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Abstract 

The timing and duration of sleep results from the interaction between a sleep-

wake driven, or homeostatic, process (S) and a circadian process (C), and involves 

changes in gene expression and genomic regulation. Unraveling the respective 

contributions of S and C, and their interaction, to transcriptional and epigenomic 

regulatory dynamics requires sampling over time under unperturbed conditions and 

conditions of perturbed sleep. Here, we profiled mRNA expression and chromatin 

accessibility in the cerebral cortex of mice over a three-day period, including a 6-hour 

sleep deprivation (SD) on day two. Mathematical modeling established that a large 

proportion of rhythmic genes are actually governed by Process S with varying degrees 

of interaction with Process C, sometimes working in opposition. Remarkably, SD 

causes long-term effects on gene expression dynamics, outlasting phenotypic 

recovery, most strikingly illustrated by a dampening of the oscillation of most core 

clock genes, including Bmal1, suggesting that enforced wakefulness directly impacts 

the molecular clock machinery. Chromatin accessibility proved highly plastic and 

dynamically affected by SD. Distal regions, rather than promoters, display dynamics 

corresponding to gene transcription, implying that changes in mRNA expression 

result from constantly accessible promoters under the influence of distal enhancers or 

repressors. Srf was predicted as a transcriptional regulator driving immediate response, 

suggesting that Srf activity mirrors the build-up and release of sleep pressure. Our 

results demonstrate that a single, short SD has long-term aftereffects at the genomic 

regulatory level. Such effects might accumulate with repeated sleep restrictions, 

thereby contributing to their adverse health effects.  

 
Keywords: circadian, sleep, gene expression, epigenetics, long-term effects, exposure  
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Significance statement 

When and how long we sleep is determined by the time-of-day and how long we have 

been awake, which are tracked molecularly by a circadian and a sleep-wake driven 

process, respectively. We measured the long-term consequences of a short-term sleep 

deprivation (SD) on gene expression and regulation in the mouse brain, and used 

mathematical models to determine the relative contributions of the circadian and 

sleep-wake driven processes. We find that many genes, including most of the genes 

that constitute the molecular circadian clock, are perturbed by SD long after the mice 

ceased showing behavioral signs of sleep loss. Our results have implications for 

human health, given the high prevalence of insufficient and poor quality sleep in our 

contemporary society. 
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Introduction 

According to the two-process model (1, 2), sleep regulation results from an 

interaction between the sleep homeostatic process (Process S) and the circadian 

process (Process C). The sleep homeostat keeps track of pressure for sleep as it 

increases during wake and decreases during sleep, while the circadian process dictates 

the optimal time-of-day for sleep to occur. Their fine-tuned interaction assures 

optimal timing, duration and quality of both wakefulness and sleep, and even minor 

changes in either of these processes or their alignment cause performance decrements 

and clinically significant sleep disruption (3, 4). 

The circadian clock is described as self-sustained 24h oscillations involved in 

a variety of physiological processes and behaviors such as sleep (3, 5). It is encoded 

molecularly through negative feedback loops involving the core clock genes, which 

are capable of generating oscillations in constant environmental conditions, i.e. in the 

absence of periodically occurring time cues such as the light-dark cycle (6). However, 

this apparent autonomy does not inevitably imply that the expression of all genes 

displaying a rhythm with a period of 24-hours is directly driven by the circadian clock. 

For example the light-dark cycle, besides entraining the circadian clock, directly 

influences many physiological and behavioral processes (7). Also, the rhythmic 

organization of sleep-wake behavior and associated feeding and locomotion directly 

drives gene expression (8). Disentangling the respective contributions of the circadian 

and sleep-wake driven processes is experimentally challenging and has been 

addressed by methods suppressing one component (e.g. surgical or genetic ablation of 

circadian oscillators) or uncoupling their relationship through forced desynchrony or 

sleep deprivation (SD) (3, 9). 
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SD experiments aiming at identifying genes associated with the sleep 

homeostatic process follow the rationale that causing mice to stay awake during a 

time when they normally sleep will induce an acute response in sleep-wake driven 

genes. Indeed, studies comparing gene expression levels immediately after SD with 

controls collected at the same time-of-day have identified many differentially 

expressed genes (10-13), and a few studies have probed the punctual effect of SD at 

different times of the 24h cycle in mice (13, 14), or expression dynamics in blood 

during SD in humans (15, 16). However, assessing the respective contributions of the 

two processes requires measuring gene expression over multiple time points, not only 

under SD, i.e. enforced waking, but also under spontaneous sleep-wake dynamics pre- 

and post-SD. Furthermore, to systematically link temporal gene expression to the 

sleep-wake distribution and/or circadian clock, the analysis should consider the entire 

time series, rather than only pair-wise differential comparisons. Finally, the regulatory 

mechanisms underlying such dynamics are largely unexplored (17), particularly in 

this kind of dynamic context. 

To systematically investigate the gene expression dynamics caused by one 

acute SD episode, as well as the underlying regulatory events, we measured 

chromatin accessibility alongside mRNA expression in the cerebral cortex of adult 

C57BL6/J mice over 24 hours before, during, and over 48 hours following one 6-hour 

session of total SD, as well as 7 days after the intervention. We modeled the entire 

time series based on the assumptions of the two-process model to objectively assess 

whether the mRNA accumulation dynamics of each cortically expressed gene follow 

Process S, Process C or a combination thereof. This setting allowed us to characterize 

the temporal dynamics of the consequences of SD on gene expression and regulation, 

and dissect the interaction between Processes S and C. Moreover, we identified 
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genomic regulatory elements implicated in the transcriptional response to sleep loss 

by exploring the hitherto understudied epigenetic landscape of sleep (18). 

Results 

Behavioral response and recovery after sleep deprivation 

We observed the typical distribution of sleep over 24 hours in baseline, with 

mice spending most of the light period asleep, while being predominantly awake 

during the dark period (Fig 1B, bottom). Delta power in NREM sleep (Fig 1B, top), 

an EEG-derived variable considered to reflect sleep ‘pressure’ (Process S), was high 

after spontaneous waking in the dark phase and decreased during the light phase, and 

we observed the well-known effects of SD, namely an increase in delta power in the 

45 minutes immediately following SD and a rebound of time spent in NREM sleep 

observed during the first 12h of recovery (T30-T42). We found that values for NREM 

sleep no longer significantly deviated from baseline levels already after T42 (Fig 1B 

bottom, black line). During the dark phase (T36-48), delta power even dropped below 

the levels reached at this time during baseline, likely as a consequence of the 

increased time spent in NREM sleep during the first 12h after SD. REM sleep was 

affected in the same manner as NREM sleep (Fig 1B, bottom, green line). 

We asked whether the fast reversal of the phenotype in the EEG data would be 

paralleled by changes at the gene expression and regulatory levels in the cerebral 

cortex, or whether novel molecular dynamic patterns could be observed. We therefore 

measured and analyzed the temporal dynamics of transcriptomes and chromatin 

accessibility over a total of 78 hours, including baseline, SD and recovery.  
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Sleep-wake history is the main driver of transcriptome dynamics  

We first examined the detected fraction of the transcriptome (13'842 genes) 

using principal component analysis (PCA, Fig 2A). We observed that samples formed 

three groups along the first principal component (PC1) axis. The left-most group 

gathered time points during the light phase of the LD cycle where mice generally 

spend more time asleep, while the middle group represented time points during the 

dark phase when mice are predominantly awake (i.e. the former group spent more 

time asleep prior to sampling than the latter). This separation could evoke that PC1 

separates samples according to time of day, however this notion is challenged by the 

shift towards the right of the samples taken at ZT3 and ZT6 during SD (T27 and T30), 

i.e. in the complete absence of sleep, suggesting that the PC1 axis follows (from left 

to right) increased time spent awake prior to sampling rather than zeitgeber time (ZT). 

To illustrate the sleep-wake-driven dynamics underlying PC1, we overlaid 

PC1 with the average amount of waking over time (Fig 2B). PC1 increased during 

periods of waking, decreased during periods of sleep, and, importantly, reached its 

maximum during SD, in a pattern strongly reminiscent of Process S and EEG delta 

power ((19) and Fig 1B, top). PC1 thus reflects the amount of sleep prior to sample 

collection and highlights the pervasive impact of sleep-wake distribution on gene 

expression, which we further explore below.  

Clustering of mRNA temporal profiles highlights diverse response and 

recovery kinetics  

To uncover and classify general temporal patterns in our data, we first 

performed an exploratory analysis using k-means clustering. With this unsupervised 

clustering, we grouped the temporal expression of 3461 genes displaying statistically 

robust temporal variation from T0 to T78 (FDR-adjusted p-value < 0.001, see 
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Methods). This analysis on a conservatively selected subset of genes aimed to 

uncover broad dynamics in the dataset. We observed distinct profiles of response to 

SD and subsequent recovery by comparing the cluster average of T24-T78 with the 

baseline day (T0-T18, Fig 2C, light grey line and blue dashed line, respectively). Here, 

"response" refers to temporal patterns from T24 to T78 that deviate from baseline at 

corresponding ZT times (e.g., T30 and T54 are compared with T6; T36 and T60 are 

compared with T12, etc.). "Recovery" refers to patterns that return towards baseline 

levels. Genes in clusters 1-6 displayed an immediate response, with many showing 

marked differences detectable already during and at the end of SD, i.e. at T27 and 

T30 (Fig 2C). In cluster 7, the response progresses until T36, after which reversal 

takes place. This "prolonged" response is to differentiate from a "delayed" response as 

in cluster 8, where the first significant difference to baseline is visible 6 hours after 

the end of SD.  

At the level of recovery, clusters 1-4 show a fast recovery, where baseline 

levels are reached already at T36, making them reminiscent of delta power dynamics. 

Meanwhile, clusters 5 and 6 contain genes that revert more slowly, reaching baseline 

at T42 in a pattern paralleling the recovery dynamics of time spent asleep. Cluster 7 

also displays slow recovery, with baseline levels attained 12 hours after the peak 

response at T36. In cluster 8 we observe a distinctive recovery pattern in the form of 

an increase at T48 following the initial downregulation at T36. Finally, clusters 9 and 

10 showed a prominent 24-hour rhythm with subtle, if any, perturbation by SD (mean 

p-values across genes > 0.24). 

Generally, the fast response and fast recovery dynamics, together with a 

direction of change opposite to what is expected by time-of-day, suggests that these 

genes are sleep-wake driven, i.e. genes that usually go up when the mouse is 
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predominantly asleep are downregulated during SD (clusters 2, 4, 6) and vice versa 

(clusters 1, 3, 5). Also, the slower dynamics of response and recovery (cluster 7, 8) 

suggests that the effects of SD can also occur downstream of the immediate response 

and last beyond the exposure itself, and suggests that the time required for molecular 

recovery exceeds the time for phenotypic recovery. 

Modeling temporal transcriptome dynamics 

To better characterize and distinguish these expression dynamics, we sought, 

given our observations, to model gene expression over the entire time course 

including baseline, SD and the aftermath of SD, taking into account that the response 

and recovery can be sleep-wake driven, circadian or a mixture of both. Also, because 

rhythmicity can be suppressed or altered during mistimed or restricted sleep (13, 15, 

16, 20), we included the possibility that it could remain perturbed after the end of the 

SD. 

Explicitly modeling the temporal dynamics of mRNA profiles can offer 

advantages over unsupervised methods such as the k-means clustering implemented 

above. Indeed, the parameters of a model can give biological insights into the 

underlying dynamics, competing models can be systematically compared, and explicit 

hypotheses can be tested. Thus, modeling will unify dynamics that appear in separate 

clusters (e.g., Cluster 1 and 4 may both have sleep-wake driven genes), and 

differentiate dynamics that appear in the same cluster (e.g., Cluster 9 contains both 

SD-resistant and SD-sensitive dynamics, see Fig S1A).  

We thus devised 6 models to explain the gene expression dynamics of the full 

transcriptome (n=13’842 detected genes) (Fig S1B): (1) constant or ‘flat’ model (F); 

(2) sleep-wake history modeled from sleep-wake data (S, in analogy to Process S in 

the 2-process model (1)); (3) cosine dynamics with a 24-hour rhythm (C); (4) cosine 
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with amplitude change after SD (CA); (5) sleep-wake + cosine (S+C); (6) sleep-wake 

+ cosine with amplitude change (S+CA). To select the best among competing models, 

we used the Bayesian Information Criterion (BIC) to balance model fit and model 

complexity, which we transformed into model weights w (see Methods). For each 

gene, the sum of the weights for all 6 models equals 1, and the model with the highest 

weight is assigned to the gene. Each gene is assigned one of the 6 models. In the 

example of the core clock gene Nr1d1 (RevErbα, Fig 3A), the selected model was 

cosine with amplitude change after SD (model CA, represented as a bold line), due to 

a very high weight w=0.977. Indeed, the baseline pattern (from T0 to T24) is 

consistent with a circadian oscillation, the amplitude of which is significantly reduced 

after SD and, surprisingly, not re-established by T78. All fits are presented in Table 

S4.  

Model S recapitulates known sleep-wake driven genes and closely parallels 

EEG delta power dynamics 

We summarized the genes assigned to each model genome-wide (Fig 3B), and 

found that, out of all temporal models (i.e. excluding the flat model which fit 7391 

genes, example Fig 3C), the sleep-wake driven model (model S) had the largest 

number of genes assigned to it (2677 genes, example Fig 3D), consistent with the 

interpretation of PC1 reflecting sleep-wake history and the predominance of fast 

response dynamics in our cluster analysis (clusters 1-6). Analyzing the parameters of 

genes associated with model S, we found that the fitted time constants describing 

model S corresponding to wake (𝜏!, median = 7.05 h) and sleep (𝜏!, median = 1.68 h) 

were strikingly close to the dynamics of EEG delta power found in (19) (8.0h, 

respectively 1.8h) for this inbred strain. These dynamics closely resemble an 
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immediate early gene (IEG) response, raising the possibility that EEG delta power is 

linked to, or even preceded by, a molecular change in the brain.  

Model S included genes previously described as affected at the end of SD such 

as Egr2, Arc, Fos and Cirbp (12, 13, 21) (Fig 3D and Fig S2 pages 1-3, all w>0.833), 

but also, surprisingly, the core clock genes Clock and Npas2 (w=0.787, resp. w=0.527, 

Fig S2 pages 4-5). Generally, we found the overwhelming majority of known sleep-

wake driven genes to be correctly assigned by our model selection method. For 

example, the dynamics of 72 out of 75 (96%) genes previously described as sleep-

wake driven (21) were affected by SD and fully or partially explained by the sleep-

wake data (i.e. assigned to models S, S+C and S+CA, Fig 4A, p-value = 1.2e-14, chi-

squared test). Similarly, we found that 181/207 (87%) genes previously described as 

affected by SD at any time of day in whole brain (Table S5 in Ref. (13)) were also 

inferred to be affected by SD (i.e. assigned to the same models) in our model selection 

(Fig 4B, p-value = 2.6e-21, chi-squared test). Consistently, genes that were 

upregulated during waking all had their maximum expression during the baseline dark 

period, while those downregulated during waking peaked during the baseline light 

period (Fig 5A). 

mRNA expression of all but one core clock gene is sensitive to SD  

Following closely, the cosine model (model C) was the third most abundant 

category with 2457 genes. This model gathers genes the oscillation of which is largely 

unaffected by SD as illustrated by the top fit Caskin2 (w=0.880, Fig 3E). The genes 

with the largest amplitude showing 24-hour oscillations in gene expression resistant to 

SD were Sgk1, a glucocorticoid regulated kinase, and Cldn5, a principal tight junction 

protein in the blood-brain barrier (Fig S2 pages 6-7), reaching their peak just before 

the light-to-dark and dark-to-light transitions, respectively. Generally, examining the 
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oscillation patterns of this group of genes, we find that the phases (i.e. time at which 

expression peaks) of model C genes are not random, but tend to accumulate in the 

second half of the light or dark phases (ZT10 and ZT22, Fig 5A). 

Interestingly, our algorithm assigned Cry1 as the only core clock gene in this 

model, with model CA second in explaining its mRNA dynamics (w=0.661 and 

w=0.336 respectively, Fig S2 page 8). The other clock genes, instead of fitting model 

C as might be expected, were assigned to model S (see above), the altered amplitude 

model CA or the more complex models (models S+C and S+CA, see below). Clock 

genes assigned to model CA (which contained in total 794 genes) had dampened 

amplitudes after SD, and encompassed the example Nr1d1/Rev-erbα (Fig 3A), as well 

as Arntl (Bmal1, Fig 3G), Per3, Cry2 and Nr1d2 (RevErbβ, Fig S2 pages 9-11). 

Except for Cry2, where the top weights were w(CA)=0.645 and w(C)=0.347, the 

model C weight w(C) of the other clock genes was negligible (highest w(C)=0.0003 

for Nr1d1), meaning the clock genes were assigned to CA either unequivocally, or 

with a close call to the more complex models S+C and S+CA (Table S4). Model CA 

also contained genes with increased amplitudes (331/794; 42%) after SD, such as 

Erbb3, Eva1b, Zfp473 and Akr1cl (Fig 5B, Fig S2 pages 12-15). Interestingly, the 

phases of expression differed between the genes with increased vs. decreased 

amplitudes, the former group having a similar distribution of phases to those of model 

C genes (Fig 5A).  

Oscillating transcripts in baseline are often sleep-wake driven 

We next asked if genes with rhythmic expression in our mouse cortex dataset 

were affected by SD. We therefore applied harmonic regression to the baseline Day 0 

time points, which yielded a set of 862 oscillating genes (FDR-adjusted p-value < 

0.05). Strikingly, we found that the majority of these genes (578, 67%) were assigned 
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to the S model, and that the C model was impoverished in these genes (Fig 4C, p-

value = 2.4e-76, chi-squared test). Again, we compared these results to a published set 

of 918 genes (corresponding to 2032 probesets) rhythmic under baseline conditions in 

the whole brain (Table S3 in (13)) and found a similar repartition (Fig 4D, p-value = 

2.3e-14, chi-squared test), which suggests that many of the genes that appear rhythmic 

in undisturbed conditions oscillate as a consequence of sleep and wake (which itself is 

rhythmic) rather than because of the circadian clock directly. We also examined the 

repartition of another set from the same study, namely 391 probesets which were still 

rhythmic when sampling was preceded by 6 hours SD (Table S4 in (13)). We 

expected these genes to be resistant to SD and classify mainly in model C, however, 

we found that their repartition among models was only marginally different from our 

complete set, with even a slight impoverishment of model C and enrichment of model 

S+C (Fig 4E). This indicates that the rhythmicity observed in that study was due to 

other factors besides circadian, such as the presence of a light-dark cycle, differences 

in SD side-effects (e.g. stress) when performed at different times of day, or 

differences in conditions prior to SD (such as time-spent-awake). 

Sleep and the circadian process can work in opposition to limit oscillation 

amplitudes in baseline 

Model S+C (357 genes) incorporated the sleep-wake history and time-of-day 

to output a strong response to SD while maintaining modest fold changes during 

baseline (e.g. Gkn3, Per1 and Fosb, Fig 3F and Fig S2 pages 16-17). Indeed, this 

model, together with its altered-amplitude counterpart (S+CA, see below) allowed to 

explain complex temporal patterns, notably due to interactions between the S and C 

models, additive in the log scale. For genes upregulated during SD, both the S and C 

components increased concurrently during SD, but discordantly in baseline (e.g. Fosb, 
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Fig 5C). Similarly, for genes downregulated during SD, the S and C components 

decreased concurrently during SD, but discordantly in baseline (e.g. Gkn3, Fig 5C). 

The discordant action caused dynamics in mRNA levels to be limited during baseline, 

while the concordant action during SD allows large fold changes relative to baseline. 

In comparison, in model S where the buffering by the C component is absent, the 

difference in fold change from the highest point after SD and the highest point in 

baseline, both compared to the baseline average, was smaller than for models S+C 

and S+CA (Fig 5D), meaning that expression changes in model S genes are similar 

whether wakefulness is spontaneous or enforced, and regardless of time of day. We 

note that S+C genes tend to peak around the light-to-dark and dark-to-light transitions, 

a shift in comparison with model C and model S genes (Fig 5A). 

The observation of this S+C interaction provides an intriguing parallel with 

human and primate studies of cognitive performance under forced desynchrony or SD 

protocols, where it was found that the phase of the circadian wake-promoting signal is 

timed in such a way that it opposes the sleep-wake dependent accumulation of sleep 

propensity and peaks in the hour prior to habitual sleep onset. This timing is essential 

for maintaining high and stable levels of attention and cognitive performance during 

the day as well a consolidated period of sleep during the night (22-27). 

SD represses the C component of genes with complex dynamics, leaving 

them predominantly under the control of Process S 

The most complex of our models, model S+CA (166 genes, example Dbp, Fig 

3H), incorporated sleep-wake history, time of day and altered amplitudes to model the 

response to SD and subsequent change in amplitudes after SD. In this model, we see 

that the additive dynamic process observed in model S+C (see above) can be 

accompanied by altered amplitudes after SD (Fig 5B, 104 resp. 62, dampened resp. 
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increased amplitudes), meaning that the contribution of the C component to gene 

expression dynamics, relative to that of the S component which is constant, is 

modulated after SD. For example, for Dbp, breaking down the contribution of the S 

and CA part of the dynamics show that in baseline, the expression is influenced by 

both sleep-wake history and time of day, while after SD, the contribution of time of 

day is diminished by 90% and thus the recovery dynamics are driven mainly by S (Fig 

5B, blue dotted curve). Other examples of genes with dampened amplitudes include 

Per2 (Fig S2 page 18), a gene known to be subject to complex interactions between 

Processes S and C (28), as well as clock output genes Nfil3, and Bhlhe41 (E4bp4, resp. 

Dec2; Fig S2 pages 19-20). S+CA genes peak during the first half of the light, resp. 

dark phases, at yet a different time than all other models. Still, genes displaying 

decreased expression under waking had phases overlapping with model CA (Fig 5A). 

Recovery time course uncovers hitherto unnoticed genes affected by SD 

Strikingly, a majority of the genes assigned to the amplitude-affected models 

CA and S+CA (759 out of 960 genes, 79%) were not identified when we examined 

differential expression at the end of SD alone (i.e. T30 vs. T6), as in previous studies 

(e.g. (13, 21, 29)). For example, fatty acid binding protein 7, Fabp7 (model CA, Fig 

S1A, top left), is not differentially expressed at T27 nor T30, however its oscillation 

amplitude displays the strongest reduction from T36 onwards among non-DE genes, 

possibly due to its being a target of Nr1d1 (model CA, differentially expressed at T27 

and T30) and thus downstream of the primary response (30). This was especially true 

for the CA model, where only 55 out of 794 (7%) genes were differentially expressed 

at ZT6, vs. 118 out of 166 (73%) for the S+CA model (as a comparison, 1746/2677 

(67%) genes in the S model were significantly differentially expressed at T30, and 

468/2457 (6.5%) genes in the C model). This observation highlights the importance of 
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examining the molecular recovery process from SD over time, considering dynamics 

due to both spontaneous and enforced wakefulness in the same experiment. 

Conversely, genes that were differentially expressed at T27 or T30 (2862 

genes) were enriched in models S, S+C and S+CA, and underrepresented in models C 

and CA (Fig 4F). Interestingly, 375 of these genes were assigned to model F, 

representing genes acutely affected by SD, which is not equivalent to sleep-wake 

driven, as their overall time course is perturbed only at one or both of these SD time 

points, but otherwise not modulated by the sleep-wake distribution.  

To assess how expression patterns return to baseline, we examined differential 

expression at each time point during and after SD compared to baseline (i.e. T27/T3, 

T30/T6, T36/T12 etc. until T78/T6) and found 210 genes genome wide that were 

differentially expressed after phenotypic recovery (i.e. after T42), namely 137 genes 

at T48 and 75 genes at T60. This was consistent with the observation that the 

proportion of genes with a p-value <0.05 in the cluster analysis did not reach zero for 

all post-SD time points (Fig 2C). Also, because model CA (as well as model S+CA) is 

penalized for complexity, the change in amplitude needs to be pronounced and long-

lasting for a gene to be assigned to it. Thus, the assignment of any genes to models CA 

and S+CA implies that SD alters amplitudes in gene expression rhythms and generally 

affects gene expression dynamics beyond SD. Taken together, these observations 

show that the molecular perturbations outlast the phenotypic changes, meaning that 

the mice have not yet recovered from SD despite behavioral and electrophysiological 

measures of sleep need having returned to baseline. 
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Genome-wide ATAC-seq analysis shows a rapid response and sleep-wake 

driven dynamics in chromatin accessibility 

We next asked which regulatory elements are underlying the extensive 

transcriptome response to SD. We used ATAC-seq (31) to identify a union of 

130’727 chromatin accessible regions (called peaks, see Methods) over all time points 

(i.e. a peak is present in at least one time point). The majority of detected peaks do not 

change over time and are constantly accessible. Indeed, while 25% of expressed genes 

show a time dynamic according to a likelihood ratio test at a 0.001 FDR threshold, 

only 3.7% of ATAC-seq peaks display a time dynamic at the same stringent threshold. 

While the first principal component (PC1, 10%) probably represents experimental 

noise, 7% of the variance among time points, represented by PC2, could be attributed 

to the sleep-wake history and follows sleep-wake dynamics, paralleling the RNA-seq 

data (Fig 6A, PC2 and 6B). The accessibility of these regions mimics an IEG 

response to SD with a very fast modulation of the chromatin, detected already after 

the first 3 hours of SD, a striking illustration of the plasticity of this compartment. 

The strongest differential signal relative to baseline occurred during SD with 

1793 peaks differentially accessible (differentially accessible sites, DAS) at ZT3 (T27 

vs. T3, after 3h SD); 2098 at ZT6 (T30 vs. T6, end of 6h SD), with 607 peaks in 

common. Differential signal during SD (ZT3 and ZT6) consisted predominantly of 

increased accessibility (91% of DAS for ZT3 and 88% of DAS for ZT6), while the 

645 late-responding DAS (i.e. differentially accessible at ZT12 only, T36 vs. T12, 

after 6h of recovery, Fig S3A) were more likely to be decreased (55.5%).  

To verify that the DAS we identified followed the homeostatic process, we 

asked whether the effect of spontaneous waking during the first 6 hours of the 

baseline dark phase (ZT12 to -18, when mice are predominantly awake; see Fig 1B) 
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was similar to the effect of forced wakefulness (SD). We therefore tested, for each of 

the 2098 DAS induced by SD, whether we could reject the null hypothesis of an 

identical fold-change induced by SD (T30 vs. T24) from the fold-change in baseline 

(T18 vs. T12), and found that only for 296 DAS (17%) the null hypothesis had to be 

rejected (uncorrected p-value < 0.05). Therefore, the majority of the DAS we 

identified display a similar response to spontaneous and forced wakefulness, and are 

thus likely to be sleep-wake driven instead of being affected by other factors 

associated with the SD protocol such as stress.  

Overall, dynamics in chromatin accessibility were most pronounced during 

SD, and no longer significantly differed from baseline by 12 hours after SD (T42). 

Although we cannot exclude that this seemingly faster recovery is due to a lower 

sensitivity of the ATAC-seq signal relative to RNA-seq, these results do show that 

changes in chromatin accessibility start appearing early in the response to SD, 

confirming that chromatin accessibility is dynamic and can change on short time 

scales, even faster than observed in circadian oscillations (32).  

Consistent with previous studies (e.g. (33-35)), accessibility peaks from all 

time points and conditions were mainly located in intronic or intergenic regions (Fig 

S3B). When considering only DAS sites (at ZT3, -6, or -12), the proportion of 

intergenic regions was increased at the expense of the other regions (Fisher's exact 

test FDR adjusted p-value <0.01), suggesting that SD influences the accessibility of 

distal rather than proximal elements (Fig S3C-E). Genes associated with DAS (see 

Methods) were enriched among models involving sleep-wake driven dynamics (Fig 

S3F-K) compared to all peaks, for DAS dynamic groups at ZT3, ZT6 and 

combinations of ZT3, -6 and -12 (see above, Fig S3A, p-values < 2e-10, chi-square 

test), but not at ZT12 only (p-value = 0.48). 
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Gene expression correlates with chromatin accessibility at distal elements 

rather than promoters 

Probing the general dynamics of chromatin accessibility by k-means clustering, 

we found three main types of temporal profiles, all of which were reminiscent of 

sleep-wake driven dynamics (Fig S3L). Clusters 1-3 displayed an early response to 

SD with a fast recovery, clusters 4-7 also present an immediate response, but a slow 

recovery, while clusters 8-10 displayed a late response. Because of this similarity with 

the RNA-seq clustering (RNA clusters 1-8), and because of the similarity in the 

general dynamics observed by PCA between RNA-seq sand ATAC-seq, we sought to 

connect these changes in accessibility with changes in gene expression and, as both 

signals originate from the same mouse, correlated ATAC-seq peak signal over time to 

gene expression levels over time by calculating the Pearson correlation across 

samples (Methods). We confined the possible peak-to-gene associations to a single 

ATAC-peak per gene within the same topologically associated domain (TAD) defined 

from Hi-C data generated from mouse cerebral cortex (36). In total, the expression 

level of 3294 genes was significantly associated with the ATAC-seq signal of one 

peak, at distances ranging from the transcription start site (TSS) to 5 Mb away (mean 

distance for all significant associations at 0.05 FDR: 0.65 Mb). We observed both 

positive and negative correlations between expression and ATAC-seq signal, 

implying that both enhancers and repressors are involved in the response to SD (Fig 

7A).  

Among the strongest associations (|ρ|>0.7, 34 pairs, Table S5), we found 

mostly genes assigned to models involving sleep-wake driven dynamics (i.e. models S, 

S+C, S+CA, respectively 26, 4, 1 gene), but also two genes from models C and CA 

(Hif3a, resp. Gm13889) and one gene from model F (Mid1). Only 38/3294 significant 
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gene-peak associations were proximal (i.e. the peak spanned the TSS), overlapping 

with only two genes of the top 34 pairs, namely Klhdc9, an interaction partner of 

CDK2-associated cyclin A1, Ccna1 (37) (model S, Fig 7B), and Ciart (Model S+CA, 

Fig 7C), an interaction partner and suppressor of the Arntl and Per2 proteins (38), 

thereby forming an additional negative feedback loop to the circadian molecular 

machinery. Also, because Ciart is sensitive to and affects stress signaling pathways 

(38, 39), it can be conjectured that the stress associated with SD (21) could be a factor 

contributing to the sustained circadian dysregulation of the clock gene circuitry we 

have found in the cortex. 

Thus, the majority of genes correlated more strongly with a distal element than 

with the accessibility of their promoters. Generally, the mean |ρ| value of the 

correlation between the expression and the ATAC signal spanning the TSS of all 

genes involved in an association was 0.16, while it was 0.5 for the correlation 

between expression and the ATAC signal of the top associated distal peak for the 

same genes. The top correlations to a distal element involved the environmental 

sensor Hif3a (model C, Fig 7D), and the immediate early gene Fosl2 (model S, Fig 

7E). In the case of Hif3a, the distal element (blue line) displayed an immediate 

response to SD with an increase at T27 and T30, possibly a relative decrease at T36 

before resuming the baseline pattern from T42. The promoter (green line) likewise 

showed a response at T6 followed by a slow recovery from T36 to T54, while the 

RNA oscillation (red line) was largely unperturbed. For Fosl2, we observed a fast 

response of the distal element together with the mRNA, plateauing already at T27 and 

followed by a fast recovery by T36, whereas the promoter followed a different pattern. 

We note that the variability of the ATAC-seq signal can hamper the exact definition 

of the dynamics of promoters and distal elements. We observed similar relationships 
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between gene expression and accessibility of the corresponding promoter and 

associated distal peak for the remaining genes of the top 34 correlations (Fig S4). 

The widespread lack of correspondence between promoter and transcription 

dynamics hint at a model where transcription happens from an accessible promoter 

under the regulation of a distal element mediated by transcription factors (TF). A TF 

motif activity analysis (40, 41) taking advantage of our paired RNA-seq and ATAC-

seq data predicted the SRF (serum response factor) motif to be by far the most 

statistically significant candidate in the entire temporal gene expression dataset (i.e. 

the genes assigned to models S, C, CA, S+C and S+CA, Fig 8A). The inferred 

temporal activity of SRF (Methods) was consistent with sleep-wake driven dynamics, 

paralleling the expression of the Srf transcript (Fig 8B-C). The genes with the 

strongest contribution to the enrichment signal, namely Egr2, Junb, Fos, Arc, and 

Nr4a1, are immediate early genes and were all classified under model S, as was Srf 

itself (Model S, w=0.979). Scanning the open chromatin regions corresponding to <5 

kb up- and downstream of the promoters of these genes, we found SRF binding sites 

which overlapped with ChIP-seq peaks against SRF in mouse fibroblasts (42) (see 

Egr2 as example in Fig S5). Thus, the correlation of gene expression with the 

accessibility of distal elements rather than their promoters, together with the presence 

of SRF motifs, suggests a model of the response to extended waking where SRF is 

bound to a constitutively open promoter, ready for an interaction with a distal element 

that changes its own activity and mediates the changes in gene expression. We note 

that while Srf was not identified as DE after SD in previous studies, we found it to be 

more strongly DE after 3h than after 6h SD. This observation, along with the fast 

increase in chromatin accessibility, highlights the importance of increased time 

resolution in sampling, particularly in the early hours of SD. 
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Discussion  

We have characterized the dynamics in cerebral cortex of transcriptome and 

regulatory elements in relation to the sleep-wake distribution before, during and after 

an exposure to sleep deprivation, a one-time and short intervention during the first 

half of the habitual rest phase of mice. We found that changes in both transcriptome 

and chromatin accessibility are largely governed by a sleep-wake driven process with 

or without interaction with the circadian process, and that the molecular recovery 

from SD outlasts the electrophysiological and behavioral signs of sleep need. 

We developed a model selection approach integrating sleep-wake states to 

classify genes according to sleep-wake driven dynamics, time-of-day dynamics, 

interactions between the two, with the possibility of an alteration of the oscillation 

amplitude. This set of models allowed us to classify the genes according to their 

temporal expression pattern, and determine the relative contributions of and 

interaction between the circadian and sleep-wake processes governing the expression 

of genes with 24-hour rhythms. This classification proved more powerful in 

identifying sleep-wake driven genes than past single-time-point differential 

expression studies. Further studies using higher sampling resolution for a longer time 

will allow to apply a more refined statistical framework to the recovery phase in 

particular and thus further classify the response and recovery patterns. 

A striking new finding was that most clock genes were affected by SD. 

Previous work had already shown that the cortical expression of a number of clock 

genes is affected during SD (for reviews see (29, 43, 44)) and that SD acutely 

suppresses the specific DNA-binding of the circadian transcription factors BMAL1 

and NPAS2 to their target genes Per2 and Dbp (45), demonstrating that prolonged 

wakefulness intervenes directly at the core of the circadian molecular machinery. An 
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important long-term consequence of this intervention could be the dampened 

amplitude we observed in the rhythmic expression of most of the known clock genes 

(i.e., Arntl, Per2, Per3, Nr1d1, Nr1d2, Cry2, Ciart, and the clock-output genes Dbp, 

Nfil3, Bhlhe41, all of which were model CA and S+CA genes). This long-term 

dampening of clock gene rhythms was all the more surprising given the fact that the 

observations were made under entrained light-dark conditions and in the presence of a 

largely unaffected diurnal sleep-wake distribution, two factors known to contribute to 

high amplitude clock gene expression. Because disrupted clock gene rhythms have 

been causally implicated in the etiology of disease like metabolic syndrome (reviewed 

in (4)), clock genes could be a final common molecular pathway underlying the 

etiology of metabolic syndrome associated both with insufficient good quality sleep 

and with circadian misalignment (43). 

Studying chromatin accessibility for the first time in sleep research allowed us 

to identify a set of genomic regions as first actors in a possible repertoire set in 

motion already after 3h SD and giving rise to differential gene expression. The 

increased proportion of distal elements among DAS compared to all regions, together 

with the correlation of dynamic gene expression with distal elements rather than the 

respective promoters is consistent with a scenario where expression is modulated by 

different enhancers or repressors interacting with an accessible promoter under the 

influence of regulator proteins. The implication of SRF as a candidate priming factor 

in the response to SD is compelling, as it plays a key role in activity-dependent 

modulation of synaptic strength (46), and its ortholog blistered is required to increase 

sleep after social enrichment in Drosophila (47, 48).  

Our results imply that beyond an apparent recovery from SD lie deeper, 

complex and longer-lasting molecular perturbations, even among clock genes. We 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2019. ; https://doi.org/10.1101/677807doi: bioRxiv preprint 

https://doi.org/10.1101/677807
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  

	
   24	
  

also show that genes can seem unchanged when sampled at a single time point after 

SD, yet be affected by a profound perturbation later on. These perturbations 

eventually recover, as hinted by the absence of differential expression after 7 days, 

however until baseline is reached, this temporary regulatory background could 

possibly cause the response to another exposure (repeated SD or other) to differ from 

that under the pre-SD baseline background. While it is debated whether repeated sleep 

deprivation on subsequent days alter the homeostatic response at the phenotypic level 

in rats (EEG) (49, 50), recent studies in humans found that even two nights of 

recovery sleep were insufficient to completely reverse the metabolic perturbations 

caused by multiple nights of restricted sleep (51, 52). Follow-up experiments at the 

molecular level will show how such a transient "new baseline" due to partial recovery 

would influence the response to a second event occurring before full recovery. 

Materials and Methods 

Animals 

C57BL/6J male mice were purchased from Charles River France (Lyon, 

France) and allowed to acclimate to our sleep study facility for 2-4 weeks prior to 

habituation to the experimental setting. Animals were kept in accordance to the Swiss 

Animal Protection Act, and all experimental procedures were approved by the local 

veterinary authorities. 

Surgery and EEG recording 

The EEG cohort consisted of 12 male C57BL/6J mice 10-12 weeks at the time 

of SD that were part of another study (12). Surgical implantation of electrodes, EEG 

recording and data collection were performed according to our standard procedure 
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(53). EEG was recorded from 2 days prior to SD (which were averaged to constitute a 

24-hour baseline) until 2 days after SD. In a subset (6/12) an additional 5 days were 

recorded. Electrophysiological signals were captured and transformed from analog to 

digital with a sampling rate of 2000Hz, and down-sampled and stored at 200Hz 

(EMBLA A10 and Somnologica-3; Medcare Flaga; Thornton). Sleep and wake states 

were annotated according to established criteria based on the properties of the EEG 

and EMG signals (53). To determine spectral composition, EEG signals (0 to 90 Hz) 

underwent a discrete Fourier transformation, using a window of 4 seconds (Hamming 

function), to determine power spectral density. Delta power (1-4Hz) was extracted for 

NREM sleep epochs, averaged over consecutive intervals to which an equal number 

of 4-second NREM sleep epochs contribute (i.e. percentiles), and then expressed as a 

percentage of the levels reached between ZT8-12 (when both delta power and sleep 

homeostatic pressure reach lowest levels during baseline) during the 2 baseline days 

(see (19) for details). SD and recovery time points were compared to baseline by 

means of 2-way repeated measures ANOVA followed by post-hoc t-tests. 

Sleep deprivation and tissue collection 

Mice for tissue collection were divided into two experimental cohorts, sleep 

deprived (SD) and non-sleep deprived (controls, Ctr). After a one-week habituation to 

the experimental setting, at the age of 11-12 weeks, the SD mice were sleep-deprived 

by gentle handling for 6 hours starting at light onset (zeitgeber time ZT0-ZT6) as 

described in (53), and allowed to recover according to the tissue collection schedule. 

Mice were anesthetized with isoflurane prior to decapitation. Cortex was rapidly 

dissected and flash frozen in liquid nitrogen. Below, we refer to each time point in 

hours from the start of the baseline day (T0) until the end of tissue collection on Day 

8 (T198), with SD occurring from T24 to T30. The study design is represented in Fig 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2019. ; https://doi.org/10.1101/677807doi: bioRxiv preprint 

https://doi.org/10.1101/677807
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  

	
   26	
  

1A: control mice were sacrificed at ZT0, ZT3, ZT6, ZT12 and ZT18 of the first day of 

experimentation (samples T0-T18), serving as a baseline day (Day 0). On Day 1, SD 

mice were sacrificed at the same time of day as on Day 0 (samples T24-T42, with T27 

and T30 samples being taken after 3h and 6h SD, respectively), on Day 2 at ZT0, ZT6, 

ZT12, ZT18 (samples T48-66), as well as ZT0 and ZT6 on Day 3 (samples T72-78). 

Sampling at ZT3 on Day 0 and Day 1 served to provide an intermediary time point 

increasing the time resolution during SD. Finally, two groups of mice were allowed to 

recover for 7 days after SD, before being sacrificed at ZT0 and ZT6 (Day 8, samples 

T192-198). We collected 3-4 replicates per time point and condition, and 8 replicates 

of ZT0 controls from two different animal batches, which were divided evenly 

between T0 and T24 in the analysis. T192 and T198 were collected to probe the 

persistence of the effects detected during Days 1-3. The clustering and model fitting 

analyses used time points T0-T78. 

Tissue processing and sequencing library preparation 

Frozen cortex of each individual was ground in liquid nitrogen and stored at -

80°C until further use. Tissue from each mouse was distributed to the two protocols 

(RNAseq and ATAC-seq), such that both datasets originate from the exact same set of 

individuals, allowing us to use the paired information when correlating the two 

datasets (see below). The only exception was time point T66, where two out of three 

ATAC-seq replicates needed to be excluded from the analysis due to sequencing 

failure. 

Total RNA was extracted using the miRNeasy kit (Qiagen; Hilden, Germany) 

following the manufacturer's instructions.  

RNA-seq libraries were prepared using 1000 ng of total RNA and the Illumina 

TruSeq Stranded mRNA reagents (Illumina; San Diego, CA, USA) on a Sciclone 
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liquid handling robot (PerkinElmer; Waltham, MA, USA) using a PerkinElmer-

developed automated script. Libraries were sequenced on the Illumina HiSeq 2500 

sequencer, producing >36 million (median 55 million) mappable single-end 100 bp 

reads.  

ATAC-seq was performed with minor modifications from (54). 100'000 nuclei 

were treated with 2.5 µl Tagment DNA enzyme (Nextera DNA Sample Preparation 

Kit, Illumina) in transposition buffer (10mM Tris Base, 5mM MgCl2, 10% DMSO, 

pH 7.6, adapted from (55)) at 37°C for 30 minutes, followed by cleanup on a Qiagen 

Minelute column. Fragments >1kb in size were removed using 0.6X, then 1X, 

volumes of AmpureXP beads (Beckman Coulter Life Sciences; Indianapolis, IN, 

USA). DNA fragments were subjected to 11 cycles of PCR amplification with 

Nextera dual index primers (Illumina) and the NEBNext High Fidelity 2X PCR 

Master Mix (New England Biolabs; Ipswich, MA, USA). PCR reactions were cleaned 

up with one volume AmpureXP beads, quantified by Qubit (ThermoFisher Scientific; 

Waltham, MA, USA) and quality controlled by Fragment Analyzer (Advanced 

Analytical Technologies; Ankeny, IA, USA). Libraries were sequenced on the 

Illumina HiSeq 2500 sequencer, producing >25 million (median 41 million) mappable 

50 bp paired-end reads per sample after removal of duplicate and mitochondrial 

sequences.  

Sequencing data analysis 

Transcript abundance was quantified by kallisto version 0.43.0 (56) using the 

GRCm38 reference transcriptome (mm10) and the parameters --single -l 100 -s 

20 -b 100. The abundances were processed as follows using sleuth version 0.29.0 

(57): transcript abundances were merged into gene counts in transcripts per million 

(TPM), after which we applied a detection cutoff of 5.5 on the mean gene counts 
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across samples in the time series, yielding a set of 13'842 expressed genes which were 

used for further analysis. Batch effects were corrected by ComBat (R package 

sva_version 3.25.4 (58)). Batch-corrected transcript abundances and scaled 

abundances are given in Tables S1 and S2. For genome browser visualization, 

sequence reads were aligned to the mouse genome (mm10) using kallisto version 0.44 

with the same alignment parameters used for quantification and transformed into bam 

files using the –genomebam parameter with the Mus_musculus.GRCm38.93.gtf 

ensembl release 93 annotation file. Alignment files were finally converted to bigwig 

using deepTools (59). 

ATAC-seq reads were aligned to the mouse genome (mm10) using bowtie2 

(60) in paired-end mode, with the parameters recommended for open chromatin (--

very-sensitive --maxins 2000 --no-mixed --no-discordant). Duplicate 

sequences were removed using samtools rmdup (61).  

Differential gene expression 

Differential expression at each time point was performed using the Wald test, 

implemented in sleuth version 0.29.0 (Pimentel et al. 2017). Each time point during 

and after SD was compared to the corresponding baseline time, i.e. the same ZT 

time. We note that expression levels at T192 and T198 were not significantly different 

from baseline at T0, respectively T6 (FDR adjusted p-value > 0.05). 

Clustering of mRNA profiles  

To uncover temporal patterns of mRNA abundance, we performed k-means 

clustering on genes displaying statistically significant temporal expression, defined as 

follows: to identify genes displaying a statistically significant effect over time, we 

used a likelihood ratio test implemented by sleuth version 0.29.0 (57), comparing a 
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full model with a parameter for each time point plus a batch effect (i.e. t=[0, 3, 6, 12, 

18, 24, 27, 30, 36, 42, 48, 54, 60, 66, 72, 78] plus a batch effect) versus a null model 

with no time effect (i.e. only a batch effect). We used an FDR-adjusted p-value cutoff 

of 0.001, which yielded 3461 statistically significant genes, which were used in the 

clustering analysis. This conservative cutoff was adopted to ensure the discovery of 

robust temporal patterns. For a range of number of clusters, k, we calculated the 

within cluster variation as the sum of the Euclidean distance between data points and 

their assigned cluster centroids and empirically chose k=10 as a balance between 

variance explained and generalizability of each cluster. The proportion of genes at 

each time point with a p-value < 0.05, as calculated from a likelihood ratio test 

between SD and Ctr, is represented by a grey shaded bar above each cluster.  

mRNA time course analysis 

We used a model selection approach to classify the temporal log mRNA 

abundance  𝑚 𝑡  of all 13'842 expressed genes into the scenarios described in Results 

and represented in Fig S1B. The models can be expressed as stated below. For models 

2, 5 and 6, sleep-wake history was used to model the synthesis rate of mRNA 

according to Process S in the 2-two process model (19) using sleep-wake data from 

n=12 C57BL/6J mice of the same age and sex and recorded under the same conditions 

(12). 

 

1: Flat model with constant 𝜇  and noise 𝜖 (F) 

𝑚 𝑡 = 𝜇 + 𝜖  

 

2: Sleep-wake model (S) 
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!" !
!"

= 𝑆 𝑡,𝑈, 𝐿, 𝜏! , 𝜏! − 𝛾!"#$𝑚 𝑡 ,  

where the production function S is defined recursively: 

𝑆 𝑡,𝑈, 𝐿, 𝜏! , 𝜏!, 𝑆|!!!!! =

     𝑈 − 𝑈 − 𝑆|!!!!!𝑆(𝑡 − 1 exp(−𝛥𝑡/𝜏!) if  awake
𝐿 + 𝑆|!!!!!𝑆(𝑡 − 1)− 𝐿 exp(−𝛥𝑡/𝜏!)   if  sleep

      

with  

Δt: mean period of continuous wake or sleep, defined by sleep-wake data from 

12 mice 

U: asymptotic value for long periods of wake 

L: asymptotic value for long periods of sleep 

γmrna: degradation rate of mRNA 

S|t=t-1: previous value of S 

S|t=0 = S0: initial value of S 

𝑆 𝑡,𝑈, 𝐿, 𝜏! , 𝜏! = 𝑆 𝑡,𝑈, 𝐿, 𝜏! , 𝜏!, 𝑆|!!!!!    

  

The interpretation of this model is that mRNA abundances are driven by 

regulatory dynamics that follow Process S. Including a degradation rate of mRNA 

𝛾!"#$ allows genes driven by the sleep-wake distribution but having long half-lives to 

still be fit by the sleep-wake model, since a delay in the response is then expected. 

We solved the differential equation for 𝑚 𝑡  using the Euler method with a 

time step of 0.1 hours. We will call the solution of this differential equation 

𝐷 𝑡,𝛩!"##$  where 𝛩!"##$ are the sleep parameters, 𝑆!,𝑈, 𝐿, 𝜏! , 𝜏!, 𝛾!"#$.  

The model we try to fit is therefore: 

𝑚 𝑡 = 𝐷 𝑡,𝛩!"##$ + 𝜖 
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3: Cosine oscillatory model (C)  

𝑚 𝑡 = 𝜇 + 𝑎 cos(𝜔𝑡)+ 𝑏 sin(𝜔𝑡)   + 𝜖    

with: 

µ: mean of signal 

√(a + b)2 mean to peak amplitude of signal 

tan-1 (b/a): phase of the signal 

ω = 2Π/24 : angular frequency  

ϵ : Gaussian noise 

 

4: Cosine model with change in amplitude (CA). 

𝑚 𝑡 = 𝜇 + 𝐴 𝑡 𝑎 cos 𝜔𝑡 + 𝑏 sin 𝜔𝑡   + 𝜖,𝐴 𝑡 =   1  for  t ≤ 33h
  𝑐  for  t > 33h , 

where t=33 h corresponds to 3 h after the end of SD. Thus, in this model the 

amplitude is changed by a factor c after t = 33 h, i.e. between T30 and T36. We have 

chosen to allow for a single change over the time course, as the time resolution and 

sampling length in time only allows to confidently follow one complete oscillation 

cycle. 

 

5: Sleep-wake and oscillatory model (S+C) 

𝑚 𝑡 = 𝐷 𝑡,𝛩!"##$ + 𝑎 cos 𝜔𝑡 + 𝑏 sin 𝜔𝑡 + 𝜖,  

where 𝐷 𝑡,𝛩!"##$  is the solution to the differential equation in the sleep 

model.  

 

6: Combined with change in amplitude model (S+CA) 

𝑚 𝑡 = 𝐷 𝑡,𝛩!"##$ + 𝐶 𝑡 (𝑎 cos 𝜔𝑡 + 𝑏 sin 𝜔𝑡 )+ 𝜖 ,  
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where D and C are defined as above.  

 

Of note, we also included a generic model: 

𝑚 𝑡 = 𝛽 𝑡 + 𝜖; 𝑡 ∈ {0, 3, 6, 12, 18, 24, 27, 30, 36, 42, 48, 54, 60, 66, 72, 78} 

where the gene expression is modeled as the mean expression across replicates 

at each time point to assess the possibility of more complex dynamics not explained 

by any of the 6 models. We found that the BIC weight w was always lower for this 

model than the other 6, meaning no genes were assigned to it, and therefore not 

included in subsequent analyses. 

For models that are nonlinear with respect to the parameters (models 2, 4-6), 

we fitted the model with the optim() function in R using the L-BFGS-B method. To 

constrain time constants in the S process such that resulting predictions are at steady 

state during baseline, we penalized the negative log likelihood by −𝐿!"#$%&'"( =

−𝐿 + 𝜆 𝑌!!! − 𝑌!!!"
!
, where 𝜆 = 1000 is a penalization parameter, 𝐿 is the log-

likelihood from the fit, and 𝑌!!! − 𝑌!!!" is the predicted log gene expression 

difference at t=0 and t=24, respectively. This penalizes predictions that deviate from 

steady state in baseline. Linear models (models 1, 3, and generic) were solved using 

the lm() function in R. The mRNA levels were fit in the log scale.  

For each gene, we estimated the posterior probability of each model by first 

calculating the Bayesian Information Criterion (BIC) scores: 

 

𝐵! = −2 ∗ 𝐿! + 𝑘!log  (𝑛) 

 

where L is the log likelihood. A better fit will improve (decrease) the BIC, 

while a more complex model will penalize (increase) the BIC. Intuitively, an optimal 
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model will fit the data while not using an excessive number of parameters. We 

assume the model errors are independent and identically distributed following a 

Gaussian distribution with variance estimated from the fits: 

 

𝜎! =
1
𝑛 (𝑚! −𝑚!)!

!

 

 

Exponentiating the BIC scores yields Schwarz weights 𝑤!: 

 

𝑃 𝑀! 𝐷 ≈ 𝑤! =
exp  (−𝐵!/2)
exp  (−𝐵!/2)!

 

 

We then assigned each gene to the model 𝑖 corresponding to the largest 𝑤!. 

𝑤! assigns a probability to each model, and this probability measurement takes 

into account the number of parameters k in the model through the BIC score (i.e. 

complex models with large k are penalized by having a larger B, which would have 

smaller w). All genes were assigned to one model, 11141/13842 (80.5%) with a 

w>=0.6, and 12111/13842 (88%) with a difference >=0.2 to the second ranking w. 

Harmonic regression in baseline 

To detect genes with rhythmic expression in baseline, we used harmonic 

regression on the Day 0 time points, which were fit using a linear model: 

𝑚 𝑡 = 𝜇 + 𝑎   cos(𝜔𝑡)+   𝑏   sin(𝜔𝑡)+ 𝜖 

Where: 

µ: mean of signal 

√(a + b)2 mean to peak amplitude of signal 
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tan-1 (b/a): phase of the signal 

ω = 2Π/24 : angular frequency  

ϵ : Gaussian noise 

The parameters 𝜇,𝑎, 𝑏 were fit using linear regression (lm() in R).  

ATAC-seq peak detection and quality control 

ATAC-seq data files were processed before peak calling as follows. 

Alignment files were converted into bed files and tags were extracted using bedtools 

version 2.26.0. Each tag position was shifted +4 base pairs on the positive strand and -

5 base pairs on the negative strand to center tags on transposase binding events as 

suggested by (31). The peak calling was performed on pooled tags for replicates using 

Macs2 version 2.1.1 (62) [--nomodel --shift -75 --extsize 150], and 

peaks were filtered using a 0.05 FDR cutoff for a local random Poisson distributed 

background noise, captured by Macs2. Peak boundaries were merged between time 

points and conditions in order to build a common peak mapping reference covering all 

samples, encompassing a total of 215'045 peaks. Finally, peak coverage was 

quantified using HTSeq version 0.6.1 for each sample, using the common mapping 

reference. We filtered low coverage peaks using a minimum mean threshold of 10 

reads per peak and obtained 130’727 peaks. 

We next performed two steps of quality control. First, we examined which 

genomic elements overlapped with our peaks and found that the proportion of ATAC 

peak basepairs mapping within introns and exons according to the 

Ensembl_GRCm38/mm10 all genes reference annotation (63) (62%) was higher than 

for the whole genome (44%), confirming that with ATAC-seq we are preferentially 

targeting active, i.e. accessible, parts of the genome. Second, we probed whether 

genes within accessible regions were enriched in cortex/brain tissue. To this end, we 
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used the Bgee database and topAnat (64) to look for significant enrichment, and found 

that the top 20 enriched tissues were all nervous system structures (Table S3, FDR p-

value < 10e-8). Finally, the proximity in the PCA of the two technical replicates at 

T24 attests the reproducibility of ATAC-seq over different batches of sequencing (Fig 

6A). 

ATAC-seq clustering and differential accessibility analysis 

To identify patterns of chromatin accessibility over time, we performed a 

clustering analysis using the same strategy as for gene expression. We identified 4824 

sequences displaying a significant effect over time (LRT implemented in edgeR, FDR 

cutoff 0.001) and performed a k-means clustering (k=10).  

To identify peaks with differential accessibility, we first normalized count data 

using a TMM normalization, applied a 10 read count threshold, and used a likelihood 

ratio test implemented in edgeR. We compared chromatin accessibility of SD samples 

(T27-198) with the corresponding ZT during baseline (T0-18, see Fig 1A). Thus, for 

differential accessibility at ZT3, we compared T27 with T3, at ZT6, T30 and T6, etc. 

p-values were adjusted using the Benjamini & Hochberg (FDR) method (65). 

Genomic distribution of ATAC-seq peaks 

The annotation of the detected ATAC-seq peaks was performed using PAVIS 

with the Ensembl_GRCm38/mm10 all genes reference annotation (63). 

Peak-to-gene expression association 

To associate gene expression dynamics with chromatin accessibility dynamics, 

we used a Pearson correlation coefficient across the samples and confined the 

possible association tests to previously defined topological interaction domains 

(TADs), which were computed from cortex tissue in Ref. (36). The positions of TAD 
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boundaries were originally detected using the mm9 reference genome, so we 

converted them to mm10 using CrossMap 0.2.6 (66). For association statistics, we 

used a strategy similar to that implemented within FastQTL (67). Specifically, the 

time series of each pair, consisting of a peak and a gene within the same TAD, were 

associated using the Pearson correlation coefficient. For each gene, only the top 

correlated peak was retained. To control for multiple associations within a TAD and 

adjust nominal p-values, we used 1000 permutations per gene and modeled the null 

distribution fitting a beta distribution. The parameters were estimated using a 

maximum likelihood approach (R/MASS::fitdistr). Finally, a genome-wide p-value 

adjustment was computed using a q-value procedure (R/qvalue). Of the 11143 genes 

mapping within a TAD, 3294 were associated to an ATAC-seq peak within the same 

TAD using a 0.05 FDR cutoff.  

Prediction of transcription factor (TF) binding site (TFBS) activity in 

promoters 

We inferred TF activity, based on the presence of TF motifs within ATAC-seq 

positive regions and the abundance of the nearby transcript, assuming that an 

accessible region containing TF binding motifs will be bound by the corresponding 

TF and transcription will occur as a result. Specifically, we used position weight 

matrices (PWMs) of 179 mouse transcription factors (TFs) defined by SwissRegulon 

on mm9 (http://swissregulon.unibas.ch). For each of the 179 PWMs, we scanned 500 

bp windows within 15 kb upstream and 15kb downstream of transcription start sites 

using MotEvo (68) to obtain a site count matrix for each motif. We retained only 

regions containing ATAC-seq counts greater than 0.1 RPM (reads per million mapped 

reads). The site count matrix of each motif was scaled across genes so that ranges in 

site counts were comparable across motifs. We inferred TF activity using the TF 
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binding site predictions and the temporal mRNA abundance, using a penalized 

regression model (MARA) as previously described (40, 41) and using an L2 norm 

penalty for regularization (ridge regression). Prior to the regression, we mean-

centered the input matrix of temporal mRNA abundances, standardized the columns 

of the site count matrix (each motif across genes), and excluded genes that were 

assigned to the flat model (F).  

Data and code accessibility 

Raw read files (.fastq), RNA transcripts per million (TPM), ATAC-seq peak 

calls and quantification are publicly available in the GEO/SRA repository under ID 

[to be communicated]. Code to run the model selection analysis is publicly available, 

found at https://jakeyeung@bitbucket.org/jakeyeung/sleepdepanalysis.git.  
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Figure Legends  

Fig	
  1	
  Study	
  design	
  and	
  long-­‐term	
  effects	
  of	
  SD	
  on	
  sleep	
  behavior	
  and	
  EEG	
  delta	
  

power.	
  

(A)	
  Tissue	
  collection	
  schedule	
  with	
  time	
  in	
  hours	
  from	
  beginning	
  of	
  the	
  experiment	
  

(T)	
  and	
  corresponding	
  zeitgeber	
  time	
  (ZT).	
  White	
  and	
  grey	
  bars:	
  12h:12h	
  light/dark	
  

cycle.	
  Red	
  bar:	
  SD.	
  (B)	
  Long-­‐term	
  effects	
  of	
  SD	
  on	
  NREM	
  sleep	
  delta	
  power	
  (1-­‐4Hz,	
  

top),	
  and	
  NREM	
  and	
  REM	
  sleep	
  quantity	
  (bottom,	
  black,	
  respectively	
  green	
  lines).	
  

Mean	
  delta	
  power	
  values	
  (±	
  SEM)	
  are	
  expressed	
  as	
  the	
  percentage	
  of	
  intra-­‐

individual	
  deviations	
  from	
  the	
  time	
  interval	
  in	
  baseline	
  with	
  the	
  lowest	
  overall	
  

power	
  (ZT8-­‐12,	
  average	
  across	
  2	
  days).	
  Asterisks	
  denote	
  significant	
  increases	
  (red)	
  

and	
  decreases	
  (blue)	
  compared	
  to	
  baseline	
  (t-­‐test,	
  p<0.05,	
  n=6).	
  White	
  and	
  grey	
  

shading:	
  12h:12h	
  light/dark	
  cycle.	
  Red	
  shaded	
  area:	
  SD.	
  

Fig	
  2	
  Sleep-­‐wake	
  history	
  is	
  the	
  main	
  driver	
  of	
  transcriptome	
  dynamics.	
  

(A)	
  Principal	
  component	
  analysis	
  of	
  the	
  expression	
  of	
  the	
  13'842	
  detected	
  genes.	
  

The	
  number	
  in	
  parenthesis	
  in	
  the	
  axis	
  label	
  denotes	
  the	
  fraction	
  of	
  the	
  variance	
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explained	
  by	
  the	
  component.	
  Colors	
  denote	
  zeitgeber	
  time	
  (ZT0-­‐ZT12:	
  light	
  period,	
  

ZT12-­‐ZT0:	
  dark	
  period).	
  Baseline	
  samples	
  are	
  represented	
  by	
  discs	
  and	
  samples	
  

collected	
  during	
  or	
  after	
  SD	
  by	
  triangles.	
  Text	
  labels	
  denote	
  time	
  of	
  sample	
  

collection	
  according	
  to	
  the	
  experimental	
  design	
  (see	
  Fig	
  1A).	
  (B)	
  First	
  principal	
  

component	
  plotted	
  over	
  time	
  (top).	
  Time	
  spent	
  awake	
  over	
  time	
  averaged	
  across	
  

12	
  mice	
  (bottom),	
  with	
  y-­‐axis	
  denoting	
  the	
  number	
  of	
  minutes	
  the	
  mice	
  spent	
  

awake	
  over	
  the	
  last	
  5	
  minutes.	
  C.	
  K-­‐means	
  clusters	
  of	
  the	
  3461	
  genes	
  with	
  

statistically	
  significant	
  temporal	
  gene	
  expression	
  (FDR	
  adjusted	
  p-­‐value	
  <	
  0.001,	
  

likelihood	
  ratio	
  test).	
  Blue	
  dashed	
  line:	
  average	
  of	
  the	
  cluster	
  under	
  baseline,	
  

repeated	
  for	
  comparison	
  over	
  the	
  three	
  days	
  of	
  the	
  experiment.	
  Light	
  grey	
  thick	
  

line:	
  cluster	
  average.	
  Red	
  box:	
  SD.	
  Grey	
  shaded	
  bar	
  at	
  the	
  top	
  of	
  each	
  graph:	
  

proportion	
  of	
  genes	
  with	
  p-­‐value	
  <0.05	
  according	
  to	
  a	
  likelihood	
  ratio	
  test	
  between	
  

SD	
  and	
  baseline	
  conditions	
  at	
  the	
  same	
  ZT.	
  	
  

Fig	
  3	
  Modeling	
  temporal	
  transcriptome	
  dynamics.	
  

(A)	
  Example	
  of	
  model	
  fitting	
  on	
  Nr1d1.	
  Dots:	
  RNA	
  level	
  data	
  points.	
  Bold	
  line:	
  best	
  

fitting	
  model	
  (here	
  CA	
  with	
  w=0.977).	
  Temporal	
  EEG	
  data	
  as	
  in	
  Fig	
  2.	
  Red	
  box:	
  SD.	
  (B)	
  

Number	
  of	
  genes	
  per	
  model.	
  (C-­‐H)	
  Examples	
  of	
  a	
  gene	
  fit	
  to	
  each	
  model.	
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Fig	
  4	
  Repartition	
  of	
  gene	
  sets	
  in	
  the	
  different	
  models,	
  contrasted	
  with	
  all	
  

transcripts	
  detected.	
  	
  

Red	
  bars:	
  target	
  set.	
  Blue	
  bars:	
  all	
  detected	
  genes.	
  Enrichment	
  statistic	
  by	
  chi-­‐

square	
  test.	
  (A)	
  75	
  sleep-­‐wake	
  driven	
  genes	
  from	
  (21),	
  p-­‐value	
  =	
  1.2e-­‐14.	
  (B)	
  207	
  

genes	
  affected	
  by	
  SD	
  at	
  any	
  time	
  of	
  day	
  (Table	
  S5	
  in	
  (13)),	
  p-­‐value	
  =	
  2.6e-­‐21.	
  (C)	
  862	
  

rhythmic	
  genes	
  during	
  baseline	
  Day	
  0	
  (this	
  study,	
  p-­‐value	
  =	
  2.4e-­‐76).	
  (D)	
  918	
  genes	
  

rhythmic	
  under	
  baseline	
  conditions	
  (Table	
  S3	
  in	
  (13)),	
  p-­‐value	
  =	
  2.3e-­‐14.	
  (E)	
  260	
  

genes	
  still	
  rhythmic	
  when	
  sample	
  collection	
  was	
  preceded	
  by	
  6h	
  SD	
  (Table	
  S4	
  in	
  

(13)),	
  p-­‐value	
  =	
  0.00024.	
  (F)	
  2863	
  genes	
  differentially	
  expressed	
  at	
  T27	
  and/or	
  T30	
  

(i.e.	
  the	
  union	
  of	
  T27	
  vs.	
  T3	
  and	
  T30	
  vs.	
  T6,	
  p-­‐value	
  =	
  1.2e-­‐237).	
  	
  

	
  

Fig	
  5	
  Contribution	
  of	
  the	
  S	
  and	
  C	
  components	
  to	
  phase	
  and	
  amplitude	
  of	
  

oscillating	
  genes	
  under	
  baseline	
  and	
  after	
  SD.	
  	
  

(A)	
  Phase	
  maps	
  of	
  non-­‐flat	
  model	
  genes.	
  Each	
  cone	
  reflects	
  the	
  number	
  of	
  genes	
  

peaking	
  during	
  one	
  hour	
  around	
  the	
  ZT	
  clock.	
  Non-­‐C	
  model	
  genes	
  are	
  divided	
  

according	
  to	
  the	
  direction	
  of	
  change	
  of	
  the	
  amplitude	
  (CA),	
  or	
  the	
  direction	
  of	
  the	
  

change	
  in	
  expression	
  happening	
  under	
  wakefulness	
  (S,	
  S+C,	
  S+CA),	
  i.e.	
  the	
  sign	
  of	
  

the	
  difference	
  between	
  the	
  expression	
  value	
  given	
  by	
  the	
  model	
  after	
  long	
  

wakefulness	
  episodes	
  minus	
  that	
  after	
  long	
  sleep	
  episodes.	
  (B)	
  Scatter	
  plots	
  of	
  the	
  

log2	
  amplitude	
  before	
  and	
  after	
  SD	
  for	
  models	
  CA	
  and	
  S+CA.	
  (C)	
  Contribution	
  of	
  the	
  

S	
  and	
  C	
  components	
  (red	
  and	
  blue	
  dotted	
  curves,	
  respectively)	
  to	
  the	
  overall	
  

temporal	
  gene	
  expression	
  profile	
  (solid	
  black	
  curve)	
  of	
  three	
  example	
  genes.	
  	
  (D)	
  

Difference	
  between	
  the	
  highest	
  point	
  before	
  and	
  after	
  SD,	
  both	
  compared	
  to	
  the	
  

baseline	
  average,	
  for	
  models	
  S,	
  S+C	
  and	
  S+CA.	
  (E)	
  Number	
  of	
  differentially	
  

expressed	
  genes	
  at	
  each	
  time	
  point.	
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2019. ; https://doi.org/10.1101/677807doi: bioRxiv preprint 

https://doi.org/10.1101/677807
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  

	
   43	
  

Fig	
  6	
  Chromatin	
  accessibility	
  shows	
  sleep-­‐wake	
  driven	
  dynamics	
  and	
  a	
  rapid	
  

response	
  to	
  SD.	
  	
  

(A)	
  Principal	
  component	
  analysis	
  of	
  all	
  detected	
  ATAC-­‐seq	
  peaks.	
  Plot	
  features	
  as	
  in	
  	
  	
  

Fig	
  2A.	
  A	
  black	
  symbol	
  outline	
  highlights	
  technical	
  replicates.	
  (B)	
  Second	
  principal	
  

component	
  plotted	
  over	
  time.	
  Color	
  and	
  shape	
  code	
  as	
  in	
  A.	
  	
  

Fig	
  7	
  Gene	
  expression	
  predominantly	
  correlates	
  with	
  the	
  dynamics	
  of	
  distal	
  

accessible	
  genomic	
  regions	
  rather	
  than	
  promoters.	
  

(A)	
  Distance	
  from	
  ATAC-­‐seq	
  peak	
  to	
  the	
  associated	
  TSS.	
  (B-­‐E)	
  Temporal	
  patterns	
  of	
  

gene-­‐peak	
  associations	
  (with	
  promoter	
  for	
  genes	
  associated	
  with	
  distal	
  elements).	
  

Top:	
  RNAseq	
  signal.	
  Middle	
  and	
  bottom:	
  ATAC	
  signal	
  of	
  the	
  distal	
  element,	
  resp.	
  

promoter,	
  of	
  the	
  associated	
  gene.	
  Red	
  box:	
  SD.	
  Grey	
  shading:	
  dark	
  phase	
  of	
  the	
  

light-­‐dark	
  cycle.	
  	
  

Fig	
  8	
  SRF	
  activity	
  in	
  the	
  response	
  to	
  SD.	
  

(A)	
  179	
  TF	
  motifs	
  ranked	
  by	
  z-­‐score	
  that	
  explains	
  the	
  temporal	
  dynamics	
  in	
  the	
  

RNA-­‐seq	
  dataset.	
  (B)	
  Inferred	
  temporal	
  activity	
  of	
  SRF.	
  Error	
  bars	
  are	
  standard	
  

deviations	
  of	
  the	
  activity	
  estimates.	
  Lower	
  bar	
  denotes	
  time	
  spent	
  awake	
  in	
  5-­‐

minute	
  bins.	
  (C)	
  Srf	
  transcript	
  time	
  course.	
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