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Abstract

Base editors derived from CRISPR-Cas9 systems and DNA editing enzymes offer an
unprecedented opportunity for the precise modification of genes, but have yet to be used at a
genome-scale throughput. Here, we test the ability of an editor based on a cytidine deaminase,
the Target-AlID base editor, to systematically modify genes genome-wide using the set of yeast
essential genes. We tested the effect of mutating around 17,000 individual sites in parallel
across more than 1,500 genes in a single experiment. We identified over 1,100 sites at which
mutations have a significant impact on fitness. Using previously determined and preferred
Target-AID mutational outcomes, we predicted the protein variants caused by each of these
gRNAs. We found that gRNAs with significant effects on fithess are enriched in variants
predicted to be deleterious by independent methods based on site conservation and predicted
protein destabilization. Finally, we identify key features to design effective gRNASs in the context
of base editing. Our results show that base editing is a powerful tool to identify key amino acid

residues at the scale of proteomes.
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Introduction

Recent technical advances have allowed the investigation of the genotype-phenotype map at
high resolution by experimentally measuring the effect of all possible nucleotide substitutions in
a short DNA sequence. While saturated mutagenesis informs us on the effect of many
mutations, it usually covers a single locus or a fraction of it"*. Because such data is only
available at sufficient coverage for a very small number of proteins, general rules on substitution
effects must be extrapolated to other, often unrelated proteins. At a lower level of resolution,
genome-scale mutational data has mostly been acquired through large-scale loss-of-function
strain collections, where the same genetic change (for example, complete gene deletion) is
applied to all genes®™. This approach is a powerful way to isolate each gene’s contribution to a
phenotype, including fitness, but limits our understanding of the role of specific positions within a

locus.

CRISPR-Cas9 based approaches usually cause protein loss of function through indel formation®
or by modifying gene expression levels’™® at many loci in parallel. Again, these approaches
generally limit the information gain to one perturbation per locus. There is therefore a strong
tradeoff between the resolution of the existing assays and the number of loci or genes
investigated. Recent developments in the field now allow for the exploration of the effects of
many mutations per gene across the genome. For instance, in yeast, methods for high
throughput strain library construction have allowed the measurement of thousands of variant
fitness effects in parallel across the genome'®™**. These approaches rely on CRISPR-Cas9
based genome modifications requiring the formation of double-strand breaks followed by repair
using donor DNA, which often depends on complex strain and plasmid constructions. An
alternative approach would be to use base editors, which allow the introduction of the mutations
of interest directly in the genome by direct modification of DNA bases rather than DNA segment

replacement.
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Base editors use DNA modifying enzymes fused to modified Cas9 or Casl12 proteins to create
specific point mutations in a target genome™™’. Such base editors have recently been used to
perform site-specific forward mutagenesis in human cell lines. The two main approaches,
Targeted AID-mediated mutagenesis (TAM)'® and CRISPR-X"?, target specific regions of the
genome where they induce mutations randomly. This generates a library of mutant genotypes
that can be competed to find beneficial and deleterious variants under selective pressure. As
the relative fithess measurements depend on targeted sequencing of the locus of interest, these
approaches are difficult to adapt to high throughput multiplexed screens where tens of

thousands of sites can be targeted within the same gRNA libraries.

Here, we present a method that bridges the flexibility of Target-AID mutagenesis and the
multiplexing capacities of genome editing depletion screens. By using a base editor with a
narrow and well-defined activity window™, we selected gRNAs generating a limited number of
predictable edits in yeast essential genes. This allowed us to use gRNAs as a readout for the
effect of the mutations, similar to commonly used barcode-sequencing approaches to measure

fitness effects.

Results

Design of a base editing library targeting essential genes

We used Target-AlD mutagenesis to simultaneously assess mutational effects at over 17,000
putative sites in the yeast genome. We scanned yeast essential genes for sites amenable to
editing by the Target-AlID base editor as well as targets with other specific properties, including
intronic sequences. Because all essential genes have the same qualitative fitness effects when
deleted?®, focusing on these genes allowed us to limit the variation in fithess that could be due

to the relative importance of individual genes for growth rather than to the importance of specific
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89  positions within a locus. We excluded gRNAs that did not target between the 0.5th and 75th
90 percentile of the length of annotated genes to limit position biases that could influence the effi-
21,22

91 ciency of stop-codon generating guides

92

93 To associate each gRNA in the library to specific base editing outcomes, we developed a simple
94  model based on the yeast data included in the original Target-AID manuscript as well as our
95  own work*>%. First, we expected that editing would mostly result in genotypes where only one
96 nucleotide is edited in the activity window of the editor. Second, we predicted that the editing
97  outcomes would mainly consist of C to G and C to T mutations and that the abundance of C to
98 A products will be negligible. Finally, we expected that editing frequency ranks would follow the
99  editing activity rankings already known from the initial characterization of Target-AlD. Based on
100 these criteria, we filtered out potential target sites where all three high editing rate positions (-
101 19,-18 and -17) or those where both position -18 and -17 are cytosines and kept the remaining
102  sites forinclusion in the gRNA library. The resulting library contained 40 000 gRNAs, of which
103  ~35 000 targeted essential gene coding sequences and ~5000 other target types as shown in
104  Supplementary Figure 1.

105

106  Over 75% of target sequences in this set contained only one or two Cs in the extended activity
107  window (positions -20 to -14), and as expected a general enrichment for cytosines in the high
108  activity window (Supplementary Figure 2A-B). Because the goal of our experiment was to link
109 specific mutations to fithess effects, co-editing of multiple nucleotides using an editor which
110  does not channel mutations to a specific outcome has the potential to obscure the genotype re-
111  sponsible for a fitness effect. To take this into account, we placed each gRNA in a co-editing
112  risk category based on the presence and positions of cytosines in the activity window (See

113  methods). Based on this metric, we found that over 80% of gRNAs fell either in the very low or
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114  low risk category (Supplementary Figure 2C). If co-editing occurs, but the other mutated cyto-
115 sine is part of the same codon as the intended target site, then any resulting fitness effects can
116  still be linked to the perturbation of a specific amino acid. As Target-AID is known to perform
117  processive editing, a high co-editing risk might also be linked to higher overall editing rate'>. We
118 found the proportion of gRNAs in the library for which this is true to be over 50%: when co-

119  editing risk category is taken into account, the proportion reaches ~90% (Supplementary Figure
120  2D).

121

122  Measurement of mutagenesis rate and outcomes of library gRNAs

123  While the repair product outcomes of edits for gRNAs can be predicted with varying levels of
124  accuracy for CRISPR-Cas9-based editing®*, no such tools are available yet for base editing ap-
125  plications. As such, the model we used to associate gRNASs in our library to mutational out-

126  comes is only a parsimonious deduction based on the original Target-AID data and our previous
127  work*?. Furthermore, evaluating the activity of gRNAs for base editing remains difficult®®>. The
128 measurement of fitness effects is not associated with a direct simultaneous measurement of
129 mutagenesis rate in our experiment. As such, the absence of fitness effects for a gRNA can
130 both be explained by either non-functional or low editing, or successful editing that resulted in
131  mutations with no detectable fitness effects®. As our experiment focuses on the impact of tar-
132  geted mutations on cell growth, the first group can be seen as false negatives, and the second
133  astrue negatives. While we can modulate the gRNA abundance variation threshold to minimize
134  the risk of false positives, additional experimental data on mutagenesis success rates and edit-
135 ing outcomes was required to assess which type of negative results would be dominant in our
136  experiment.

137
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138 To evaluate the performance of our model and the functionality of the library gRNAs, we per-
139 formed a base editing time course experiment where mutagenesis rates and outcomes were
140 measured by deep sequencing of the edited genomic loci (Supplementary Figure 3). To gain
141  insights on the mutagenesis outcomes of different editing scenarios, we selected guides with
142  different predicted patterns of cytosine presence in the Target-AlD activity window (Figure 1A).
143  We included 9 guides from the library isolated from the library quality control process, as well as
144 three control gRNAs respectively targeting the pseudogene YCLO74W, the non-essential gene
145 VPS17, and ADE1, which can be used as a phenotypic marker. Most gRNAs could efficiently
146  edit their respective targets, with 9 out 12 gRNAs reaching mutation rates of 50% or higher

147  (Figure 1B), consistent with previous results*>?*. Replicates were highly correlated along differ-
148 ent measurements with editing rates at the CAN1 co-editing site being highly consistent (Sup-
149  plementary Figure 4A-E). Only the gRNA targeting SES1 was found to be inactive, and as such
150 was excluded from downstream analysis. The very low editing rate observed for the gRNA tar-
151  geting SES1 is an example of unknown factors affecting mutagenesis efficiency that leads to
152 false negatives in large-scale experiments.

153

154  In our editing model, we first predict that single mutants would be the main mutagenesis out-
155 come of the base editing process. We found this to be true for 9 gRNAs out of 10 with more

156 than one cytosine in the Target-AID activity window (Figure 1C). Second, our model considers C
157  to A editing to be rare and thus disregards them in favor of the more common Cto Gand Cto T
158 mutations. We observe this bias in the deep sequencing data (Figure 1D), with the median oc-
159 cupancy of both C to G and C to T genotypes in edited alleles being much greater than C to A
160  occupancy (Cto T vs C to A: W=0, p=1.73x10®, C to G vs C to A: W=41, p=8.19x107°, two-sided
161  wilcoxon signed rank test). Including these mutations as in our model leads to a median cover-
162  age of 93% of mutagenesis outcomes. Our sequencing data also showed a greater prevalence

163  of C to T mutations compared to C to G (W=112, p=0.01), but if absolute editing rate is taken
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164 into account this difference disappears (Supplementary Figure 4F). Finally, in cases where mul-
165 tiple editable nucleotides are present in the activity window of the base editor, our model uses
166 the quantitative data of the original Target-AID manuscript to predict qualitatively which position
167  should be edited at the highest frequency. We found that this prediction method of editing rank
168 in the activity window matched with the experimental data in most cases (Figure 1E) which is
169  unlikely to occur by chance (p=0.0004 based on 1x10° random rank permutations). Globally, we
170 found that the edited allele pool was mostly composed of the genotypes predicted by our model:
171  for the 8 gRNAs with editing activity that came from the library, the median fraction of edited
172  reads covered by our model was 69% (Figure 1F). In 7 out of 8 cases, the fractions of edited
173  reads covered by the model was better than the 99th percentile of randomized outcome combi-
174  nations and in 6 out of 8 cases and also superior to the 99.9th percentile. Overall, these results
175  support that a large fraction of the gRNAs included in our library can edit their genomic targets
176 in an efficient and predictable manner.

177

178 High throughput screening using the gRNA library

179  The gRNA library was cloned into a high-throughput co-selection base editing vector?®. We

180 performed pooled mutagenesis followed by bulk competition (Supplementary Figure 7) to

181 identify mutations with significant fitness effects (Figure 2). As the relative abundance of each
182 gRNA in the extracted plasmid pool depends on the abundance of the subpopulation of cells
183  bearing these gRNAS, any fithess effect caused by the mutation they induce will influence their
184 relative abundance. Variation in plasmid abundance was measured using targeted next-

185 generation sequencing of the variable gRNA locus on the base editing vector in a manner

186  similar to GeCKO approaches®®.

187

188  After applying a stringent filtering threshold based on gRNA read count at the mutagenesis step

189 (see methods), we identified a total of ~17,000 gRNAs for which we could evaluate fitness
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190 effects. Replicate data for gRNAs passing the minimal read count selection criteria showed high
191  correlation across experimental time points (Supplementary Figure 8) and cluster by

192  experimental step (Supplementary Figure 9), showing that the approach is reproducible. Using
193 the distribution of abundance variation of non functional gRNAs with synthesis errors as a null
194  distribution (see methods), we identified 1,118 gRNAs across 605 genes or loci with significant
195 negative effects (GNE) on cell survival or proliferation at an estimated false positive rate of 5%
196  (Figure 3A). GNEs are distributed evenly across the yeast genome (Figure 3B), suggesting no
197 inherent bias against specific regions. An example of gRNA abundance variation through time
198 for all gRNAs (both GNEs and NSGs) targeting GLN4 is shown in Figure 3C.

199

200 Because our screen specifically targeted essential genes, many gRNAs cause mutations in

201  highly conserved regions with high functional importance. To illustrate this, we focus on the

202  highest scoring GNE targeting GLN4, a tRNA synthetase. The gRNA 33725 mutates a glycine
203  at position 267 into either arginine or serine, and showed a dramatic drop in abundance in the
204  large-scale experiment. To validate the deleteriousness of the predicted mutations, we

205 transformed a centromeric plasmid bearing a wild-type or mutated copy of the gene under the
206  control of its native promoter?’ in a heterozygous deletion background®® (Supplementary figure
207  10A). Glycine 267 is part of the “HIGH” motif, characteristic of class | tRNA synthetases, and is
208 involved in ATP binding and catalysis and is highly conserved through evolution®®. As expected,
209 the region around the “HIGH” motif shows both a low evolutionary rate based on inter-species
210 comparisons and a much lower variant density in yeast populations compared to other domains
211  of GIn4 (Supplementary figure 10B), showing conservation both on a short and long timescales.
212  Surprisingly, mutagenesis experiments in the bacterial homolog MetRS concluded that mutating
213  this residue from glycine to alanine did not alter significantly catalysis while mutating it to proline
214  had a strong disruptive effect®®. We found that mutating Gly 267 either to Arg or Ser was

215 enough to cause protein loss of function (Figure 3D).
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216  The five other sensitive sites identified in GLN4 by our screen were also clustered in regions
217  with slow evolutionary rates. We found that one other GNE targeting residue D291 induced a
218  highly deleterious mutation coupled with a neutral mutation as outcomes (D291E vs D291D,
219  Supplementary Figure 11). We did not observe any discernible growth defect for the other GNE
220  outcomes and as well as for the outcomes of 4 NSG targeting nearby amino acids. The other
221  GNEs tested had markedly more positive scores than the one targeting G267, which would be
222 consequent with a higher false positive rate close to the significance threshold. However, the
223  case of the D291E/D291D pair, where a strong fitness effect is partially obscured by a neutral
224  mutation produced by the other mutagenesis outcomes supports that sites of interest can be
225 detected even close to the significance threshold. As we only tested two outcomes per gRNA, it
226  is also possible that some of the abundance drops we measured were the result of mutations
227  outside of our model, which are sometimes predicted to be more deleterious than the most likely
228  mutations.

229

230 Comparison of GNE induced mutations with variant effect predictions

231 If GNEs indeed induce specific deleterious mutations, these mutations should be predicted to be
232  more deleterious than those of Non-Significant gRNAs (NSG). We tested this using two recently
233  published resources for variant effect prediction: Envision” and Mutfunc®. Envision is based on
234  amachine learning approach that leverages large-scale saturated mutagenesis data of multiple
235  proteins to perform quantitative predictions of missense mutation effects on protein function.
236  The lower the Envision score, the higher the effect on protein function. Mutfunc aggregates

237  multiple types of information such as residue conservation through the use of SIFT* as well as
238  structural constraints to provide a binary prediction of variant effect based on multiple

239 quantitative and qualitative values. Mutations with a low SIFT score have a lower chance of

240  being tolerated, while those with a positive AAG are predicted to destabilize protein structure or

241  interactions. Both Envision and the Mutfunc aggregated SIFT data cover the majority of the

10
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242  most probable mutations generated by the gRNA library (Supplementary Figure 12A). The
243  structural modeling information had much lower coverage, covering at best around 12% of the
244  most probable mutations (Supplementary Figure 12B). As expected, mutations generated by
245  GNEs showed significantly lower SIFT scores and showed enrichment for strong effects

246  predicted by SIFT and Envision (Figure 4). Indeed, all four most probable substitutions created
247 by GNEs are about twice more likely to be predicted to have a large deleterious effect by

248  Envision or a very low chance of being tolerated as predicted by SIFT compared to NSG

249  gRNAs. Envision scores across the proteome show a high level of homogeneity, with most
250 mutations having a score between 0.94 and 0.96 (Supplementary Figure 12C). According to the
251  original Envision manuscript, this should be predictive of a small decrease in protein function.
252  As such, the shifts in score distributions between GNEs and NSGs are more subtle but still
253  support that GNE induced mutations are generally more likely to be deleterious as well

254  (Supplementary Figure 13A).

255

256  Mutations with destabilizing effects as predicted by structural data also appeared to be enriched
257 in GNEs predicted mutations but low residue coverage limits the strength of this association.
258  This is supported by the raw AAG value distributions, which show a significant tendency

259  (Welch’s t-test p-values: 0.0001, 0.0064, 0.148, 0.007) for GNE mutations to be more

260  destabilizing (Supplementary Figure S13B-D). However, the shift in distribution only achieved
261  significance for certain mutation predictions based on solved structures and homology models.
262  While low residue coverage limits our statistical power, this weak apparent enrichment for

263  mutations affecting protein stability may reflect the marginal stability of the target proteins*?,
264  resulting in individual destabilizing mutations having a limited effects on fitness. As expected
265  from known experimental data on mutagenesis outcomes®®, signal was usually stronger for the
266  most probable C to G mutation.

267
11
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268  Sensitive sites provide new biological insights

269  Since Target-AID can only generate a limited range of amino acid substitutions from a specific
270  coding sequence, we investigated whether any of these mutational patterns were enriched in
271  GNEs (Figure 5A, source data in Supplementary tables 2, 3, and 4). We found deviations from
272  random expectations in both C-to-G and C-to-T mutation ratios that drove the enrichment of
273  several mutation combination. Three out of four of the mutation pair patterns involving glycine
274  were enriched in GNEs. For example, the Glycine to Arginine or Serine substitutions (as

275  exemplified by guide 33725 targeting GLN4) is the second most enriched pattern, being almost
276  four-fold overrepresented in GNE outcomes. This pattern is consistent with the fact that Arginine
277  has properties highly dissimilar to those of Glycine®**, making these substitutions highly

278  deleterious. Furthermore, as Glycine residues are often important components of cofactor

279  binding motifs (eg.: Phosphates)* this observation might reflect a tendency for GNEs to alter
280 these sites.

281

282  As expected, there is a strong enrichment within GNEs for patterns that result in mutation to
283  stop codons: both C-to-G patterns (Y to stop: 3 fold enrichment, p=3.62x10™, S to stop: 2.2 fold
284  enrichment, p=0.0002) but only one C-to-T pattern was overrepresented significantly (W to stop,
285 4.6 fold enrichment, p=6.23x10*°). Substitutions to stop codon in one outcome also drove

286  enrichment in the other: for example, the link between Serine to Stop (C-to-G) appears to be the
287  cause of the Serine to Leucine (C-to-T) overrepresentation. Both mutation pairs involving

288  mutating a Tryptophan to a stop via a C-to-T mutation: this is not surprising, as the alternative
289  mutations Tryptophan to Serine or Cysteine are also highly disruptive®*. Changes between

290 similar amino acids, which are expected to be tolerable, were also generally depleted in GNE
291 (ex.: the Alanine to Glycine/Valine pair). Mutations in intronic sequences and putative non-

292  functional peptides were also underrepresented, as were most patterns leading to silent

12
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293  mutations (Figure 5A). These results show the power of this approach to discriminate important
294  functional sites from more mutation tolerative ones across the genome.

295

296 Interestingly, genes for which more than one GNE were detected were enriched for molecular
297  function terms linked to cofactor binding (Supplementary Table 5). This suggests that the GNEs
298 might indeed have a tendency to affect protein function through mechanisms other than protein
299 orinteraction interface destabilization. These protein properties depend on many residues,

300 making them more robust to single amino acid substitutions, whereas cofactor binding may
301 depend specifically on a handful of residues, making these sites critical for function. Using the
302  Uniprot database®, we also examined whether gRNAs that target annotated binding sites or
303 highly conserved motifs are more likely to affect fitness compared to other gRNAs targeting the
304 same set of genes. We found a 3.5 fold enrichment for GNEs directly affecting these sites

305  (49/188, ratio®™F °"=0.261, two-sided Fisher’s exact test p=3.54x10™"*) or residues in a two

306 amino acid window around them (23/115, ratio®"= "**"

=0.167, two-sided Fisher’'s exact test
307 p=0.00048).

308

309 The precise targeting of our method also allows us to investigate amino acid residues with
310 known functional annotations such as post-translational modifications. We found no significant
311  enrichment for gRNAs mutating directly annotated PTMs (ratio®™® "™ = 19/1118, ratio"*¢ "™
312  243/15536, Fisher’s exact test p=0.71). Most of these sites were phosphorylation sites (7),
313  metal coordinating residues (5) and ubiquitination sites (4). This is consistent with the

314  hypothesis that many PTM sites may have little functional importance® and thus mutations
315 affecting them should not be significantly enriched for strong fitness effects compared to other

316 possible mutations. The same was also observed for gRNAs mutating residues near known

317 PTMs that could disturb recognition sites (ratio®"F "**"™ = 130/1118, ratio"¢ "™ =

13
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318 1698/15536, Fisher's exact test p=0.43). As we did not specifically target PTMs, our sample size
319 is small and it should be noted that statistical power regarding these observations is limited.
320

321  However, GNEs that do target annotated PTM sites might provide additional evidence

322  supporting the importance of these sites in particular. For example, the best scoring GNE in the
323  well-studied transcriptional regulator RAP1 is predicted to mutate residue T486. This threonine
324  has been reported as phosphorylated in two previous studies®*°, but the functional importance
325  of this phosphorylation has not been explored yet. Residue T486 is located in a disordered

326  region in the DNA binding domains®, which part of the only RAP1 fragment essential for cell
327  growth***2. Because the available wild-type RAP1 plasmid (see methods) does not complement
328 gene deletion growth phenotype, we used a different strategy for validation that relied on

329 CRISPR-mediated knock-in (see methods and Supplementary Figure 14). We tested the effect
330 of several predicted GNE induced mutations in RAP1 targeting positions T486, A510, R523 and
331  A540 (Figure 5B-C). We found that the predicted mutations at two of these positions, R523 and
332  A540, were highly deleterious. While we could not validate that the two most likely mutations
333  predicted to be caused by the GNE targeting T486 had a detectable fitness effect in these

334  conditions, we found that phosphomimetic mutations at this position were lethal but most other
335 amino acids were well tolerated. While we could validate that this gRNA indeed targeted a

336  sensitive site, the outcomes predicted by our model did not have any detectable fitness effects.
337  This showcases a limitation of our approach: the uncertainty in outcome prediction can

338 complicate validation studies. As we only tested progeny survival on rich media and at a

339 permissive temperature and the screen was performed in synthetic media at 30°C, these

340 mutants might still affect cell phenotype but in an environment-dependent manner.

341

342
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343 gRNA properties influence mutagenesis efficiency

344  There are still very few high-throughput experimental datasets available that allow the investiga-
345  tion of which gRNA properties affect editing efficiency in the context of base editing. We there-
346  fore sought to examine what gRNA and target sequence features could influence mutagenesis
347  efficiency. To do so, we focused on the subset of gRNAs with the potential to generate stop

348 codons (stop codon generating gRNAs, SGGs) in essential genes (Figure 6A). As gRNAs in our
349 library were designed to target the first 75% of the coding sequences, successful stop codon
350 generation in this subset of genes should often lead to a lethal loss of function'?2.

351

352  We found important variation in the ratio of GNE for the different types of SGGs (Figure 6B),
353  with gRNAs targeting TGG (Trp) codons having the highest activity. This is in opposition to the
354  general trend, as in general C to G mutation leading to stop codon formation had higher GNE
355 ratios than the three other C-to-T alternatives. Overall, we observed significant GNE enrichment
356 in SGGs which depend on the first C to G mutation to induce stop codon formation (Figure 6C).
357  Multiple factors can explain the higher performance of TGG targeting gRNAs. First, as most of
358 these sites have high co-editing risk scores because of the two consecutive cytosines, they

359  might have increased editing rates due to processive co-editing events, increasing the chance
360 of fitness effect detection. This phenomenon might also occur in non-SGG gRNAs (Supplemen-
361 tary Figure 15A). Second, we found a significant enrichment in GNEs for gRNAs targeting the
362  non-coding strand, even after excluding SGGs (Figure 6D). This effect might be explained by
363 the higher repair efficiency in the transcribed strand in yeast**. Furthermore, as the non-coding
364  strand is the one which is transcribed, a deamination event there might lead to consequences at
365 the protein level more rapidly when the mutated coding sequence is transcribed. In contrast, the
366 targeted chromosomal strand appears to be much less important (Supplementary Figure 15B).
367  The variation in GNE ratio observed between the different SGG target codons might also reflect

368 in vivo DNA repair preferences that depend on sequence context, where different outcomes
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369  might be favored depending on the target sequence. For example, the CA di-nucleotide might
370 favor C to G mutations, which would explain the low GNE ratio of CAA (GIn) targeting SGGs
371 and the higher than average GNE ratio of TCA (Ser) targeting SGGs.

372

373  Another parameter with a high impact on GNE enrichment in gRNA sets is the predicted melting
374  temperature of the RNA-DNA duplex formed by the gRNA sequence and its target DNA se-

375 quence (Supplementary Figure 15C-D). Both SGG and non-SGG gRNAs with low values have a
376 lower chance of being detected as having effects, while gRNAs with higher values are enriched
377  for GNEs (Figure 6E). This enrichment cannot be attributed to technical biases in library prepa-
378 ration or high-throughput sequencing that would tend to lower their abundance as melting tem-
379  perature shows practically no correlation with read count at any time point (Supplementary Fig-
380 ure 16). Furthermore, this effect is not caused by target position bias within target genes or a
381  strong correlation between GC content and the targeted position (Supplementary Figure 17).
382  Even if binding energy is strongly correlated with GC content, there is still significant variation
383  within gRNA sets with the same %GC (Figure 6F).

384

385 Discussion

386  Using targeted deep sequencing and high throughput screening, we investigated whether the
387  Target-AlD base editor is amenable for genome-scale targeted mutagenesis studies. We show
388 that a prediction model based on known Target-AID properties can be used to predict the major
389  mutational outcome of editing, even if multiple editable nucleotides are present in the activity
390 window. Using yeast essential genes as a test case, we then applied this approach on a larger
391 scale and identified hundreds of gRNAs targeting sensitive residues that have significant effects
392  on cellular fitness when mutated. We could then verify orthogonally the effects of mutational
393  outcomes of GNE using classical genetics approaches and show that they tend to overlap with

394  variants predicted to be deleterious. By focusing on a few highly relevant variant sets, we
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395 highlighted the power and potential of our approach to generate new biological insights. We
396 then used this data to investigate which factors influence base editing efficiency and found
397  multiple gRNAs and target properties that affect mutagenesis and that could be optimized for

398 future experiments in specific genomic spaces.

399 In previously published methods such as TAM and CRISPR-X'**?, the semi-random nature of
400 the editing forces the use of mutant allele frequencies as a readout for mutational fitness effects,
401  potentially limiting the scale of the experiments because only one genomic region can be

402 targeted at a time. To complement these approaches, we use more predictable base editing to
403 increase dramatically the number of target loci, albeit at the cost of a lower mutational density.
404  Our results demonstrate the feasibility of base editing screening at a large scale with

405  applications beyond stop codon generation, and future developments will further enhance it. For
406 instance, the use of a base editor with multiple possible mutagenesis outcomes complexifies the
407  prediction of editing outcomes, which can, in turn, make GNE follow-up challenging. Using a
408 base editor that channels mutational outcomes such as cytidine deaminase-uracil glycosylase
409 inhibitor (UGI) fusion can address this problem®® but decreases the number of mutations

410 explored during the experiment. However, recently published data on cytidine deaminase-UGI
411  fusion has shown they could lead to off-target editing in vivo at a much higher rate compared to
412  adenine base editors or the Cas9 nuclease***. Although there is currently no high throughput
413  data on the off-target activity of Target-AlD, data generated in yeast in the original publication
414  suggests far lower rates than those recently reported in mammalian cells™. Recently, Sadhu,
415  Bloom et al examined the effects of premature stop codons (PTC) in essential genes using a
416  high throughput variant construction method that relied on homology directed repair using a

417  mutated repair template™. They observed that a significant fraction of PTCs can be tolerated,

418  but only within the last 30 codons of a protein. Outside this window, they found no link between
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419 PTC tolerance and position within the coding sequence, something which we also did not

420  observe both for SGGs and non-SGG gRNAs (Supplementary Figure 17A-B).

421

422  We provide key empirical data on gRNA dependant parameters that can be used to optimize
423  base editing efficiency. Based on our results, selecting gRNAs with high binding energy to their
424  genomic targets and favoring those which target the non-coding strand can increase the chance
425  of high editing activity. Importantly, our observations differ from what has been reported for

426  Cas9-based genome editing. High gRNA RNA/DNA duplex binding has instead been associated
427  with lower mutagenesis efficiency®®. Our data thus confirms the observation that parameters
428  associated with Cas9 editing cannot readily be transferred to base editors*’. Furthermore, the
429  temperature at which experiments are performed might affect efficiency for certain gRNAs with
430 low gRNA-DNA duplex binding energy and should be considered when designing base editing
431  experiments in different organisms™. However, it remains to be confirmed whether the

432  enrichment for certain gRNA properties we observed are specific to Target-AlD or will also be
433 transferable to other base editors as this may depend on the enzymatic properties of these

434  proteins. Acquiring large paired gRNA and mutagenesis outcome datasets similar to those

435  available for Cas9 genome editing® will allow for more refined models for rational base editing
436  activity prediction.

437

438 The field of base editing is rapidly evolving, with new tools being developed constantly. One of
439 the most recent additions to this fast-growing toolkit are engineered Cas9 enzymes with

440  broadened PAM specificities*®, which have already been shown to be compatible with base
441  editors. More flexible PAM requirements are especially useful for base editing applications, as
442  they increase the number of sites to be edited and also the number of potential gRNAs per site,

443  increasing the chances of choosing optimal properties and thus greater efficiency”. Our method
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444  allows an experimental scale which bridges saturation mutagenesis methods and genome-wide
445  knock-out studies, alleviating the current trade-off between mutational diversity and the number

446  of targets genes to generate new biological insights.

447
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448 Methods
449  Generation of a gRNA library for Target-AID mutagenesis of essential genes in yeast

450 The Target-AID base editor has an activity window between base 15 to 20 in the gRNA

451  sequence starting from the PAM, and the efficiency at these different positions was

452  characterized in Nishida et al. 2016. This allowed us to predict the mutational outcomes for a
453  specific gRNA provided the number of editable bases in the window is not too high. To select
454  gRNAs, we parsed a database of gRNA targets for the S. cerevisiae reference genome

455  sequences (strain $288c)* and applied several selection criteria. Since the screen was to be
456  performed in the BY4741 strain, all gRNAs (unique seed sequence, no NAG site) within the
457  database were aligned to the reference genome of that strain using Bowtie®. Only gRNAs with
458  a single perfect alignment were kept for subsequent steps. To select gRNAs amenable to

459  Target-AID base editing, we selected gRNAs with cytosines within the highest activity window of
460 the editor (positions -17 to -19 starting from the PAM). To limit the total number of possible
461  mutational outcomes, gRNAs with three cytosines within the window were removed as well as
462  those with two cytosines at the highest activity positions. Next, we filtered out any gRNA

463  containing a Bsal restriction site to prevent errors during the library cloning step.

464  The list of essential genes (n=1156)** was used to discriminate between gRNAs targeting
465  essential or non-essential genes (retrieved from http://www-

466  sequence.stanford.edu/group/yeast deletion_project/Essential ORFs.txt). Among non-essential

467  genes, data from Qian et al. 2012°" was used to create categories of fitness effects. If the

468 fitness score (averaged across media and replicates) of a gene was below 0.75, it was

469 categorized as “high effect” on fitness. We excluded auxotrophic marker genes as well as

470 CAN1, LYP1, and FCY1 because those could be used as co-selection markers?. Gene

471  deletions with an averaged fithess score between 0.999 and 1.001 were categorized as having
472  “no detectable effect” on fithess. We selected gRNAs targeting essential and high effect genes,

473  as well as gRNAs targeting a set of 38 randomly chosen no effect genes. To further limit the
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space of gRNAs examined, only gRNAs mapping from the 0.5™ percent to the 75" percent of
coding sequences were chosen. We also added gRNAs targeting all known yeast introns (Ares
lab Database 4.3)*? and putative non-functional peptides® selected with the same strategy
except for the constraints on gRNA position within the sequence of interest. This resulted in a
set of 39,989 gRNAs: library properties are summarized in Supplementary Figure 1. To assign a
co-editing risk score to each gRNA, we defined four categories using the extended activity

window sequence composition shown in Table 1.

Table 1: Sequence patterns of co-editing risk categories

Co-editing risk category | Very Low Low Moderate High

Sequence patterns NCDDDNN [ NCDDCNN | NCDCNNN [ NCCDNNN
NDCDDNN [ NDCDCNN
NDDCDNN [ NDDCCNN

N = any nucleotide, D=AorTor G

Library construction

The plasmids, oligonucleotides, and media used in this study are listed in as Supplementary
tables 6, 7 and 8 respectively. The oligo pool was synthesized by Arbor Biosciences (Michigan,
USA) and was cloned into the pDYSCKO vector using Golden Gate Assembly (New England

Biolabs, Massachusetts, USA) with the following reaction parameters:

NEB GG buffer 10X | 2 pl

pDYSCKO [75ng/ul] | 1 pl

Oligo pool [2ng/ul] 1l

NEB GG mix 1l

Water 15 ul

The ligation mix was transformed in E. coli strain MC1061 (J[araD139]g; A(araA-leu)7697

AlacX74 galK16 galE15(GalS) A- e14- mcrAO relAl rpsL150(strR) spoT1 merB1 hsdR2)> using
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493 astandard chemical transformation protocol and plated on ampicillin selective media to select
494  for transformants. Serial dilution of cells after outgrowth were plated and then used to calculate
495 the total number of clones produced by the cloning reaction. Quality control of the assembly was
496  performed by Sanger sequencing ~10 clones per assembly reaction. Cells were scraped from
497  plates by adding ~5 ml of sterile water, incubating a few minutes at room temperature, and then
498  using a glass rake to resuspend colonies. Resuspended plates were then pooled together in a
499  single flask per reaction, which was then used to make glycerol stocks of the library and cell
500 pellets for plasmid extraction. The Qiagen Midi-Prep kit (Qiagen, Germany) was used to extract
501 plasmid DNA from cell pellets by following the manufacturer’s instructions. The DNA

502 concentration of each eluate was then measured using a NanoDrop (Thermofisher,

503 Massachusetts, USA), and a normalized master library for yeast transformation was assembled

504 by combining equal quantities of each assembly pool.

505 Base editing time course and library preparation for deep sequencing

506  Cells were co-transformed with pKN1252 and the pDYSCKO plasmid bearing the gRNA of

507 interest using the protocol described below for the large-scale experiment. Transformant plates
508 were scraped by adding ~5 ml of sterile water, incubating a few minutes at room temperature,
509 and then using a glass rake to resuspend colonies. The resuspended cells (one pool per guide)
510 were used to inoculate two replicate cultures per guide. Cells went through the same induction
511  protocol as for the large-scale experiment, but scaled down to a 24 deepwell plate (see

512  Supplementary Figures 3 and 7). The volumes used were: 3 ml for the initial SC-UL+glucose
513  culture, 4 ml for the SC-UL+glycerol step, 3 ml for the SC-UL+galactose step, and 3 ml for the
514  liquid canavanine co-selection step. At the end of the galactose induction step, 100 pl of a

515  1/2000 dilution of each well was plated on SC-ULR+canavanine solid media to obtain editing
516  survivor colonies. At the glycerol to galactose media switch, a ~1 OD pellet was sampled by

517  spinning cells at 13 200 RPM and removing the media. Cell pellets were then stored at -80°C for
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518 subsequent DNA extraction. The same method was used to sample ~1 OD at T=6 hours in

519 galactose, ~2 OD at T=12 hours in galactose, and ~3 OD at the end of canavanine co-selection.
520 Plates with selected colonies (edited at the CAN1 locus) were soaked in water and scraped, and
521 1.4 ml of the resulting cell suspension was sampled and stored.

522

523  Genomic DNA was extracted from cell pellets using a standard phenol-chloroform method from
524  each sample® and quantified by NanoDrop (Thermofisher, Massachusetts, USA). For each
525 sample, we aimed to sequence both the target edit site and the CAN1 co-selection edit site. To
526  multiplex the 240 samples in the same sequencing library, we used the row-column-plate-

527 indexed PCR (RCP-PCR) approach®. Briefly, each target locus was amplified from genomic
528 DNA and universal adapter sequences were added to each end of the amplicon. A 1/2500

529  dilution of the resulting product was then used as template with a set of 10 (rows) by 12

530 (column) primers used to index each sample in a second PCR reaction. All samples for the

531 same locus were then pooled together and normalized according to electrophoresis gel band
532 intensity and then purified using magnetic beads. A third and final PCR reaction on the purified
533  pools was then used to add plate indexes and lllumina adapters: this reaction was performed in
534  quadruplicate and the products from the four reactions were pooled together for purification.
535  Sequencing was performed using the MiSeq Reagent Kit v3 on an lllumina MiSeq for 600 cycles
536  (IBIS sequencing platform, Université Laval).

537

538  After sequencing, samples were demultiplexed using a custom python script with the reads
539 being subdivided in four (plate barcode forward, row barcode, column barcode and plate

540 barcode reverse). After demultiplexing, the forward and reverse reads were merged using the
541 PANDA-Seq software®’. Reads were then aligned to reference locus sequences using the

542  Needle software from EMBOSS®®. A custom script was then used to parse the alignments and
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543  extract genotype information for each read. The sequencing reads for the base editing deep
544  sequencing experiment were deposited on the NCBI SRA as accession number PRINA552472.

545

546  Library transformation in yeast

547  Competent BY4741 (MATa his3A1 leu2A0 met15A0 ura3A0) cells were first transformed with
548 the pKN1252 (p315-GalL-Target-AlD) plasmid using a standard lithium acetate method.

549  Transformants were selected by plating cells on SC-L. After 48 h of growth, multiples colonies
550 were used to inoculate a starter liquid culture for competent cells preparation using the standard
551 lithium acetate protocol®®: a culture volume of 200 ml was used to generate enough competent
552  cells for mass transformation. The large-scale library transformation was performed by

553  combining 40 transformation reactions performed with 40 ul of competent cells and 5 ul of

554  plasmid library (240 ng/ul) after the outgrowth stage and plating 100 ul aliquots on SC-UL: cells
555  were then allowed to grow at 30°C for 48 h. A 1/1000 serial dilution of the cell recovery was
556 plated in 5 replicates and used to calculate the number of transformants obtained. The total
557  number of transformants reached 3.48 x10° CFU, corresponding to about 100X coverage of the

558  plasmid pool.

559 Target-AID mutagenesis and competition screening

560 The mutagenesis protocol is an upscaled version of our previously published method®® and is
561  shown in Supplementary Figure 7. Transformants were scraped by spreading 5 ml sterile water
562  on plates and then resuspending cells using a glass rake. All plates were pooled together in the
563 same flask, and the OD of the yeast resuspension was measured using a Tecan Infinite F200
564  plate reader (Tecan, Switzerland). Pellets corresponding to about 6 x 10° cells were washed
565 twice with SC-UL without a carbon source and then used to inoculate a 100 ml SC-UL +2%
566  glucose culture at 0.6 OD two times to generate replicates A and B. Cells were allowed to grow

567  for 8 hours before 1 x 10° cells were pelleted and used to inoculate a 100 ml SC-UL + 5%
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568  glycerol culture. After 24 hours, 5 x 10° cells were pelleted and either put in SC-UL + 5%

569 galactose for mutagenesis or SC-UL + 5% glucose for a mock induction control. Target-AID

570  expression (from pKN1252) was induced for 12 hours before 1 x 108 cells were pelleted and
571  used to inoculate a canavanine (50 pg/ml) co-selection culture in SC-ULR. After 16 hours of
572  incubation, 5 x 107 cells of each culture were used to inoculate 100 ml SC-UR, which was grown
573  for 12 hours before 5 x 107 cells were used to inoculate a final 100 ml SC-UR culture which was
574  grown for another 12 hours. Cell pellets were washed with sterile water between each step, and
575 all incubation occurred at 30°C with agitation. ~2 x 107 cells were taken for plasmid DNA

576  extraction at the end of each mutagenesis and competition screening step.

577  Yeast plasmid DNA extraction

578  Yeast plasmid DNA was extracted using the ChargeSwitch Plasmid Yeast Mini Kit (Invitrogen,
579  California, USA) by following the manufacturer’'s protocol with minor modifications: Zymolase
580 4000 U/ml (Zymo Research, California, USA) was used instead of lyticase, and cells were

581 incubated for 1 hour at room temperature, one min at -80°C, and then incubated for another 15
582  minutes at room temperature before the lysis step. Plasmid DNA was eluted in 70 pl of E5 buffer

583 (10 mM Tris-HCI, pH 8.5) and stored at -20°C for use in library preparation.

584  Next-generation library sequencing preparation

585 Libraries were prepared by using two PCR amplification steps, one to amplify the gRNA region
586  of the pDSYCKO plasmid pool and the second to add sample barcodes as well as the lllumina
587 p5 and p7 sequences®. Oligonucleotides for library preparation are shown in the first part of the

588  oligonucleotide table. Reaction conditions for the first PCR were as follows:

589
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Phusion HF buffer (NEB) 5X 5ul

dNTPs 10 mM 0.5 ul

pDYSCKO_gRNA for 10 uM 1.25 i

pDYSCKO_gRNA rev 10 yM | 1.25 pl

Phusion polymerase 0.5 ul
Template DNA (<1 ng/pul) 5l
PCR grade water 11.7 pl

590

591  Thermocycler protocol:

Temperature (°C) | Time (s) | Cycles
98 30 1

98 10

58 15 16

72 5

72 5 1

592

593  The resulting product was verified on a 2% agarose gel colored with Midori Green Advance
594  (Nippon Genetics, Japan) and then gel-extracted and purified using the FastGene Gel/PCR
595  Extraction Kit (Nippon Genetics, Japan). The purified products were used as the template for

596 the second PCR reaction, with the following conditions:

Phusion Mastermix-HF (NEB) | 10 ul

P5-barcode-X oligo 1.333 uM 3.75 ul

P7-barcode-Y oligo 1.333 uM 3.75 ul

Template DNA (~1 ng/ul) 2.5 ul

597

598  Thermocycler protocol:
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Temperature (°C) | Time (s) | Cycles
98 30 1

98 10

60 10 15

72 60

72 300 1

599

600 PCR products were verified on a 2% agarose gel colored with Midori Green Advance (Nippon
601 Genetics, Japan) and then gel-extracted and purified using the FastGene Gel/PCR Extraction
602  Kit (Nippon Genetics, Japan). Library quality control and quantification were performed using
603 the KAPA Library Quantification Kit for lllumina platforms (Kapa Biosystems, Massachusetts,
604  USA) following the manufacturer's instructions. Libraries were then run on a single lane on

605 HiSeq 2500 (lllumina, California, USA) with paired-end 150 bp in fast mode.

606 Large-scale screen sequencing data analysis

607  The custom Python scripts used to analyze the are available on github

608  (https://docker.pkqg.github.com/Landrylab), and packages and software used are presented in
609  Supplementary table 9. Raw sequencing files have been deposited on the NCBI SRA,

610 accession number PRINA552472. Briefly, reads were separated into three subsequences for
611 alignment: the P5 barcode, the gRNA, and the P7 barcode. Each of these was aligned using
612 Bowtie *° to an artificial reference genome containing either the barcodes or gRNA sequences
613 flanked by the common amplicon sequences. The gRNA sequences are aligned both with 0 or 1
614  mismatch allowed, and misalignment position and type were stored. Information on barcode and
615 gRNA alignment for each read was stored and combined to generate a barcode count per

616 library table, a list of mismatches in alignments for each gRNA in each library, as well as

617  mismatch types and counts for the same gRNA across all libraries.
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618  Synthesis error within oligonucleotide libraries is one of the major limits of current large-scale
619 genome editing screening methods. These errors can introduce gRNA sequences that cannot
620 perform mutagenesis because the gRNA sequence does not match a site in the genome. We
621 refer to those gRNAs as SE gRNAs. In our experiment, the stringent selection criteria used to
622  select gRNAs limited the risk of off-target effects even for gRNAs with one mismatch, minimizing
623 the risk that a synthesis error gRNA could lead to editing at another site in the genome. We

624  therefore decided to use highly abundant SE gRNAs as negative controls to obtain a null

625  distribution of abundance variation for gRNAs with no fitness effects. To differentiate synthesis
626 errors from sequencing errors, we used the mismatch type and count table to assess whether a
627  particular mismatched gRNA constitutes a too large fraction of the reads associated with a

628 gRNA to be simply a repeated sequencing error. For each error, we test if:

Nreadsform ismatch

> 0.075

Nperfectalignment

629 and discarded the reads associated with the specific mismatch alignment. This threshold was
630 obtained by iteratively testing different threshold values in an effort to maximize the gain in
631  gRNA counts while minimizing the noise added by incorrect assignments. Read counts per

632  library for abundant (Nyeqqsformismaccn > 1,000) SE gRNAs were kept to serve as negative
633  controls when measuring fitness effects, resulting in a set of 1,032 abundant SE gRNAs. gRNAs
634  absent from more than half of the libraries (4446 out of 39,989) were removed from the analysis

635 before gRNA abundance calculations.
636  Detecting mutations with high fithess effects

637  Barcode sequencing competition experiments use DNA barcodes to measure the relative

638 abundance of many different subpopulations of cells grown in the same pool (Robinson et al.
639  2014). Since each gRNA is linked to its possible mutagenesis outcomes, we can use relative
640 gRNA abundance to detect mutations with significant fithess effects. To do so, the log, of the
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641 relative abundance of a barcode after mutagenesis is compared with its abundance at the end

642 of the screen:

NreadngNAt1 NreadngNAto

) — log,(

Nreadst1 Nreadsto

AlogzgRNA = lOgZ( )

643  For each gRNA, the measured fitness effect is the product of the effect of the mutational

644  outcomes on growth and of the mutation rate within the cell subpopulation bearing this particular
645 gRNA. Relative counts will also vary stochastically because of variation in sequencing coverage
646  depending on the time point and replicate. To reduce the impact of these effects, a minimal read
647  count at the end of the galactose induction step was used to filter out low abundance gRNAs.
648  We found a minimal read threshold of h=54 provided a good tradeoff between the number of

649 gRNAs eligible for analysis and inter-replicate correlation.

650  Using the distribution of Alog2 values, we calculated a z-score for each gRNA in both replicates.
651  We then averaged z-scores between replicates and compared the score distributions between
652  SE and Non-SE gRNAs. This revealed the presence of a left-skewed tail in the z-score

653  distribution of valid gRNAs, which is absent in the SE. Because the number of SE gRNAs is

654  smaller than the one of functional gRNAs by almost two orders of magnitude, a type | error

655 (false positives) empirical threshold based solely on a weighted SE z-score distribution was not
656  practical. To resolve this, we fitted a Gumbell left skewed distribution to the SE gRNAs z-score
657  distribution and used it to approximate the type | error rate as a function of the z-score. We set a
658  significance threshold such as that all gRNAs at z-scores for which the estimated false positive

659 rate is below or equal to 5% are considered GNEs.
660 Complementation assays

661  Experiments were performed in heterozygous deletion mutants from the YKO project

662  heterozygous deletion strain set (Dharmacon, Colorado, USA). For each gene, a single colony
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streaked from the glycerol stock was used to prepare competent cells using the previously
described lithium acetate protocol®®. To generate mutant alleles of the genes of interest, we
performed site-directed mutagenesis on the appropriate MoBY collection plasmid #’. These

centromeric plasmids encode the yeast gene of interest under the control of their native

promoters and terminators. Mutagenesis reactions were performed with the following reaction
setup:

Kapa HiFi buffer (Kapa biosciences) 5ul

5X

dNTPs 10uM 0.75 i

mutation_for 10uM (see table 7) 0.75 pl

mutation_rev 10uM (see table 7) 0.75 i

Kapa Hot-start polymerase 0.5 ul

Template plasmid DNA (15ng/ul) 0.75 ul

PCR grade water 16.5 pl

Thermocycler protocol:

Temperature (°C) | Time (s) | Cycles
95 300 1

98 20

60 15 20

72 720

72 1080 1

After amplification, the mutagenesis product was digested with Dpnl for 2 hours at 37°C and 5 ul
was transformed in E. coli strain BW23474 (F-, A(argF-lac)169, AuidA4::pir-116, recAl,
rpoS396(Am), endA9(del-ins)::FRT, rph-1, hsdR514, rob-1, creC510)%. Transformants were

plated on 2YT+Kan+Chlo and grown at 37°C overnight. Plasmid DNA was then isolated from
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677 clones and sent for Sanger sequencing (CHUL sequencing platform, Université Laval, Québec

678 City, Canada) to confirm mutagenesis success.

679  Competent cells of target genes were transformed with the appropriate mutant plasmids as well
680 a the original plasmid bearing the wild-type gene and the empty vector®, and transformants
681  were selected by plating on SC-U (MSG). Multiple independent colonies per transformation
682  were then put on sporulation media until sporulation could be confirmed by microscopy. For
683 tetrad dissection, cells were resuspended in 100ul 20T zymolyase (200mg/ml dilution in water)
684  and incubated for 20 minutes at room temperature. Cells were then centrifuged and

685  resuspended in 50ul 1M sorbitol before being streaked on a level YPD plate. All dissections
686  were performed using a Singer SporePlay microscope (Singer Instruments, UK). Plate pictures
687  were taken after five days incubation at room temperature except for the RAP1 plasmid

688 complementation test for which the picture was taken after three days. Pictures are shown in

689  Supplementary Image File 1.

690
691 Strain construction for confirmations in RAP1

692  Because the MoBY collection plasmid for RAP1 cannot fully complement the gene deletion

693  (Supplementary image file 1), we instead performed confirmations by engineering mutations a
694  diploid strain to create heterozygous mutants. RAP1 was first tagged with a modified version of
695 fragment DHFR F[1,2] (the first half) of the mMDHFR enzyme®. The mDHFR[1,2]-FLAG cassette
696  was amplified using gene-specific primers and previously described reaction parameters®. Cells
697  were transformed with the cassette using the previously described transformation protocol and
698 were plated on YPD+Nourseothricine (YPD+Nat in Media table). Positive clones were identified
699 by colony PCR and successful fragment fusion was confirmed by Sanger sequencing (CHUL

700 sequencing platform). We then mated the confirmed clones with strain Y8205 (Mata
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701  canl:STE2pr-his5 lypl::STE3prLEU2 Aura3 Ahis3 Aleu2, Kindly gifted by Charlie Boone) by
702 inoculating a 4ml YPD culture with overnight starter cultures of both strains and letting the
703  culture grow overnight. Cells were then streaked on YPD+Nat and diploid cells were identified

704 by colony PCR using mating type diagnosis primers®.

705 To create heterozygous deletion mutants of the target gene, we amplified a modified version of
706  the URAS3 cassettes that could then be targeted with the CRISPR-Cas9 system to integrate our
707  mutations of interest using homologous recombination at the target locus. The oligonucleotides
708  we used differ from those commonly used in that they amplify the cassette without the two LoxP
709 sites present at both ends. We found it necessary to remove those sites as one common

710 mutational outcome after introducing a double-stranded break in the URA3 cassette was inter-
711  LoxP site recombination without the integration of donor DNA at the target locus. These

712  modified cassettes recombine with DNA upstream the target gene on one end and the mDHFR
713  F[1,2] fusion on the other, ensuring that the heterozygous deletion is always performed at the
714  locus that is already tagged. Cassettes were transformed using the standard lithium acetate
715 method, and cells were plated on SC-U (MSG) selective media. Heterozygous deletion mutants

716  were then confirmed by colony PCR.
717 CRISPR-Cas9 mediated Knock-in of targeted mutations

718 Mutant alleles of target genes were amplified in two fragments using template DNA from the
719 haploid tagged strain (See Supplementary figure 14). The two fragments bearing mutations
720  were then fused together by a second PCR round to form the final donor DNA. This DNA was
721  then co-transformed with a plasmid bearing Cas9 and a gRNA targeting the URA3 cassette for

722  HDR mediated editing using a standard protocol®

. Clones were then screened by PCR to verify
723  donor DNA and mutation integration at the target locus. The targeted region of RAP1 was then
724  Sanger sequenced (CHUL sequencing platform, Univesité Laval, Québec City, Canada) to

725  confirm the presence of the mutation of interest. Heterozygous mutants were sporulated on
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726  solid media until sporulation could be confirmed by microscopy using the same protocol
727  previously described. The plates were then replica plated on YPD+Nat media, and the pictures

728  were taken after five days at room temperature (Supplementary Image File 2).
729 Evolutionary rate measurements and protein variant abundance

730  Evolutionary rates were calculated using the Rate4site software®® using multiple sequence
731  alignments and phylogenies from PhylomeDB V4% as input and using the raw calculated rates
732  as output. Variant data was compiled using data from the 1002 Yeast Genome Project

733 (http://1002genomes.u-strasbg.fr/files/ allReferenceGenesWithSNPsAndIndelsinferred.tar.qz).

734  Strain-specific protein coding sequence were aligned to the S288c sequence using Fastx36°®
735  with the following parameters: fastx36 -p -s -VT10 -T 6 -m 10 -n -3

736 querymultifasta.fasta ref orf.db 12\> fasta out . Alignments were then parsed
737  with a custom Python script to identify variants. Variant abundance was measured as the

738 number of strains in the dataset in which a specific variant was found. If the coding sequence
739 contained ambiguous nucleotides (ex.: R or Y), separate coding sequences were generated for

740  each possibility and each possible variant was considered as a separate occurrence.
741  Analysis of the properties of stop codon generating gRNAs

742  To analyse the sequence and target properties of gRNA inducing the creation of stop codons,
743  data from multiple sources was compiled. For each target gene, length and chromosomal strand
744  was obtained from the Saccharomyces Genome Database using the Yeastmine query

745  interface®. Distance to centromere was obtained by calculating the minimal distance between
746  the start of the gene and one extremity of the centromere coordinates. RNA:DNA duplex melting
747  temperature of gRNA sequence with target genomic DNA was calculated using the

748  MeltingTemp module from Biopython®, which uses values taken from Sugimoto et al*.
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749  Correlation between gRNA/DNA duplex melting temperatures was assessed using Spearman’s

750  rank correlation.
751 Variant effect prediction resources analysis and GO enrichment

752  All prediction data except the Envision scores were extracted from the aggregated data of the
753  Mutfunc database®'. Precomputed values were downloaded directly from the FTP server

754 (http://ftp.ebi.ac.uk/pub/databases/mutfunc/mutfunc_vl/yeast/). This database includes

755  precomputed SIFT scores for 5498 yeast proteins, as well as predicted variant ddG values
756  based on protein structure (h=1057), homology models (n=1703) and protein-protein interaction

757  interfaces (n=1109). Mutations with AAG>1 considered destabilizing.

758  Precomputed values from Envision? were downloaded directly from the database website

759  (https://envision.gs.washington.edu/shiny/envision_new/, file yeast_predicted_2017-03-12.csv).

760  This file contained 34857830 mutation effect predictions spread across 4011 genes. The
761  distribution of Envision scores for the genes targeted in the experiment that are included in the

762  database are shown in Supplementary Figure 12.

763  We downloaded the Uniprot database for yeast genes (query: uniprot-proteome_UP000002311)
764  with annotations covering the following properties: Metal binding, Nucleotide binding, Site, DNA
765  binding, Calcium binding, Binding site, Active site, Motif. We found that 6295 gRNAs targeted
766  genes which have annotations in Uniprot, of which 519 were GNEs (ratio,=0.0749). Statistical
767  enrichments were calculated using this set of gRNAs as the reference population. Gene

768  enrichments were performed using the PANTHER gene list analysis tool"?

. The list of genes for
769  which 2 or more GNEs were detected was tested for enrichment against all genes targeted by
770 the library using Fisher's exact test and False Discovery Rate calculations. The Gene Ontology

771  datasets used were: GO molecular function complete, GO biological process complete, and GO

772  cellular component complete.
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773 Data Availability

774  All raw sequencing data has been deposited on the NCBI as accession number PRINA552472.
775  The gRNA screen scores, predicted mutation outcomes, mutation effect predictors scores, as
776  well as other relevant annotations are presented in Supplementary Dataset 1. Source image

777  files for the tetrad dissections are presented as Supplementary Image 1 and 2.

778 Code Availability

779  The custom Python scripts used to analyze the are available on github

780  (https://github.com/landrylaboratory), and packages and software us ed are presented in

781  Supplementary table 9.
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963 Figure 1 A simple parsimonious model predicts the most probable outcomes of Target-AlD

964 mutagenesis. A) gRNAs included in the time course base editing experiment had diverse C content pro-
965 files in the Target-AlID activity window. Nucleotides are color coded: guanines are purple, thymines are
966 red, adenines are green and cytosines are blue. B) Overall fraction of edited reads for all target sites rate
967 along timepoints in the experiment: TO (start of induction), T6 (mid induction), T12 (end of induction). The
968  solid time point represents surviving cells plated after galactose induction, while the liquid time point

969 represents the cell population after canavanine co-selection. Amplification of the EROL target site from
970  the liquid recovery time points was unsuccessful (shown in grey), and as such the solid recovery time
971  point was used instead for the other analysis steps. C) Fraction of genotypes with different numbers of
972  edited nucleotides in the Target-AID activity window after co-selection for each locus. Values represents
973  the fraction of reads with either one, two or three edits compared to the total fraction of reads that were
974  edited. D) Editing outcome type for all sites with a total editing rate greater than one percent after co-
975  selection (=30 cytosines across all targeted sites). The C to G/T distribution represents the sum of edit-
976 ing that resulted in a C to G or C to T mutation. Position-wise editing rates and outcome are shown in
977 Supplementary Figures 5 and 6. E) Agreement between the predicted nucleotide total editing rank in the
978 model used to predict mutagenesis outcomes in the large-scale experiment and the deep sequencing
979  data (n=28 sites, 10 gRNAs). The gRNAs targeting ADE1 and SES1 were respectively excluded from the
980 analysis because there is only one editable site in the activity window and total editing rate was too low.
981 F) Edited read coverage of the mutation outcome prediction model and the 99th percentile of edited allele
982 combinations (n=4 genotypes in both cases) for the gRNAs with editing activity included in the large-scale
983  experiment.
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985 Figure 2 A gRNA library for systematic perturbation of essential genes using the Target-AID base
986 editor. Essential genes (ex.: E.G.1) were scanned for sites appropriate for Target-AlD mutagenesis.
987 Mutational outcomes include silent (grey triangle), missense (black triangle) mutations, as well as stop
988 codons (*). DNA fragments corresponding to the gRNA sequences were synthesized as an

989 oligonucleotide pool and cloned into a co-selection base editing vector. Using gRNAs as molecular

990 barcodes, the abundance of cell subpopulations bearing mutations is then measured after mutagenesis
991  and bulk competition. Mutations with fitness effects are inferred from reductions in the relative gRNA
992  abundances.
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994 Figure 3. High-throughput forward mutagenesis by Target-AlD base editing identifies sensitive
995  sites across the yeast genome. A) Cumulative distribution of z-scores of the log2 fold-change in gRNA
996 abundance between mutagenesis and the end of the bulk competition experiment averaged between
997 replicates. A 5% false positive threshold was calculated by fitting a distribution to the abundance variation
998 z-score of the sequenced gRNAs with synthesis errors (SE gRNAs) and is represented by a dotted black
999 line. The distribution of target types in the 1,118 gRNAs with Negative Effects (GNE) is shown in the
1000 inset. B) Positions of base editing target sites in the yeast genome. Telomeric regions are depleted in
1001 target sites because very few essential genes are located there. GNEs are shown in red, and other
1002  gRNAs are in black. The orientation of the line matches the targeted strand relative to the annotated
1003  coding sequence. C) Decline in gRNA abundance (on a log scale) between timepoints after mutagenesis
1004  for gRNAs targeting GLN4, a tRNA synthetase. Median gRNA abundance across the entire library
1005  through time is shown in green. The red lines represent the gRNAs categorized as having a significant
1006  effect (GNE) for this gene, while non-significant gRNAs (NSG) are shown in black. The gRNA with the
1007  most extreme z-score targets residue G267. D) Mutagenesis of GLN4-G267 confirms its essential role for
1008 protein function. Tetrad dissection of a heterozygous deletion mutant bearing an empty vector results in
1009 only two viable spores, while the wild-type copy in the same vector restores growth. Dissection of the two
1010  heterozygous mutants bearing a plasmid with the most probable single mutant based on the known
1011  activity window of Target-AID shows both mutations are lethal.

1012

44


https://doi.org/10.1101/677203
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/677203; this version posted December 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

1013  Figure 4: GNE induced mutations are enriched in predicted deleterious effects A) SIFT score

1014  distributions for the most likely induced mutations of both GNEs (blue) and NSGs (red). The thresholds for
1015  the categories used in the enrichment calculations in B) are shown as black dotted lines. SIFT scores
1016  represent the probability of a specific mutation being tolerated based on evolutionary information: the first
1017 threshold of 0.05 was set by the authors in the original manuscript®” but might be permissive considering
1018  the number of mutations tested in our experiment (n= 895, 12394, 704, 8520, 643, 7396, 508, 5682). All
1019  GNE vs NSG score comparisons are significant (Welch's t-test p-values: 1.19x10%*, 3.01x10**, 9.00x10
1020 % 1.55x10™%). The box cutoff is due to the large fraction of mutations for which the SIFT score is 0. B)
1021 Enrichment folds of GNEs over NSGs for different variant effect prediction measurements. Envision score
1022  (Env.), SIFT score (SIFT), protein folding stability based on solved protein structures (Struct. AAG),

1023 protein folding based on homology models (Model AAG) and protein-protein interaction interface stability
1024  based on structure data (Inter. AAG). The raw values used to calculate ratios are shown in

1025  Supplementary table 1. The predictions based on conservation and experimental data are grouped under
1026 ‘Predictors’ and those based on the computational analysis of protein structures and complexes under
1027  ‘Structural'.
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1029  Figure 5 GNE mutations are enriched for specific amino acid substitution patterns and identify
1030 critical sites for protein function. A) Fold depletion and enrichment volcano plots for the most probable
1031  mutations induced by GNEs in the screen. Enrichment and depletion values were calculated by

1032  comparing the relative abundance of each mutation among GNEs and NSGs using Fisher’s exact tests.
1033 Mutation patterns significantly depleted are shown in blue, while those that are enriched are in red. The
1034  significance threshold was set using the Holm-Bonferroni method at 5% FDR and is shown as a dotted
1035  grey line. B) Protein variant frequency among 1000 yeast isolates (black dots) and residue evolutionary
1036 rate across species (blue line) for RAP1. The target site for the GNEs targeting T486 is highlighted by a
1037  red line while the other detected GNEs target sites are shown by a grey line. C) Tetrad dissections
1038  confirm most RAP1 GNE induced mutations indeed have strong fitness effects, as well as other

1039  substitutions targeting these sites.
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1041 Figure 6 gRNA and target properties affect mutagenesis efficiency. A) Since Target-AlD can gener-
1042 ate both C to G and C to T mutations, many codons can be targeted to create premature stop codons.
1043  The TGG (W) codon is the only one targeted on the non-coding strand as ACC. B) GNE ratio for SGGs
1044  targeting different codons in essential genes, split by co-editing risk categories. C) Cumulative z-score
1045  density of SGGs grouped by the mutational outcome generating the stop codon. A higher rate of GNE is
1046  observed for gRNAs for which a C-to-G mutation at the highest editing activity position generates a stop
1047  codon mutation. The significance threshold is shown as a black dotted line. D) Cumulative z-score density
1048  of gRNAs that do not generate stop codons targeting either the coding or non-coding strand. E) SGG and
1049  non-SGG GNE enrichment compared to the expected GNE ratio for different melting temperature ranges.
1050 F) gRNA/DNA duplex melting temperature as a function of gRNA GC content for all gRNAs for which fit-
1051 ness effects were measured. The higher and lower efficiency thresholds are based on the enrichments
1052  shown in panel E.
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