profiles), 

173 and (2) topics capture distinct microbial signatures found in the original OTU relative 

174 abundance data. 
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175 After validating the configuration of taxa within-topic (by assessing classification performance 

176 to evaluate topic generalizability and OTU co-occurrence to evaluate topic quality) and the 

177 configuration of predicted gene functions within-topic (via a permutation test using 

178 metagenomic data), we assess the biological relevance of our low-dimensional summaries 

179 (topics).  We then apply our complete pipeline to Gevers et al. to link a topic’s functional 

180 content, taxonomic co-occurrence, and sample information (clinical diagnosis of Crohn's disease 

181 (CD)), and we compare these results to those obtained by the original authors. We compare our 

182 results to those obtained by DESeq2 and an alternative topic-model based microbiome analysis 

183 tool, BioMiCo [2]. We validate the functional prediction of our pipeline with the oral cancer 

184 Schmidt et al. dataset by showing the low-dimensional topic profiles identified by 

185 themetagenomics are also present in complementary metagenomic shotgun (MGS) sequence 

186 data. We lastly implement our approach on time-series gut microbiome data from David et al. 

187 We interpret the results in terms of topics and posterior uncertainty and compare our findings 

188 to those obtained by a HC approach, as well as the results reported by David et al.

189

190 Topic Modeling Feasibility and Generalizability

191 We assess (1) if topics correlate to sample phenotypes (e.g., disease state) and (2) whether those 

192 topics generalize well – that is, can the learned topics predict phenotypes from new data. Using 

193 a random forest classifier, we compared the classification performance between two different 

194 sets of predictors: (1) frequencies of topics-across-samples, θ, from the STM, and (2) OTU 

195 relative abundances across samples generated from QIIME [24]. For this analysis, we focused on 
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196 the Crohn’s disease study from Gevers et al. given its large sample size (555 terminal ileum 

197 samples).

198 To assess generalizability, we used a training/testing approach. We randomly selected 80% of 

199 samples as our training set; the remaining 20% were set aside for testing (Table S1). Class labels 

200 were binary, with positive (CD+) and negative (CD-) clinical diagnoses acting as the positive 

201 and negative classes, respectively. For classifying CD diagnosis, we hypothesized that using 

202 topics as predictors would outperform using relative abundances of OTUs, since the relative 

203 abundance-based predictors are sparser, whereas topic modeling performs dimensionality 

204 reduction, resulting in a relatively smaller set of topics that are less sparse relative to OTUs.  

205 There was little difference between the topic model with at least 25 topics and the OTU table to 

206 train the classifier (S1 Fig, Table S2). During testing, however, using topics as features 

207 outperformed relative abundances, particularly in the F1 score, with relative abundances 

208 achieving 80.8% and at least 25 topics achieving greater than 82.1% (Table S3). Using OTU 

209 relative abundances as predictive features resulted in a larger proportion of false negatives, 

210 which was likely due to its reliance on few, relatively rare taxa. Topics, on the other hand, are 

211 less reliant on rare taxa because dimensionality reduction generates less sparse features (S2 

212 appendix). 

213 Correlation Between Topics and Phenotype 

214 To identify topics of interest that were strongly associated with phenotype, we again 

215 implemented themetagenomics on the Crohn’s disease dataset, using the same binary 

216 indicator for CD diagnosis as above. We then performed posterior inference. The primary 
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217 output of the topic model, as with any Bayesian analysis, is a posterior distribution of quantities 

218 that estimate latent variables-of-interest (e.g., the frequencies of topics, θ, in a particular sample) 

219 given the observed data (e.g., OTU abundances). Posterior inference involves sampling these 

220 latent variables-of-interest from the posterior distribution of the fitted topic model to calculate 

221 expected means and assess uncertainty in those expectations. 

222 With the posterior distribution, we identified topics-of-interest based on their “topic-sample-

223 effects” – the regression coefficients that represent differences in topic frequencies between CD+ 

224 and CD- samples. We performed permutation tests to ensure that detected topic-sample-effects 

225 were not spurious (S2 appendix). For the model with 25 topics (K25), we performed 25 

226 permutations, where we randomly permuted class label assignments (CD+, CD-), refit the topic 

227 model, and calculated the mean regression coefficient for each topic. Of the 25 topics, 8 topics 

228 had 95% uncertainty intervals for the effect size (differences between CD+ and CD-) that did not 

229 span 0 (S2 Fig). We consider these “high-ranking-topics.” Topics T15, T12, T2, and T14 had 

230 estimates greater than 0 (implying robust associations with CD+), whereas topics T11, T25, T13, 

231 and T19 had estimates less than 0 (implying robust associations with CD-). Increasing the 

232 number of fitted topics gave similar results; for K75, 14 topics did not span 0 (S3 Fig).

233 We next tested how well a topic model (fit with the binary CD encoding) could capture the 

234 severity of disease using the Pediatric Crohn's Disease Activity Index (PCDAI) associated with 

235 CD+ that increases as CD severity increases (CD- samples were set to PCDAI=0). The frequency 

236 of a sample containing a particular topic given its PCDAI is shown in Fig 2A for models K25 

237 and K75. Topics are color-coded based on their association with CD, which is estimated using 
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238 their topic-sample-effects (yellow and violet represent topics most and least associated with CD, 

239 respectively). Each overlapping line represents one of 25 replicate simulations. Both panels 

240 demonstrate that as PCDAI increases, the thematic profile shifts from one dominated by a single 

241 CD- associated topic (T8) to a set of CD+ topics (T12, T15, T45). The transition occurs at 

242 approximately PCDAI=35. Because the K25 model had greater separation of high probability 

243 topics, it will be the focus for the remainder of analyses involving Gevers et al. data.

244

245 Fig 2A. The relationship between topic frequency within a sample and that sample’s Crohn’s 

246 Disease (CD) severity (PCDAI score) for the 25-topic STM. Each line represents the frequency of 

247 a topic as a function of sample PCDAI score. High frequency topics are labeled. Violet and 

248 yellow color-coded trajectories designate CD- and CD+ associated topics, respectively. Posterior 

249 sampling was performed across 25 replicates, with each line plotted to represent the 

250 distribution of the topic frequency trajectories. Fig 2B. Trajectories for the 75-topic model. Fig 

251 2C. The relative abundance of OTUs in the (input) OTU relative abundance table for 

252 “noteworthy” OTUs from high-ranking-topics. The left and right panels show the relative 

253 abundance of these OTUs in each CD- and CD+ sample, respectively. Noteworthy OTUs are 

254 defined as high-frequency OTUs, sampled from the posterior distribution, that concentrate into 

255 high-ranking-topics (yellow=CD+ topic group, violet=CD- topic group, green=unassociated 

256 topic group). The horizontal line marks a subset of samples that contain a large proportion of 

257 the OTU profile associated with CD+ high-ranking-topics.

258
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259 From the posterior topics-over-OTUs distribution (β) for the K25 model, we identified OTUs 

260 highly associated with CD, that is, OTUs with high frequency in high-ranking-topics (CD+ 

261 associated topics T19, T13, T25, T11; CD- associated topics T14, T2, T12, T15) in more than 99% 

262 of posterior samples (arbitrary threshold). We categorized these OTUs as CD+ associated OTUs, 

263 CD- associated OTUs, and unassociated OTUs. Fig 2C shows the relative abundances of the 3 

264 groups for each sample in the QIIME-generated OTU abundance table. Of CD+ samples (right 

265 of vertical black bar), approximately 25% were characterized by a greater proportion of CD+ 

266 associated OTUs relative to CD- (marked by the horizontal black bar). The ratio of CD- 

267 associated OTUs to unassociated OTUs had a similar distribution among CD+ and CD- samples, 

268 suggesting that the OTU profile from CD+ high-ranking-topics is specific for the CD+ disease 

269 status. Lastly, when we regressed PCDAI against the relative abundances of the CD+ associated 

270 OTU profile, we found a significant positive relationship (β=0.057, p=0.01, 100 permutations), 

271 albeit explanatory for only a small portion of the variation (R2=8.64%), suggesting that presence 

272 of this OTU profile may be weakly indicative of severe cases of CD (S2 appendix).

273 Comparison to BioMiCo. We compared our approach’s performance to BioMiCo, a topic model 

274 that identifies meaningful sets of “assemblages” (analogous to topics – i.e., sets of cooccurring 

275 taxa) by directly incorporating sample- or environmental level features (labels) during the 

276 training procedure. It is fully supervised and assumes that a sample is comprised of a mixture 

277 of communities that share sample- or environmental level features. These communities are 

278 described by a set of high probability assemblages which are in turn described by a set of high 

279 probability taxa.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/678110doi: bioRxiv preprint 

https://doi.org/10.1101/678110
http://creativecommons.org/licenses/by/4.0/


16

280 We fit BioMiCo using 25 and 50 assemblages and compared its ability to distinguish CD from 

281 control using held-out testing data (same train/test splits as described previously) and then 

282 compared these results to the prediction performance of the STM. Testing performance was 

283 similar between the two approaches (Table S3, S6). The balanced accuracy was highest for the 

284 25-topic STM model, but the STM’s performance varied as a function of topic number. F1 score, 

285 however, was much worse for BioMiCo due to its low precision.

286 For the 25-assemblage model, there were roughly four assemblages with high posterior 

287 probability for CD samples and low posterior probability for controls. If we focused on the taxa 

288 with the top-10 highest posterior probability of belonging to these assemblages, no more than 2 

289 taxa were present in the top-10 highest probability taxa in the STM’s CD-topics that were most 

290 associated with CD, suggesting little correspondence between the composition of assemblages 

291 and topics. Alternatively, when focusing on assemblages with high posterior probability for 

292 control but not CD, one assemblage had 4 genera in common with the STM’s topic 13: 

293 Parabacteroides, Bacteroides, Ruminoccous, and Roseburia.

294 It is worth noting, however, that the STM and BioMiCo aim to characterize data differently and 

295 hence the distribution of taxa within a given topic are expected to be different. Still, both 

296 approaches show they similarly generalize to new data. An advantage of themetagenomics is 

297 that it leverages output inherent to the design of the STM that is not available via BioMiCo, 

298 notably topic-topic correlation. Also, the STM is appreciably faster, taking minutes to run on the 

299 Gevers data whereas BioMiCo took days. Unlike BioMiCo – as well as the STM which is aimed 

300 for more general use – themetagenomics delivers a framework that facilitates ease-of-use 
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301 microbiome analysis using a topic model via an R package with a variety of intuitive functions 

302 for preprocessing, analyses, and visualizations. It also provides novel downstream approaches 

303 such as time series analysis which leverages the STM’s estimation of topic-topic correlation, as 

304 well as methods to associate a topic’s taxonomic composition to its predicted gene functions. 

305

306 Linking Function to Taxonomy with Topics

307 We wanted to discern whether the topics would continue to identify meaningful relationships 

308 upon introducing another layer of information: predicted function (via abundances of metabolic 

309 pathways). Consequently, we applied our full themetagenomics pipeline to the Crohn’s 

310 disease dataset and compared our findings to those of the original authors. To further 

311 characterize topics, we applied PICRUSt to the topics-over-OTUs distribution, β, to predict the 

312 functional gene content within topics. The genes were then annotated in terms of their KEGG 

313 functional hierarchy designation [25], thereby providing each gene with a metabolic pathway 

314 label. We then performed a fully Bayesian multilevel regression analysis on the predicted 

315 abundances of each gene to identify strong topic-pathway interactions.

316 Like Gevers et al., we identified an increase in membrane transport associated with CD+ 

317 subjects’ gut microbiome; however, using themetagenomics, we were able to pinpoint the 

318 specific topics associated with the enrichment of these functional categories, T2 and T12 (Fig 

319 3A). We then could link enrichment of membrane transport genes to the taxa that were also 

320 enriched in this topic. For example, topics T2 and T12 were dominated by Enterobacteriaceae. 

321 These Enterobacteriaceae-enriched topics were also enriched for siderophore and secretion 
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322 system related genes. Like T2 and T12, T15 was highly associated with CD+; however, it was 

323 less enriched for membrane transport genes. This suggests that the cluster of bacteria found in 

324 T15 (Haemophilus spp., Neisseria, and Fusobacteria) may have contributed less to the shift of 

325 transport genes reported by Gevers et al. and instead have distinct pathway associations with 

326 CD. 

327

328 Fig 3A. Level-3 pathway category-topic interaction regression coefficients from the multiple 

329 level negative binomial model. Red asterisks indicate estimated pathway-topic interaction 

330 weights that do not span 0 at 80% uncertainty (pathways lacking robust interactions are 

331 omitted). Green=large positive coefficients thus enrichment for that pathway in that topic, 

332 Violet=large negative coefficients thus depletion for that pathway in that topic. Topics are 

333 ordered from CD- associated (left, T19) to CD+ associated (right, T15). High-ranking-topics are 

334 delineated by the vertical dotted lines (CD-: T19-T11; CD+: T14-T15). Fig 3B. Volcano plot 

335 showing DESeq2 results for differentially abundant predicted level-3 KEGG categories. 

336 Functions were predicted using PICRUSt on the copy number normalized OTU abundance 

337 table. Blue points represent categories significantly enriched for CD- and red points are 

338 categories enriched for CD+, respectively. Gray points are categories with p-values greater than 

339 0.1 after Bonferroni correction.  

340

341 The strongest topic-pathway interaction was found in T19 for genes encoding bacterial motility 

342 proteins. For T19, three motility-related pathways (bacterial motility proteins, bacterial 
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343 chemotaxis, flagellar assembly) had topic-pathway interactions that did not span 0 at 80% 

344 uncertainty, suggesting that T19 was more enriched in cell motility genes relative to all other 

345 topics. The pathways inferred from T19 are consistent with this taxonomic profile, which 

346 consisted of motile bacteria belonging to Lachnospiraceae, Roseburia, and Clostridiales.  

347 Enrichment of two lipopolysaccharide (LPS) synthesis categories were associated with CD+ 

348 topics; however, one of these categories was specific for only T15 (Table S4). 

349 Comparison to DeSeq2. We compared the topics’ functional profiles to the results obtained by 

350 performing a DESeq2 differential abundance analysis on functional predictions obtained by 

351 applying PICRUSt to the QIIME-generated OTU abundance table. Of the 160 (level-3) KEGG 

352 pathway categories, more than half (87) were found significant (α < 0.1) in the DESeq2 

353 approach, despite using Bonferoni correction (a conservative approach to correct for multiple 

354 comparisons), complicating interpretation (Fig 3B). Despite minor differences in specific 

355 pathway enrichment between themetagenomics and the DESeq2 approach (S2 appendix) the 

356 major difference was the greater number of low-uncertainty/significant pathway categories 

357 found by DESeq2. While one could reduce the significance level when applying DESeq2 to 

358 achieve a smaller subset of significant pathway categories, the choice is arbitrary. Moreover, the 

359 predicted functional abundances (via PICRUSt, Tax4fun, etc.) are scaled based on the 

360 abundance of taxa from which they were derived. Thus, high taxonomic abundances will often 

361 yield high functional abundances. Many of the significant pathway categories identified by 

362 DESeq2 may be driven by a small subset of highly abundant taxa. Themetagenomics, on the 

363 other hand, first groups co-occurring taxa into topics. Because functional prediction is 

364 performed within a topic, taxa that are highly abundant in the input OTU abundance table can 
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365 only affect the topics in which they are present at high frequency. Thus, this prevents high 

366 abundance taxa associated with a subset of samples (e.g., CD+), and their corresponding 

367 predicted pathway abundances, from disproportionately influencing the statistical significance 

368 of these pathways.

369

370 Validating the Functional Predictions of Themetagenomics via Paired MGS Samples

371 Using sample-matched (N=12) oral cancer microbiome samples from Schmidt et al. that 

372 underwent both 16S rRNA amplicon sequencing and metagenomic shotgun sequencing, we 

373 verified enrichment or depletion of predicted functional content (collapsed into metabolic 

374 pathway categories) of the themetagenomics pipeline.  The pipeline processed the 16S rRNA 

375 samples and compared the results to metagenome-based gene functional abundance data. Fig 

376 4A shows the relative enrichment/depletion of various topic-pathway combinations identified 

377 by themetagenomics. For example, bacterial motility genes were enriched in topic 25 

378 (positive coefficient, shaded green), whereas bacterial motility genes were depleted in topics 3 

379 and 9 (negative coefficients, shaded violet). 

380

381 Fig 4A. KEGG (level-3) pathway category-topic interaction regression coefficients from the 

382 multilevel negative binomial model as a measure of association between pathway and topic. 

383 Only pathways present in both the themetagenomics analysis of 16S rRNA data and 

384 HUMAnN2 analysis of the metagenomics shotgun sequencing data are shown. 
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385 Green=associated samples with positive cancer diagnosis, Purple=associated with healthy 

386 samples. Fig 4B. Pathway category-topic interaction regression coefficients for metagenomic 

387 data. Topics were generated based on KOs that belonged to high frequency taxa in the 

388 themetagenomics pipeline. Fig 4C. Example topic-pathway heatmaps, similar to Fig 4A and 4B 

389 from four of the 100 permuted metagenomic datasets using in the permutation test. Fig 4D. 

390 Distribution of root-mean-squared-error (RMSE) scores (between the topic-pathway interaction 

391 regression coefficients between themetagenomics and the metagenomic data) from the 100 

392 permuted metagenomic datasets. The RMSE score (0.56) for the unpermuted metagenomic 

393 dataset is delineated by the red dotted line.

394

395 To compare the results from themetagenomics to gene function abundances inferred from 

396 metagenomic shotgun sequencing for each topic, we first identified high frequency taxa (those 

397 with frequencies greater than 1% in that topic) then identified all reads belonging to these taxa 

398 in the metagenomic shotgun data. To identify pathway-topic enrichment/depletion, we then 

399 applied a multilevel regression model. The results indicate that the taxa belonging to a topic are 

400 associated with an enrichment/depletion of genes present in the shotgun data (Fig 4B). Notably, 

401 LPS biosynthesis proteins and porphyrin metabolism pathways were depleted in multiple 

402 topics in both sets of results. The relative enrichment/depletion of phosphotransferase system 

403 genes was also similar. 

404 We performed a permutation test to determine whether the similarities in gene 

405 enrichments/depletions between themetagenomics and the metagenomic data were spurious. 
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406 We randomly permuted the topic and gene pathway labels in the metagenomic data, refit the 

407 multilevel regression model, and then calculated the root mean square error (RMSE) for each 

408 topic-pathway interaction regression weight between the themetagenomics and permuted 

409 metagenomic models. After 100 replicate simulations, the RMSE for the unpermuted 

410 metagenomic model was smaller than every permuted metagenomic model (p < 0.05) (Fig 4C-

411 D). Therefore, the apparent similarities in the gene enrichment/depletion profiles between 

412 themetagenomics and the shotgun data were not due to random chance, indicating that 

413 using predicted gene enrichment/depletion from 16S rRNA amplicon surveys resulted in 

414 similar within-topic predicted functional profiles to those obtained by directly measuring 

415 functional content via metagenomic shotgun sequencing.

416

417 Detection of Events in Subject B from David et al.

418 The David et al. dataset contains fecal and salivary 16S rRNA gene surveys from two subjects. 

419 We focused on fecal samples from subject B. We compared our results to the three profiles 

420 described by David et al., which consisted of a pre-food-poisoning profile (days 1-150), food-

421 poisoning profile (151-159), and post-food-poisoning profile (150-318).

422 The topic model approach identified 3 distinct gut configurations. In the topic correlation 

423 network (Fig 5A), we identified a small subnetwork of three topics (marked by violet bracket) 

424 and two large subnetworks that contained 24 and 14 topics each (red and green brackets, 

425 respectively). The large subnetworks were connected by a chain of four topics (T9, T24, T2, T37) 

426 (blue bracket). We defined the four sets of correlated topics as topic clusters and sampled topic 
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427 frequencies (across samples) and taxa frequencies (across topics) from the topic model’s 

428 posterior distribution to assess how often topics and taxa occurred within these clusters.

429

430 Fig 5 Application of the topic model approach to David et al. data. (A) The topic-to-topic 

431 correlation graph showing two topic clusters (clusters 1 and 3) connected by a linear chain of 

432 topics (cluster 2) that follow the time progression of the taxonomic change due to the food 

433 poisoning infection. (B) Distribution of topic assignments as a function of day and cluster 

434 (panels), indicating 3 distinct profiles. The interval in which food poisoning symptoms 

435 presented (per David et al.) are marked with dotted vertical lines. Gray shading indicated 80% 

436 uncertainty intervals. (C) Frequency of cluster assignments as a function of day, indicated day 

437 153 marking the shift from profiles 1 to 2 and day 159 marking the shift from profiles 2 to 3. (D) 

438 Frequency of taxa assignments given a cluster assignment. Cluster 2 is shown in terms of its 

439 topics (9, 24, 2, 37). Topic 20 is also shown (misc. cluster), which lacked any edges in the 

440 correlation graph, but marks the initial appearance of Enterobacteriaceae on day 153 

441 (representing the start of the infection). (E) The probability of the topic assignments given each 

442 day for cluster 2. The progression of topics also follows the progression of taxonomic change 

443 shown in the correlation graph.

444

445 Fig 5B shows the posterior frequency in which the topic clusters occurred given the day in 

446 which the sample was collected (the estimated posterior probability of a cluster occurring on a 

447 given day). There were two clear periods of rapid change in cluster frequency, specifically when 
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448 transitioning from cluster 1 to 2 (days 152-154) and clusters 2 to 3 (day 161). Our intervals are 

449 similar to the original study’s transition points at days 144-145 and 162-163, where the shift 

450 from a topic cluster 1 to topic cluster 2 corresponded with subject B’s food poisoning diagnosis.  

451 The transition between topic clusters 1 and 2 is abrupt and likely occurred around day 153. 

452 Taxonomically, this transition is marked by a shift from Bacteroideaceae (posterior 

453 frequency=0.338), Lachnospiraceara (0.276), and Rumunococcaceae (0.266) to Enterbacteriaceae 

454 (0.246) and Clostridiaceae (0.195) families (Fig 5D). In particular, day 153 was distinctive for 

455 topic 20. This rare topic was not correlated with any other topics and hence did not belong to 

456 any topic cluster. While its taxonomic profile was quite similar to topic cluster 1, it was 

457 distinctly enriched for Enterobacteriaceaea spp., which is consistent with the subject’s Salmonella 

458 diagnosis. Topic 20 likely marks the event of initial exposure to the pathogen.

459 The distribution of topic assignments for topic cluster 2 followed the order in which its topics 

460 were positioned in the topic correlation network (the linear chain of topics) (Fig 5E). The start of 

461 topic cluster 2, day 155, was dominated by topic 9, characterized by taxa substantially different 

462 from topic cluster 1. Bacteria enriched in this topic included Haemophilus parainfluenzae, 

463 Clostridium perfringens, and, notably, Enterobacteriaceaea spp. Thus, topic 9 likely represented the 

464 disrupted configuration of microbiota due to exposure to Salmonella. Enterbacteriaceae spp. and 

465 C. perfringens, via topic 24, continued to dominate on day 156. Day 157 was best described by 

466 topic 2, a topic rich in Enterobacteriaceae spp. as well as Veillonella spp.  It should be noted, 

467 however, that our results were more conservative than David et al. in that we confidently 

468 estimated that topic cluster 2 lasted roughly 4 days (155 to 158), which is much shorter than the 

469 original study’s estimate (145 to 162). Our estimated length of illness (153 to 158) was more 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/678110doi: bioRxiv preprint 

https://doi.org/10.1101/678110
http://creativecommons.org/licenses/by/4.0/


25

470 consistent to David et al. (151 to 159), however. At approximately day 159, the taxonomic profile 

471 shifted toward cluster 3, which was similar to cluster 1 in terms of Bacteroidaceae (0.369),but 

472 enriched in Lachnospiraceae (0.360) and depleted in Rumunoicoccaceae (0.165) (Fig 5D).

473

474 HC was unable to separate the transition between during- and post-illness periods. We 

475 compared our approach to one using HC. HC cluster 4 contained 360 taxa and corresponded 

476 well to the pre-illness period, spanning days 1 to 150. The set of taxa was similar to the taxa 

477 identified in topic cluster 1 (S4 Fig). The post-illness period was captured by HC clusters 1 and 

478 3, but these clusters failed to completely separate the during- and post-illness periods; they 

479 spanned days 151 to 318. 

480

481 Limitations

482 There are limitations to our approach. First, the topic-pathway inference step currently scales 

483 poorly in terms of computation time for large numbers of topics, which may be more important 

484 as datasets grow. Regularization and sparsity-inducing priors help limit the number of 

485 important topics; hence, exploring only a subset of topics during the final regression step can 

486 offer substantial speed improvements at little cost, but utilizing the complete set of topic 

487 information would be ideal. Second, we are capable of separately estimating the uncertainty in 

488 our topic model, the multilevel regression model, and the functional predictions from PICRUSt, 

489 but we currently do not propagate the uncertainty throughout the pipeline. Doing so would 
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490 improve downstream interpretation with better estimation of the uncertainty in topic-sample 

491 covariates and topic-pathway interactions, which in turn would greatly improve one’s 

492 confidence in focusing on within-topic gene sets. Third, we do not incorporate phylogenetic 

493 branch length information, which could lead to more meaningful topics. 

494

495

496 III. Conclusion

497 We present our approach at a time when easily-to-interpret analyses for complex microbiome 

498 data are direly needed. Current methods often link the relative abundance of a single OTU to a 

499 sample information of interest (e.g., disease state). These methods routinely identify important 

500 subsets of taxa but ignore OTU co-occurrence and ratios. Network methods can overcome this 

501 concern, but typically don’t incorporate phenotypic information within the model; 

502 consequently, they are incapable of directly linking sections of the OTU correlation network 

503 with sample metadata of interest. Constrained ordination methods, such as canonical 

504 correspondence analysis, do in fact couple inter-community distance with sample information, 

505 but the user is limited to specific distance metrics (e.g., Chi-squared) and must follow key 

506 assumptions (e.g., the distributions of taxa along environmental gradients are unimodal) [26]. 

507 Moreover, interpretation of biplots becomes increasingly difficult as more covariates are 

508 included. While linking key taxa to functional content can be accomplished via sparse canonical 

509 correlation analysis [27], this approach is susceptible to many of the interpretability problems 
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510 found in other ordination approaches, and exploring inferred relationships in the context of 

511 taxonomic co-occurrence is not straightforward.

512 The ability to make meaningful inferences using current methods is further limited by the fact 

513 that microbiome data is often inadequately sampled (thus justifying some type of normalization 

514 procedure), compositional (due to normalization), sparse, and overdispersed. Thus, recent work 

515 has explored the use of Dirichlet-Multinomial models, which are well equipped at managing 

516 overdispersed count data [28–30]. The fact that Dirichlet-Multinomial conjugacy is exploited in 

517 many topics models hints at their applicability for relative abundance data. We selected the 

518 recently developed STM for our workflow because of its ability to not only utilize sample data 

519 as prior information as in the Dirichlet-Multinomial regression topic model [31], but also 

520 capture topic correlation structure and apply partial pooling over samples or regularization 

521 across regression weights. 

522 Thus, we have proposed an approach for uncovering latent thematic structure in 16S rRNA 

523 amplicon data that provides a low-dimensional, biologically interpretable representation of 

524 taxonomic and predicted functional content. Rather than inferring functional content 

525 independently of taxonomic relative abundances, our approach shifts the focus to investigating 

526 within-topic functional content. Unlike other methods, by exploring our topics, we can link 

527 categories of functional content to specific clusters of taxa which can in turn be linked to sample 

528 features of interest. For example, like Gevers et al., we detected a relationship between 

529 membrane transport genes and CD+, but our approach also allowed us to determine which 

530 bacteria (OTUs belonging to Enterobacteriaceae) were the prime contributors to the enrichment 
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531 of membrane transport genes. Moreover, the pathogenic set of bacteria reported by Gevers et al. 

532 (Haemophilus spp., Neisseria, and Fusobacteria) contributed less to the predicted abundance of 

533 membrane transport genes. By independently applying statistical approaches to the OTU and 

534 predicted functional content, as is typical, the apparent relationship between membrane 

535 transport genes and specific configurations of bacteria would be lost.

536 We have also shown that our approach drastically reduces the dimensionality of two high-

537 dimensional sources of information, taxonomic relative abundances and predicted functional 

538 content, increasing the ease in which these data can be interpreted. For Gevers et al., we 

539 determined that T15 is (1) associated with CD+ samples; (2) dominated by a cluster of bacteria 

540 previously associated with CD; and (3) uniquely enriched for a subset of LPS synthesis genes. 

541 With a gene profile from a topic of interest, one could focus on gene subsets associated with 

542 topic-specific bacterial clusters that are known disease biomarkers, which in turn may facilitate 

543 targeted approaches for future research endeavors. 

544 Lastly, our complete pipeline is computationally manageable. Fitting the topic model to a 

545 dataset with nearly 5000 samples reached convergence in minutes. Functional prediction via 

546 PICRUSt also only takes minutes (using our C++ implementation in themetagenomics). 

547 Inferring topic-pathway interactions via our multilevel, negative binomial regression approach 

548 is comparatively slower, however, taking hours for large datasets. However, this is still 

549 manageable. Thus, we offer a viable package that can help researchers discover configurations 

550 of taxa and functions that correlate to sample metadata. This is because we implement this 

551 model in the probabilistic programming language Stan, which uses Hamiltonian Monte Carlo. 
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552 Maximum likelihood (a much faster alternative) does not provide estimates of uncertainty and 

553 generally fails to converge for these data, although the regression weight estimates tend to be 

554 quite similar based on our experience.

555

556

557 Methods

558

559 Review of the Structural Topic Model

560 The STM [20] is a Bayesian generative topic model. It begins with a given a set of M samples, 

561 each consisting of N OTUs. These N OTUs are, in turn, elements of a fixed vocabulary of V 

562 unique OTU IDs. From this, K (a fixed number chosen a priori) latent topics are assumed to be 

563 generated from the data. These topics consist of overlapping sets of co-occurring OTUs. Note 

564 that we will describe the STM in the context of the analyses perform herein; for a complete 

565 description of the STM, see [20]. The observations include the presence of OTU wn occurring in 

566 sample m and an  matrix of sample-level information such as disease state or age. 𝑀 × 𝑃

567 For our purposes, the posterior distribution of unobserved (latent) parameters given the 

568 observed data is given by:

569 .Posterior Distribution:       𝑝(𝜃,𝛽,Σ,Γ,𝑧│𝑤,𝑋)

570 The generative process is formulated by first specifying the probability
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571 ,𝑃(Topic 𝑘 occurs in Sample 𝑚) = 𝜃𝑚,𝑘 ∑𝐾
𝑘 = 1𝜃𝑚,𝑘 = 1

572 and, for each of the samples, is assumed to follow logistic normal distributions,

573 𝜃 ∼ 𝐿𝑁𝐾 ‒ 1(Γ𝑇𝑋𝑇
𝑚,Σ)

574 where  is a  matrix of regression coefficients that estimate the degree of influence a Γ 𝑃 × (𝐾 ‒ 1)

575 covariate Xp has on ; and  is a  covariance matrix. In addition to , the probability𝜃 Σ 𝐾 × 𝐾 𝜃

576 ,𝑃(OTU 𝑛 occurs in Topic 𝑘) = β𝑘,𝑛 ∑𝑁
𝑛 = 1𝛽𝑘,𝑛 = 1

577 For each topic, βk is assumed to be Dirichlet distributed. Finally, both topic assignments zm,n for 

578 each OTU wm,n , along with each OTU, obey multinomial distributions,

579
𝑧𝑚,𝑛 ∼ Multinomial(𝜃𝑚)

𝑤𝑚,𝑛 ∼ Multinomial(𝛽, 𝑧𝑚,𝑛)

580 For the relationships between topic model nomenclature and our terminology, see Table 

581 1. The posterior distribution is estimated by a semi-collapsed variational expectation 

582 maximization procedure. Convergence is reached when the relative change in the variational 

583 objective (i.e., the estimated lower bound) in successive iterations falls below a predetermined 

584 tolerance.

585

586 Empirical Datasets 

587 The Gevers et al. dataset (PRJNA237362, 03/30/2016) is a multicohort, IBD dataset that includes 

588 16S rRNA amplicon data from control, CD, and ulcerative colitis samples taken from multiple 
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589 locations throughout the gastrointestinal tract [21]. The Schmidt et al. dataset (PRJEB4953, 

590 08/14/2017) consists of human oral microbiota obtained from control subjects and subjects 

591 diagnosed with oral cancer. These samples underwent 16S rRNA amplicon sequencing, and a 

592 subset (N=12) also underwent metagenomic shotgun sequencing.

593

594 16S rRNA Amplicon Data Preparation and OTU Picking

595 Paired-end reads were joined and quality filtered via QIIME v 1.9.1 and dada2 for Gevers et al. 

596 and Schmidt et al. data, respectively. Closed-reference OTU picking was performed with QIIME 

597 using SortMeRNA against GreenGenes v13.5 at 97% sequence identity. This was followed by 

598 copy number normalization via PICRUSt version 1.0.0 [32]. Samples with fewer than 1000 total 

599 reads were omitted. OTUs that lacked a known classification at the phylum level were removed. 

600 For Gevers et al., we selected only terminal ileum samples and filtered OTUs with fewer than 10 

601 total reads across samples, yielding 555 samples over 1500 OTUs. For Schmidt et al., we filtered 

602 any OTU with non-zero abundances in fewer than two samples, yielding 81 samples over 1029 

603 OTUs.

604

605 Metagenomic Shotgun Sequence Data Preparation and Functional Genomic Profiling 

606 Low quality reads and human genomic sequences were filtered via KneadData. Functional 

607 profiles were then generated using HUMAnN2 with the ChocoPhlAn nucleotide database and 

608 UniRef90 protein database. The UniRef90 protein families were collapsed into KEGG 
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609 orthologies (KOs), yielding abundances (copies per million (CPM)) for 12 samples over 36,806 

610 KOs. 

611

612 Structural Topic Model Fitting

613 The OTU abundance tables consisted of counts normalized by 16S rRNA gene copy number. No 

614 other normalization was performed based on the simulation results in [33]. STMs with different 

615 parameterizations in terms of topic number (K ∈ 15, 25, 50, 75, 100, 150, 250) and sample 

616 features (e.g., no features, indicators for presence of disease, diet type, etc.) were fit to the OTU 

617 tables generated from Gevers et al. data via the R package stm [34]. We evaluated each model 

618 fit for presence of overdispersed residuals and conducted permutation tests (permTest in the 

619 stm package) where the sample feature of interest is randomly assigned to a sample prior to 

620 fitting the STM. To compare parameterizations between models, we evaluated predictive 

621 performance using held-out likelihood estimation [35].

622

623 Assessing Topic Generalizability

624 We performed classification to assess the generalizability of the extracted topics. No sample 

625 information was used as covariates in the logistic normal component of the STM. Samples were 

626 split into 80/20 training-testing datasets. For different number of topics (K ∈ 15, 25, 50, 75, 100, 

627 150), an STM was trained to estimate the topics-over-OTUs distribution (β). We then held this 

628 distribution fixed; hence, only the testing set’s samples-over-topics distribution (θ) was 
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629 estimated. For both the training and testing sets, simulated posterior samples from the samples-

630 over-topics distribution (θ) were averaged. The resulting posterior topic frequencies in the 

631 training set were then used as features to classify sample labels, similar to using  in supervised 𝑍

632 LDA [36]. Generalization (testing) error was assessed using the optimal parametrization based 

633 on cross-validation performance on the test set topic frequencies. Classification was performed 

634 using a random forest classifier, which underwent parameter tuning to determine the number 

635 of variables for each split. This was accomplished through repeated (10x) 10-fold cross-

636 validation, using up-sampling to overcome class imbalance. We performed a parameter sweep 

637 over the number of randomly selected OTU features, while setting the number of trees fixed at 

638 128. The optimal parameterizations were selected based on maximizing ROC area under the 

639 curve. 

640 The performance of the STMs was compared to the performance using OTUs as features from 

641 the original OTU abundance table. Separately, training and testing set OTU abundances were 

642 converted to relative abundances with the following equation: . In words, 𝑂𝑇𝑈𝑛,𝑚/∑
𝑛𝑂𝑇𝑈𝑛,𝑚

643 OTU n for sample m is scaled by the library size of sample m (the total abundance of sample m). 

644 The resulting OTU relative abundance tables were separately z-score normalized. Training 

645 cross-validation and testing using a random forest was then performed as above.

646

647 Identifying Within-Topic Clusters of High Frequency OTUs

648 Using the topics-over-OTUs distribution, we performed hierarchical clustering via Ward’s 

649 method on Bray-Curtis distances. We refer to high frequency groups of OTUs as “clusters.”
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650

651 Inferring Within-Topic Functional Potential

652 We obtained the topics-over-OTUs distribution (β) for each fitted model and mapped the 

653 within-topic OTU probabilities to integers (“pseudo-counts”) using a constant: . A 10000 × 𝛽

654 large constant was chosen to prevent low frequency OTUs from being set to zero, although their 

655 contribution to downstream analysis was likely negligible. Gene prediction was performed on 

656 each topic-OTU pseudo-count table using PICRUSt version 1.0.0 [14]. (Normalization of 16S 

657 copy number was performed prior to topic model fitting using PICRUSt.) Predicted gene 

658 content was classified in terms of KOs [37].

659

660 Identifying Topics of Interest

661 Topics of interest were identified using the samples-over-topics distribution, where each 

662 column represents the frequency of topic k for each sample. Each column was regressed against 

663 CD diagnosis. We calculated 95% uncertainty intervals using an approximation that accounts 

664 for uncertainty in estimation of both the sample covariate coefficients and the topic frequencies. 

665 We refer to these coefficients as “topic-sample-effects.” Coefficients whose 95% uncertainty 

666 intervals do not span 0 are referred to as “high-ranking-topics.” 

667

668 Validating Within-Topic Co-Occurrence
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669 To determine how well the high-ranking-topics captured co-occurrence in the original OTU 

670 relative abundance table, we sampled the top-10 highest frequency taxa in each high-ranking 

671 topic’s topics-over-OTUs distribution (β). We then normalized the original OTU table using the 

672 centered-log-ratio transformation and then evaluated how the high frequency taxa vary as a 

673 function of CD diagnosis and PCDAI.

674

675 Posterior Inference

676 To determine how well the high-ranking-topics captured the taxonomic profile associated with 

677 CD, we performed the following posterior simulation over R=1000 iterations. First, for iteration 

678 r, for all samples  (e.g., subject 134), we obtained 100 posterior samples ( }) of 𝑚 ∈ 𝑀 𝑖 ∈ {1,…, 100

679  from the posterior distribution, . For each of these , we sampled topic 𝜃(𝑖)
𝑚 𝑝(𝜃,𝛽,Σ,Γ,𝑧│𝑤,𝑋) 𝜃(𝑖)

𝑚

680 assignments , and then OTUs  . 𝑧 (𝑖)
𝑚,𝑛 ∼ Multinomial(𝜃(𝑖)

𝑚 ) 𝑤 (𝑖)
𝑚,𝑛|𝑧 (𝑖)

𝑚,𝑛 ∼ Mulinomial(z (𝑖)
𝑚,𝑛,β)

681 We then recorded whether the topic assignments  belonged to one of the high-ranking-𝑧 (𝑖)
𝑚,𝑛

682 topics and whether they have a positive or negative association with sample covariates of 

683 interest, resulting in positive-, negative-, and no-association topic groups. We calculated the 

684 frequency  in which OTUs  were sampled from a given topic group g:𝑓(𝑔)
𝑛 𝑤 (𝑖)

𝑚,𝑛

685 𝑓(𝑔)
𝑛 = ∑

𝑖
∑

𝑤 (𝑖)
𝑚,𝑛|𝑧 (𝑖)

𝑚,𝑛

1[𝑧𝑚,𝑛 ∈ 𝑔]

686 where  is the indicator function. For each OTU, we calculated which group had the largest 1[ ⋅ ]

687 sampling frequency:
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688 𝑓(𝑔) ∗
𝑛 = 1[𝑓(𝑔)

𝑛 = argmin
𝑔

𝑓𝑛]

689 After 1000 iterations, we calculated

690 𝐹(𝑔) ∗
𝑛 =

1
𝑅∑

𝑟
𝑓(𝑔) ∗ (𝑟)

𝑛

691 For each topic group, we extracted a subset of OTUs that had frequencies above 0.99. In the 

692 original relative abundance table, for each sample, we calculated the relative abundance of each 

693 group of OTUs.

694 Identifying Functional Content that Distinguishes Topics

695 To determine which predicted functional gene content best distinguished topics, we used the 

696 following multilevel negative binomial regression model:

697 𝜃𝑘,𝑐 = exp [𝜇 + 𝛽𝑘 + 𝛽𝑐 + 𝛽𝑘,𝑐]

698 𝑦𝑘,𝑐~NB(𝜃𝑘,𝑐,𝜆)

699 where μ is the intercept, βk is the per topic weight, βc is the per level-3 gene category weight, βk,c 

700 is the interaction weight for a given topic-function (gene category) combination, yk,c is the count 

701 for a given topic-function combination, and λ is the dispersion parameter. The intercept μ was 

702 given a  prior; all weights were given  priors; and the dispersion Normal(0, 10) Normal(0, 2.5)

703 parameter λ was given a  prior. Model inference was performed using Hamiltonian Cauchy(0, 5)

704 Monte Carlo in the R package rstanarm [38]. Convergence was evaluated across four parallel 

705 chains using diagnostic plots to assess mixing and by evaluating the Gelman-Rubin 

706 convergence diagnostic [39]. To reduce model size, we used genes belonging to only 15 
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707 (arbitrary number) level-2 KEGG pathway categories (Table S5). For large topic models, we fit 

708 only the top 25 topics, ranked in terms of topic-sample-effects that measure the degree of 

709 association between samples-over-topics probabilities and our sample feature of interest. 

710

711 Assessing Relationships Between Sample Information of Interest and Taxonomic Relative 

712 Abundance

713 To quantify the relationship between taxonomic relative abundance and continuous sample 

714 features (such as PCDAI), we performed negative binomial regression (log-link), using sample 

715 library size (sum of OTU abundances across samples) as an offset. The family-wise error rate 

716 was adjusted via Bonferroni correction. Significance levels for hypothesis testing was set at 0.05.

717

718 Comparing Within-Topic Functional Profiles to an OTU-Relative-Abundance-Based 

719 Approach

720 We compared the results from the hierarchical negative binomial model to a differential 

721 abundance approach. We performed predicted functional content using PICRUSt on copy 

722 number normalized OTU abundances. The resulting functional abundances were collapsed into 

723 level-3 KEGG pathways. Note that, for consistency, we again restricted the KOs to the 15 level-2 

724 KEGG pathways used previously. The resulting level-3 pathway abundances underwent 

725 DESeq2 differential abundance analysis, which uses negative binomial regression and variance 

726 stabilizing transformations to infer the difference log-fold change of OTU relative abundance 
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727 [7,8]. The resulting p-values were corrected via the Bonferroni method. Adjusted p-values 

728 below 0.1 were considered significant.

729 Fitting BioMico

730 The same training and testing sets were used as described above. Assemblages of 25 and 50 

731 were trained with default parameters unless specified: burnin=5000, delay=500 (25 assemblages) 

732 or delay=100 (50 assemblages), rarefaction_depth=1000. Parameters were adjusted to decrease 

733 training time to less than 3 days. Posterior distributions were evaluated to ensure MCMC 

734 convergence.

735

736 Validating Extracted Functional Profiles using Metagenomic Shotgun Sequencing Data 

737 The themetagenomics pipeline was applied to the Schmidt et al. OTU table: (1) data were 

738 normalized for 16S rRNA gene copy number; (2) normalized OTU abundances were fit using a 

739 25 topic STM with cancer diagnosis as a binary covariate; (3) within-topic functional content 

740 was predicted using PICRUSt; and then (4) topic-pathway effects were detected using the 

741 multilevel regression model.

742 For each topic, we identified the high probability OTUs (those with frequencies greater than 1% 

743 in that topic), obtained their genus classification, and then subset the metagenomic KO table 

744 such that only KOs corresponding to these genera are present. Then, for each level-3 KEGG 

745 pathway, we summed the abundances of all remaining KO members. Topic-pathway effects 

746 were then detected with the following multilevel regression model:

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/678110doi: bioRxiv preprint 

https://doi.org/10.1101/678110
http://creativecommons.org/licenses/by/4.0/


39

747 𝜃𝑘,𝑐 = exp [𝜇 + 𝛽1𝑋 + 𝛽𝑘 + 𝛽𝑐 + 𝛽𝑘,𝑐 + log 𝑍]

748 𝑦𝑘,𝑐~NB(𝜃𝑘,𝑐,𝜆)

749 where X is a binary column vector indicating positive cancer diagnosis,  is the coefficient for 𝛽1

750 cancer diagnosis, and  is an offset accounting for sample library size (sample sum). The log 𝑍

751 remaining parameters are analogous to the model described above.

752 A permutation test was performed to compare the similarity in topic-pathway effects between 

753 themetagenomics and the metagenomic model to random sampling. In the metagenomic KO 

754 table, topic and pathway labels were randomly permuted. The permuted table was then refit 

755 with the regression model described. The root mean squared error was calculated between the 

756 topic-pathway regression coefficient βk,c for themetagenomics and the metagenomic model:

757 𝑅𝑀𝑆𝐸 =
∑
𝑘,𝑐

(𝛽(𝑡ℎ𝑒𝑚𝑒)
𝑘,𝑐 ‒ 𝛽(meta)

𝑘,𝑐 )2

𝑛

758 This process was repeated over 100 permuted replicates to calculate a null distribution of RMSE 

759 scores, which was then compared to the true RMSE between the unpermuted metagenomic KO 

760 table and themetagenomics. A p-value (α=0.05) was calculated as the proportion of RMSE 

761 scores from the 100 permuted metagenomic KO tables that were less than the RMSE score for 

762 the unpermuted metagenomic KO table.

763

764 Exploring Thematic Structure in David et al. 

765
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766 Data Preparation and OTU Picking. The David et al. dataset contains fecal and salivary 16S 

767 rRNA surveys from two subjects. The samples were obtained at uneven sampled times from 318 

768 days. Data from were downloaded from the European Bioinformatics Institute (EBI) European 

769 Nucleotide Archive (ENA) (accession number ERP006059). It consisted of 1.7 million 16S rRNA 

770 gene (V4 region) sequencing reads, 100 bp in length. The reads were quality filtered using the 

771 fastqFilter command in the dada2 package [40]. Closed reference OTU picking was then 

772 performed with QIIME version 1.9.1. using SortMeRNA again GreenGenes v13.5 at 97% 

773 sequence identity [24].

774 Data Preprocessing and STM Fitting. From the OTU table, we removed any samples with 

775 fewer than 1000 total reads, were not of fecal origin, were not from donor B, and did not include 

776 sample data for day, donor, and body site. OTUs lacking a known phylum classification or 

777 present in fewer than 1% of the remaining samples were removed. The remaining OTUs were 

778 normalized in terms of 16S rRNA gene copy number per the table provided by PICRUSt [14]. 

779 The final OTU table consisted of 1562 OTUs across 189 samples.

780 We fit 7 STMs that varied in terms of topic number K ∈ {15, 25, 50, 75, 105, 155, 250}. To infer the 

781 relationship between sample data and the samples-over-topics distribution θ, we used two 

782 sample covariates: two continuous, integer valued sequences representing the day number in 

783 the sequence and the DOW. Given our assumption that fluctuations in microbiota likely varied 

784 nonlinearly with respect to day, we used a smoothing spline with 10 degrees of freedom on day 

785 and a second-degree polynomial on DOW.
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786 Event detection. To detect events in subject B, we repeated the approach described for 

787 simulation 2 (S2 appendix).

788 Hierarchical clustering. We performed HC for comparison. The David et al. data were 

789 normalized using the sample geometric mean to correct for library size imbalance. Each feature 

790 was then centered and scaled as described for simulation 2. Clustering was performed as 

791 detailed for simulation 2. The resulting tree was cut to produce 6 clusters. The choice of 6 

792 clusters was based on the three profiles identified by David et al. (days 1-150, 151-159, and 160-

793 318). We included three additional clusters to account for the background taxonomic variation 

794 lacking one of the three profiles of interest. Because we are basing our parameter choice on what 

795 can be considered the truth, this can be considered a best-case-scenario. 

796

797 Supporting Information

798

799 S1 supporting figures. Contains supporting figures S1-S4 and tables S1-S6.

800 S2 appendix. Contains additional information regarding the following: (1) simulation 1 which 

801 explores different normalization approaches, (2) time series analysis methods for David et al. 

802 data including simulation 2; and (3) additional results for Crohn’s disease data as well as 

803 expansion of results detailed above and comparisons to other approaches such as SPIEC-EASI

804
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