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Abstract

The timing and duration of sleep results from the interaction between a sleep-
wake driven, or homeostatic, process (S) and a circadian process (C), and involves
changes in gene expression and genomic regulation. Unraveling the respective
contributions of S and C, and their interaction, to transcriptional and epigenomic
regulatory dynamics requires sampling over time under unperturbed conditions and
conditions of perturbed sleep. Here, we profiled mRNA expression and chromatin
accessibility in the cerebral cortex of mice over a three-day period, including a 6-hour
sleep deprivation (SD) on day two. Mathematical modeling established that a large
proportion of rhythmic genes are actually governed by Process S with varying degrees
of interaction with Process C, sometimes working in opposition. Remarkably, SD
causes long-term effects on gene expression dynamics, outlasting phenotypic
recovery, most strikingly illustrated by a dampening of the oscillation of most core
clock genes, including Bmall, suggesting that enforced wakefulness directly impacts
the molecular clock machinery. Chromatin accessibility proved highly plastic and
dynamically affected by SD. Distal regions, rather than promoters, display dynamics
corresponding to gene transcription, implying that changes in mRNA expression
result from constantly accessible promoters under the influence of distal enhancers or
repressors. Srf was predicted as a transcriptional regulator driving immediate response,
suggesting that Srf activity mirrors the build-up and release of sleep pressure. Our
results demonstrate that a single, short SD has long-term aftereffects at the genomic
regulatory level. Such effects might accumulate with repeated sleep restrictions,

thereby contributing to their adverse health effects.
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Significance statement

When and how long we sleep is determined by the time-of-day and how long we have
been awake, which are tracked molecularly by a circadian and a sleep-wake driven
process, respectively. We measured the long-term consequences of a short-term sleep
deprivation (SD) on gene expression and regulation in the mouse brain, and used
mathematical models to determine the relative contributions of the circadian and
sleep-wake driven processes. We find that many genes, including most of the genes
that constitute the molecular circadian clock, are perturbed by SD long after the mice
ceased showing behavioral signs of sleep loss. Our results have implications for
human health, given the high prevalence of insufficient and poor quality sleep in our

contemporary society.
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Introduction

According to the two-process model (1, 2), sleep regulation results from an
interaction between the sleep homeostatic process (Process S) and the circadian
process (Process C). The sleep homeostat keeps track of pressure for sleep as it
increases during wake and decreases during sleep, while the circadian process dictates
the optimal time-of-day for sleep to occur. Their fine-tuned interaction assures
optimal timing, duration and quality of both wakefulness and sleep, and even minor
changes in either of these processes or their alignment cause performance decrements
and clinically significant sleep disruption (3, 4).

The circadian clock is described as self-sustained 24h oscillations involved in
a variety of physiological processes and behaviors such as sleep (3, 5). It is encoded
molecularly through negative feedback loops involving the core clock genes, which
are capable of generating oscillations in constant environmental conditions, i.e. in the
absence of periodically occurring time cues such as the light-dark cycle (6). However,
this apparent autonomy does not inevitably imply that the expression of all genes
displaying a rhythm with a period of 24-hours is directly driven by the circadian clock.
For example the light-dark cycle, besides entraining the circadian clock, directly
influences many physiological and behavioral processes (7). Also, the rthythmic
organization of sleep-wake behavior and associated feeding and locomotion directly
drives gene expression (8). Disentangling the respective contributions of the circadian
and sleep-wake driven processes is experimentally challenging and has been
addressed by methods suppressing one component (e.g. surgical or genetic ablation of
circadian oscillators) or uncoupling their relationship through forced desynchrony or

sleep deprivation (SD) (3, 9).
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SD experiments aiming at identifying genes associated with the sleep
homeostatic process follow the rationale that causing mice to stay awake during a
time when they normally sleep will induce an acute response in sleep-wake driven
genes. Indeed, studies comparing gene expression levels immediately after SD with
controls collected at the same time-of-day have identified many differentially
expressed genes (10-13), and a few studies have probed the punctual effect of SD at
different times of the 24h cycle in mice (13, 14), or expression dynamics in blood
during SD in humans (15, 16). However, assessing the respective contributions of the
two processes requires measuring gene expression over multiple time points, not only
under SD, i.e. enforced waking, but also under spontaneous sleep-wake dynamics pre-
and post-SD. Furthermore, to systematically link temporal gene expression to the
sleep-wake distribution and/or circadian clock, the analysis should consider the entire
time series, rather than only pair-wise differential comparisons. Finally, the regulatory
mechanisms underlying such dynamics are largely unexplored (17), particularly in
this kind of dynamic context.

To systematically investigate the gene expression dynamics caused by one
acute SD episode, as well as the underlying regulatory events, we measured
chromatin accessibility alongside mRNA expression in the cerebral cortex of adult
C57BL6/J mice over 24 hours before, during, and over 48 hours following one 6-hour
session of total SD, as well as 7 days after the intervention. We modeled the entire
time series based on the assumptions of the two-process model to objectively assess
whether the mRNA accumulation dynamics of each cortically expressed gene follow
Process S, Process C or a combination thereof. This setting allowed us to characterize
the temporal dynamics of the consequences of SD on gene expression and regulation,

and dissect the interaction between Processes S and C. Moreover, we identified
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genomic regulatory elements implicated in the transcriptional response to sleep loss

by exploring the hitherto understudied epigenetic landscape of sleep (18).

Results

Behavioral response and recovery after sleep deprivation

We observed the typical distribution of sleep over 24 hours in baseline, with
mice spending most of the light period asleep, while being predominantly awake
during the dark period (Fig 1B, bottom). Delta power in NREM sleep (Fig 1B, top),
an EEG-derived variable considered to reflect sleep ‘pressure’ (Process S), was high
after spontaneous waking in the dark phase and decreased during the light phase, and
we observed the well-known effects of SD, namely an increase in delta power in the
45 minutes immediately following SD and a rebound of time spent in NREM sleep
observed during the first 12h of recovery (T30-T42). We found that values for NREM
sleep no longer significantly deviated from baseline levels already after T42 (Fig 1B
bottom, black line). During the dark phase (T36-48), delta power even dropped below
the levels reached at this time during baseline, likely as a consequence of the
increased time spent in NREM sleep during the first 12h after SD. REM sleep was
affected in the same manner as NREM sleep (Fig 1B, bottom, green line).

We asked whether the fast reversal of the phenotype in the EEG data would be
paralleled by changes at the gene expression and regulatory levels in the cerebral
cortex, or whether novel molecular dynamic patterns could be observed. We therefore
measured and analyzed the temporal dynamics of transcriptomes and chromatin

accessibility over a total of 78 hours, including baseline, SD and recovery.
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Sleep-wake history is the main driver of transcriptome dynamics

We first examined the detected fraction of the transcriptome (13'842 genes)
using principal component analysis (PCA, Fig 2A). We observed that samples formed
three groups along the first principal component (PC1) axis. The left-most group
gathered time points during the light phase of the LD cycle where mice generally
spend more time asleep, while the middle group represented time points during the
dark phase when mice are predominantly awake (i.e. the former group spent more
time asleep prior to sampling than the latter). This separation could evoke that PC1
separates samples according to time of day, however this notion is challenged by the
shift towards the right of the samples taken at ZT3 and ZT6 during SD (T27 and T30),
i.e. in the complete absence of sleep, suggesting that the PC1 axis follows (from left
to right) increased time spent awake prior to sampling rather than zeitgeber time (ZT).

To illustrate the sleep-wake-driven dynamics underlying PC1, we overlaid
PC1 with the average amount of waking over time (Fig 2B). PC1 increased during
periods of waking, decreased during periods of sleep, and, importantly, reached its
maximum during SD, in a pattern strongly reminiscent of Process S and EEG delta
power ((19) and Fig 1B, top). PC1 thus reflects the amount of sleep prior to sample
collection and highlights the pervasive impact of sleep-wake distribution on gene

expression, which we further explore below.

Clustering of mRNA temporal profiles highlights diverse response and
recovery kinetics

To uncover and classify general temporal patterns in our data, we first
performed an exploratory analysis using k-means clustering. With this unsupervised
clustering, we grouped the temporal expression of 3461 genes displaying statistically

robust temporal variation from TO to T78 (FDR-adjusted p-value < 0.001, see
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Methods). This analysis on a conservatively selected subset of genes aimed to
uncover broad dynamics in the dataset. We observed distinct profiles of response to
SD and subsequent recovery by comparing the cluster average of T24-T78 with the
baseline day (T0-T18, Fig 2C, light grey line and blue dashed line, respectively). Here,
"response" refers to temporal patterns from T24 to T78 that deviate from baseline at
corresponding ZT times (e.g., T30 and T54 are compared with T6; T36 and T60 are
compared with T12, etc.). "Recovery" refers to patterns that return towards baseline
levels. Genes in clusters 1-6 displayed an immediate response, with many showing
marked differences detectable already during and at the end of SD, i.e. at T27 and
T30 (Fig 2C). In cluster 7, the response progresses until T36, after which reversal
takes place. This "prolonged" response is to differentiate from a "delayed" response as
in cluster 8, where the first significant difference to baseline is visible 6 hours after
the end of SD.

At the level of recovery, clusters 1-4 show a fast recovery, where baseline
levels are reached already at T36, making them reminiscent of delta power dynamics.
Meanwhile, clusters 5 and 6 contain genes that revert more slowly, reaching baseline
at T42 in a pattern paralleling the recovery dynamics of time spent asleep. Cluster 7
also displays slow recovery, with baseline levels attained 12 hours after the peak
response at T36. In cluster 8§ we observe a distinctive recovery pattern in the form of
an increase at T48 following the initial downregulation at T36. Finally, clusters 9 and
10 showed a prominent 24-hour rhythm with subtle, if any, perturbation by SD (mean
p-values across genes > 0.24).

Generally, the fast response and fast recovery dynamics, together with a
direction of change opposite to what is expected by time-of-day, suggests that these

genes are sleep-wake driven, i.e. genes that usually go up when the mouse is
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predominantly asleep are downregulated during SD (clusters 2, 4, 6) and vice versa
(clusters 1, 3, 5). Also, the slower dynamics of response and recovery (cluster 7, 8)
suggests that the effects of SD can also occur downstream of the immediate response
and last beyond the exposure itself, and suggests that the time required for molecular

recovery exceeds the time for phenotypic recovery.

Modeling temporal transcriptome dynamics

To better characterize and distinguish these expression dynamics, we sought,
given our observations, to model gene expression over the entire time course
including baseline, SD and the aftermath of SD, taking into account that the response
and recovery can be sleep-wake driven, circadian or a mixture of both. Also, because
rhythmicity can be suppressed or altered during mistimed or restricted sleep (13, 15,
16, 20), we included the possibility that it could remain perturbed after the end of the
SD.

Explicitly modeling the temporal dynamics of mRNA profiles can offer
advantages over unsupervised methods such as the k-means clustering implemented
above. Indeed, the parameters of a model can give biological insights into the
underlying dynamics, competing models can be systematically compared, and explicit
hypotheses can be tested. Thus, modeling will unify dynamics that appear in separate
clusters (e.g., Cluster 1 and 4 may both have sleep-wake driven genes), and
differentiate dynamics that appear in the same cluster (e.g., Cluster 9 contains both
SD-resistant and SD-sensitive dynamics, see Fig S1A).

We thus devised 6 models to explain the gene expression dynamics of the full
transcriptome (n=13’842 detected genes) (Fig S1B): (1) constant or ‘flat’ model (F);
(2) sleep-wake history modeled from sleep-wake data (S, in analogy to Process S in

the 2-process model (1)); (3) cosine dynamics with a 24-hour rhythm (C); (4) cosine
9


https://doi.org/10.1101/677807
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/677807; this version posted June 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

with amplitude change after SD (Ca); (5) sleep-wake + cosine (S+C); (6) sleep-wake
+ cosine with amplitude change (S+C,). To select the best among competing models,
we used the Bayesian Information Criterion (BIC) to balance model fit and model
complexity, which we transformed into model weights w (see Methods). For each
gene, the sum of the weights for all 6 models equals 1, and the model with the highest
weight is assigned to the gene. Each gene is assigned one of the 6 models. In the
example of the core clock gene Nridl (RevErba, Fig 3A), the selected model was
cosine with amplitude change after SD (model Ca, represented as a bold line), due to
a very high weight w=0.977. Indeed, the baseline pattern (from TO to T24) is
consistent with a circadian oscillation, the amplitude of which is significantly reduced
after SD and, surprisingly, not re-established by T78. All fits are presented in Table

S4.

Model S recapitulates known sleep-wake driven genes and closely parallels
EEG delta power dynamics

We summarized the genes assigned to each model genome-wide (Fig 3B), and
found that, out of all temporal models (i.e. excluding the flat model which fit 7391
genes, example Fig 3C), the sleep-wake driven model (model S) had the largest
number of genes assigned to it (2677 genes, example Fig 3D), consistent with the
interpretation of PC1 reflecting sleep-wake history and the predominance of fast
response dynamics in our cluster analysis (clusters 1-6). Analyzing the parameters of
genes associated with model S, we found that the fitted time constants describing
model S corresponding to wake (t,,, median = 7.05 h) and sleep (75, median = 1.68 h)
were strikingly close to the dynamics of EEG delta power found in (19) (8.0h,

respectively 1.8h) for this inbred strain. These dynamics closely resemble an

10
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immediate early gene (IEG) response, raising the possibility that EEG delta power is
linked to, or even preceded by, a molecular change in the brain.

Model S included genes previously described as affected at the end of SD such
as Egr2, Arc, Fos and Cirbp (12, 13, 21) (Fig 3D and Fig S2 pages 1-3, all w>0.833),
but also, surprisingly, the core clock genes Clock and Npas2 (w=0.787, resp. w=0.527,
Fig S2 pages 4-5). Generally, we found the overwhelming majority of known sleep-
wake driven genes to be correctly assigned by our model selection method. For
example, the dynamics of 72 out of 75 (96%) genes previously described as sleep-
wake driven (21) were affected by SD and fully or partially explained by the sleep-
wake data (i.e. assigned to models S, S+C and S+C,, Fig 4A, p-value = 1.2e-14, chi-
squared test). Similarly, we found that 181/207 (87%) genes previously described as
affected by SD at any time of day in whole brain (Table S5 in Ref. (13)) were also
inferred to be affected by SD (i.e. assigned to the same models) in our model selection
(Fig 4B, p-value = 2.6e-21, chi-squared test). Consistently, genes that were
upregulated during waking all had their maximum expression during the baseline dark
period, while those downregulated during waking peaked during the baseline light

period (Fig 5A).

mRNA expression of all but one core clock gene is sensitive to SD

Following closely, the cosine model (model C) was the third most abundant
category with 2457 genes. This model gathers genes the oscillation of which is largely
unaffected by SD as illustrated by the top fit Caskin2 (w=0.880, Fig 3E). The genes
with the largest amplitude showing 24-hour oscillations in gene expression resistant to
SD were Sgkl, a glucocorticoid regulated kinase, and Cldn5, a principal tight junction
protein in the blood-brain barrier (Fig S2 pages 6-7), reaching their peak just before

the light-to-dark and dark-to-light transitions, respectively. Generally, examining the

11
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oscillation patterns of this group of genes, we find that the phases (i.e. time at which
expression peaks) of model C genes are not random, but tend to accumulate in the
second half of the light or dark phases (ZT10 and ZT22, Fig 5A).

Interestingly, our algorithm assigned Cry! as the only core clock gene in this
model, with model C4 second in explaining its mRNA dynamics (w=0.661 and
w=0.336 respectively, Fig S2 page 8). The other clock genes, instead of fitting model
C as might be expected, were assigned to model S (see above), the altered amplitude
model C4 or the more complex models (models S+C and S+Ca, see below). Clock
genes assigned to model C4 (which contained in total 794 genes) had dampened
amplitudes after SD, and encompassed the example Nrildi/Rev-erba (Fig 3A), as well
as Arntl (Bmall, Fig 3G), Per3, Cry2 and Nrid2 (RevErbp, Fig S2 pages 9-11).
Except for Cry2, where the top weights were w(Ca)=0.645 and w(C)=0.347, the
model C weight w(C) of the other clock genes was negligible (highest w(C)=0.0003
for Nridl), meaning the clock genes were assigned to Cy either unequivocally, or
with a close call to the more complex models S+C and S+Cx (Table S4). Model Ca
also contained genes with increased amplitudes (331/794; 42%) after SD, such as
Erbb3, Evalb, Zfp473 and Akricl (Fig 5B, Fig S2 pages 12-15). Interestingly, the
phases of expression differed between the genes with increased vs. decreased
amplitudes, the former group having a similar distribution of phases to those of model

C genes (Fig 5A).

Oscillating transcripts in baseline are often sleep-wake driven

We next asked if genes with rhythmic expression in our mouse cortex dataset
were affected by SD. We therefore applied harmonic regression to the baseline Day 0
time points, which yielded a set of 862 oscillating genes (FDR-adjusted p-value <

0.05). Strikingly, we found that the majority of these genes (578, 67%) were assigned
12
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to the S model, and that the C model was impoverished in these genes (Fig 4C, p-
value = 2.4e-76, chi-squared test). Again, we compared these results to a published set
of 918 genes (corresponding to 2032 probesets) rhythmic under baseline conditions in
the whole brain (Table S3 in (13)) and found a similar repartition (Fig 4D, p-value =
2.3e-14, chi-squared test), which suggests that many of the genes that appear rhythmic
in undisturbed conditions oscillate as a consequence of sleep and wake (which itself is
rhythmic) rather than because of the circadian clock directly. We also examined the
repartition of another set from the same study, namely 391 probesets which were still
rhythmic when sampling was preceded by 6 hours SD (Table S4 in (13)). We
expected these genes to be resistant to SD and classify mainly in model C, however,
we found that their repartition among models was only marginally different from our
complete set, with even a slight impoverishment of model C and enrichment of model
S+C (Fig 4E). This indicates that the rhythmicity observed in that study was due to
other factors besides circadian, such as the presence of a light-dark cycle, differences
in SD side-effects (e.g. stress) when performed at different times of day, or

differences in conditions prior to SD (such as time-spent-awake).

Sleep and the circadian process can work in opposition to limit oscillation
amplitudes in baseline

Model S+C (357 genes) incorporated the sleep-wake history and time-of-day
to output a strong response to SD while maintaining modest fold changes during
baseline (e.g. Gkn3, Perl and Fosb, Fig 3F and Fig S2 pages 16-17). Indeed, this
model, together with its altered-amplitude counterpart (S+Ca, see below) allowed to
explain complex temporal patterns, notably due to interactions between the S and C
models, additive in the log scale. For genes upregulated during SD, both the S and C

components increased concurrently during SD, but discordantly in baseline (e.g. Fosb,

13
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Fig 5C). Similarly, for genes downregulated during SD, the S and C components
decreased concurrently during SD, but discordantly in baseline (e.g. Gkn3, Fig 5C).
The discordant action caused dynamics in mRNA levels to be limited during baseline,
while the concordant action during SD allows large fold changes relative to baseline.
In comparison, in model S where the buffering by the C component is absent, the
difference in fold change from the highest point after SD and the highest point in
baseline, both compared to the baseline average, was smaller than for models S+C
and S+C, (Fig 5D), meaning that expression changes in model S genes are similar
whether wakefulness is spontaneous or enforced, and regardless of time of day. We
note that S+C genes tend to peak around the light-to-dark and dark-to-light transitions,
a shift in comparison with model C and model S genes (Fig 5A).

The observation of this S+C interaction provides an intriguing parallel with
human and primate studies of cognitive performance under forced desynchrony or SD
protocols, where it was found that the phase of the circadian wake-promoting signal is
timed in such a way that it opposes the sleep-wake dependent accumulation of sleep
propensity and peaks in the hour prior to habitual sleep onset. This timing is essential
for maintaining high and stable levels of attention and cognitive performance during

the day as well a consolidated period of sleep during the night (22-27).

SD represses the C component of genes with complex dynamics, leaving
them predominantly under the control of Process S

The most complex of our models, model S+C4 (166 genes, example Dbp, Fig
3H), incorporated sleep-wake history, time of day and altered amplitudes to model the
response to SD and subsequent change in amplitudes after SD. In this model, we see
that the additive dynamic process observed in model S+C (see above) can be

accompanied by altered amplitudes after SD (Fig 5B, 104 resp. 62, dampened resp.
14
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increased amplitudes), meaning that the contribution of the C component to gene
expression dynamics, relative to that of the S component which is constant, is
modulated after SD. For example, for Dbp, breaking down the contribution of the S
and Cp part of the dynamics show that in baseline, the expression is influenced by
both sleep-wake history and time of day, while after SD, the contribution of time of
day is diminished by 90% and thus the recovery dynamics are driven mainly by S (Fig
5B, blue dotted curve). Other examples of genes with dampened amplitudes include
Per2 (Fig S2 page 18), a gene known to be subject to complex interactions between
Processes S and C (28), as well as clock output genes Nfil3, and Bhlhe41 (E4bp4, resp.
Dec2; Fig S2 pages 19-20). S+C4 genes peak during the first half of the light, resp.
dark phases, at yet a different time than all other models. Still, genes displaying

decreased expression under waking had phases overlapping with model Ca (Fig 5A).

Recovery time course uncovers hitherto unnoticed genes affected by SD
Strikingly, a majority of the genes assigned to the amplitude-affected models
Ca and S+Cy (759 out of 960 genes, 79%) were not identified when we examined
differential expression at the end of SD alone (i.e. T30 vs. T6), as in previous studies
(e.g. (13,21, 29)). For example, fatty acid binding protein 7, Fabp7 (model Ca, Fig
S1A, top left), is not differentially expressed at T27 nor T30, however its oscillation
amplitude displays the strongest reduction from T36 onwards among non-DE genes,
possibly due to its being a target of Nridl (model C,, differentially expressed at T27
and T30) and thus downstream of the primary response (30). This was especially true
for the Ca model, where only 55 out of 794 (7%) genes were differentially expressed
at ZT6, vs. 118 out of 166 (73%) for the S+C, model (as a comparison, 1746/2677
(67%) genes in the S model were significantly differentially expressed at T30, and

468/2457 (6.5%) genes in the C model). This observation highlights the importance of
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examining the molecular recovery process from SD over time, considering dynamics
due to both spontaneous and enforced wakefulness in the same experiment.

Conversely, genes that were differentially expressed at T27 or T30 (2862
genes) were enriched in models S, S+C and S+C,, and underrepresented in models C
and Cy, (Fig 4F). Interestingly, 375 of these genes were assigned to model F,
representing genes acutely affected by SD, which is not equivalent to sleep-wake
driven, as their overall time course is perturbed only at one or both of these SD time
points, but otherwise not modulated by the sleep-wake distribution.

To assess how expression patterns return to baseline, we examined differential
expression at each time point during and after SD compared to baseline (i.e. T27/T3,
T30/T6, T36/T12 etc. until T78/T6) and found 210 genes genome wide that were
differentially expressed after phenotypic recovery (i.e. after T42), namely 137 genes
at T48 and 75 genes at T60. This was consistent with the observation that the
proportion of genes with a p-value <0.05 in the cluster analysis did not reach zero for
all post-SD time points (Fig 2C). Also, because model Cx (as well as model S+C,) is
penalized for complexity, the change in amplitude needs to be pronounced and long-
lasting for a gene to be assigned to it. Thus, the assignment of any genes to models Ca
and S+C, implies that SD alters amplitudes in gene expression rhythms and generally
affects gene expression dynamics beyond SD. Taken together, these observations
show that the molecular perturbations outlast the phenotypic changes, meaning that
the mice have not yet recovered from SD despite behavioral and electrophysiological

measures of sleep need having returned to baseline.
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Genome-wide ATAC-seq analysis shows a rapid response and sleep-wake
driven dynamics in chromatin accessibility

We next asked which regulatory elements are underlying the extensive
transcriptome response to SD. We used ATAC-seq (31) to identify a union of
130°727 chromatin accessible regions (called peaks, see Methods) over all time points
(i.e. a peak is present in at least one time point). The majority of detected peaks do not
change over time and are constantly accessible. Indeed, while 25% of expressed genes
show a time dynamic according to a likelihood ratio test at a 0.001 FDR threshold,
only 3.7% of ATAC-seq peaks display a time dynamic at the same stringent threshold.
While the first principal component (PC1, 10%) probably represents experimental
noise, 7% of the variance among time points, represented by PC2, could be attributed
to the sleep-wake history and follows sleep-wake dynamics, paralleling the RNA-seq
data (Fig 6A, PC2 and 6B). The accessibility of these regions mimics an IEG
response to SD with a very fast modulation of the chromatin, detected already after
the first 3 hours of SD, a striking illustration of the plasticity of this compartment.

The strongest differential signal relative to baseline occurred during SD with
1793 peaks differentially accessible (differentially accessible sites, DAS) at ZT3 (T27
vs. T3, after 3h SD); 2098 at ZT6 (T30 vs. T6, end of 6h SD), with 607 peaks in
common. Differential signal during SD (ZT3 and ZT6) consisted predominantly of
increased accessibility (91% of DAS for ZT3 and 88% of DAS for ZT6), while the
645 late-responding DAS (i.e. differentially accessible at ZT12 only, T36 vs. T12,
after 6h of recovery, Fig S3A) were more likely to be decreased (55.5%).

To verify that the DAS we identified followed the homeostatic process, we
asked whether the effect of spontaneous waking during the first 6 hours of the

baseline dark phase (ZT12 to -18, when mice are predominantly awake; see Fig 1B)
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was similar to the effect of forced wakefulness (SD). We therefore tested, for each of
the 2098 DAS induced by SD, whether we could reject the null hypothesis of an
identical fold-change induced by SD (T30 vs. T24) from the fold-change in baseline
(T18 vs. T12), and found that only for 296 DAS (17%) the null hypothesis had to be
rejected (uncorrected p-value < 0.05). Therefore, the majority of the DAS we
identified display a similar response to spontaneous and forced wakefulness, and are
thus likely to be sleep-wake driven instead of being affected by other factors
associated with the SD protocol such as stress.

Overall, dynamics in chromatin accessibility were most pronounced during
SD, and no longer significantly differed from baseline by 12 hours after SD (T42).
Although we cannot exclude that this seemingly faster recovery is due to a lower
sensitivity of the ATAC-seq signal relative to RNA-seq, these results do show that
changes in chromatin accessibility start appearing early in the response to SD,
confirming that chromatin accessibility is dynamic and can change on short time
scales, even faster than observed in circadian oscillations (32).

Consistent with previous studies (e.g. (33-35)), accessibility peaks from all
time points and conditions were mainly located in intronic or intergenic regions (Fig
S3B). When considering only DAS sites (at ZT3, -6, or -12), the proportion of
intergenic regions was increased at the expense of the other regions (Fisher's exact
test FDR adjusted p-value <0.01), suggesting that SD influences the accessibility of
distal rather than proximal elements (Fig S3C-E). Genes associated with DAS (see
Methods) were enriched among models involving sleep-wake driven dynamics (Fig
S3F-K) compared to all peaks, for DAS dynamic groups at ZT3, ZT6 and
combinations of ZT3, -6 and -12 (see above, Fig S3A, p-values < 2e-10, chi-square

test), but not at ZT12 only (p-value = 0.48).
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Gene expression correlates with chromatin accessibility at distal elements
rather than promoters

Probing the general dynamics of chromatin accessibility by k-means clustering,
we found three main types of temporal profiles, all of which were reminiscent of
sleep-wake driven dynamics (Fig S3L). Clusters 1-3 displayed an early response to
SD with a fast recovery, clusters 4-7 also present an immediate response, but a slow
recovery, while clusters 8-10 displayed a late response. Because of this similarity with
the RNA-seq clustering (RNA clusters 1-8), and because of the similarity in the
general dynamics observed by PCA between RNA-seq sand ATAC-seq, we sought to
connect these changes in accessibility with changes in gene expression and, as both
signals originate from the same mouse, correlated ATAC-seq peak signal over time to
gene expression levels over time by calculating the Pearson correlation across
samples (Methods). We confined the possible peak-to-gene associations to a single
ATAC-peak per gene within the same topologically associated domain (TAD) defined
from Hi-C data generated from mouse cerebral cortex (36). In total, the expression
level of 3294 genes was significantly associated with the ATAC-seq signal of one
peak, at distances ranging from the transcription start site (TSS) to 5 Mb away (mean
distance for all significant associations at 0.05 FDR: 0.65 Mb). We observed both
positive and negative correlations between expression and ATAC-seq signal,
implying that both enhancers and repressors are involved in the response to SD (Fig
7A).

Among the strongest associations (|p[>0.7, 34 pairs, Table S5), we found
mostly genes assigned to models involving sleep-wake driven dynamics (i.e. models S,
S+C, S+Ca, respectively 26, 4, 1 gene), but also two genes from models C and Cxa

(Hif3a, resp. Gm13889) and one gene from model F (Mid1). Only 38/3294 significant
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gene-peak associations were proximal (i.e. the peak spanned the TSS), overlapping
with only two genes of the top 34 pairs, namely K/hdc9, an interaction partner of
CDK2-associated cyclin Al, Ccnal (37) (model S, Fig 7B), and Ciart (Model S+Ca,
Fig 7C), an interaction partner and suppressor of the Arntl and Per2 proteins (38),
thereby forming an additional negative feedback loop to the circadian molecular
machinery. Also, because Ciart is sensitive to and affects stress signaling pathways
(38, 39), it can be conjectured that the stress associated with SD (21) could be a factor
contributing to the sustained circadian dysregulation of the clock gene circuitry we
have found in the cortex.

Thus, the majority of genes correlated more strongly with a distal element than
with the accessibility of their promoters. Generally, the mean |p| value of the
correlation between the expression and the ATAC signal spanning the TSS of all
genes involved in an association was 0.16, while it was 0.5 for the correlation
between expression and the ATAC signal of the top associated distal peak for the
same genes. The top correlations to a distal element involved the environmental
sensor Hif3a (model C, Fig 7D), and the immediate early gene Fos/2 (model S, Fig
7E). In the case of Hif3a, the distal element (blue line) displayed an immediate
response to SD with an increase at T27 and T30, possibly a relative decrease at T36
before resuming the baseline pattern from T42. The promoter (green line) likewise
showed a response at T6 followed by a slow recovery from T36 to T54, while the
RNA oscillation (red line) was largely unperturbed. For Fos/2, we observed a fast
response of the distal element together with the mRNA, plateauing already at T27 and
followed by a fast recovery by T36, whereas the promoter followed a different pattern.
We note that the variability of the ATAC-seq signal can hamper the exact definition

of the dynamics of promoters and distal elements. We observed similar relationships
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between gene expression and accessibility of the corresponding promoter and
associated distal peak for the remaining genes of the top 34 correlations (Fig S4).
The widespread lack of correspondence between promoter and transcription
dynamics hint at a model where transcription happens from an accessible promoter
under the regulation of a distal element mediated by transcription factors (TF). A TF
motif activity analysis (40, 41) taking advantage of our paired RNA-seq and ATAC-
seq data predicted the SRF (serum response factor) motif to be by far the most
statistically significant candidate in the entire temporal gene expression dataset (i.e.
the genes assigned to models S, C, Ca, S+C and S+Cy, Fig 8A). The inferred
temporal activity of SRF (Methods) was consistent with sleep-wake driven dynamics,
paralleling the expression of the Srf transcript (Fig 8B-C). The genes with the
strongest contribution to the enrichment signal, namely Egr2, Junb, Fos, Arc, and
Nr4al, are immediate early genes and were all classified under model S, as was Srf
itself (Model S, w=0.979). Scanning the open chromatin regions corresponding to <5
kb up- and downstream of the promoters of these genes, we found SRF binding sites
which overlapped with ChIP-seq peaks against SRF in mouse fibroblasts (42) (see
Egr2 as example in Fig S5). Thus, the correlation of gene expression with the
accessibility of distal elements rather than their promoters, together with the presence
of SRF motifs, suggests a model of the response to extended waking where SRF is
bound to a constitutively open promoter, ready for an interaction with a distal element
that changes its own activity and mediates the changes in gene expression. We note
that while S7f'was not identified as DE after SD in previous studies, we found it to be
more strongly DE after 3h than after 6h SD. This observation, along with the fast
increase in chromatin accessibility, highlights the importance of increased time

resolution in sampling, particularly in the early hours of SD.
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Discussion

We have characterized the dynamics in cerebral cortex of transcriptome and
regulatory elements in relation to the sleep-wake distribution before, during and after
an exposure to sleep deprivation, a one-time and short intervention during the first
half of the habitual rest phase of mice. We found that changes in both transcriptome
and chromatin accessibility are largely governed by a sleep-wake driven process with
or without interaction with the circadian process, and that the molecular recovery
from SD outlasts the electrophysiological and behavioral signs of sleep need.

We developed a model selection approach integrating sleep-wake states to
classify genes according to sleep-wake driven dynamics, time-of-day dynamics,
interactions between the two, with the possibility of an alteration of the oscillation
amplitude. This set of models allowed us to classify the genes according to their
temporal expression pattern, and determine the relative contributions of and
interaction between the circadian and sleep-wake processes governing the expression
of genes with 24-hour rhythms. This classification proved more powerful in
identifying sleep-wake driven genes than past single-time-point differential
expression studies. Further studies using higher sampling resolution for a longer time
will allow to apply a more refined statistical framework to the recovery phase in
particular and thus further classify the response and recovery patterns.

A striking new finding was that most clock genes were affected by SD.
Previous work had already shown that the cortical expression of a number of clock
genes is affected during SD (for reviews see (29, 43, 44)) and that SD acutely
suppresses the specific DNA-binding of the circadian transcription factors BMAL1
and NPAS?2 to their target genes Per2 and Dbp (45), demonstrating that prolonged

wakefulness intervenes directly at the core of the circadian molecular machinery. An
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important long-term consequence of this intervention could be the dampened
amplitude we observed in the rhythmic expression of most of the known clock genes
(i.e., Arntl, Per2, Per3, Nrldl, Nrld2, Cry2, Ciart, and the clock-output genes Dbp,
Nfil3, Bhlhe41, all of which were model Ca and S+Cx genes). This long-term
dampening of clock gene rhythms was all the more surprising given the fact that the
observations were made under entrained light-dark conditions and in the presence of a
largely unaffected diurnal sleep-wake distribution, two factors known to contribute to
high amplitude clock gene expression. Because disrupted clock gene rhythms have
been causally implicated in the etiology of disease like metabolic syndrome (reviewed
in (4)), clock genes could be a final common molecular pathway underlying the
etiology of metabolic syndrome associated both with insufficient good quality sleep
and with circadian misalignment (43).

Studying chromatin accessibility for the first time in sleep research allowed us
to identify a set of genomic regions as first actors in a possible repertoire set in
motion already after 3h SD and giving rise to differential gene expression. The
increased proportion of distal elements among DAS compared to all regions, together
with the correlation of dynamic gene expression with distal elements rather than the
respective promoters is consistent with a scenario where expression is modulated by
different enhancers or repressors interacting with an accessible promoter under the
influence of regulator proteins. The implication of SRF as a candidate priming factor
in the response to SD is compelling, as it plays a key role in activity-dependent
modulation of synaptic strength (46), and its ortholog blistered is required to increase
sleep after social enrichment in Drosophila (47, 48).

Our results imply that beyond an apparent recovery from SD lie deeper,

complex and longer-lasting molecular perturbations, even among clock genes. We
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also show that genes can seem unchanged when sampled at a single time point after
SD, yet be affected by a profound perturbation later on. These perturbations
eventually recover, as hinted by the absence of differential expression after 7 days,
however until baseline is reached, this temporary regulatory background could
possibly cause the response to another exposure (repeated SD or other) to differ from
that under the pre-SD baseline background. While it is debated whether repeated sleep
deprivation on subsequent days alter the homeostatic response at the phenotypic level
in rats (EEG) (49, 50), recent studies in humans found that even two nights of
recovery sleep were insufficient to completely reverse the metabolic perturbations
caused by multiple nights of restricted sleep (51, 52). Follow-up experiments at the
molecular level will show how such a transient "new baseline" due to partial recovery

would influence the response to a second event occurring before full recovery.

Materials and Methods

Animals

C57BL/6J male mice were purchased from Charles River France (Lyon,
France) and allowed to acclimate to our sleep study facility for 2-4 weeks prior to
habituation to the experimental setting. Animals were kept in accordance to the Swiss
Animal Protection Act, and all experimental procedures were approved by the local

veterinary authorities.

Surgery and EEG recording
The EEG cohort consisted of 12 male C57BL/6J mice 10-12 weeks at the time
of SD that were part of another study (12). Surgical implantation of electrodes, EEG

recording and data collection were performed according to our standard procedure
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(53). EEG was recorded from 2 days prior to SD (which were averaged to constitute a
24-hour baseline) until 2 days after SD. In a subset (6/12) an additional 5 days were
recorded. Electrophysiological signals were captured and transformed from analog to
digital with a sampling rate of 2000Hz, and down-sampled and stored at 200Hz
(EMBLA A10 and Somnologica-3; Medcare Flaga; Thornton). Sleep and wake states
were annotated according to established criteria based on the properties of the EEG
and EMG signals (53). To determine spectral composition, EEG signals (0 to 90 Hz)
underwent a discrete Fourier transformation, using a window of 4 seconds (Hamming
function), to determine power spectral density. Delta power (1-4Hz) was extracted for
NREM sleep epochs, averaged over consecutive intervals to which an equal number
of 4-second NREM sleep epochs contribute (i.e. percentiles), and then expressed as a
percentage of the levels reached between ZT8-12 (when both delta power and sleep
homeostatic pressure reach lowest levels during baseline) during the 2 baseline days
(see (19) for details). SD and recovery time points were compared to baseline by

means of 2-way repeated measures ANOVA followed by post-hoc t-tests.

Sleep deprivation and tissue collection

Mice for tissue collection were divided into two experimental cohorts, sleep
deprived (SD) and non-sleep deprived (controls, Ctr). After a one-week habituation to
the experimental setting, at the age of 11-12 weeks, the SD mice were sleep-deprived
by gentle handling for 6 hours starting at light onset (zeitgeber time ZT0-ZT6) as
described in (53), and allowed to recover according to the tissue collection schedule.
Mice were anesthetized with isoflurane prior to decapitation. Cortex was rapidly
dissected and flash frozen in liquid nitrogen. Below, we refer to each time point in
hours from the start of the baseline day (T0) until the end of tissue collection on Day

8 (T198), with SD occurring from T24 to T30. The study design is represented in Fig
25
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1A: control mice were sacrificed at ZTO0, ZT3, ZT6, ZT12 and ZT18 of the first day of
experimentation (samples TO-T18), serving as a baseline day (Day 0). On Day 1, SD
mice were sacrificed at the same time of day as on Day 0 (samples T24-T42, with T27
and T30 samples being taken after 3h and 6h SD, respectively), on Day 2 at ZT0, ZT6,
ZT12, ZT18 (samples T48-66), as well as ZT0 and ZT6 on Day 3 (samples T72-78).
Sampling at ZT3 on Day 0 and Day 1 served to provide an intermediary time point
increasing the time resolution during SD. Finally, two groups of mice were allowed to
recover for 7 days after SD, before being sacrificed at ZT0 and ZT6 (Day 8, samples
T192-198). We collected 3-4 replicates per time point and condition, and 8 replicates
of ZTO controls from two different animal batches, which were divided evenly
between TO and T24 in the analysis. T192 and T198 were collected to probe the
persistence of the effects detected during Days 1-3. The clustering and model fitting

analyses used time points TO-T78.

Tissue processing and sequencing library preparation

Frozen cortex of each individual was ground in liquid nitrogen and stored at -
80°C until further use. Tissue from each mouse was distributed to the two protocols
(RNAseq and ATAC-seq), such that both datasets originate from the exact same set of
individuals, allowing us to use the paired information when correlating the two
datasets (see below). The only exception was time point T66, where two out of three
ATAC-seq replicates needed to be excluded from the analysis due to sequencing
failure.

Total RNA was extracted using the miRNeasy kit (Qiagen; Hilden, Germany)
following the manufacturer's instructions.

RNA-seq libraries were prepared using 1000 ng of total RNA and the Illumina

TruSeq Stranded mRNA reagents (Illumina; San Diego, CA, USA) on a Sciclone
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liquid handling robot (PerkinElmer; Waltham, MA, USA) using a PerkinElmer-
developed automated script. Libraries were sequenced on the Illumina HiSeq 2500
sequencer, producing >36 million (median 55 million) mappable single-end 100 bp
reads.

ATAC-seq was performed with minor modifications from (54). 100'000 nuclei
were treated with 2.5 ul Tagment DNA enzyme (Nextera DNA Sample Preparation
Kit, Illumina) in transposition buffer (10mM Tris Base, SmM MgCl,, 10% DMSO,
pH 7.6, adapted from (55)) at 37°C for 30 minutes, followed by cleanup on a Qiagen
Minelute column. Fragments >1kb in size were removed using 0.6X, then 1X,
volumes of AmpureXP beads (Beckman Coulter Life Sciences; Indianapolis, IN,
USA). DNA fragments were subjected to 11 cycles of PCR amplification with
Nextera dual index primers (Illumina) and the NEBNext High Fidelity 2X PCR
Master Mix (New England Biolabs; Ipswich, MA, USA). PCR reactions were cleaned
up with one volume AmpureXP beads, quantified by Qubit (ThermoFisher Scientific;
Waltham, MA, USA) and quality controlled by Fragment Analyzer (Advanced
Analytical Technologies; Ankeny, IA, USA). Libraries were sequenced on the
[llumina HiSeq 2500 sequencer, producing >25 million (median 41 million) mappable
50 bp paired-end reads per sample after removal of duplicate and mitochondrial

sequences.

Sequencing data analysis

Transcript abundance was quantified by kallisto version 0.43.0 (56) using the
GRCm38 reference transcriptome (mm10) and the parameters --single -1 100 -s
20 -b 100. The abundances were processed as follows using sleuth version 0.29.0
(57): transcript abundances were merged into gene counts in transcripts per million

(TPM), after which we applied a detection cutoff of 5.5 on the mean gene counts
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across samples in the time series, yielding a set of 13'842 expressed genes which were
used for further analysis. Batch effects were corrected by ComBat (R package
sva_version 3.25.4 (58)). Batch-corrected transcript abundances and scaled
abundances are given in Tables S1 and S2. For genome browser visualization,
sequence reads were aligned to the mouse genome (mm10) using kallisto version 0.44
with the same alignment parameters used for quantification and transformed into bam
files using the ~genomebam parameter with the Mus musculus. GRCm38.93.gtf
ensembl release 93 annotation file. Alignment files were finally converted to bigwig
using deepTools (59).

ATAC-seq reads were aligned to the mouse genome (mm10) using bowtie2
(60) in paired-end mode, with the parameters recommended for open chromatin (--
very-sensitive --maxins 2000 --no-mixed --no-discordant). Duplicate

sequences were removed using samtools rmdup (61).

Differential gene expression

Differential expression at each time point was performed using the Wald test,
implemented in sleuth version 0.29.0 (Pimentel et al. 2017). Each time point during
and after SD was compared to the corresponding baseline time, i.e. the same ZT
time. We note that expression levels at T192 and T198 were not significantly different

from baseline at TO, respectively T6 (FDR adjusted p-value > 0.05).

Clustering of mRNA profiles

To uncover temporal patterns of mRNA abundance, we performed k-means
clustering on genes displaying statistically significant temporal expression, defined as
follows: to identify genes displaying a statistically significant effect over time, we

used a likelihood ratio test implemented by sleuth version 0.29.0 (57), comparing a

28


https://doi.org/10.1101/677807
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/677807; this version posted June 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

full model with a parameter for each time point plus a batch effect (i.e. t=[0, 3, 6, 12,
18,24, 27, 30, 36, 42, 48, 54, 60, 66, 72, 78] plus a batch effect) versus a null model
with no time effect (i.e. only a batch effect). We used an FDR-adjusted p-value cutoff
of 0.001, which yielded 3461 statistically significant genes, which were used in the
clustering analysis. This conservative cutoff was adopted to ensure the discovery of
robust temporal patterns. For a range of number of clusters, k, we calculated the
within cluster variation as the sum of the Euclidean distance between data points and
their assigned cluster centroids and empirically chose A=10 as a balance between
variance explained and generalizability of each cluster. The proportion of genes at
each time point with a p-value < 0.05, as calculated from a likelihood ratio test

between SD and Ctr, is represented by a grey shaded bar above each cluster.

mRNA time course analysis

We used a model selection approach to classify the temporal log mRNA
abundance m(t) of all 13'842 expressed genes into the scenarios described in Results
and represented in Fig S1B. The models can be expressed as stated below. For models
2, 5 and 6, sleep-wake history was used to model the synthesis rate of mRNA
according to Process S in the 2-two process model (19) using sleep-wake data from
n=12 C57BL/6J mice of the same age and sex and recorded under the same conditions

(12).

1: Flat model with constant ¢ and noise € (F)

m(t)=u+e

2: Sleep-wake model (S)
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am(t)
T;lt =S U, L, T, Ts) — Ymrnam(t),
where the production function S is defined recursively:

S(t: UlL,ty,Ts, S|t=t—1) =

{ U—(U—S|i=¢—1S(t — 1) exp(—A4At/1,,) if awake
L+ (S|¢=t—1S(t — 1) — L) exp(—A4t/ty) if sleep

with

At: mean period of continuous wake or sleep, defined by sleep-wake data from
12 mice

U: asymptotic value for long periods of wake

L: asymptotic value for long periods of sleep

Ymrma: degradation rate of mRNA

S|;=¢: previous value of S

S|=0 = Sp: initial value of S

S(t; UL, Tw) Ts) = S(t' UL, Ty Tsy S|t=t—1)

The interpretation of this model is that mRNA abundances are driven by
regulatory dynamics that follow Process S. Including a degradation rate of mRNA
Ymrna allows genes driven by the sleep-wake distribution but having long half-lives to
still be fit by the sleep-wake model, since a delay in the response is then expected.

We solved the differential equation for m(t) using the Euler method with a

time step of 0.1 hours. We will call the solution of this differential equation
D(t, 5sleep) where 5sleep are the sleep parameters, Sy, U, L, Ty, Ts, Vmrna-
The model we try to fit is therefore:

m(t) = D(t, 5sleep) +€
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3: Cosine oscillatory model (C)

m(t) = u+ acos(wt) + bsin(wt) +¢€
with:

u: mean of signal

\(a + b)* mean to peak amplitude of signal
tan (b/a): phase of the signal

w = 2I1/24 : angular frequency

€ : Gaussian noise

4: Cosine model with change in amplitude (Cy).

1 fort < 33h

m(t) = u+ A(t)(a cos(wt) + bsin(wt)) + €, A(t) = { cfort>33h’

where t=33 h corresponds to 3 h after the end of SD. Thus, in this model the
amplitude is changed by a factor c after # =33 h, i.e. between T30 and T36. We have
chosen to allow for a single change over the time course, as the time resolution and
sampling length in time only allows to confidently follow one complete oscillation

cycle.

5: Sleep-wake and oscillatory model (S+C)
m(t) = D(t, 5sleep) + acos(wt) + bsin(wt) + €,
where D (t, 5sleep) is the solution to the differential equation in the sleep

model.

6: Combined with change in amplitude model (S+Ca)

m(t) = D(t, @sleep) + C(t)(acos(wt) + bsin(wt)) + €,
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where D and C are defined as above.

Of note, we also included a generic model:
m(t) = B(t) + ¢t €{0,3,6,12,18,24,27,30,36,42,48,54,60,66,72,78}

where the gene expression is modeled as the mean expression across replicates
at each time point to assess the possibility of more complex dynamics not explained
by any of the 6 models. We found that the BIC weight w was always lower for this
model than the other 6, meaning no genes were assigned to it, and therefore not
included in subsequent analyses.

For models that are nonlinear with respect to the parameters (models 2, 4-6),
we fitted the model with the optim() function in R using the L-BFGS-B method. To
constrain time constants in the S process such that resulting predictions are at steady
state during baseline, we penalized the negative log likelihood by _Epenalized =
—L+ /1()7,:=0 — ?t=24)2, where 2 = 1000 is a penalization parameter, L is the log-
likelihood from the fit, and ¥,_, — Y, is the predicted log gene expression
difference at t=0 and t=24, respectively. This penalizes predictions that deviate from
steady state in baseline. Linear models (models 1, 3, and generic) were solved using
the Im() function in R. The mRNA levels were fit in the log scale.

For each gene, we estimated the posterior probability of each model by first

calculating the Bayesian Information Criterion (BIC) scores:
B; = =2 xL; + k;log (n)
where L is the log likelihood. A better fit will improve (decrease) the BIC,

while a more complex model will penalize (increase) the BIC. Intuitively, an optimal
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model will fit the data while not using an excessive number of parameters. We
assume the model errors are independent and identically distributed following a

Gaussian distribution with variance estimated from the fits:

2 1 2
o :_Z(mi_ml)

n

L

Exponentiating the BIC scores yields Schwarz weights w;:

exp (—B;/2)
2.jexp (=B;/2)

P(M;|D) = w; =

We then assigned each gene to the model i corresponding to the largest w;.

w; assigns a probability to each model, and this probability measurement takes
into account the number of parameters & in the model through the BIC score (i.e.
complex models with large £ are penalized by having a larger B, which would have
smaller w). All genes were assigned to one model, 11141/13842 (80.5%) with a

w>=0.6, and 12111/13842 (88%) with a difference >=0.2 to the second ranking w.

Harmonic regression in baseline
To detect genes with rhythmic expression in baseline, we used harmonic
regression on the Day 0 time points, which were fit using a linear model:
m(t) = u+ a cos(wt) + b sin(wt) + €
Where:
u: mean of signal

V(a + b)* mean to peak amplitude of signal
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tan” (b/a): phase of the signal
w = 2I1/24 : angular frequency
€ : Gaussian noise

The parameters y, a, b were fit using linear regression (Im() in R).

ATAC-seq peak detection and quality control

ATAC-seq data files were processed before peak calling as follows.
Alignment files were converted into bed files and tags were extracted using bedtools
version 2.26.0. Each tag position was shifted +4 base pairs on the positive strand and -
5 base pairs on the negative strand to center tags on transposase binding events as
suggested by (31). The peak calling was performed on pooled tags for replicates using
Macs?2 version 2.1.1 (62) [--nomodel --shift -75 --extsize 150], and
peaks were filtered using a 0.05 FDR cutoff for a local random Poisson distributed
background noise, captured by Macs?2. Peak boundaries were merged between time
points and conditions in order to build a common peak mapping reference covering all
samples, encompassing a total of 215'045 peaks. Finally, peak coverage was
quantified using HTSeq version 0.6.1 for each sample, using the common mapping
reference. We filtered low coverage peaks using a minimum mean threshold of 10
reads per peak and obtained 130’727 peaks.

We next performed two steps of quality control. First, we examined which
genomic elements overlapped with our peaks and found that the proportion of ATAC
peak basepairs mapping within introns and exons according to the
Ensembl GRCm38/mm10 all genes reference annotation (63) (62%) was higher than
for the whole genome (44%), confirming that with ATAC-seq we are preferentially
targeting active, i.e. accessible, parts of the genome. Second, we probed whether

genes within accessible regions were enriched in cortex/brain tissue. To this end, we
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used the Bgee database and topAnat (64) to look for significant enrichment, and found
that the top 20 enriched tissues were all nervous system structures (Table S3, FDR p-
value < 10e-8). Finally, the proximity in the PCA of the two technical replicates at
T24 attests the reproducibility of ATAC-seq over different batches of sequencing (Fig

6A).

ATAC-seq clustering and differential accessibility analysis

To identify patterns of chromatin accessibility over time, we performed a
clustering analysis using the same strategy as for gene expression. We identified 4824
sequences displaying a significant effect over time (LRT implemented in edgeR, FDR
cutoff 0.001) and performed a k-means clustering (k=10).

To identify peaks with differential accessibility, we first normalized count data
using a TMM normalization, applied a 10 read count threshold, and used a likelihood
ratio test implemented in edgeR. We compared chromatin accessibility of SD samples
(T27-198) with the corresponding ZT during baseline (T0-18, see Fig 1A). Thus, for
differential accessibility at ZT3, we compared T27 with T3, at ZT6, T30 and T6, etc.

p-values were adjusted using the Benjamini & Hochberg (FDR) method (65).

Genomic distribution of ATAC-seq peaks

The annotation of the detected ATAC-seq peaks was performed using PAVIS

with the Ensembl GRCm38/mm10 all genes reference annotation (63).

Peak-to-gene expression association

To associate gene expression dynamics with chromatin accessibility dynamics,
we used a Pearson correlation coefficient across the samples and confined the
possible association tests to previously defined topological interaction domains

(TADs), which were computed from cortex tissue in Ref. (36). The positions of TAD
35


https://doi.org/10.1101/677807
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/677807; this version posted June 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

boundaries were originally detected using the mm9 reference genome, so we
converted them to mm10 using CrossMap 0.2.6 (66). For association statistics, we
used a strategy similar to that implemented within FastQTL (67). Specifically, the
time series of each pair, consisting of a peak and a gene within the same TAD, were
associated using the Pearson correlation coefficient. For each gene, only the top
correlated peak was retained. To control for multiple associations within a TAD and
adjust nominal p-values, we used 1000 permutations per gene and modeled the null
distribution fitting a beta distribution. The parameters were estimated using a
maximum likelihood approach (R/MASS::fitdistr). Finally, a genome-wide p-value
adjustment was computed using a g-value procedure (R/qvalue). Of the 11143 genes
mapping within a TAD, 3294 were associated to an ATAC-seq peak within the same

TAD using a 0.05 FDR cutoff.

Prediction of transcription factor (TF) binding site (TFBS) activity in
promoters

We inferred TF activity, based on the presence of TF motifs within ATAC-seq
positive regions and the abundance of the nearby transcript, assuming that an
accessible region containing TF binding motifs will be bound by the corresponding
TF and transcription will occur as a result. Specifically, we used position weight
matrices (PWMs) of 179 mouse transcription factors (TFs) defined by SwissRegulon
on mm9 (http://swissregulon.unibas.ch). For each of the 179 PWMs, we scanned 500
bp windows within 15 kb upstream and 15kb downstream of transcription start sites
using MotEvo (68) to obtain a site count matrix for each motif. We retained only
regions containing ATAC-seq counts greater than 0.1 RPM (reads per million mapped
reads). The site count matrix of each motif was scaled across genes so that ranges in

site counts were comparable across motifs. We inferred TF activity using the TF

36


https://doi.org/10.1101/677807
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/677807; this version posted June 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

binding site predictions and the temporal mRNA abundance, using a penalized
regression model (MARA) as previously described (40, 41) and using an L, norm
penalty for regularization (ridge regression). Prior to the regression, we mean-
centered the input matrix of temporal mRNA abundances, standardized the columns
of the site count matrix (each motif across genes), and excluded genes that were

assigned to the flat model (F).

Data and code accessibility

Raw read files (.fastq), RNA transcripts per million (TPM), ATAC-seq peak
calls and quantification are publicly available in the GEO/SRA repository under ID
[to be communicated]. Code to run the model selection analysis is publicly available,

found at https://jakeyeung@bitbucket.org/jakeyeung/sleepdepanalysis.git.
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Figure Legends

Fig 1 Study design and long-term effects of SD on sleep behavior and EEG delta
power.

(A) Tissue collection schedule with time in hours from beginning of the experiment
(T) and corresponding zeitgeber time (ZT). White and grey bars: 12h:12h light/dark
cycle. Red bar: SD. (B) Long-term effects of SD on NREM sleep delta power (1-4Hz,
top), and NREM and REM sleep quantity (bottom, black, respectively green lines).
Mean delta power values (x SEM) are expressed as the percentage of intra-
individual deviations from the time interval in baseline with the lowest overall
power (ZT8-12, average across 2 days). Asterisks denote significant increases (red)
and decreases (blue) compared to baseline (t-test, p<0.05, n=6). White and grey

shading: 12h:12h light/dark cycle. Red shaded area: SD.

Fig 2 Sleep-wake history is the main driver of transcriptome dynamics.
(A) Principal component analysis of the expression of the 13'842 detected genes.

The number in parenthesis in the axis label denotes the fraction of the variance
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explained by the component. Colors denote zeitgeber time (ZT0-ZT12: light period,
ZT12-ZT0: dark period). Baseline samples are represented by discs and samples
collected during or after SD by triangles. Text labels denote time of sample
collection according to the experimental design (see Fig 1A). (B) First principal
component plotted over time (top). Time spent awake over time averaged across
12 mice (bottom), with y-axis denoting the number of minutes the mice spent
awake over the last 5 minutes. C. K-means clusters of the 3461 genes with
statistically significant temporal gene expression (FDR adjusted p-value < 0.001,
likelihood ratio test). Blue dashed line: average of the cluster under baseline,
repeated for comparison over the three days of the experiment. Light grey thick
line: cluster average. Red box: SD. Grey shaded bar at the top of each graph:
proportion of genes with p-value <0.05 according to a likelihood ratio test between

SD and baseline conditions at the same ZT.

Fig 3 Modeling temporal transcriptome dynamics.
(A) Example of model fitting on Nrid1. Dots: RNA level data points. Bold line: best
fitting model (here C,with w=0.977). Temporal EEG data as in Fig 2. Red box: SD. (B)

Number of genes per model. (C-H) Examples of a gene fit to each model.
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Fig 4 Repartition of gene sets in the different models, contrasted with all
transcripts detected.

Red bars: target set. Blue bars: all detected genes. Enrichment statistic by chi-
square test. (A) 75 sleep-wake driven genes from (21), p-value = 1.2e-14. (B) 207
genes affected by SD at any time of day (Table S5 in (13)), p-value = 2.6e-21. (C) 862
rhythmic genes during baseline Day O (this study, p-value = 2.4e-76). (D) 918 genes
rhythmic under baseline conditions (Table S3 in (13)), p-value = 2.3e-14. (E) 260
genes still rhythmic when sample collection was preceded by 6h SD (Table S4 in
(13)), p-value = 0.00024. (F) 2863 genes differentially expressed at T27 and/or T30

(i.e. the union of T27 vs. T3 and T30 vs. T6, p-value = 1.2e-237).

Fig 5 Contribution of the S and C components to phase and amplitude of
oscillating genes under baseline and after SD.

(A) Phase maps of non-flat model genes. Each cone reflects the number of genes
peaking during one hour around the ZT clock. Non-C model genes are divided
according to the direction of change of the amplitude (C,), or the direction of the
change in expression happening under wakefulness (S, S+C, S+C,), i.e. the sign of
the difference between the expression value given by the model after long
wakefulness episodes minus that after long sleep episodes. (B) Scatter plots of the
log2 amplitude before and after SD for models C, and S+Cj. (€C) Contribution of the
S and C components (red and blue dotted curves, respectively) to the overall
temporal gene expression profile (solid black curve) of three example genes. (D)
Difference between the highest point before and after SD, both compared to the
baseline average, for models S, S+C and S+Ca. (E) Number of differentially

expressed genes at each time point.
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Fig 6 Chromatin accessibility shows sleep-wake driven dynamics and a rapid
response to SD.

(A) Principal component analysis of all detected ATAC-seq peaks. Plot features as in
Fig 2A. A black symbol outline highlights technical replicates. (B) Second principal
component plotted over time. Color and shape code as in A.

Fig 7 Gene expression predominantly correlates with the dynamics of distal
accessible genomic regions rather than promoters.

(A) Distance from ATAC-seq peak to the associated TSS. (B-E) Temporal patterns of
gene-peak associations (with promoter for genes associated with distal elements).
Top: RNAseq signal. Middle and bottom: ATAC signal of the distal element, resp.
promoter, of the associated gene. Red box: SD. Grey shading: dark phase of the

light-dark cycle.

Fig 8 SRF activity in the response to SD.

(A) 179 TF motifs ranked by z-score that explains the temporal dynamics in the
RNA-seq dataset. (B) Inferred temporal activity of SRF. Error bars are standard
deviations of the activity estimates. Lower bar denotes time spent awake in 5-

minute bins. (C) Srf transcript time course.
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Figure 4
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Figure 7
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