

1

2

3

4

5

6

7

8

9

10

Epidermal Growth Factor (EGF) single mutants highlighted by a homologs cross-conservation approach differentially affect the EGF Receptor (EGFR) downstream pathway

14

15

Differential effect of EGF mutants on EGFR pathway

16

17

Merzhakupova, D. [#]; Pascarelli, S. [#]; Laurino P.*

18

19

20

21

22

23

24

25

26

27 **Abstract**

28 Molecular co-evolution is a key feature of biological systems. Molecular interactions (ligand-
29 receptor, protein-protein, etc.) usually evolve simultaneously and independently to optimize
30 binding. Frequently, these interactions involve one receptor that binds multiple ligands. Each
31 ligand often leads to a different pathway activation intra-cellularly. Understanding single
32 amino acid roles in evolving ligands and their contributions to downstream pathways of the
33 receptor is still challenging.

34 We developed a cross-conservation approach to identify functionally important EGF
35 residues. Four EGF mutants (N32R, D46R, K48T, W50Y) have been selected and studied
36 biochemically and at the cellular level. While these mutants retain binding affinities for
37 EGFR similar to that of EGF, surprisingly the effects of two of them (D46R, K48T) at the
38 cellular level changed, inducing higher proliferation levels in normal fibroblasts and reducing
39 proliferation in skin cancer cells. These results lay the base to understand the basis of EGF
40 signaling.

41

42 **Introduction**

43 Protein-protein interactions (PPIs) regulate many biological processes (1). PPIs are one of the
44 most interesting and well-studied examples of molecular co-evolution in biological systems.

45 These interactions are sometimes defined by one part (receptor) that binds several
46 counterparts (ligands). Receptors and ligands experience different selective constraints, and
47 receptors tend to evolve more slowly due to the necessity of binding multiple ligands.

48 Identification of key residues in a ligand that may affect binding and the resulting cellular
49 phenotype should provide new understanding of PPI co-evolution (2).

50 In recent years, different experimental techniques have been developed to define the effects
51 of single mutant proteins at the cellular level (3). Often these approaches generate false-

52 positive and false-negative that can be misinterpreted and leading to unclear conclusions (3).

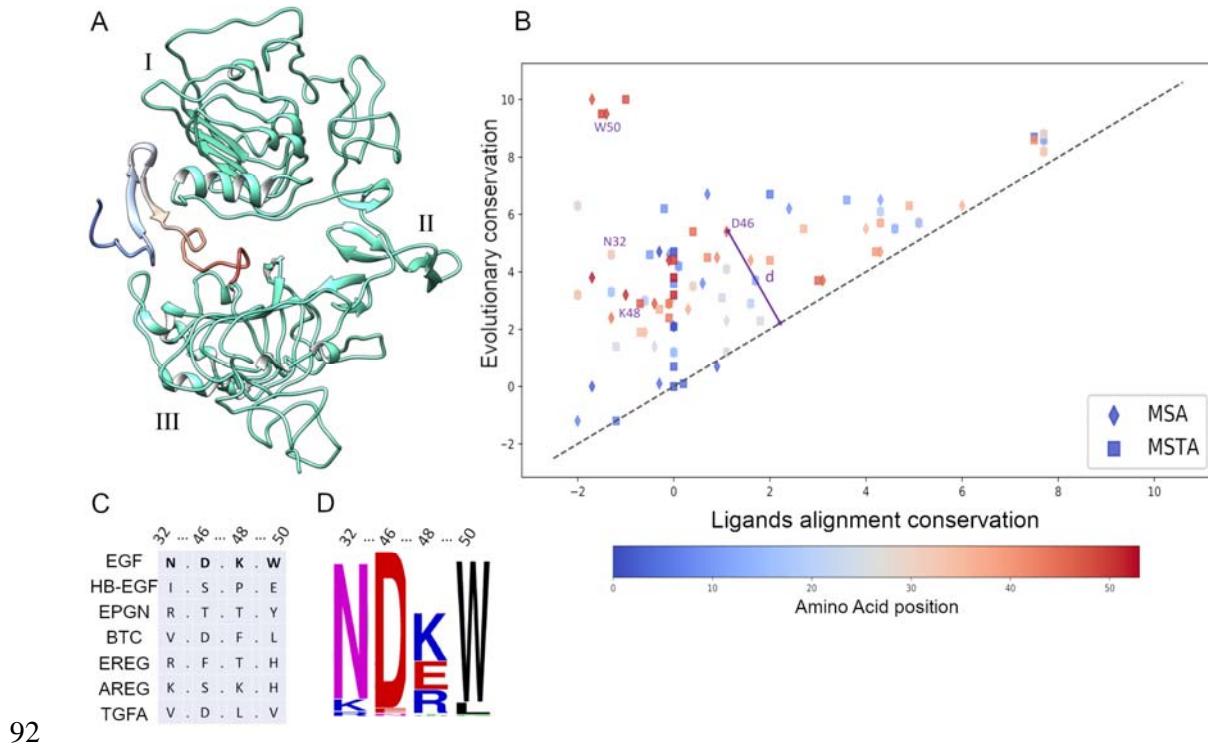
53 Bioinformatic tools can be exploited for a more detailed analysis of PPIs co-evolution. The
54 combination of sequence and structural alignment methods have made possible to identify
55 essential amino acids for understanding ligand-receptor interactions but still the ligand effect
56 at the cellular level remain unclear (4).

57 The epidermal growth factor (EGF)-like domain ligand – ErbB1(EGFR) receptor signaling
58 system is involved in many biological events in multicellular organisms (5) and is considered
59 to be ancient (6). Few studies have shown that overexpression of oncogenic receptors and
60 ligands may induce different types of cancers (7). EGF ligands are also involved in ion
61 transport, glycolysis, and synthesis of proteins and nucleic acids (8). They also induce
62 stimulation of fibroblasts in early phases of wound healing (9). As anti-EGFR antibodies
63 often lead to inconsistent outcomes, design of EGF analogues remained an attractive target
64 for biomedical applications (10).

65

66 Comprehensive analysis of specific residues in EGF ligands from different species and
67 among different EGFR ligands (EGF, HBEGF, EPGN, BTC, EREG, AREG, TGFA) might
68 allow the design of mutants with different or improved functions. Recent studies have been
69 shown that some EGF residues like R41 and L47 are highly conserved and important for high
70 binding affinity to EGFR in the A431 cancer cell line (11). Another study highlighted Y13,
71 L15 and H16 residues as essential for downstream activity of ErbB1 (12). These outcomes
72 were based on structural analyses of ligands and experimental validation.

73 In this paper we show a novel approach to study PPIs through cross-conservation analysis.


74 We combined bioinformatics and experimental tools to study co-evolution of the EGF-EGFR
75 ligand-receptor system (Figure 1A). This method allows us to analyze and characterize
76 evolutionarily conserved EGF residues and to determine which residues are conserved among

77 different ligands. Furthermore, the identified residues have phenotypic implications at the
78 cellular level, influencing protein activation in the EGFR downstream pathway. Overall, this
79 approach has been critical to identify residues that play important role in cellular proliferation
80 and cancer cells.

81

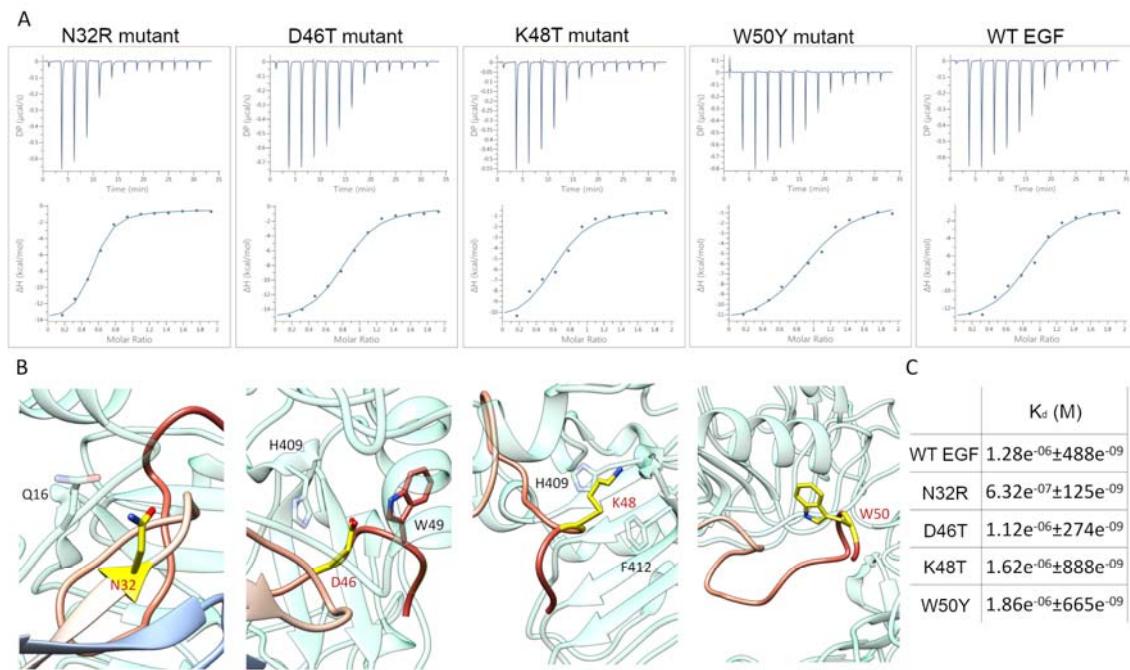
82 **Results**

83 Initially, we identified amino acid residues in EGF that are essential for protein-coevolution
84 and mitogenic activity of the ligand using what we named cross-conservation approach.
85 Cross-conservation analysis highlights functional positions in proteins, based upon previous
86 knowledge of their interacting partners. The combination of two residue conservation
87 measures generated a cross-conservation plot (Figure 1B), as combination of the alignment of
88 all the ligands (paralogs that still share binding to same receptor), using either the Multiple
89 Sequence Alignment (MSA, Figure A in S1 Figure) or the Multiple STructural Alignment
90 (MSTA, Figure B in S1 Figure), and from the alignment of orthologs sequences of EGFs
91 (herein so called evolutionary alignment, Figure C in S1 Figure).

92

93 **Figure 1. Cross-conservation analysis.**

94 (A) Structure of extracellular EGFR-EGF complex (from PDB: 1ivo). EGFR extracellular
95 domain in cyan cartoon. EGF peptide is represented as cartoon in a gradient of blue to red
96 from the N-term to the C-term. I, II and III indicate the three ECD domains. C-tail of EGF is
97 disordered and in close proximity of domain III of EGFR. (B) Cross-conservation plot. The
98 plot is obtained by crossing the conservation measures of ligand alignments (rhombus for
99 MSA conservation, squares for MSTA conservation) and evolutionary alignments (S1
100 Figure). Positions highlighted in purple have been chosen for experimental verification. The
101 color gradient shows the N/C-end displacement of the amino acid consistently with panel A.
102 Distance from the diagonal (e.g., 'd' in the plot) is used to calculate the cross-conservation
103 score. Interestingly, no point lies in the bottom right half of the plot suggesting that ligand
104 and evolutionary conservation are not independent and differently influenced by evolution
105 pressure. The C-terminus amino acids have higher cross-conservation score on average,
106 highlighting that this part has a functional role. (C) Extract of the paralog ligands alignments


107 focusing on the chosen positions, showing a low degree of conservation. (D) Extract of the
108 logo generated from the orthologs evolutionary alignment (Figure C in S1 Figure). Positions
109 chosen for mutation are highly conserved, therefore resulting in a high cross-conservation
110 score.

111

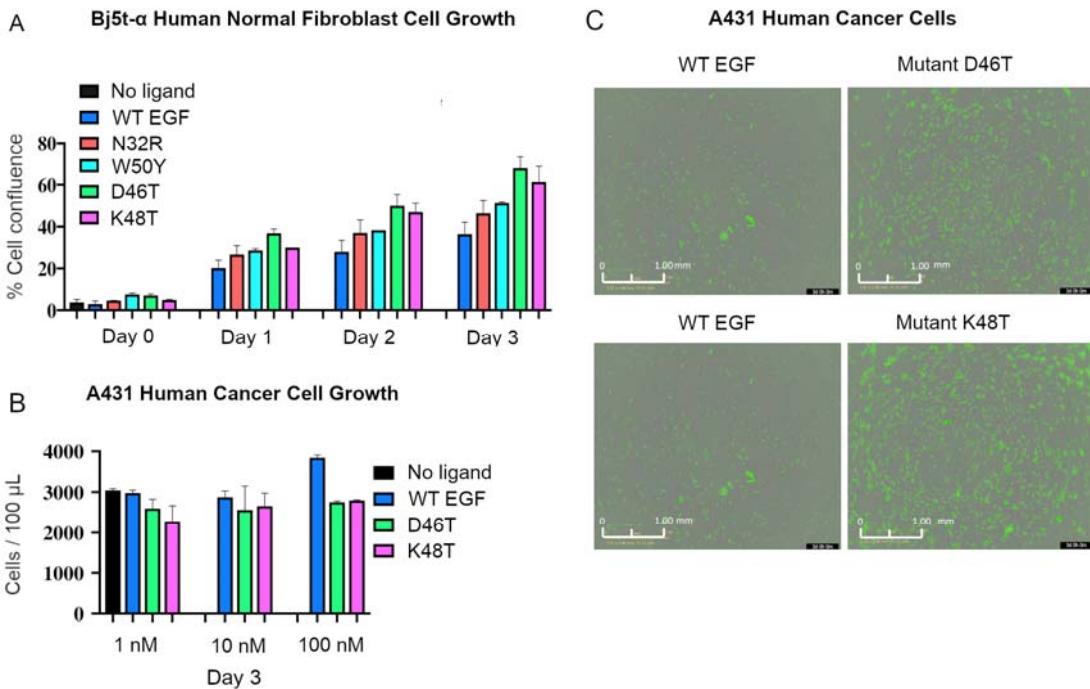
112 The cross-conservation score is calculated as the distance (d, Figure 1B) from the diagonal.
113 The list of residues sorted by score is shown in S1 Table. According to our analysis, residues
114 with high scores are concentrated on the C-terminal tail. Along with the cross-conservation
115 score, the choice of positions for mutation was influenced by three factors: first of all, the
116 distance from the receptor. Secondly, we considered the amino acid variation among ligand
117 types. Each ligand has different binding affinity and activate different pathways; therefore,
118 we designed mutations with the aim of changing pathway activation taking into consideration
119 the residues types in the ligands that show a different cellular effect. Finally, some of the
120 residues that show high cross-conservation score have intramolecular interaction with other
121 amino acid and, if mutated, they will not only change interaction with the receptor but also
122 lose EGF structural stability (namely “residue swapping” behavior showed in S2 Figure). A
123 phylogeny of all EGFR ligands was also built (S3 Figure), presenting a high degree of
124 monophyly among the seven paralogs. This monophyly justify the comparison of different
125 ligands in our cross-conservation study.

126 Based on these factors together with cross-conservation analysis, we designed EGF mutants
127 with single amino-acid substitutions (N32R, D46T, K48T and W50Y). All these positions
128 have higher than median cross conservation scores. Furthermore position 46, 48 and 50 were
129 chosen because according to our study the EGF C-terminus tail seems to play a critical role in
130 the ligand function. The amino acid mutation was selected according to its abundance in
131 other ligands having different function as explained above. N32R was also chosen since it is

132 highly conserved in other ligands in the corresponding evolutionary alignment (e.g. CVC in
133 TGFA, or CRC in EREG).
134 We characterized all of them biochemically and at the cellular level. Using circular dichroism
135 (CD) experiments, we confirmed that the secondary structure of these mutants was
136 maintained (S4 Figure). Then the K_d for EGFR was determined *in vitro* by Isothermal
137 Titration Calorimetry (ITC). ITC measurements of the binding of all mutants to the ECD of
138 EGFR exhibited similar K_d values to the WT EGF. Only N32R has 2-fold higher affinity for
139 EGFR compared to WT EGF (Figure 2B).

140
141 **Figure 2. ITC measurements of EGF mutants and the EGFR receptor.**
142 (A) ITC analysis of WT EGF ligand and mutants N32R, D46T, and K48T binding to the
143 ECD of the EGFR receptor at 25°C. Measurements were taken by adding WT EGF at 200
144 μM to the ECD of EGFR at 20 μM . (B) Four zoom-in of X-Ray structure of the extracellular
145 domain (ECD) of EGFR bound to EGF (PDB 1IVO). In cyan cartoon the ECD of EGFR.
146 Each zoom-in focuses on the mutated residue. Highlighted in yellow stick side chain of the

147 mutated residues and in cyan stick side chain of the residue of ECD in proximity (< 5 Å with
148 the mutated residue. (C) K_d calculated from the ITC measurements using the program
149 Affinimeter KinITC Kintecs Software.

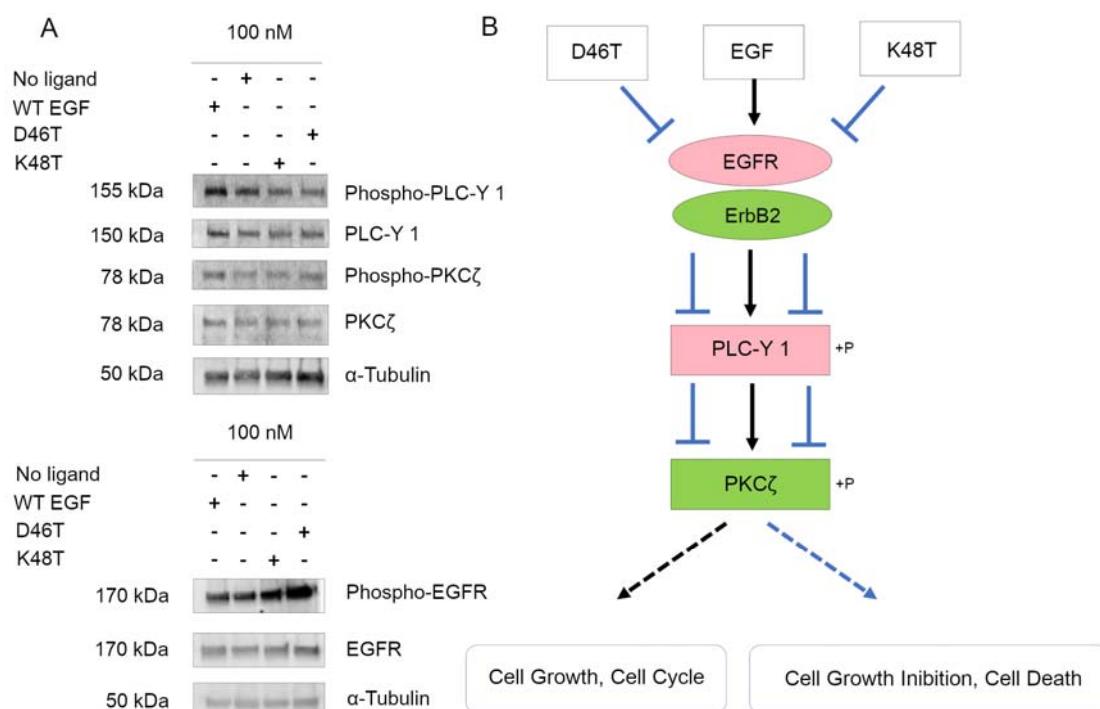

150

151 Mutation N32R is on the interface between ligand and receptor (S5 Figure). The slightly
152 higher affinity is probably due to the presence of the guanidinium group of R which is
153 positive charged and could interact with Q16 of EGFR ECD.

154

155 Surprisingly although the biochemical parameters are not substantially different, EGF
156 variants affected cell growth in cell proliferation studies. Human and mouse normal
157 fibroblasts, bj5-t α and Albino swiss 3T3, respectively, and epidermoid carcinoma A431 cell
158 lines, were cultured varying concentrations (1 nM, 10 nM and 100 nM) of wild-type EGF and
159 EGF mutants for three days. EGF mutants D46T and K48T induced cell proliferation in bj5-
160 t α (Figure 3A) more effectively than WT EGF, while no significant effect was detected on an
161 Albino Swiss mouse 3T3 cell line (S6 Figure).

162 We further tested these two mutants and importantly, we found both D46T and K48T
163 increased cell death in the A431 skin cancer cell line, upon 100 nM EGF mutants treatment
164 (Figure 3B). In contrast, 1 nM and 10 nM for both mutants only slightly reduced the number
165 of cancer cells (S7 Figure).


166

167 **Figure 3. Results of cell growth assays for cells treated with EGF variants.**

168 (A) Effect of different concentrations of EGF variants on proliferation of the human normal
169 fibroblast bj5- α cell line. Data represent the percent confluence of cells (mean+ standard
170 deviation) for each concentration of EGF variants compared to data obtained with WT EGF
171 and negative controls. Percent confluence was estimated on day 3 (three replicates/treatment).
172 (B) Different concentrations of EGF mutants D46T and K48T inhibited the growth of A431
173 cells. Data represent the number of cells calculated on Day 3 (three replicates/treatment). (C)
174 Comparison of A431 cell growth after treatment with 100 nM WT EGF and EGF variants,
175 D46T and K48T. Dead cells were labeled with fluorescent annexin V green reagent. Plates
176 were pre-warmed prior to data acquisition to avoid condensation and expansion of the plate,
177 which affect autofocus. Images were captured every 2 hrs (4x) for 3 days in the IncuCyte
178 system.

179

180 Significantly herein we found that one amino acid change on the tail of EGF ligand could
181 affect the downstream pathway. To explain this behavior, we proceed analyzing the
182 downstream proteins involved in the EGFR network. Both D46T and K48T inhibited
183 expression of Phospholipase-C γ 1 (PLC γ 1), which is a downstream signaling protein required
184 for EGFR-induced squamous cell carcinoma (Figure 4A). The low levels of PLC γ protein
185 lead to a decreased amount of PKC ζ protein (Figure 4A). A cell-line specific response upon
186 interaction between EGFR and ligand (e.g. EGF induce proliferation in normal fibroblasts (8)
187 while apoptosis in cancer ones (13)) is consistent with previous literature as well as a
188 concentration dependent response (14).

189
190 **Figure 4. EGF variants D46T and K48T affect the EGFR downstream signaling**
191 **pathway.**
192 (A) Western blot analysis of EGFR-regulated downstream gene expression of EGF variant-
193 treated A431 cancer cells. Expression of Epidermal Growth Factor Receptor (EGFR),
194 Phospholipase-C γ 1 (PLC γ 1) and PKC ζ protein in A431 cancer cell line after treatment with

195 100 nM WT, EGF variant D46T or variant K48T. Samples were collected on Day 3 after
196 treatment (two duplicates). Samples were incubated with Goat Anti-Rabbit IgG StarBright
197 Blue 700 at a 1:2000 dilution and Anti-Tubulin hFAB™ Rhodamine Antibody as a loading
198 control at a 1:3,000 dilution for 3 hrs and washed with Blocking Buffer and Milli-Q H₂O (22
199 μm filtration). Immunoreactive fluorescent labeled samples were visualized and analyzed
200 with ImageLab Software. (B) A schematic representation of one of the EGF-EGFR-mediated
201 signaling pathways that may be initiated in the A431 epidermoid cancer cell line. Arrows
202 indicate the positive action of downstream gene expression, whereas arrows with flat tips
203 indicate inhibition of gene expression. The “P+” symbol represents phosphorylation of
204 downstream-regulated proteins. The dashed line represents the potential cellular effect
205 regulated by altering gene expression levels involved in the depicted pathway.

206

207 **Discussion**

208 The prediction of functional residues is a well-developed field (15), where conservation of
209 each residue in a protein is considered a key factor to rely on. Tools like ConSurf (16) and the
210 ET-like methods (17) are able to identify slowly evolving positions that are involved in
211 folding, interaction, or catalytic activity of protein (15). Though, the specific reason why a
212 residue is conserved remains often unclear. In this work, we show that the conservation score
213 in the structural alignment of paralog sequences, combined with the orthologs alignment
214 conservation score is a promising way to identify important residues that affects the
215 downstream pathway and cellular behavior.

216 Positions conserved in the paralogs alignments are a subset of those conserved in the
217 orthologs alignment. By subtracting the first, positions with a shared function across all
218 ligands are filtered out. Then, Cross-conservation analysis overcomes the limitations of
219 previous methods and highlights ligand-specific functional residues.

220 In particular, the two tryptophan in positions 49 and 50 are strong outliers on our
221 bioinformatics analysis (Figure 1B). Their score is high even when using conservation
222 measures that do not take amino acid type change into account (data not shown). We
223 specifically chose W50 for further testing because of its outward facing position, on the
224 hypothesis that it might mediate previously unknown interactions. Mutant W50Y did not bind
225 stronger than WT EGF neither it showed a cellular effect. The distance of W50 from the
226 receptor might be the reason of this result, from the structure it seems that intramolecular
227 interaction can be favorite rather than interaction with the receptor.

228 Biochemical characterization of ligand-receptor interaction was done using ITC. Tested
229 mutants have binding affinities similar to that of WT EGF (Figure 2) except mutant N32R
230 which showed slightly higher affinity. N32R was the only position chosen which is not on the
231 C-terminus tail. Its behavior in the binding affinity is different than other mutants and it has
232 no detected effect at the cellular level, these results confirm the cross-conservation analysis
233 output which highlight the importance of the C-terminus tail rather than the rest of the ligand.
234 Interestingly, cells treated with mutants D46T and K48T show greater proliferation in the
235 normal human fibroblast cell line and increased apoptosis in cancer cell lines (Figure 3A and
236 B). Since these mutations are located in the disordered C-terminus, we cannot infer whether
237 they disrupt an important contact for EGF high-affinity binding. In fact, we observe the same
238 binding affinity with the isolated ECD as WT EGF. However, we can assume by our data that
239 they might induce some conformational change in the receptor which then affect the
240 downstream pathway. Previous reports have also identified the importance of the C-terminus
241 for binding specificity (18) and binding affinity (19) as we did. Few studies have examined
242 the effect of individual positions at the C-terminus of EGF (20), although nobody has
243 investigated the residues reported herein. We speculate that the mutations might induce a

244 conformational change of the receptor that might affect interactions in the highly modulated
245 endocytosis (21).

246 Cancer treatment has focused on the EGF receptor and deactivation of the intra-cellular
247 tyrosine-kinase (22). As the design of EGFR-based drugs remains complex, our study may
248 support the hypothesis that the D46T and K48T EGF mutants can be used as templates to
249 design anti-cancer drugs.

250

251 **Acknowledgments**

252 We thank Tadashi Yamamoto's Unit for technical help with the cell proliferation assay Keiko
253 Kono's Unit for the technical help with the WB experiments. We thank Madhuri Gade,
254 Hayato Yanagida, Mary Collins and Mirco Dindo for critical reading.

255

256 **Funding**

257 Financial support by the Okinawa Institute of Science and Technology to P.L. is gratefully
258 acknowledged.

259

260 **References**

- 261 1. Wu JM, Vallenius T, Ovaska K, Westermarck J, Makela TP, Hautaniemi S. Integrated
262 network analysis platform for protein-protein interactions. *Nat Methods*. 2009;6(1):75-7.
- 263 2. Mann M, Jensen ON. Proteomic analysis of post-translational modifications. *Nat
264 Biotechnol*. 2003;21(3):255-61.
- 265 3. Rao VS, Srinivas K, Sujini GN, Kumar GN. Protein-protein interaction detection:
266 methods and analysis. *International journal of proteomics*. 2014;2014:147648.
- 267 4. Laisney J, Braasch I, Walter RB, Meierjohann S, Schartl M. Lineage-specific co-
268 evolution of the Egf receptor/ligand signaling system. *BMC Evol Biol*. 2010;10:16.

269 5. Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung
270 cancer: role in clinical response to EGFR tyrosine kinase inhibitors. *Oncogene*. 2009;28:S24-
271 S31.

272 6. Cantor AJ, Shah NH, Kuriyan J. Deep mutational analysis reveals functional trade-
273 offs in the sequences of EGFR autophosphorylation sites. *Proc Natl Acad Sci U S A*.
274 2018;115(31):E7303-E12.

275 7. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. *European journal of*
276 *cancer* (Oxford, England : 1990). 2001;37 Suppl 4:S9-15.

277 8. Carpenter G, Cohen S. Epidermal growth factor. *Annual review of biochemistry*.
278 1979;48:193-216.

279 9. Hardwicke J, Schmaljohann D, Boyce D, Thomas D. Epidermal growth factor therapy
280 and wound healing--past, present and future perspectives. *The surgeon : journal of the Royal*
281 *Colleges of Surgeons of Edinburgh and Ireland*. 2008;6(3):172-7.

282 10. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of
283 KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. *Nature*.
284 2012;486(7404):532-6.

285 11. Groenen LC, Nice EC, Burgess AW. STRUCTURE-FUNCTION-RELATIONSHIPS
286 FOR THE EGF/TGF-ALPHA FAMILY OF MITOGENS. *Growth Factors*. 1994;11(4):235-
287 57.

288 12. Souriau C, Gracy J, Chiche L, Weill M. Direct selection of EGF mutants displayed on
289 filamentous phage using cells overexpressing EGF receptor. *Biol Chem*. 1999;380(4):451-8.

290 13. Gill GN, Lazar CS. Increased phosphotyrosine content and inhibition of proliferation
291 in EGF-treated A431 cells. *Nature*. 1981;293(5830):305-7.

292 14. Bjorkelund H, Gedda L, Andersson K. Comparing the epidermal growth factor
293 interaction with four different cell lines: intriguing effects imply strong dependency of
294 cellular context. *PloS one*. 2011;6(1):e16536.

295 15. Nemoto W, Saito A, Oikawa H. Recent advances in functional region prediction by
296 using structural and evolutionary information - Remaining problems and future extensions.
297 *Computational and structural biotechnology journal*. 2013;8:e201308007.

298 16. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. ConSurf 2016:
299 an improved methodology to estimate and visualize evolutionary conservation in
300 macromolecules. *Nucleic Acids Res*. 2016;44(W1):W344-W50.

301 17. Lichtarge O, Bourne HR, Cohen FE. An evolutionary trace method defines binding
302 surfaces common to protein families. *J Mol Biol*. 1996;257(2):342-58.

303 18. Sato K, Nakamura T, Mizuguchi M, Miura K, Tada M, Aizawa T, et al. Solution
304 structure of epiregulin and the effect of its C-terminal domain for receptor binding affinity.
305 *FEBS letters*. 2003;553(3):232-8.

306 19. Wingens M, Walma T, van Ingen H, Stortelers C, van Leeuwen JE, van Zoelen EJ, et
307 al. Structural analysis of an epidermal growth factor/transforming growth factor-alpha
308 chimera with unique ErbB binding specificity. *The Journal of biological chemistry*.
309 2003;278(40):39114-23.

310 20. Matsunami RK, Yette ML, Stevens A, Niyogi SK. MUTATIONAL ANALYSIS OF
311 LEUCINE-47 IN HUMAN EPIDERMAL GROWTH-FACTOR. *J Cell Biochem*.
312 1991;46(3):242-9.

313 21. Bakker J, Spits M, Neefjes J, Berlin I. The EGFR odyssey – from activation to
314 destruction in space and time. *Journal of Cell Science*. 2017;130(24):4087-96.

315 22. Sotelo MJ, García-Paredes B, Aguado C, Sastre J, Díaz-Rubio E. Role of cetuximab
316 in first-line treatment of metastatic colorectal cancer. *World journal of gastroenterology*.
317 2014;20(15):4208-19.

318 23. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl
319 2018. *Nucleic Acids Res.* 2018;46(D1):D754-D61.

320 24. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7:
321 Improvements in Performance and Usability. *Mol Biol Evol.* 2013;30(4):772-80.

322 25. Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, et al. UCSF
323 ChimeraX: Meeting modern challenges in visualization and analysis. *Protein Sci.*
324 2018;27(1):14-25.

325 26. Okonechnikov K, Golosova O, Fursov M, Team U. Unipro UGENE: a unified
326 bioinformatics toolkit. *Bioinformatics.* 2012;28(8):1166-7.

327 27. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A Fast and Effective
328 Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Mol Biol Evol.*
329 2015;32(1):268-74.

330 28. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS.
331 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat Methods.*
332 2017;14(6):587-+.

333 29. Wiedemann C, Bellstedt P, Gorlach M. CAPITO--a web server-based analysis and
334 plotting tool for circular dichroism data. *Bioinformatics.* 2013;29(14):1750-7.

335

336

337 **Materials and Methods**

338

339 **Sequence and structure analysis**

340 Sequences of all ligands and the multiple sequence alignment of EGF orthologs were
341 obtained using Ensembl (23). Multiple sequence alignment of all ligands was performed
342 using MAFFT software with a built-in scan of optimal parameters (24). Structure images and
343 alignments were created using Chimera (25).

344

345 **Phylogenetic analysis**

346 From the multiple sequence alignment of the ligand EGF from different species, very similar
347 sequences were removed (mostly from monkeys). The fruit fly EGF sequence was added as
348 an outgroup in the EGF phylogeny tree, while *Caenorhabditis elegans* EGF was used as
349 outgroup in the tree of all ligands. The image of MSA and phylogenetic trees were handled
350 using unipro UGENE software (26). Three phylogenetic trees were made using Neighbor
351 Joining (NJ), Maximum Likelihood (ML), and MrBayes (MrB) methods.
352 As additional method, trees were also made with IQTREE (27), using ModelFinder to scan
353 for the most fit evolutionary model and parameters (28).

354

355 **Calculation of Cross conservation score**

356 From the evolutionary MSA and ligands MSA (or MSTA), two conservation measures were
357 obtained. The conservation score was calculated in three ways: 1) identity score, 2)
358 BLOSUM62 matrix score, and 3) JSDw score. Identity score measures the frequency of
359 appearance of EGF residue in other ligands. In BLOSUM62, reference position substitutions
360 are weighted using the BLOSUM62 matrix. JSDw is the method used in ConSurf paper (16),
361 and is based on Jensen Shannon divergence, with a window of residues. The cross-

362 conservation plot and analysis were performed with the Python package SEABORN. The two
363 conservation scores were plotted, and a cross-conservation score was obtained by computing
364 the distance from the diagonal of the plot.

365 The code used in the analysis of the cross-conservation score and plots, and the data used in
366 this paper are shared on Github: <https://github.com/oist/CrossConservation>.

367 Cross-conservation analysis is based on the following assumptions: 1) Orthologs
368 evolutionary alignment conservation shows whether a residue is important for either
369 structural or functional reasons. 2) Ligands alignment conservation scores denote the
370 importance of a residue for receptor binding (the main shared property of all ligands). In our
371 analysis we rely on these two assumptions to conclude that highly conserved residues in the
372 evolutionary alignment (Figure C in S1 Figure) that are not conserved in the ligand alignment
373 (Figure A in S1 Figure) have ligand-specific relevance related to their function.

374 The decision of which mutation to introduce was made using the ligand alignment.

375 Overlapping residues at a given position were divided into two groups based on EGF-like and
376 non EGF-like activation of the receptor. This separation was shown to follow binding affinity.
377 Residues that introduced a noticeable shift in amino acid properties in the two groups were
378 selected.

379

380 **Synthetic Peptides**

381 Wild-type EGF (protein sequence:

382 N'NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR-
383 C')

384 and EGF variants (See below the list of peptides) with purity >90% and quantity 5 mg/mL
385 were ordered from Scrum Net Co. These peptides were used for ITC measurements, Circular
386 Dichroism (CD) measurements, proliferation studies, and Western Blot (WB) analyses.

387

388 **The list of Mutations:**

Name	Mut1	Mut2	Mut3	Mut4
Position	46	48	50	32
Amino acid substitutions	D46T	K48T	W50Y	N32R

389

390 **Cell Lines**

391 The *Bj5-tα* human normal fibroblast cell line was purchased from ATCC. Cells were grown
392 in DMEM with 10% fetal bovine serum (FBS), and 5 µg/mL hydromycin B.

393 The Swiss Albino 3T3 mouse normal fibroblast cell line was obtained from the RIKEN Cell
394 Bank. Cells were grown in DMEM, 10% FBS, 50 ug/mL gentamycin at 37°C in a 5% CO₂
395 atmosphere with 95% humidity.

396 The *A431* human epithelial carcinoma adherent cell line (RIKEN Cell Bank) is a model skin
397 cancer cell line with overexpressed EGFR used for oncogenic pathway studies (G. Carpenter
398 et.al., 1983). Cells were cultured in DMEM supplemented with 10% FBS (Sigma-Aldrich), 50
399 ug/mL gentamycin antibiotic.

400 Experiments were conducted at 37°C in a 5% CO₂-enriched air atmosphere with 95%
401 humidity. Cell lines were grown and used for cell ELISA and cell proliferation studies.

402

403 **Cell Proliferation Assay**

404 We measured cell proliferation using a label-free, non-invasive, cellular confluence assay
405 with IncuCyte Live-Cell Imaging Systems (Essen Bioscience). Human Bj5-tα (2,500 cells /
406 well) and Mouse Swiss Albino 3T3 (1,000 cells/well) were seeded overnight on a 96-well
407 plate (Corning) at 37°C in an incubator. The next day, cells were treated with WT EGF and
408 mutants at 1 nM, 10 nM and 100 nM concentrations and placed in an XL-3 incubation

409 chamber maintained at 37°C. The plate was scanned using a 4x objective at 2-hr intervals
410 over 3 days. Cell confluence was measured using IncuCyte Analysis Software. The IncuCyte
411 Analyzer gives real-time confluence data based on segmentation of high-definition phase-
412 contrast images. Cell proliferation is shown as an increase in percent confluence.

413

414 **Apoptosis Assay**

415 Experiments were performed with the A431 human cancer cell line. 5,000 cells/well were
416 seeded on a 96-well plate (Corning) and incubated at 37°C for 24 hr. Media were replaced
417 with fresh DMEM containing WT EGF, or EGF mutants at 1, 10, and 100 nM concentrations
418 and fluorescent annexin V green reagent. Plates were pre-warmed prior to data acquisition to
419 avoid condensation and expansion of the plate, which affect autofocus. Images were captured
420 every 2 hrs (4x) for 3 days in the IncuCyte system.

421

422 **Statistics**

423 Proliferation and apoptosis experiments were replicated three times. All results are shown as
424 the mean±s.d. Raw data was analyzed by multiple t-tests. Prism 8 software was used for
425 statistical analysis.

426

427 **Isothermal Titration Calorimetry (ITC)**

428 All ITC studies employed a MicroCal PEAQ-ITC System (Malvern). For titration, both
429 EGFR ECD (Sigma-Aldrich) and EGF variants were dialyzed into the same reaction buffer
430 Milli-Q H₂O (22 μm) at 25°C. Each titration involved serial injections of 13 × 3 μL aliquots
431 of EGF variants (200 μM) into a solution of EGFR ECD (20 μM) in the sample cell. In each
432 case, the reference cell was filled with the same reaction buffer as the control to determine
433 the heat upon binding of the two components. The measured heat constant value was

434 subtracted from the heat per injection prior to analysis of the data. The experiment was
435 replicated twice. Results were analyzed by MicroCal PEAQ-ITC Analysis Software.

436

437 **Circular Dichroism (CD)**

438 Far UV measurements were taken at a protein concentration of 0.1 μ M, using a cuvette with a
439 path length of 0.1 cm. Secondary structure content was calculated from far UV spectra using
440 CAPITO software (29). Five scans in the 190-240-nm wavelength range were taken.

441 **Western Blot Analysis**

442 A431 epidermoid carcinoma cells were harvested using Lysis Buffer (0.4% SDS, 0.2%
443 BETA-ME, 1% Bromophenol Blue, 10% glycerol. Samples were incubated at 65°C for 10
444 min, sonicated, and centrifuged at 15,000 rpm at 22°C for 10 min. Supernatants were used for
445 further analysis. Sample concentrations were measured with a PierceTM BCA protein assay
446 kit (ThermoFisher Scientific). Proteins were mixed with 2x Sample Loading Laemmli Buffer
447 and incubated at 65°C for 10 min. Equal amounts of protein were loaded in 4-15% Mini-
448 PROTEAN[®] TGX[™] SDS-PAGE gel (Bio-Rad) and transferred to PVDF membranes (gift
449 from Cell Membranology Unit, OIST). Membranes were blocked for 10 min with Turbo
450 Transfer Buffer and probed with monoclonal rabbit anti-EGFR antibody (Santa Cruz
451 Biotechnology, INC), monoclonal rabbit anti-PLC γ , and anti-phosphorylated PLC γ
452 antibodies (Santa Cruz Biotechnology, INC), monoclonal mouse anti-scr and rabbit anti-
453 phosphorylated src antibodies (Santa Cruz Biotechnology, INC), at dilution 1:1000. Samples
454 were incubated with Goat Anti-Rabbit IgG StarBright Blue 700 at a 1:2000 dilution and Anti-
455 Tubulin hFABTM Rhodamine Antibody as a loading control at a 1:3,000 dilution for 3 hours
456 and washed with Blocking Buffer and Milli-Q H₂O (22- μ m filtration). Immunoreactive
457 fluorescently labeled samples were visualized and analyzed with ImageLab Software.