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Abstract

Analysis of microbiome data involves identifying co-occurring groups of taxa associated with
sample features of interest (e.g., disease state). Elucidating such relations is often difficult as
microbiome data are compositional, sparse, and have high dimensionality. Also, the
configuration of co-occurring taxa may represent overlapping subcommunities that contribute
to sample characteristics such as host status. Preserving the configuration of co-occurring
microbes rather than detecting specific indicator species is more likely to facilitate biologically
meaningful interpretations. Additionally, analyses that use taxonomic relative abundances to
predict the abundances of different gene functions aggregate predicted functional profiles
across taxa. This precludes straightforward identification of predicted functional components
associated with subsets of co-occurring taxa. We provide an approach to explore co-occurring
taxa using “topics” generated via a topic model and link these topics to specific sample features
(e.g., disease state). Rather than inferring predicted functional content based on overall
taxonomic relative abundances, we instead focus on inference of functional content within
topics, which we parse by estimating interactions between topics and pathways through a
multilevel, fully Bayesian regression model. We apply our methods to three publicly available

16S amplicon sequencing datasets: an inflammatory bowel disease dataset from Gevers et al., an
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oral cancer dataset from Schmidt et al., and a time-series dataset from David et al. Using our
topic model approach to uncover latent structure in 165 rRNA amplicon surveys, investigators
can (1) capture groups of co-occurring taxa termed topics; (2) uncover within-topic functional
potential; (3) link taxa co-occurrence, gene function, and environmental/host features; and (4)
explore the way in which sets of co-occurring taxa behave and evolve over time. These methods
have been implemented in a freely available R package:

https://github.com/EESI/themetagenomics.

Introduction

High-throughput sequencing now permits for the analysis of multiple large datasets on the
microbiome and diseases of interest. Historically, researchers have sought to reduce the
dimensionality of the data and/or perform feature selection to identify species (or other taxa) of
interest that are correlated with sample/community-level attributes (which we will refer to as
“phenotypic” attributes or “phenotypes”) like host health status. Unfortunately, these
phenotype-associated species may co-occur with the same or different proportions across
samples within the same phenotype. Capturing these configurations is of interest to us, as we

contend it is more informative than merely finding specific taxa [1,2].

Nevertheless, obtaining meaningful configurations or subsets of taxa is often a daunting task.
These high-dimensional microbiome datasets include categorical and numeric features
associated with each sample. These, in turn, may be linked to a set of taxonomic abundances

that are derived from clustering similar sequencing reads. Typically, taxonomic markers, such
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as variable regions of the 165 rRNA gene common to all prokaryotes, are used to perform the
clustering based on a fixed degree of sequence similarity among reads. Such clusters are termed
Operational Taxonomic Units (OTUs), and each OTU is usually assigned to some level of
taxonomy, such as a genus. Identifying OTUs correlating with specific sample features (e.g.,
body site, disease presence, diet, age) can be done via unsupervised exploratory methods [3].
Unfortunately, complexities inherent to taxonomic abundance data hinders many of these
methods. These complexities include vastly more OTUs relative to the number of available
samples [4], substantial sparsity in the OTU counts (absence of organisms in most samples), and
differences in sampling depth among samples. The sampling depth issue then requires
normalization, introducing additional challenges. In particular, the normalization transforms
the abundances into relative abundances within each sample (compositional data) [5,6].
Common approaches (e.g., differential abundance analysis [3,7,8] and regularized regression
[9,10]) associate indicator taxa with sample information, leading to overly simplified biological

interpretations.

From an ecological perspective, co-occurring OTUs may represent related subcommunities of
taxa, which consist of OTUs that are common to (or overlap with) each sample. This overlap is
due to taxa that covary with host or environmental factors; thus, identifying important
subcommunities (groups of taxa) and configurations of taxa (the grouping and ratios/relative
abundances of co-occurring taxa) may allow for a more biologically meaningful interpretation
than identifying indicator OTUs, because identifying subcommunities preserves the groupings
and abundances of taxa [2,11-13]. Developing techniques for identifying subcommunities is a

fundamental goal of this work.
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83  Methods that predict functional profiles from 16S rRNA survey data usually report the overall
84  function of a sample and do not provide granularity on how each subcommunity provides

85  specific functions (Fig 1). Standard methods that predict function from 16S rRNA survey data
86  include PICRUSt, Tax4fun, Piphillin, and SINAPS [14-17]. These simulate gene abundances
87  from the OTU relative abundance profile by assigning pre-existing gene ontologies, based on
88  whole genome sequences, to the OTUs. The simulation is trivial for known microbes, but for
89 novel OTUs, gene content is interpolated through its neighbors” genes. These are determined
90 viaan unsupervised phylogenetic tree reconstruction. However, after the gene abundance

91  profiles are simulated for an entire sample, a user cannot view which functional content

92  associates with which taxa, nor how subcommunities contribute to function.

93

94  Fig 1. (Thematic Approach) Given a 165 rRNA gene abundance table, a topic model is used to
95  uncover the thematic structure of the data in the form of two latent distributions: the samples-
96 over-topics frequencies and the topics-over-OTUs frequencies. The samples-over-topics
97  frequencies are regressed against sample features of interest to identify the strength of a topic-
98  covariate relationship to rank topics (top). The topics-over-OTUs frequencies are used in a gene
99 function prediction (FP) algorithm to predict gene content. Important functional categories are
100  identified via a fully Bayesian multilevel negative binomial (NBR) regression model (middle).
101 The topics-over-OTUs distribution is hierarchically clustered to infer relationships between
102 clusters of co-occurring OTUs and topics (bottom). The result is the ability to identify key topics

103  that associate clusters of bacteria and their associated functional content to sample information
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104  of interest. (Alternative Approach). A common alternative approach currently used in the

105 literature involves independently (1) characterizing the taxonomic configuration and (2)

106  predicting the functional configuration of the OTU abundance table. Gene function prediction is
107  performed on the full OTU abundance table, followed by a differential abundance analysis to
108 infer differences in specific genes between sample features of interest (top). The OTU table is
109 normalized to overcome library size inconsistencies and then analyzed via two methods: (1) an
110  elastic net (EN) to find sparse sets of OTUs that are predictive for the sample feature of interest
111  (middle) and (2) a multivariate (MV) analysis to identify relationships between beta diversity
112 and the sample feature of interest (bottom). The result are three analyses that summarize the
113 entire OTU relative abundance table, unlike the thematic approach, which characterizes co-

114 occurring sets of OTUs (configurations) in three ways.

115

116 We consequently have developed themetagenomics, a novel pipeline for analyzing 16S
117  rRNA amplicon surveys that (1) identifies subcommunities associated with specific sample
118  features and (2) uncovers functional profiles that further characterize these subcommunities.
119  We use a topic model approach to uncover subcommunity structure by estimating taxonomic
120  co-occurrence. Topic models are dimensionality reduction techniques that have had

121  considerable use in natural language processing to represent, as topics, co-occurrence

122 relationships between words from a corpus of documents. They have more recently shown
123  promise as a method for exploring taxonomic abundance data [2,18], where topics act as low-

124  dimensional representations of co-occurring sets of taxa given a set of samples, i.e., far fewer
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125  topics than OTUs (Table 1). Unlike other dimensional reduction techniques common to

126  microbiome data analysis (e.g., principal coordinate analysis), topic models provide a new set of
127  features (topics) that should be familiar to microbiome researchers in that they have a form

128  similar to relative abundances: each sample is represented as a vector of frequencies across

129  topics and each topic is represented as a vector of frequencies across taxa. Lower dimensional

130  features that are also familiar may ease their interpretation.

131
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Our pipeline aims to concisely summarize high-dimensional data in the form of OTU
abundances as low-dimensional sets of co-occurring taxa (topics) with their corresponding
predicted functional potential. When additional high-dimensional data is available (e.g.,
predicted gene function abundances), interpretability becomes increasingly difficult. Although
topic models have been applied to microbiome data because of their interpretable features, no
work has been done to leverage their interpretability to link low-dimensional representations of
OTU and predicted gene function abundances. In addition, little research addresses ways to
tully leverage the latent features topic models extract from microbiome data. For example,
correlated topic models [19] not only capture taxonomic co-occurrence but also topic co-
occurrence, such that the frequency of two topics, with different sets of co-occurring taxa,
occurring in any given sample, may be positively correlated. This is the basis of our novel
approach to exploit the correlation structure of topics across samples to resolve long-term
temporal behavior of subcommunities (represented as topics) in microbiome time-series

datasets.

Our approach at linking taxonomic composition to predicted functional content (obtained via
methods that leverage preexisting gene ontologies) within topics is unique. We apply a recently
developed structural topic model (STM) [20] to a novel domain (165 rRNA amplicon surveys),
where each topic represents a cluster of co-occurring OTUs and each OTU can occur in multiple
topics with varying frequency. Functional content is then predicted within-topic, allowing the

topics to act as low-dimensional taxonomic and functional summaries of the input data. The
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155  topics are then linked to sample-information that reflects host or environment status. Topics-of-
156  interest (e.g., those that contain differentially-enriched functional profiles) can easily be

157  identified in our pipeline via a fully Bayesian multilevel regression model. We also apply our
158  approach to empirical time-series data where we characterized events in terms of sets of

159  correlated topics to explore how the taxonomic configurations evolved over time.

160  Our pipeline has been implemented in the R package themetagenomics:

161  https://github.com/EESI/themetagenomics.

162

163 Results and Discussion

164

165  Here we explore the use of themetagenomics on publicly available datasets studying Crohn’s
166  disease microbiota (Gevers et al. [21]), oral cancer microbiota (Schmidt et al. [22]), and the

167  variation of microbiota as a function of time (David et al. [23]). With the larger Gevers et al.

168  Crohn’s dataset, we validate the ability of themetagenomics to capture microbial profile

169  “signatures” (configurations of taxa which are groups with specific ratios/relative abundances
170  of co-occurring taxa). We show that (1) topics generalize well to test data not initially seen by
171  the model (generalizable topics are topics robust to overfitting, such that they avoid fitting noise
172 and thus can capture important signals representative of true taxonomic co-occurrence profiles),
173 and (2) topics capture distinct microbial signatures found in the original OTU relative

174 abundance data.

10


https://doi.org/10.1101/678110
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/678110; this version posted June 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

175  After validating the configuration of taxa within-topic (by assessing classification performance
176  to evaluate topic generalizability and OTU co-occurrence to evaluate topic quality) and the

177  configuration of predicted gene functions within-topic (via a permutation test using

178 metagenomic data), we assess the biological relevance of our low-dimensional summaries

179  (topics). We then apply our complete pipeline to Gevers et al. to link a topic’s functional

180  content, taxonomic co-occurrence, and sample information (clinical diagnosis of Crohn's disease
181  (CD)), and we compare these results to those obtained by the original authors. We compare our
182  results to those obtained by DESeq2 and an alternative topic-model based microbiome analysis
183  tool, BioMiCo [2]. We validate the functional prediction of our pipeline with the oral cancer

184  Schmidt et al. dataset by showing the low-dimensional topic profiles identified by

185 themetagenomics are also present in complementary metagenomic shotgun (MGS) sequence
186  data. We lastly implement our approach on time-series gut microbiome data from David et al.
187  We interpret the results in terms of topics and posterior uncertainty and compare our findings

188  to those obtained by a HC approach, as well as the results reported by David et al.

189

190 Topic Modeling Feasibility and Generalizability

191  We assess (1) if topics correlate to sample phenotypes (e.g., disease state) and (2) whether those
192  topics generalize well — that is, can the learned topics predict phenotypes from new data. Using
193  arandom forest classifier, we compared the classification performance between two different
194  sets of predictors: (1) frequencies of topics-across-samples, 0, from the STM, and (2) OTU

195  relative abundances across samples generated from QIIME [24]. For this analysis, we focused on

11
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196  the Crohn’s disease study from Gevers et al. given its large sample size (555 terminal ileum

197  samples).

198  To assess generalizability, we used a training/testing approach. We randomly selected 80% of
199  samples as our training set; the remaining 20% were set aside for testing (Table S1). Class labels
200  were binary, with positive (CD+) and negative (CD-) clinical diagnoses acting as the positive
201  and negative classes, respectively. For classifying CD diagnosis, we hypothesized that using
202 topics as predictors would outperform using relative abundances of OTUs, since the relative
203  abundance-based predictors are sparser, whereas topic modeling performs dimensionality

204  reduction, resulting in a relatively smaller set of topics that are less sparse relative to OTUs.
205  There was little difference between the topic model with at least 25 topics and the OTU table to
206 train the classifier (S1 Fig, Table S2). During testing, however, using topics as features

207  outperformed relative abundances, particularly in the F1 score, with relative abundances

208  achieving 80.8% and at least 25 topics achieving greater than 82.1% (Table S3). Using OTU

209  relative abundances as predictive features resulted in a larger proportion of false negatives,
210  which was likely due to its reliance on few, relatively rare taxa. Topics, on the other hand, are
211 less reliant on rare taxa because dimensionality reduction generates less sparse features (S2

212 appendix).

213 Correlation Between Topics and Phenotype

214 To identify topics of interest that were strongly associated with phenotype, we again
215  implemented themetagenomics on the Crohn’s disease dataset, using the same binary

216  indicator for CD diagnosis as above. We then performed posterior inference. The primary

12
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217 output of the topic model, as with any Bayesian analysis, is a posterior distribution of quantities
218  that estimate latent variables-of-interest (e.g., the frequencies of topics, 0, in a particular sample)
219  given the observed data (e.g., OTU abundances). Posterior inference involves sampling these
220  latent variables-of-interest from the posterior distribution of the fitted topic model to calculate

221  expected means and assess uncertainty in those expectations.

222 With the posterior distribution, we identified topics-of-interest based on their “topic-sample-
223 effects” — the regression coefficients that represent differences in topic frequencies between CD+
224  and CD- samples. We performed permutation tests to ensure that detected topic-sample-effects
225  were not spurious (52 appendix). For the model with 25 topics (K25), we performed 25

226  permutations, where we randomly permuted class label assignments (CD+, CD-), refit the topic
227  model, and calculated the mean regression coefficient for each topic. Of the 25 topics, 8 topics
228  had 95% uncertainty intervals for the effect size (differences between CD+ and CD-) that did not
229  span 0 (S2 Fig). We consider these “high-ranking-topics.” Topics T15, T12, T2, and T14 had

230  estimates greater than 0 (implying robust associations with CD+), whereas topics T11, T25, T13,
231  and T19 had estimates less than 0 (implying robust associations with CD-). Increasing the

232 number of fitted topics gave similar results; for K75, 14 topics did not span 0 (S3 Fig).

233 We next tested how well a topic model (fit with the binary CD encoding) could capture the

234 severity of disease using the Pediatric Crohn's Disease Activity Index (PCDAI) associated with
235  CD+ that increases as CD severity increases (CD- samples were set to PCDAI=0). The frequency
236  of a sample containing a particular topic given its PCDAI is shown in Fig 2A for models K25

237  and K75. Topics are color-coded based on their association with CD, which is estimated using

13
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238  their topic-sample-effects (yellow and violet represent topics most and least associated with CD,
239  respectively). Each overlapping line represents one of 25 replicate simulations. Both panels

240  demonstrate that as PCDAI increases, the thematic profile shifts from one dominated by a single
241 CD- associated topic (T8) to a set of CD+ topics (T12, T15, T45). The transition occurs at

242 approximately PCDAI=35. Because the K25 model had greater separation of high probability

243 topics, it will be the focus for the remainder of analyses involving Gevers et al. data.

244

245  Fig 2A. The relationship between topic frequency within a sample and that sample’s Crohn’s
246 Disease (CD) severity (PCDAI score) for the 25-topic STM. Each line represents the frequency of
247  atopic as a function of sample PCDAI score. High frequency topics are labeled. Violet and

248  yellow color-coded trajectories designate CD- and CD+ associated topics, respectively. Posterior
249  sampling was performed across 25 replicates, with each line plotted to represent the

250  distribution of the topic frequency trajectories. Fig 2B. Trajectories for the 75-topic model. Fig
251  2C. The relative abundance of OTUs in the (input) OTU relative abundance table for

252 “noteworthy” OTUs from high-ranking-topics. The left and right panels show the relative

253  abundance of these OTUs in each CD- and CD+ sample, respectively. Noteworthy OTUs are
254  defined as high-frequency OTUs, sampled from the posterior distribution, that concentrate into
255  high-ranking-topics (yellow=CD+ topic group, violet=CD- topic group, green=unassociated

256  topic group). The horizontal line marks a subset of samples that contain a large proportion of

257  the OTU profile associated with CD+ high-ranking-topics.

258

14
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259  From the posterior topics-over-OTUs distribution () for the K25 model, we identified OTUs
260  highly associated with CD, that is, OTUs with high frequency in high-ranking-topics (CD+

261  associated topics T19, T13, T25, T11; CD- associated topics T14, T2, T12, T15) in more than 99%
262  of posterior samples (arbitrary threshold). We categorized these OTUs as CD+ associated OTUs,
263  CD- associated OTUs, and unassociated OTUs. Fig 2C shows the relative abundances of the 3
264  groups for each sample in the QIIME-generated OTU abundance table. Of CD+ samples (right
265  of vertical black bar), approximately 25% were characterized by a greater proportion of CD+
266  associated OTUs relative to CD- (marked by the horizontal black bar). The ratio of CD-

267  associated OTUs to unassociated OTUs had a similar distribution among CD+ and CD- samples,
268  suggesting that the OTU profile from CD+ high-ranking-topics is specific for the CD+ disease
269  status. Lastly, when we regressed PCDAI against the relative abundances of the CD+ associated
270  OTU profile, we found a significant positive relationship (3=0.057, p=0.01, 100 permutations),
271  albeit explanatory for only a small portion of the variation (R?=8.64%), suggesting that presence

272 of this OTU profile may be weakly indicative of severe cases of CD (S2 appendix).

273  Comparison to BioMiCo. We compared our approach’s performance to BioMiCo, a topic model
274  that identifies meaningful sets of “assemblages” (analogous to topics —i.e., sets of cooccurring
275  taxa) by directly incorporating sample- or environmental level features (labels) during the

276  training procedure. It is fully supervised and assumes that a sample is comprised of a mixture
277  of communities that share sample- or environmental level features. These communities are

278  described by a set of high probability assemblages which are in turn described by a set of high

279  probability taxa.

15
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280  We fit BioMiCo using 25 and 50 assemblages and compared its ability to distinguish CD from
281  control using held-out testing data (same train/test splits as described previously) and then

282  compared these results to the prediction performance of the STM. Testing performance was
283  similar between the two approaches (Table S3, S6). The balanced accuracy was highest for the
284  25-topic STM model, but the STM’s performance varied as a function of topic number. F1 score,

285  however, was much worse for BioMiCo due to its low precision.

286  For the 25-assemblage model, there were roughly four assemblages with high posterior

287  probability for CD samples and low posterior probability for controls. If we focused on the taxa
288  with the top-10 highest posterior probability of belonging to these assemblages, no more than 2
289  taxa were present in the top-10 highest probability taxa in the STM’s CD-topics that were most
290  associated with CD, suggesting little correspondence between the composition of assemblages
291  and topics. Alternatively, when focusing on assemblages with high posterior probability for
292 control but not CD, one assemblage had 4 genera in common with the STM’s topic 13:

293  Parabacteroides, Bacteroides, Ruminoccous, and Roseburia.

294  Itis worth noting, however, that the STM and BioMiCo aim to characterize data differently and
295  hence the distribution of taxa within a given topic are expected to be different. Still, both

296  approaches show they similarly generalize to new data. An advantage of themetagenomics is
297  that it leverages output inherent to the design of the STM that is not available via BioMiCo,

298  notably topic-topic correlation. Also, the STM is appreciably faster, taking minutes to run on the
299  Gevers data whereas BioMiCo took days. Unlike BioMiCo — as well as the STM which is aimed

300 for more general use — themetagenomics delivers a framework that facilitates ease-of-use
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301 microbiome analysis using a topic model via an R package with a variety of intuitive functions
302  for preprocessing, analyses, and visualizations. It also provides novel downstream approaches
303  such as time series analysis which leverages the STM’s estimation of topic-topic correlation, as

304  well as methods to associate a topic’s taxonomic composition to its predicted gene functions.

305

306 Linking Function to Taxonomy with Topics

307 We wanted to discern whether the topics would continue to identify meaningful relationships
308  upon introducing another layer of information: predicted function (via abundances of metabolic
309 pathways). Consequently, we applied our full themetagenomics pipeline to the Crohn’s

310 disease dataset and compared our findings to those of the original authors. To further

311  characterize topics, we applied PICRUSt to the topics-over-OTUs distribution, 3, to predict the
312 functional gene content within topics. The genes were then annotated in terms of their KEGG
313  functional hierarchy designation [25], thereby providing each gene with a metabolic pathway
314  label. We then performed a fully Bayesian multilevel regression analysis on the predicted

315 abundances of each gene to identify strong topic-pathway interactions.

316  Like Gevers et al., we identified an increase in membrane transport associated with CD+

317  subjects’ gut microbiome; however, using themetagenomics, we were able to pinpoint the
318  specific topics associated with the enrichment of these functional categories, T2 and T12 (Fig
319  3A). We then could link enrichment of membrane transport genes to the taxa that were also
320  enriched in this topic. For example, topics T2 and T12 were dominated by Enterobacteriaceae.
321  These Enterobacteriaceae-enriched topics were also enriched for siderophore and secretion
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322  system related genes. Like T2 and T12, T15 was highly associated with CD+; however, it was
323 less enriched for membrane transport genes. This suggests that the cluster of bacteria found in
324  T15 (Haemophilus spp., Neisseria, and Fusobacteria) may have contributed less to the shift of

325 transport genes reported by Gevers et al. and instead have distinct pathway associations with

326 CD.

327

328  Fig 3A. Level-3 pathway category-topic interaction regression coefficients from the multiple
329 level negative binomial model. Red asterisks indicate estimated pathway-topic interaction

330 weights that do not span 0 at 80% uncertainty (pathways lacking robust interactions are

331 omitted). Green=large positive coefficients thus enrichment for that pathway in that topic,

332  Violet=large negative coefficients thus depletion for that pathway in that topic. Topics are

333  ordered from CD- associated (left, T19) to CD+ associated (right, T15). High-ranking-topics are
334  delineated by the vertical dotted lines (CD-: T19-T11; CD+: T14-T15). Fig 3B. Volcano plot

335 showing DESeq2 results for differentially abundant predicted level-3 KEGG categories.

336  Functions were predicted using PICRUSt on the copy number normalized OTU abundance
337 table. Blue points represent categories significantly enriched for CD- and red points are

338  categories enriched for CD+, respectively. Gray points are categories with p-values greater than

339 0.1 after Bonferroni correction.

340

341  The strongest topic-pathway interaction was found in T19 for genes encoding bacterial motility
342  proteins. For T19, three motility-related pathways (bacterial motility proteins, bacterial
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343  chemotaxis, flagellar assembly) had topic-pathway interactions that did not span 0 at 80%
344  uncertainty, suggesting that T19 was more enriched in cell motility genes relative to all other
345  topics. The pathways inferred from T19 are consistent with this taxonomic profile, which
346  consisted of motile bacteria belonging to Lachnospiraceae, Roseburia, and Clostridiales.

347  Enrichment of two lipopolysaccharide (LPS) synthesis categories were associated with CD+

348  topics; however, one of these categories was specific for only T15 (Table S4).

349  Comparison to DeSeq2. We compared the topics’ functional profiles to the results obtained by
350 performing a DESeq?2 differential abundance analysis on functional predictions obtained by
351  applying PICRUSt to the QIIME-generated OTU abundance table. Of the 160 (level-3) KEGG
352 pathway categories, more than half (87) were found significant (a < 0.1) in the DESeq2

353  approach, despite using Bonferoni correction (a conservative approach to correct for multiple
354  comparisons), complicating interpretation (Fig 3B). Despite minor differences in specific

355  pathway enrichment between themetagenomics and the DESeq2 approach (52 appendix) the
356  major difference was the greater number of low-uncertainty/significant pathway categories

357  found by DESeq2. While one could reduce the significance level when applying DESeq2 to

358 achieve a smaller subset of significant pathway categories, the choice is arbitrary. Moreover, the
359  predicted functional abundances (via PICRUSt, Tax4fun, etc.) are scaled based on the

360  abundance of taxa from which they were derived. Thus, high taxonomic abundances will often
361 yield high functional abundances. Many of the significant pathway categories identified by

362  DESeq2 may be driven by a small subset of highly abundant taxa. Themetagenomics, on the
363  other hand, first groups co-occurring taxa into topics. Because functional prediction is

364  performed within a topic, taxa that are highly abundant in the input OTU abundance table can
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365  only affect the topics in which they are present at high frequency. Thus, this prevents high
366  abundance taxa associated with a subset of samples (e.g., CD+), and their corresponding
367  predicted pathway abundances, from disproportionately influencing the statistical significance

368  of these pathways.

369

370  Validating the Functional Predictions of Themetagenomics via Paired MGS Samples

371  Using sample-matched (N=12) oral cancer microbiome samples from Schmidt et al. that

372 underwent both 165 rRNA amplicon sequencing and metagenomic shotgun sequencing, we
373  verified enrichment or depletion of predicted functional content (collapsed into metabolic

374  pathway categories) of the themetagenomics pipeline. The pipeline processed the 165 rRNA
375  samples and compared the results to metagenome-based gene functional abundance data. Fig
376  4A shows the relative enrichment/depletion of various topic-pathway combinations identified
377 by themetagenomics. For example, bacterial motility genes were enriched in topic 25

378  (positive coefficient, shaded green), whereas bacterial motility genes were depleted in topics 3

379 and 9 (negative coefficients, shaded violet).

380

381 Fig 4A. KEGG (level-3) pathway category-topic interaction regression coefficients from the
382  multilevel negative binomial model as a measure of association between pathway and topic.
383  Only pathways present in both the themetagenomics analysis of 165 rRNA data and

384 HUMANN?2 analysis of the metagenomics shotgun sequencing data are shown.
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385  Green=associated samples with positive cancer diagnosis, Purple=associated with healthy

386  samples. Fig 4B. Pathway category-topic interaction regression coefficients for metagenomic
387 data. Topics were generated based on KOs that belonged to high frequency taxa in the

388  themetagenomics pipeline. Fig 4C. Example topic-pathway heatmaps, similar to Fig 4A and 4B
389  from four of the 100 permuted metagenomic datasets using in the permutation test. Fig 4D.

390 Distribution of root-mean-squared-error (RMSE) scores (between the topic-pathway interaction
391 regression coefficients between themetagenomics and the metagenomic data) from the 100

392  permuted metagenomic datasets. The RMSE score (0.56) for the unpermuted metagenomic

393  dataset is delineated by the red dotted line.

394

395 To compare the results from themetagenomics to gene function abundances inferred from
396 metagenomic shotgun sequencing for each topic, we first identified high frequency taxa (those
397  with frequencies greater than 1% in that topic) then identified all reads belonging to these taxa
398  in the metagenomic shotgun data. To identify pathway-topic enrichment/depletion, we then
399  applied a multilevel regression model. The results indicate that the taxa belonging to a topic are
400  associated with an enrichment/depletion of genes present in the shotgun data (Fig 4B). Notably,
401  LPS biosynthesis proteins and porphyrin metabolism pathways were depleted in multiple

402  topics in both sets of results. The relative enrichment/depletion of phosphotransferase system

403  genes was also similar.

404  We performed a permutation test to determine whether the similarities in gene

405  enrichments/depletions between themetagenomics and the metagenomic data were spurious.
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406  We randomly permuted the topic and gene pathway labels in the metagenomic data, refit the
407  multilevel regression model, and then calculated the root mean square error (RMSE) for each
408  topic-pathway interaction regression weight between the themetagenomics and permuted
409  metagenomic models. After 100 replicate simulations, the RMSE for the unpermuted

410 metagenomic model was smaller than every permuted metagenomic model (p < 0.05) (Fig 4C-
411 D). Therefore, the apparent similarities in the gene enrichment/depletion profiles between
412  themetagenomics and the shotgun data were not due to random chance, indicating that
413  using predicted gene enrichment/depletion from 16S rRNA amplicon surveys resulted in

414  similar within-topic predicted functional profiles to those obtained by directly measuring

415  functional content via metagenomic shotgun sequencing.

416

417  Detection of Events in Subject B from David et al.

418  The David et al. dataset contains fecal and salivary 16S rRNA gene surveys from two subjects.
419  We focused on fecal samples from subject B. We compared our results to the three profiles
420  described by David et al., which consisted of a pre-food-poisoning profile (days 1-150), food-

421  poisoning profile (151-159), and post-food-poisoning profile (150-318).

422  The topic model approach identified 3 distinct gut configurations. In the topic correlation

423  network (Fig 5A), we identified a small subnetwork of three topics (marked by violet bracket)
424  and two large subnetworks that contained 24 and 14 topics each (red and green brackets,

425  respectively). The large subnetworks were connected by a chain of four topics (T9, T24, T2, T37)
426  (blue bracket). We defined the four sets of correlated topics as topic clusters and sampled topic

22


https://doi.org/10.1101/678110
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/678110; this version posted June 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

427  frequencies (across samples) and taxa frequencies (across topics) from the topic model’s

428  posterior distribution to assess how often topics and taxa occurred within these clusters.

429

430  Fig 5 Application of the topic model approach to David et al. data. (A) The topic-to-topic

431  correlation graph showing two topic clusters (clusters 1 and 3) connected by a linear chain of
432  topics (cluster 2) that follow the time progression of the taxonomic change due to the food

433  poisoning infection. (B) Distribution of topic assignments as a function of day and cluster

434  (panels), indicating 3 distinct profiles. The interval in which food poisoning symptoms

435  presented (per David et al.) are marked with dotted vertical lines. Gray shading indicated 80%
436  uncertainty intervals. (C) Frequency of cluster assignments as a function of day, indicated day
437 153 marking the shift from profiles 1 to 2 and day 159 marking the shift from profiles 2 to 3. (D)
438  Frequency of taxa assignments given a cluster assignment. Cluster 2 is shown in terms of its
439  topics (9, 24, 2, 37). Topic 20 is also shown (misc. cluster), which lacked any edges in the

440  correlation graph, but marks the initial appearance of Enterobacteriaceae on day 153

441  (representing the start of the infection). (E) The probability of the topic assignments given each
442  day for cluster 2. The progression of topics also follows the progression of taxonomic change

443  shown in the correlation graph.

444

445  Fig 5B shows the posterior frequency in which the topic clusters occurred given the day in
446  which the sample was collected (the estimated posterior probability of a cluster occurring on a
447  given day). There were two clear periods of rapid change in cluster frequency, specifically when
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448  transitioning from cluster 1 to 2 (days 152-154) and clusters 2 to 3 (day 161). Our intervals are
449  similar to the original study’s transition points at days 144-145 and 162-163, where the shift

450  from a topic cluster 1 to topic cluster 2 corresponded with subject B’s food poisoning diagnosis.
451  The transition between topic clusters 1 and 2 is abrupt and likely occurred around day 153.

452  Taxonomically, this transition is marked by a shift from Bacteroideaceae (posterior

453  frequency=0.338), Lachnospiraceara (0.276), and Rumunococcaceae (0.266) to Enterbacteriaceae
454  (0.246) and Clostridiaceae (0.195) families (Fig 5D). In particular, day 153 was distinctive for
455  topic 20. This rare topic was not correlated with any other topics and hence did not belong to
456  any topic cluster. While its taxonomic profile was quite similar to topic cluster 1, it was

457  distinctly enriched for Enterobacteriaceaea spp., which is consistent with the subject’s Salmonella

458  diagnosis. Topic 20 likely marks the event of initial exposure to the pathogen.

459  The distribution of topic assignments for topic cluster 2 followed the order in which its topics
460  were positioned in the topic correlation network (the linear chain of topics) (Fig 5E). The start of
461  topic cluster 2, day 155, was dominated by topic 9, characterized by taxa substantially different
462  from topic cluster 1. Bacteria enriched in this topic included Haemophilus parainfluenzae,

463 Clostridium perfringens, and, notably, Enterobacteriaceaea spp. Thus, topic 9 likely represented the
464  disrupted configuration of microbiota due to exposure to Salmonella. Enterbacteriaceae spp. and
465  C. perfringens, via topic 24, continued to dominate on day 156. Day 157 was best described by
466  topic 2, a topic rich in Enterobacteriaceae spp. as well as Veillonella spp. It should be noted,

467  however, that our results were more conservative than David et al. in that we confidently

468  estimated that topic cluster 2 lasted roughly 4 days (155 to 158), which is much shorter than the

469  original study’s estimate (145 to 162). Our estimated length of illness (153 to 158) was more
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470  consistent to David et al. (151 to 159), however. At approximately day 159, the taxonomic profile
471  shifted toward cluster 3, which was similar to cluster 1 in terms of Bacteroidaceae (0.369),but

472  enriched in Lachnospiraceae (0.360) and depleted in Rumunoicoccaceae (0.165) (Fig 5D).

473

474  HC was unable to separate the transition between during- and post-illness periods. We

475  compared our approach to one using HC. HC cluster 4 contained 360 taxa and corresponded
476  well to the pre-illness period, spanning days 1 to 150. The set of taxa was similar to the taxa
477  identified in topic cluster 1 (S4 Fig). The post-illness period was captured by HC clusters 1 and
478 3, but these clusters failed to completely separate the during- and post-illness periods; they

479  spanned days 151 to 318.

480

481 Limitations

482  There are limitations to our approach. First, the topic-pathway inference step currently scales
483  poorly in terms of computation time for large numbers of topics, which may be more important
484  as datasets grow. Regularization and sparsity-inducing priors help limit the number of

485  important topics; hence, exploring only a subset of topics during the final regression step can
486  offer substantial speed improvements at little cost, but utilizing the complete set of topic

487  information would be ideal. Second, we are capable of separately estimating the uncertainty in
488  our topic model, the multilevel regression model, and the functional predictions from PICRUSt,

489  but we currently do not propagate the uncertainty throughout the pipeline. Doing so would
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490  improve downstream interpretation with better estimation of the uncertainty in topic-sample
491  covariates and topic-pathway interactions, which in turn would greatly improve one’s
492  confidence in focusing on within-topic gene sets. Third, we do not incorporate phylogenetic

493  branch length information, which could lead to more meaningful topics.

494

495

496 II1. Conclusion

497  We present our approach at a time when easily-to-interpret analyses for complex microbiome
498  data are direly needed. Current methods often link the relative abundance of a single OTU to a
499  sample information of interest (e.g., disease state). These methods routinely identify important
500 subsets of taxa but ignore OTU co-occurrence and ratios. Network methods can overcome this
501  concern, but typically don’t incorporate phenotypic information within the model;

502  consequently, they are incapable of directly linking sections of the OTU correlation network
503  with sample metadata of interest. Constrained ordination methods, such as canonical

504  correspondence analysis, do in fact couple inter-community distance with sample information,
505  but the user is limited to specific distance metrics (e.g., Chi-squared) and must follow key

506 assumptions (e.g., the distributions of taxa along environmental gradients are unimodal) [26].
507  Moreover, interpretation of biplots becomes increasingly difficult as more covariates are

508 included. While linking key taxa to functional content can be accomplished via sparse canonical

509  correlation analysis [27], this approach is susceptible to many of the interpretability problems
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510 found in other ordination approaches, and exploring inferred relationships in the context of

511  taxonomic co-occurrence is not straightforward.

512  The ability to make meaningful inferences using current methods is further limited by the fact
513  that microbiome data is often inadequately sampled (thus justifying some type of normalization
514  procedure), compositional (due to normalization), sparse, and overdispersed. Thus, recent work
515  has explored the use of Dirichlet-Multinomial models, which are well equipped at managing
516  overdispersed count data [28-30]. The fact that Dirichlet-Multinomial conjugacy is exploited in
517  many topics models hints at their applicability for relative abundance data. We selected the

518  recently developed STM for our workflow because of its ability to not only utilize sample data
519  as prior information as in the Dirichlet-Multinomial regression topic model [31], but also

520  capture topic correlation structure and apply partial pooling over samples or regularization

521  across regression weights.

522  Thus, we have proposed an approach for uncovering latent thematic structure in 165 rRNA

523  amplicon data that provides a low-dimensional, biologically interpretable representation of

524  taxonomic and predicted functional content. Rather than inferring functional content

525 independently of taxonomic relative abundances, our approach shifts the focus to investigating
526  within-topic functional content. Unlike other methods, by exploring our topics, we can link

527  categories of functional content to specific clusters of taxa which can in turn be linked to sample
528 features of interest. For example, like Gevers et al., we detected a relationship between

529 membrane transport genes and CD+, but our approach also allowed us to determine which

530 bacteria (OTUs belonging to Enterobacteriaceae) were the prime contributors to the enrichment
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531 of membrane transport genes. Moreover, the pathogenic set of bacteria reported by Gevers et al.
532 (Haemophilus spp., Neisseria, and Fusobacteria) contributed less to the predicted abundance of
533 membrane transport genes. By independently applying statistical approaches to the OTU and
534  predicted functional content, as is typical, the apparent relationship between membrane

535  transport genes and specific configurations of bacteria would be lost.

536  We have also shown that our approach drastically reduces the dimensionality of two high-

537  dimensional sources of information, taxonomic relative abundances and predicted functional
538  content, increasing the ease in which these data can be interpreted. For Gevers et al., we

539  determined that T15 is (1) associated with CD+ samples; (2) dominated by a cluster of bacteria
540 previously associated with CD; and (3) uniquely enriched for a subset of LPS synthesis genes.
541  With a gene profile from a topic of interest, one could focus on gene subsets associated with
542  topic-specific bacterial clusters that are known disease biomarkers, which in turn may facilitate

543  targeted approaches for future research endeavors.

544  Lastly, our complete pipeline is computationally manageable. Fitting the topic model to a

545  dataset with nearly 5000 samples reached convergence in minutes. Functional prediction via
546  PICRUSt also only takes minutes (using our C++ implementation in themetagenomics).

547  Inferring topic-pathway interactions via our multilevel, negative binomial regression approach
548 is comparatively slower, however, taking hours for large datasets. However, this is still

549  manageable. Thus, we offer a viable package that can help researchers discover configurations
550 of taxa and functions that correlate to sample metadata. This is because we implement this

551  model in the probabilistic programming language Stan, which uses Hamiltonian Monte Carlo.
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552  Maximum likelihood (a much faster alternative) does not provide estimates of uncertainty and
553  generally fails to converge for these data, although the regression weight estimates tend to be

554  quite similar based on our experience.
555

556

557  Methods

558

559  Review of the Structural Topic Model

560 The STM [20] is a Bayesian generative topic model. It begins with a given a set of M samples,
561  each consisting of N OTUs. These N OTUs are, in turn, elements of a fixed vocabulary of V

562  unique OTU IDs. From this, K (a fixed number chosen a priori) latent topics are assumed to be
563  generated from the data. These topics consist of overlapping sets of co-occurring OTUs. Note
564  that we will describe the STM in the context of the analyses perform herein; for a complete

565  description of the STM, see [20]. The observations include the presence of OTU w, occurring in

566 sample m and an M X P matrix of sample-level information such as disease state or age.

567  For our purposes, the posterior distribution of unobserved (latent) parameters given the

568  observed data is given by:
569 Posterior Distribution:  p(6,8,%,T,z | w,X).

570  The generative process is formulated by first specifying the probability
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K

571 P(Topic k occurs in Sample m) = Hm,k,zk _1Omr=1

572  and, for each of the samples, is assumed to follow logistic normal distributions,
573 6 ~LNg_1(TTX1%)

574  whereT'is a P X (K - 1) matrix of regression coefficients that estimate the degree of influence a

575  covariate X, has on §; and X is a K X K covariance matrix. In addition to 8, the probability

576 P(OTU n occurs in Topic k) = By, Zg= Brn=1

577  For each topic, P is assumed to be Dirichlet distributed. Finally, both topic assignments z, , for
578 each OTU wy,,, along with each OTU, obey multinomial distributions,

Zmn ~ Multinomial(8,,,)

579
Wmn ~ Multinomial (8, z, )

580 For the relationships between topic model nomenclature and our terminology, see Table
581 1. The posterior distribution is estimated by a semi-collapsed variational expectation

582  maximization procedure. Convergence is reached when the relative change in the variational
583  objective (i.e., the estimated lower bound) in successive iterations falls below a predetermined

584  tolerance.

585

586  Empirical Datasets

587  The Gevers et al. dataset (PRJNA237362, 03/30/2016) is a multicohort, IBD dataset that includes

588 165 rRNA amplicon data from control, CD, and ulcerative colitis samples taken from multiple
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589 locations throughout the gastrointestinal tract [21]. The Schmidt et al. dataset (PRJEB4953,
590  08/14/2017) consists of human oral microbiota obtained from control subjects and subjects
591  diagnosed with oral cancer. These samples underwent 165 rRNA amplicon sequencing, and a

592  subset (N=12) also underwent metagenomic shotgun sequencing.

593

594  16S rRNA Amplicon Data Preparation and OTU Picking

595 Paired-end reads were joined and quality filtered via QIIME v 1.9.1 and dada2 for Gevers et al.
596  and Schmidt et al. data, respectively. Closed-reference OTU picking was performed with QIIME
597  using SortMeRNA against GreenGenes v13.5 at 97% sequence identity. This was followed by
598  copy number normalization via PICRUSt version 1.0.0 [32]. Samples with fewer than 1000 total
599  reads were omitted. OTUs that lacked a known classification at the phylum level were removed.
600  For Gevers et al., we selected only terminal ileum samples and filtered OTUs with fewer than 10
601  total reads across samples, yielding 555 samples over 1500 OTUs. For Schmidt et al., we filtered
602  any OTU with non-zero abundances in fewer than two samples, yielding 81 samples over 1029

603  OTUs.

604

605 Metagenomic Shotgun Sequence Data Preparation and Functional Genomic Profiling

606 Low quality reads and human genomic sequences were filtered via KneadData. Functional
607  profiles were then generated using HUMANN2 with the ChocoPhlAn nucleotide database and

608  UniRef90 protein database. The UniRef90 protein families were collapsed into KEGG
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609  orthologies (KOs), yielding abundances (copies per million (CPM)) for 12 samples over 36,806

610 KOs.

611

612  Structural Topic Model Fitting

613  The OTU abundance tables consisted of counts normalized by 16S rRNA gene copy number. No
614  other normalization was performed based on the simulation results in [33]. STMs with different
615  parameterizations in terms of topic number (K € 15, 25, 50, 75, 100, 150, 250) and sample

616  features (e.g., no features, indicators for presence of disease, diet type, etc.) were fit to the OTU
617  tables generated from Gevers et al. data via the R package stm [34]. We evaluated each model
618 fit for presence of overdispersed residuals and conducted permutation tests (permTest in the
619  stm package) where the sample feature of interest is randomly assigned to a sample prior to

620 fitting the STM. To compare parameterizations between models, we evaluated predictive

621  performance using held-out likelihood estimation [35].

622

623  Assessing Topic Generalizability

624  We performed classification to assess the generalizability of the extracted topics. No sample
625  information was used as covariates in the logistic normal component of the STM. Samples were
626  split into 80/20 training-testing datasets. For different number of topics (K € 15, 25, 50, 75, 100,
627  150), an STM was trained to estimate the topics-over-OTUs distribution (B). We then held this

628  distribution fixed; hence, only the testing set’s samples-over-topics distribution (0) was
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629  estimated. For both the training and testing sets, simulated posterior samples from the samples-
630  over-topics distribution (0) were averaged. The resulting posterior topic frequencies in the

631  training set were then used as features to classify sample labels, similar to using Z in supervised
632  LDA [36]. Generalization (testing) error was assessed using the optimal parametrization based
633  on cross-validation performance on the test set topic frequencies. Classification was performed
634  using a random forest classifier, which underwent parameter tuning to determine the number
635  of variables for each split. This was accomplished through repeated (10x) 10-fold cross-

636  validation, using up-sampling to overcome class imbalance. We performed a parameter sweep
637  over the number of randomly selected OTU features, while setting the number of trees fixed at
638  128. The optimal parameterizations were selected based on maximizing ROC area under the

639 curve.

640  The performance of the STMs was compared to the performance using OTUs as features from
641  the original OTU abundance table. Separately, training and testing set OTU abundances were

642  converted to relative abundances with the following equation: OTUp;/X OTUp . In words,

643  OTU n for sample m is scaled by the library size of sample m (the total abundance of sample m).
644  The resulting OTU relative abundance tables were separately z-score normalized. Training

645  cross-validation and testing using a random forest was then performed as above.
646
647  Identifying Within-Topic Clusters of High Frequency OTUs

648  Using the topics-over-OTUs distribution, we performed hierarchical clustering via Ward's

649  method on Bray-Curtis distances. We refer to high frequency groups of OTUs as “clusters.”
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650

651  Inferring Within-Topic Functional Potential

652  We obtained the topics-over-OTUs distribution (B) for each fitted model and mapped the

653  within-topic OTU probabilities to integers (“pseudo-counts”) using a constant: 10000 X 8. A
654  large constant was chosen to prevent low frequency OTUs from being set to zero, although their
655  contribution to downstream analysis was likely negligible. Gene prediction was performed on
656  each topic-OTU pseudo-count table using PICRUSt version 1.0.0 [14]. (Normalization of 165

657  copy number was performed prior to topic model fitting using PICRUSt.) Predicted gene

658  content was classified in terms of KOs [37].

659

660 Identifying Topics of Interest

661  Topics of interest were identified using the samples-over-topics distribution, where each

662  column represents the frequency of topic k for each sample. Each column was regressed against
663  CD diagnosis. We calculated 95% uncertainty intervals using an approximation that accounts
664  for uncertainty in estimation of both the sample covariate coefficients and the topic frequencies.
665  We refer to these coefficients as “topic-sample-effects.” Coefficients whose 95% uncertainty

666  intervals do not span 0 are referred to as “high-ranking-topics.”

667

668  Validating Within-Topic Co-Occurrence
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669  To determine how well the high-ranking-topics captured co-occurrence in the original OTU
670  relative abundance table, we sampled the top-10 highest frequency taxa in each high-ranking
671  topic’s topics-over-OTUs distribution (B). We then normalized the original OTU table using the
672  centered-log-ratio transformation and then evaluated how the high frequency taxa vary as a

673  function of CD diagnosis and PCDALI.

674

675 Posterior Inference

676  To determine how well the high-ranking-topics captured the taxonomic profile associated with
677  CD, we performed the following posterior simulation over R=1000 iterations. First, for iteration

678 1, for all samples m € M (e.g., subject 134), we obtained 100 posterior samples (i € {1,...,, 100}) of

679 0% from the posterior distribution, p(6,8,E,I',z | w,X). For each of these 0%, we sampled topic

680  assignments Z,%L)n ~ Multinomial(8%)), and then OTUs W, {2z, ~ Mulinomial(z,%)n,ﬁ).

681  We then recorded whether the topic assignments z,), belonged to one of the high-ranking-
682  topics and whether they have a positive or negative association with sample covariates of
683 interest, resulting in positive-, negative-, and no-association topic groups. We calculated the

684  frequency % in which OTUs w,{9), were sampled from a given topic group g:

685 fP= Z Z 1z € g]

L Wiz

686  where 1[ - ] is the indicator function. For each OTU, we calculated which group had the largest

687  sampling frequency:
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688 f9* =1|f9 = argmin f,
g
689  After 1000 iterations, we calculated

1
690 F@)* = EZ OO
T

691  For each topic group, we extracted a subset of OTUs that had frequencies above 0.99. In the
692  original relative abundance table, for each sample, we calculated the relative abundance of each

693  group of OTUs.
694  Identifying Functional Content that Distinguishes Topics

695 To determine which predicted functional gene content best distinguished topics, we used the

696  following multilevel negative binomial regression model:

697 Ok, = exp [u+ Br+ Be + Brel

698 yk,c“’NB(Hk,c:/D

699  where p is the intercept, S is the per topic weight, . is the per level-3 gene category weight, 5.
700 is the interaction weight for a given topic-function (gene category) combination, yj.is the count
701  for a given topic-function combination, and A is the dispersion parameter. The intercept u was
702 given a Normal(0, 10) prior; all weights were given Normal(0, 2.5) priors; and the dispersion
703  parameter A was given a Cauchy(0, 5) prior. Model inference was performed using Hamiltonian
704  Monte Carlo in the R package rstanarm [38]. Convergence was evaluated across four parallel
705  chains using diagnostic plots to assess mixing and by evaluating the Gelman-Rubin

706  convergence diagnostic [39]. To reduce model size, we used genes belonging to only 15
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707  (arbitrary number) level-2 KEGG pathway categories (Table S5). For large topic models, we fit
708  only the top 25 topics, ranked in terms of topic-sample-effects that measure the degree of

709  association between samples-over-topics probabilities and our sample feature of interest.

710

711  Assessing Relationships Between Sample Information of Interest and Taxonomic Relative

712 Abundance

713 To quantify the relationship between taxonomic relative abundance and continuous sample
714 features (such as PCDAI), we performed negative binomial regression (log-link), using sample
715  library size (sum of OTU abundances across samples) as an offset. The family-wise error rate

716  was adjusted via Bonferroni correction. Significance levels for hypothesis testing was set at 0.05.

717

718  Comparing Within-Topic Functional Profiles to an OTU-Relative-Abundance-Based

719  Approach

720  We compared the results from the hierarchical negative binomial model to a differential

721  abundance approach. We performed predicted functional content using PICRUSt on copy

722 number normalized OTU abundances. The resulting functional abundances were collapsed into
723 level-3 KEGG pathways. Note that, for consistency, we again restricted the KOs to the 15 level-2
724  KEGG pathways used previously. The resulting level-3 pathway abundances underwent

725  DESeq?2 differential abundance analysis, which uses negative binomial regression and variance

726  stabilizing transformations to infer the difference log-fold change of OTU relative abundance
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727 [7,8]. The resulting p-values were corrected via the Bonferroni method. Adjusted p-values

728  below 0.1 were considered significant.

729  Fitting BioMico

730  The same training and testing sets were used as described above. Assemblages of 25 and 50

731  were trained with default parameters unless specified: burnin=5000, delay=500 (25 assemblages)
732 or delay=100 (50 assemblages), rarefaction_depth=1000. Parameters were adjusted to decrease
733 training time to less than 3 days. Posterior distributions were evaluated to ensure MCMC

734  convergence.

735

736  Validating Extracted Functional Profiles using Metagenomic Shotgun Sequencing Data

737  The themetagenomics pipeline was applied to the Schmidt et al. OTU table: (1) data were

738  normalized for 165 rRNA gene copy number; (2) normalized OTU abundances were fit using a
739 25 topic STM with cancer diagnosis as a binary covariate; (3) within-topic functional content
740  was predicted using PICRUSt; and then (4) topic-pathway effects were detected using the

741  multilevel regression model.

742 For each topic, we identified the high probability OTUs (those with frequencies greater than 1%
743 in that topic), obtained their genus classification, and then subset the metagenomic KO table
744  such that only KOs corresponding to these genera are present. Then, for each level-3 KEGG

745  pathway, we summed the abundances of all remaining KO members. Topic-pathway effects

746 were then detected with the following multilevel regression model:
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747 Okc=exp [u+ B1X + Bi + Be+ Bre +log Z]

748 Vie~NB(O,A)

749  where X is a binary column vector indicating positive cancer diagnosis, f1 is the coefficient for
750  cancer diagnosis, and log Z is an offset accounting for sample library size (sample sum). The

751  remaining parameters are analogous to the model described above.

752 A permutation test was performed to compare the similarity in topic-pathway effects between
753  themetagenomics and the metagenomic model to random sampling. In the metagenomic KO
754  table, topic and pathway labels were randomly permuted. The permuted table was then refit
755  with the regression model described. The root mean squared error was calculated between the

756  topic-pathway regression coefficient (i . for themetagenomics and the metagenomic model:

2
N (phene - pe)
757 RMSE = k¢

n

758  This process was repeated over 100 permuted replicates to calculate a null distribution of RMSE
759  scores, which was then compared to the true RMSE between the unpermuted metagenomic KO
760 table and themetagenomics. A p-value (a=0.05) was calculated as the proportion of RMSE
761  scores from the 100 permuted metagenomic KO tables that were less than the RMSE score for

762  the unpermuted metagenomic KO table.

763

764  Exploring Thematic Structure in David et al.

765
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766  Data Preparation and OTU Picking. The David et al. dataset contains fecal and salivary 16S

767  rRNA surveys from two subjects. The samples were obtained at uneven sampled times from 318
768  days. Data from were downloaded from the European Bioinformatics Institute (EBI) European
769  Nucleotide Archive (ENA) (accession number ERP006059). It consisted of 1.7 million 16S rRNA
770  gene (V4 region) sequencing reads, 100 bp in length. The reads were quality filtered using the
771 fastqFilter command in the dada2 package [40]. Closed reference OTU picking was then

772 performed with QIIME version 1.9.1. using SortMeRNA again GreenGenes v13.5 at 97%

773 sequence identity [24].

774  Data Preprocessing and STM Fitting. From the OTU table, we removed any samples with

775  fewer than 1000 total reads, were not of fecal origin, were not from donor B, and did not include
776  sample data for day, donor, and body site. OTUs lacking a known phylum classification or

777  present in fewer than 1% of the remaining samples were removed. The remaining OTUs were
778  normalized in terms of 165 rRNA gene copy number per the table provided by PICRUSt [14].

779  The final OTU table consisted of 1562 OTUs across 189 samples.

780  We fit 7 STMs that varied in terms of topic number K € {15, 25, 50, 75, 105, 155, 250}. To infer the
781  relationship between sample data and the samples-over-topics distribution 0, we used two

782  sample covariates: two continuous, integer valued sequences representing the day number in
783  the sequence and the DOW. Given our assumption that fluctuations in microbiota likely varied
784  nonlinearly with respect to day, we used a smoothing spline with 10 degrees of freedom on day

785  and a second-degree polynomial on DOW.
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786  Event detection. To detect events in subject B, we repeated the approach described for

787  simulation 2 (S2 appendix).

788  Hierarchical clustering. We performed HC for comparison. The David et al. data were

789  normalized using the sample geometric mean to correct for library size imbalance. Each feature
790  was then centered and scaled as described for simulation 2. Clustering was performed as

791  detailed for simulation 2. The resulting tree was cut to produce 6 clusters. The choice of 6

792  clusters was based on the three profiles identified by David et al. (days 1-150, 151-159, and 160-
793  318). We included three additional clusters to account for the background taxonomic variation
794  lacking one of the three profiles of interest. Because we are basing our parameter choice on what

795  can be considered the truth, this can be considered a best-case-scenario.

796

797  Supporting Information

798

799  S1 supporting figures. Contains supporting figures S1-54 and tables S51-S6.

800  S2 appendix. Contains additional information regarding the following: (1) simulation 1 which
801  explores different normalization approaches, (2) time series analysis methods for David et al.
802  data including simulation 2; and (3) additional results for Crohn’s disease data as well as

803  expansion of results detailed above and comparisons to other approaches such as SPIEC-EASI

804
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