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Abstract

Cryo-EM workflows require from tens of thousands of high-quality particle projections to unveil the
three-dimensional structure of macromolecules. Current methods for automatic particle picking tend to
suffer from high false-positive rates, hurdling the reconstruction process. One common cause of this
problem is the presence of carbon and different types of high-contrast contaminations that, in many
cases, affect large areas of micrographs. In order to overcome this limitation, we have developed
MicrographCleaner, a deep learning approach designed to discriminate which regions of micrographs
are suitable for particle picking and which are not, that we will refer to as “contaminated”.
MicrographCleaner implements a U-net-like model trained on a manually curated dataset compiled
from over five hundred micrographs. The benchmarking, carried out on about one hundred independent
micrographs, shows that MicrographCleaner is a very efficient approach for micrograph preprocessing.

Availability and implementation

MicrographCleaner package is available at PyPl and Anaconda Cloud repositories as
micrograph_cleaner_em. Source code is available at
https://github.com/rsanchezgarc/micrograph_cleaner_em. Integration with the cryo-EM software
Scipion/Xmipp is also provided through the deepMicrographScreen protocol.

1. Introduction.

Cryogenic-Electron Microscopy (cryo-EM) Single Particle Analysis (SPA) has recently become a
powerful technigue for the determination of macromolecular structures achieving, in many cases,
atomic resolutions. SPA consists of a set of complex and variable operations that, departing from
thousands of particle projections, leads to the synthesis of electronic density maps of macromolecules.
The massive number of particles that are needed for SPA has made of automatic particle picking one of
the most influential steps in virtually all reconstruction workflows. Nevertheless, some problems
intrinsic to the cryo-EM pipelines, such as low signal-to-noise ratio and the presence of high contrast
artifacts and contaminants in the micrographs, degrades the performance of particle picking algorithms
(Zhu et al., 2004; Vargas et al., 2013) and leads to the addition of false positive particles in SPA
workflows. This problem can be mitigated trough different algorithms that clean and remove
incorrectly selected particles after automatic picking (Sanchez-Garcia et al., 2018; Vargas et al., 2013).

One of the most common shortcomings observed during automatic picking is the attraction of these
methods to select grid carbon spots, especially at the holes edges. Due to its relevance, some algorithms
have been designed to prevent particle selection in those regions. For example, the em_hole_finder
program, included in the Appion package (Lander et al., 2009) is based on morphological image
processing operations to compute masks around carbon holes. Similarly, EMHP (Berndsen et al., 2017)
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was designed to perform a similar task through image filtering and thresholding operations followed by
a circle fitting procedure. Although very useful when grid edges are clearly visible, both approaches
struggle in those cases where high contrast contaminations are present in micrographs. Moreover, both
of them require human supervision to determine the presence of carbon in the micrographs and to set
some user-defined parameters. As a result, its applicability is limited to supervised scenarios. More
recently, the Warp package (Tegunov and Cramer, 2018) included a deep learning particle picker
algorithm that was explicitly trained to detect and avoid carbon and contaminated regions using a pixel-
wise classification -segmentation- approach.

Following this line, and with the aim of overcoming these limitations, we have developed
MicrographCleaner, a fully automatic, easy-to-install and easy-to-use deep learning solution that
performs a pixel-wise classification of micrographs into two categories, desirable and undesirable
regions for picking. Likewise Warp particle picker, MicrographCleaner relies on one of the most
extended network architectures (Ronneberger et al., 2015), but the different choices in important
parameters result, in turn, in quite different levels of performance. Thus, according to our
benchmarking, MicrographCleaner is not only able to provide a more robust and accurate solution for
carbon detection than earlier methods, but it is also able to improve the detection of other types of
contaminations, such as ice crystals or ethane. Additionally, the usability of the two approaches is very
different, as MicrographCleaner is an easy to handle Python package, while Warp is part of a larger
framework restricted to Windows systems.

2. Material and methods
2.1 Algorithm

MicrographCleaner computes binary semantic segmentation of micrographs with the aim of
delineating optimal regions for particle picking and isolating those areas containing high-contrast
contaminants and other artifacts. To that end, MicrographCleaner implements a U-net-like model
(Ronneberger et al., 2015) trained on a dataset of 539 manually segmented micrographs collected from
16 different EMPIAR (ludin et al., 2016) entries. The evaluation was performed on an independent set
of 97 micrographs compiled from two EMPIAR projects and another two in-home projects (see
Supplementary Material S4). Both training and testing sets of micrographs include examples of clean,
carbon-containing and contamination-containing as well as mixed cases. Neural network training was
carried out using the Adam optimizer and a combination of perceptual loss (Johnson et al., 2016) and
weighted binary cross-entropy (see Supplementary Material S1 and S2). A previous normalization step
is required to adjust the different intensity scales of micrographs. Thus, all micrographs are normalized
using a robust scaling strategy and donwsampled (see Supplementary Material S3). Finally,
overlapping patches of 256x256 pixels with strides of 128 pixels are extracted from the micrograph and
fed to the network.

2.1 Package

MicrographCleaner has been implemented as an easy-to-install and easy-to-employ Python 3.x
package. Thus, the command line tool can be automatically installed from Anaconda Cloud and PyPI
repositories whereas the GUI version can be installed through the Scipion (de la Rosa-Trevin et al.,
2016) plugin manager. The neural network was implemented using the Keras (Chollet, 2015) package
and the Tensorflow (Abadi et al., 2016) backend. Micrograph preprocessing is carried out using the
scikit-image (van der Walt et al., 2014) package.
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3. Results

The evaluation of MicrographCleaner was performed comparing the predicted masks with the ground
truth of testing micrographs. To that end, the mean Intersection over Union (mloU) metric was
calculated considering predicted and manually curated micrograph regions (see Supplementary
Material S2). MicrographCleaner achieved a mloU value of 0.544. This score implies a good
agreement between ground truth and predicted masks, especially when taking into account that the
testing set contains clean micrographs examples together with carbon-containing and contaminated
micrographs. Figure 1 shows the predictions for four different micrographs, illustrating that
MicrographCleaner is capable of successfully detecting both contaminations and carbon.

We also have compared MicrographCleaner with state-of-the-art carbon finder programs:
em_hole_finder, EMHP and the Warp particle picker (WPP). Before entering into these comparisons, it
is important to highlight that MicrographCleaner and the WPP, contrary to the others, are fast (in the
order of seconds), parameter-free and they do not require manual intervention in order to determine
whether or not carbon is present in a micrograph. Consequently, they can be employed in automatic
pipelines and, thus, they are suitable for automatic Cryo-EM analysis at facilities. Yet, with the aim of
strictly comparing carbon detection efficacy, we have taken the subset of the testing set in which all
micrographs contain some carbon and executed the four algorithms. As it can be appreciated in Table 1
and in Supplementary Figure 1, deep learning-based methods are very well suited for this problem as
both Warp and MicrographCleaner stand out from the others. Still, MicrographCleaner achieves the
best performance of all them by a wide margin, improving results over the second best, WPP, by more
than 20% in terms of agreement between masks predictions and ground truth. Additionally, we have
also compared the performance of MicrographCleaner and WPP on the whole testing set, measuring a
mean Intersection over Union (mloU) of 0.544 for MicrographCleaner and 0.331 for WPP, showing
how the more than 20% better performance of MicrographCleaner over WPP is also maintained in that
data set (see Supplementary Material S5)

Table 1. MicrographCleaner performance for carbon detection compared to other methods.

Algorithm mloU stdloU Failure percentage
MicrographCleaner 0.78833 0.22939 3.33%

EMHP 0.19805 0.21147 45.00%

em_hole finder 0.05691 0.04691 63.00%

Warp Particle Picker 0.57297 0.23095 3.33%

Notes: mloU: mean Intersection over Union (mean fraction of agreement between predictions and ground truth) ;
stdloT: standard deviation Intersection over Union; Failure percentage: percentage of the testing set for which
the loU was equal to 0, that its, those micrographs in which no a single pixel of carbon was detected
independently of the quality of the prediction.

4. Conclusions

MicrographCleaner is an easy-to-install and easy-to-use python package that allows efficient and
automatic micrograph segmentation with the aim of preventing particle pickers from selecting
inappropriate regions. To that end, MicrographCleaner relays on a U-net-like model that has being
trained on about 500 micrographs. When compared to other methodologies, MicrographCleaner has
proven more robust, achieving results closer to the human criterion than other state-of-the-art methods.
As a result, we consider that MicrographCleaner is a powerful approach to be applied at the very
beginning of cryo-EM workflows, even within on-the-fly processing pipelines, leading to cleaner sets
of input particle and, consequently, to a better processing performance.
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Fig 1. MicrographCleaner predictions. Red shadowed regions correspond to micrograph areas labeled
as “non suitable” with 50% or more confidence. Top images show MicrographCleaner capability to
detect carbon in the presence of contaminants. Bottom images show MicrographCleaner capability to
detect a wide variety of different contaminants.
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