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Abstract 25 

Base editors derived from CRISPR-Cas9 systems and DNA editing enzymes offer an 26 

unprecedented opportunity for the precise modification of genes, but have yet to be used at a 27 

genome-scale throughput. Here, we test the ability of an editor based on a cytidine deaminase, 28 

the Target-AID base editor, to systematically modify genes genome-wide using the set of yeast 29 

essential genes. We tested the effect of mutating around 17,000 individual sites in parallel 30 

across more than 1,500 genes in a single experiment. We identified over 1,100 sites at which 31 

mutations have a significant impact on fitness. Using previously determined and preferred 32 

Target-AID mutational outcomes, we predicted the protein variants caused by each of these 33 

gRNAs. We found that gRNAs with significant effects on fitness are enriched in variants 34 

predicted to be deleterious by independent methods based on site conservation and predicted 35 

protein destabilization. Finally, we identify key features to design effective gRNAs in the context 36 

of base editing. Our results show that base editing is a powerful tool to identify key amino acid 37 

residues at the scale of proteomes. 38 
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Introduction 39 

Recent technical advances have allowed the investigation of the genotype-phenotype map at 40 

high resolution by experimentally measuring the effect of all possible nucleotide substitutions in 41 

a short DNA sequence. While saturated mutagenesis informs us on the effect of many 42 

mutations, it usually covers a single locus or a fraction of it1,2. Because such data is only 43 

available at sufficient coverage for a very small number of proteins, general rules on substitution 44 

effects must be extrapolated to other, often unrelated proteins. At a lower level of resolution, 45 

genome-scale mutational data has mostly been acquired through large-scale loss-of-function 46 

strain collections, where the same genetic change (for example, complete gene deletion) is 47 

applied to all genes3–5. This approach is a powerful way to isolate each gene’s contribution to a 48 

phenotype, including fitness, but limits our understanding of the role of specific positions within a 49 

locus. 50 

CRISPR-Cas9 based approaches usually cause protein loss of function through indel formation6 51 

or by modifying gene expression levels7–9 at many loci in parallel. Again, these approaches 52 

generally limit the information gain to one perturbation per locus. There is therefore a strong 53 

tradeoff between the resolution of the existing assays and the number of loci or genes 54 

investigated. Recent developments in the field now allow for the exploration of the effects of 55 

many mutations per gene across the genome. For instance, in yeast, methods for high 56 

throughput strain library construction have allowed the measurement of thousands of variant 57 

fitness effects in parallel across the genome10–14. These approaches rely on CRISPR-Cas9 58 

based genome modifications requiring the formation of double-strand breaks followed by repair 59 

using donor DNA, which often depends on complex strain and plasmid constructions. An 60 

alternative approach would be to use base editors, which allow the introduction of the mutations 61 

of interest directly in the genome by direct modification of DNA bases rather than DNA segment 62 

replacement. 63 
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 64 

Base editors use DNA modifying enzymes fused to modified Cas9 or Cas12 proteins to create 65 

specific point mutations in a target genome15–17. Such base editors have recently been used to 66 

perform site-specific forward mutagenesis in human cell lines. The two main approaches, 67 

Targeted AID-mediated mutagenesis (TAM)18 and CRISPR-X19, target specific regions of the 68 

genome where they induce mutations randomly. This generates a library of mutant genotypes 69 

that can be competed to find beneficial and deleterious variants under selective pressure. As 70 

the relative fitness measurements depend on targeted sequencing of the locus of interest, these 71 

approaches are difficult to adapt to high throughput multiplexed screens where tens of 72 

thousands of sites can be targeted within the same gRNA libraries. 73 

 74 

Here, we present a method that bridges the flexibility of Target-AID mutagenesis and the 75 

multiplexing capacities of genome editing depletion screens. By using a base editor with a 76 

narrow and well-defined activity window15, we selected gRNAs generating a limited number of 77 

predictable edits in yeast essential genes. This allowed us to use gRNAs as a readout for the 78 

effect of the mutations, similar to commonly used barcode-sequencing approaches to measure 79 

fitness effects. 80 

Results 81 

Design of a base editing library targeting essential genes 82 

We used Target-AID mutagenesis to simultaneously assess mutational effects at over 17,000 83 

putative sites in the yeast genome. We scanned yeast essential genes for sites amenable to 84 

editing by the Target-AID base editor as well as targets with other specific properties, including 85 

intronic sequences. Because all essential genes have the same qualitative fitness effects when 86 

deleted20, focusing on these genes allowed us to limit the variation in fitness that could be due 87 

to the relative importance of individual genes for growth rather than to the importance of specific 88 
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positions within a locus. We excluded gRNAs that did not target between the 0.5th and 75th 89 

percentile of the length of annotated genes to limit position biases that could influence the effi-90 

ciency of stop-codon generating guides21,22. 91 

  92 

To associate each gRNA in the library to specific base editing outcomes, we developed a simple 93 

model based on the yeast data included in the original Target-AID manuscript as well as our 94 

own work15,23. First, we expected that editing would mostly result in genotypes where only one 95 

nucleotide is edited in the activity window of the editor. Second, we predicted that the editing 96 

outcomes would mainly consist of C to G and C to T mutations and that the abundance of C to 97 

A products will be negligible. Finally, we expected that editing frequency ranks would follow the 98 

editing activity rankings already known from the initial characterization of Target-AID. Based on 99 

these criteria, we filtered out potential target sites where all three high editing rate positions (-100 

19,-18 and -17) or those where both position -18 and -17 are cytosines and kept the remaining 101 

sites for inclusion in the gRNA library. The resulting library contained 40 000 gRNAs, of which 102 

~35 000 targeted essential gene coding sequences and ~5000 other target types as shown in 103 

Supplementary Figure 1.  104 

  105 

Over 75% of target sequences in this set contained only one or two Cs in the extended activity 106 

window (positions -20 to -14), and as expected a general enrichment for cytosines in the high 107 

activity window (Supplementary Figure 2A-B). Because the goal of our experiment was to link 108 

specific mutations to fitness effects, co-editing of multiple nucleotides using an editor which 109 

does not channel mutations to a specific outcome has the potential to obscure the genotype re-110 

sponsible for a fitness effect. To take this into account, we placed each gRNA in a co-editing 111 

risk category based on the presence and positions of cytosines in the activity window (See 112 

methods). Based on this metric, we found that over 80% of gRNAs fell either in the very low or 113 
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low risk category (Supplementary Figure 2C). If co-editing occurs, but the other mutated cyto-114 

sine is part of the same codon as the intended target site, then any resulting fitness effects can 115 

still be linked to the perturbation of a specific amino acid. As Target-AID is known to perform 116 

processive editing, a high co-editing risk might also be linked to higher overall editing rate15. We 117 

found the proportion of gRNAs in the library for which this is true to be over 50%: when co-118 

editing risk category is taken into account, the proportion reaches ~90% (Supplementary Figure 119 

2D). 120 

 121 

Measurement of mutagenesis rate and outcomes of library gRNAs 122 

While the repair product outcomes of edits for gRNAs can be predicted with varying levels of 123 

accuracy for CRISPR-Cas9-based editing24, no such tools are available yet for base editing ap-124 

plications. As such, the model we used to associate gRNAs in our library to mutational out-125 

comes is only a parsimonious deduction based on the original Target-AID data and our previous 126 

work15,23. Furthermore, evaluating the activity of gRNAs for base editing remains difficult25. The 127 

measurement of fitness effects is not associated with a direct simultaneous measurement of 128 

mutagenesis rate in our experiment. As such, the absence of fitness effects for a gRNA can 129 

both be explained by either non-functional or low editing, or successful editing that resulted in 130 

mutations with no detectable fitness effects23. As our experiment focuses on the impact of tar-131 

geted mutations on cell growth, the first group can be seen as false negatives, and the second 132 

as true negatives. While we can modulate the gRNA abundance variation threshold to minimize 133 

the risk of false positives, additional experimental data on mutagenesis success rates and edit-134 

ing outcomes was required to assess which type of negative results would be dominant in our 135 

experiment.  136 

 137 
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To evaluate the performance of our model and the functionality of the library gRNAs, we per-138 

formed a base editing time course experiment where mutagenesis rates and outcomes were 139 

measured by deep sequencing of the edited genomic loci (Supplementary Figure 3). To gain 140 

insights on the mutagenesis outcomes of different editing scenarios, we selected guides with 141 

different predicted patterns of cytosine presence in the Target-AID activity window (Figure 1A).  142 

We included 9 guides from the library isolated from the library quality control process, as well as 143 

three control gRNAs respectively targeting the pseudogene YCL074W, the non-essential gene 144 

VPS17, and ADE1, which can be used as a phenotypic marker. Most gRNAs could efficiently 145 

edit their respective targets, with 9 out 12 gRNAs reaching mutation rates of 50% or higher 146 

(Figure 1B), consistent with previous results15,23. Replicates were highly correlated along differ-147 

ent measurements with editing rates at the CAN1 co-editing site being highly consistent (Sup-148 

plementary Figure 4A-E). Only the gRNA targeting SES1 was found to be inactive, and as such 149 

was excluded from downstream analysis. The very low editing rate observed for the gRNA tar-150 

geting SES1 is an example of unknown factors affecting mutagenesis efficiency that leads to 151 

false negatives in large-scale experiments. 152 

  153 

In our editing model, we first predict that single mutants would be the main mutagenesis out-154 

come of the base editing process. We found this to be true for 9 gRNAs out of 10 with more 155 

than one cytosine in the Target-AID activity window (Figure 1C). Second, our model considers C 156 

to A editing to be rare and thus disregards them in favor of the more common C to G and C to T 157 

mutations. We observe this bias in the deep sequencing data (Figure 1D), with the median oc-158 

cupancy of both C to G and C to T genotypes in edited alleles being much greater than C to A 159 

occupancy (C to T vs C to A: W=0, p=1.73x10-6, C to G vs C to A: W=41, p=8.19x10-5, two-sided 160 

wilcoxon signed rank test). Including these mutations as in our model leads to a median cover-161 

age of 93% of mutagenesis outcomes. Our sequencing data also showed a greater prevalence 162 

of C to T mutations compared to C to G (W=112, p=0.01), but if absolute editing rate is taken 163 
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into account this difference disappears (Supplementary Figure 4F). Finally, in cases where mul-164 

tiple editable nucleotides are present in the activity window of the base editor, our model uses 165 

the quantitative data of the original Target-AID manuscript to predict qualitatively which position 166 

should be edited at the highest frequency. We found that this prediction method of editing rank 167 

in the activity window matched with the experimental data in most cases (Figure 1E) which is 168 

unlikely to occur by chance (p≈0.0004 based on 1x106 random rank permutations). Globally, we 169 

found that the edited allele pool was mostly composed of the genotypes predicted by our model: 170 

for the 8 gRNAs with editing activity that came from the library, the median fraction of edited 171 

reads covered by our model was 69% (Figure 1F). In 7 out of 8 cases, the fractions of edited 172 

reads covered by the model was better than the 99th percentile of randomized outcome combi-173 

nations and in 6 out of 8 cases and also superior to the 99.9th percentile. Overall, these results 174 

support that a large fraction of the gRNAs included in our library can edit their genomic targets 175 

in an efficient and predictable manner. 176 

 177 

High throughput screening using the gRNA library 178 

The gRNA library was cloned into a high-throughput co-selection base editing vector23. We 179 

performed pooled mutagenesis followed by bulk competition (Supplementary Figure 7) to 180 

identify mutations with significant fitness effects (Figure 2). As the relative abundance of each 181 

gRNA in the extracted plasmid pool depends on the abundance of the subpopulation of cells 182 

bearing these gRNAs, any fitness effect caused by the mutation they induce will influence their 183 

relative abundance. Variation in plasmid abundance was measured using targeted next-184 

generation sequencing of the variable gRNA locus on the base editing vector in a manner 185 

similar to GeCKO approaches6,26.  186 

 187 

After applying a stringent filtering threshold based on gRNA read count at the mutagenesis step 188 

(see methods), we identified a total of ~17,000 gRNAs for which we could evaluate fitness 189 
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effects. Replicate data for gRNAs passing the minimal read count selection criteria showed high 190 

correlation across experimental time points (Supplementary Figure 8) and cluster by 191 

experimental step (Supplementary Figure 9), showing that the approach is reproducible. Using 192 

the distribution of abundance variation of non functional gRNAs with synthesis errors as a null 193 

distribution (see methods), we identified 1,118 gRNAs across 605 genes or loci with significant 194 

negative effects (GNE) on cell survival or proliferation at an estimated false positive rate of 5% 195 

(Figure 3A). GNEs are distributed evenly across the yeast genome (Figure 3B), suggesting no 196 

inherent bias against specific regions. An example of gRNA abundance variation through time 197 

for all gRNAs (both GNEs and NSGs) targeting GLN4 is shown in Figure 3C.  198 

 199 

Because our screen specifically targeted essential genes, many gRNAs cause mutations in 200 

highly conserved regions with high functional importance. To illustrate this, we focus on the 201 

highest scoring GNE targeting GLN4, a tRNA synthetase. The gRNA 33725 mutates a glycine 202 

at position 267 into either arginine or serine, and showed a dramatic drop in abundance in the 203 

large-scale experiment. To validate the deleteriousness of the predicted mutations, we 204 

transformed a centromeric plasmid bearing a wild-type or mutated copy of the gene under the 205 

control of its native promoter27 in a heterozygous deletion background28 (Supplementary figure 206 

10A). Glycine 267 is part of the “HIGH” motif, characteristic of class I tRNA synthetases, and is 207 

involved in ATP binding and catalysis and is highly conserved through evolution29. As expected, 208 

the region around the “HIGH” motif shows both a low evolutionary rate based on inter-species 209 

comparisons and a much lower variant density in yeast populations compared to other domains 210 

of Gln4 (Supplementary figure 10B), showing conservation both on a short and long timescales. 211 

Surprisingly, mutagenesis experiments in the bacterial homolog MetRS concluded that mutating 212 

this residue from glycine to alanine did not alter significantly catalysis while mutating it to proline 213 

had a strong disruptive effect30. We found that mutating Gly 267 either to Arg or Ser was 214 

enough to cause protein loss of function (Figure 3D). 215 
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The five other sensitive sites identified in GLN4 by our screen were also clustered in regions 216 

with slow evolutionary rates. We found that one other GNE targeting residue D291 induced a 217 

highly deleterious mutation coupled with a neutral mutation as outcomes (D291E vs D291D, 218 

Supplementary Figure 11). We did not observe any discernible growth defect for the other GNE 219 

outcomes and as well as for the outcomes of 4 NSG targeting nearby amino acids. The other 220 

GNEs tested had markedly more positive scores than the one targeting G267, which would be 221 

consequent with a higher false positive rate close to the significance threshold. However, the 222 

case of the D291E/D291D pair, where a strong fitness effect is partially obscured by a neutral 223 

mutation produced by the other mutagenesis outcomes supports that sites of interest can be 224 

detected even close to the significance threshold. As we only tested two outcomes per gRNA, it 225 

is also possible that some of the abundance drops we measured were the result of mutations 226 

outside of our model, which are sometimes predicted to be more deleterious than the most likely 227 

mutations. 228 

 229 

Comparison of GNE induced mutations with variant effect predictions 230 

If GNEs indeed induce specific deleterious mutations, these mutations should be predicted to be 231 

more deleterious than those of Non-Significant gRNAs (NSG). We tested this using two recently 232 

published resources for variant effect prediction: Envision2 and Mutfunc31. Envision is based on 233 

a machine learning approach that leverages large-scale saturated mutagenesis data of multiple 234 

proteins to perform quantitative predictions of missense mutation effects on protein function. 235 

The lower the Envision score, the higher the effect on protein function. Mutfunc aggregates 236 

multiple types of information such as residue conservation through the use of SIFT32 as well as 237 

structural constraints to provide a binary prediction of variant effect based on multiple 238 

quantitative and qualitative values. Mutations with a low SIFT score have a lower chance of 239 

being tolerated, while those with a positive ∆∆G are predicted to destabilize protein structure or 240 

interactions. Both Envision and the Mutfunc aggregated SIFT data cover the majority of the 241 
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most probable mutations generated by the gRNA library (Supplementary Figure 12A). The 242 

structural modeling information had much lower coverage, covering at best around 12% of the 243 

most probable mutations (Supplementary Figure 12B). As expected, mutations generated by 244 

GNEs showed significantly lower SIFT scores and showed enrichment for strong effects 245 

predicted by SIFT and Envision (Figure 4). Indeed, all four most probable substitutions created 246 

by GNEs are about twice more likely to be predicted to have a large deleterious effect by 247 

Envision or a very low chance of being tolerated as predicted by SIFT compared to NSG 248 

gRNAs. Envision scores across the proteome show a high level of homogeneity, with most 249 

mutations having a score between 0.94 and 0.96 (Supplementary Figure 12C). According to the 250 

original Envision manuscript, this should be predictive of a small decrease in protein function. 251 

As such, the shifts in score distributions between GNEs and NSGs are more subtle but still 252 

support that GNE induced mutations are generally more likely to be deleterious as well 253 

(Supplementary Figure 13A). 254 

 255 

Mutations with destabilizing effects as predicted by structural data also appeared to be enriched 256 

in GNEs predicted mutations but low residue coverage limits the strength of this association. 257 

This is supported by the raw ∆∆G value distributions, which show a significant tendency 258 

(Welch’s t-test p-values: 0.0001, 0.0064, 0.148, 0.007) for GNE mutations to be more 259 

destabilizing (Supplementary Figure S13B-D). However, the shift in distribution only achieved 260 

significance for certain mutation predictions based on solved structures and homology models. 261 

While low residue coverage limits our statistical power, this weak apparent enrichment for 262 

mutations affecting protein stability may reflect the marginal stability of the target proteins33, 263 

resulting in individual destabilizing mutations having a limited effects on fitness. As expected 264 

from known experimental data on mutagenesis outcomes15, signal was usually stronger for the 265 

most probable C to G mutation. 266 

 267 
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Sensitive sites provide new biological insights 268 

Since Target-AID can only generate a limited range of amino acid substitutions from a specific 269 

coding sequence, we investigated whether any of these mutational patterns were enriched in 270 

GNEs (Figure 5A, source data in Supplementary tables 2, 3, and 4). We found deviations from 271 

random expectations in both C-to-G and C-to-T mutation ratios that drove the enrichment of 272 

several mutation combination. Three out of four of the mutation pair patterns involving glycine 273 

were enriched in GNEs. For example, the Glycine to Arginine or Serine substitutions (as 274 

exemplified by guide 33725 targeting GLN4) is the second most enriched pattern, being almost 275 

four-fold overrepresented in GNE outcomes. This pattern is consistent with the fact that Arginine 276 

has properties highly dissimilar to those of Glycine34, making these substitutions highly 277 

deleterious. Furthermore, as Glycine residues are often important components of cofactor 278 

binding motifs (eg.: Phosphates)35 this observation might reflect a tendency for GNEs to alter 279 

these sites.  280 

 281 

As expected, there is a strong enrichment within GNEs for patterns that result in mutation to 282 

stop codons: both C-to-G patterns (Y to stop: 3 fold enrichment, p=3.62x10-11, S to stop: 2.2 fold 283 

enrichment, p=0.0002) but only one C-to-T pattern was overrepresented significantly (W to stop, 284 

4.6 fold enrichment, p=6.23x10-15). Substitutions to stop codon in one outcome also drove 285 

enrichment in the other: for example, the link between Serine to Stop (C-to-G) appears to be the 286 

cause of the Serine to Leucine (C-to-T) overrepresentation. Both mutation pairs involving 287 

mutating a Tryptophan to a stop via a C-to-T mutation: this is not surprising, as the alternative 288 

mutations Tryptophan to Serine or Cysteine are also highly disruptive34. Changes between 289 

similar amino acids, which are expected to be tolerable, were also generally depleted in GNE 290 

(ex.: the Alanine to Glycine/Valine pair). Mutations in intronic sequences and putative non-291 

functional peptides were also underrepresented, as were most patterns leading to silent 292 
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mutations (Figure 5A). These results show the power of this approach to discriminate important 293 

functional sites from more mutation tolerative ones across the genome. 294 

 295 

Interestingly, genes for which more than one GNE were detected were enriched for molecular 296 

function terms linked to cofactor binding (Supplementary Table 5). This suggests that the GNEs 297 

might indeed have a tendency to affect protein function through mechanisms other than protein 298 

or interaction interface destabilization. These protein properties depend on many residues, 299 

making them more robust to single amino acid substitutions, whereas cofactor binding may 300 

depend specifically on a handful of residues, making these sites critical for function. Using the 301 

Uniprot database37, we also examined whether gRNAs that target annotated binding sites or 302 

highly conserved motifs are more likely to affect fitness compared to other gRNAs targeting the 303 

same set of genes. We found a 3.5 fold enrichment for GNEs directly affecting these sites 304 

(49/188, ratioGNE On=0.261, two-sided Fisher’s exact test p=3.54x10-14) or residues in a two 305 

amino acid window around them (23/115, ratioGNE near=0.167, two-sided Fisher’s exact test 306 

p=0.00048). 307 

 308 

The precise targeting of our method also allows us to investigate amino acid residues with 309 

known functional annotations such as post-translational modifications. We found no significant 310 

enrichment for gRNAs mutating directly annotated PTMs (ratioGNE PTM = 19/1118, ratioNSG PTM 311 

243/15536, Fisher’s exact test p=0.71). Most of these sites were phosphorylation sites (7), 312 

metal coordinating residues (5) and ubiquitination sites (4). This is consistent with the 313 

hypothesis that many PTM sites may have little functional importance36 and thus mutations 314 

affecting them should not be significantly enriched for strong fitness effects compared to other 315 

possible mutations. The same was also observed for gRNAs mutating residues near known 316 

PTMs that could disturb recognition sites (ratioGNE nearPTM = 130/1118, ratioNSG nearPTM = 317 
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1698/15536, Fisher's exact test p=0.43). As we did not specifically target PTMs, our sample size 318 

is small and it should be noted that statistical power regarding these observations is limited.  319 

 320 

However, GNEs that do target annotated PTM sites might provide additional evidence 321 

supporting the importance of these sites in particular. For example, the best scoring GNE in the 322 

well-studied transcriptional regulator RAP1 is predicted to mutate residue T486. This threonine 323 

has been reported as phosphorylated in two previous studies38,39, but the functional importance 324 

of this phosphorylation has not been explored yet. Residue T486 is located in a disordered 325 

region in the DNA binding domains40, which part of the only RAP1 fragment essential for cell 326 

growth41,42. Because the available wild-type RAP1 plasmid (see methods) does not complement 327 

gene deletion growth phenotype, we used a different strategy for validation that relied on 328 

CRISPR-mediated knock-in (see methods and Supplementary Figure 14). We tested the effect 329 

of several predicted GNE induced mutations in RAP1 targeting positions T486, A510, R523 and 330 

A540 (Figure 5B-C). We found that the predicted mutations at two of these positions, R523 and 331 

A540, were highly deleterious. While we could not validate that the two most likely mutations 332 

predicted to be caused by the GNE targeting T486 had a detectable fitness effect in these 333 

conditions, we found that phosphomimetic mutations at this position were lethal but most other 334 

amino acids were well tolerated. While we could validate that this gRNA indeed targeted a 335 

sensitive site, the outcomes predicted by our model did not have any detectable fitness effects. 336 

This showcases a limitation of our approach: the uncertainty in outcome prediction can 337 

complicate validation studies. As we only tested progeny survival on rich media and at a 338 

permissive temperature and the screen was performed in synthetic media at 30°C, these 339 

mutants might still affect cell phenotype but in an environment-dependent manner. 340 

 341 

 342 
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gRNA properties influence mutagenesis efficiency 343 

There are still very few high-throughput experimental datasets available that allow the investiga-344 

tion of which gRNA properties affect editing efficiency in the context of base editing. We there-345 

fore sought to examine what gRNA and target sequence features could influence mutagenesis 346 

efficiency. To do so, we focused on the subset of gRNAs with the potential to generate stop 347 

codons (stop codon generating gRNAs, SGGs) in essential genes (Figure 6A). As gRNAs in our 348 

library were designed to target the first 75% of the coding sequences, successful stop codon 349 

generation in this subset of genes should often lead to a lethal loss of function13,22. 350 

 351 

We found important variation in the ratio of GNE for the different types of SGGs (Figure 6B), 352 

with gRNAs targeting TGG (Trp) codons having the highest activity. This is in opposition to the 353 

general trend, as in general C to G mutation leading to stop codon formation had higher GNE 354 

ratios than the three other C-to-T alternatives. Overall, we observed significant GNE enrichment 355 

in SGGs which depend on the first C to G mutation to induce stop codon formation (Figure 6C). 356 

Multiple factors can explain the higher performance of TGG targeting gRNAs. First, as most of 357 

these sites have high co-editing risk scores because of the two consecutive cytosines, they 358 

might have increased editing rates due to processive co-editing events, increasing the chance 359 

of fitness effect detection. This phenomenon might also occur in non-SGG gRNAs (Supplemen-360 

tary Figure 15A). Second, we found a significant enrichment in GNEs for gRNAs targeting the 361 

non-coding strand, even after excluding SGGs (Figure 6D). This effect might be explained by 362 

the higher repair efficiency in the transcribed strand in yeast43. Furthermore, as the non-coding 363 

strand is the one which is transcribed, a deamination event there might lead to consequences at 364 

the protein level more rapidly when the mutated coding sequence is transcribed. In contrast, the 365 

targeted chromosomal strand appears to be much less important (Supplementary Figure 15B). 366 

The variation in GNE ratio observed between the different SGG target codons might also reflect 367 

in vivo DNA repair preferences that depend on sequence context, where different outcomes 368 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2019. ; https://doi.org/10.1101/677203doi: bioRxiv preprint 

https://doi.org/10.1101/677203
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

might be favored depending on the target sequence. For example, the CA di-nucleotide might 369 

favor C to G mutations, which would explain the low GNE ratio of CAA (Gln) targeting SGGs 370 

and the higher than average GNE ratio of TCA (Ser) targeting SGGs. 371 

  372 

Another parameter with a high impact on GNE enrichment in gRNA sets is the predicted melting 373 

temperature of the RNA-DNA duplex formed by the gRNA sequence and its target DNA se-374 

quence (Supplementary Figure 15C-D). Both SGG and non-SGG gRNAs with low values have a 375 

lower chance of being detected as having effects, while gRNAs with higher values are enriched 376 

for GNEs (Figure 6E). This enrichment cannot be attributed to technical biases in library prepa-377 

ration or high-throughput sequencing that would tend to lower their abundance as melting tem-378 

perature shows practically no correlation with read count at any time point (Supplementary Fig-379 

ure 16). Furthermore, this effect is not caused by target position bias within target genes or a 380 

strong correlation between GC content and the targeted position (Supplementary Figure 17). 381 

Even if binding energy is strongly correlated with GC content, there is still significant variation 382 

within gRNA sets with the same %GC (Figure 6F). 383 

 384 

Discussion 385 

Using targeted deep sequencing and high throughput screening, we investigated whether the 386 

Target-AID base editor is amenable for genome-scale targeted mutagenesis studies. We show 387 

that a prediction model based on known Target-AID properties can be used to predict the major 388 

mutational outcome of editing, even if multiple editable nucleotides are present in the activity 389 

window. Using yeast essential genes as a test case, we then applied this approach on a larger 390 

scale and identified hundreds of gRNAs targeting sensitive residues that have significant effects 391 

on cellular fitness when mutated. We could then verify orthogonally the effects of mutational 392 

outcomes of GNE using classical genetics approaches and show that they tend to overlap with 393 

variants predicted to be deleterious. By focusing on a few highly relevant variant sets, we 394 
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highlighted the power and potential of our approach to generate new biological insights. We 395 

then used this data to investigate which factors influence base editing efficiency and found 396 

multiple gRNAs and target properties that affect mutagenesis and that could be optimized for 397 

future experiments in specific genomic spaces. 398 

In previously published methods such as TAM and CRISPR-X18,19, the semi-random nature of 399 

the editing forces the use of mutant allele frequencies as a readout for mutational fitness effects, 400 

potentially limiting the scale of the experiments because only one genomic region can be 401 

targeted at a time. To complement these approaches, we use more predictable base editing to 402 

increase dramatically the number of target loci, albeit at the cost of a lower mutational density. 403 

Our results demonstrate the feasibility of base editing screening at a large scale with 404 

applications beyond stop codon generation, and future developments will further enhance it. For 405 

instance, the use of a base editor with multiple possible mutagenesis outcomes complexifies the 406 

prediction of editing outcomes, which can, in turn, make GNE follow-up challenging. Using a 407 

base editor that channels mutational outcomes such as cytidine deaminase-uracil glycosylase 408 

inhibitor (UGI) fusion can address this problem15 but decreases the number of mutations 409 

explored during the experiment. However, recently published data on cytidine deaminase-UGI 410 

fusion has shown they could lead to off-target editing in vivo at a much higher rate compared to 411 

adenine base editors or the Cas9 nuclease44,45. Although there is currently no high throughput 412 

data on the off-target activity of Target-AID, data generated in yeast in the original publication 413 

suggests far lower rates than those recently reported in mammalian cells15. Recently, Sadhu, 414 

Bloom et al examined the effects of premature stop codons (PTC) in essential genes using a 415 

high throughput variant construction method that relied on homology directed repair using a 416 

mutated repair template13. They observed that a significant fraction of PTCs can be tolerated, 417 

but only within the last 30 codons of a protein. Outside this window, they found no link between 418 
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PTC tolerance and position within the coding sequence, something which we also did not 419 

observe both for SGGs and non-SGG gRNAs (Supplementary Figure 17A-B). 420 

 421 

We provide key empirical data on gRNA dependant parameters that can be used to optimize 422 

base editing efficiency. Based on our results, selecting gRNAs with high binding energy to their 423 

genomic targets and favoring those which target the non-coding strand can increase the chance 424 

of high editing activity. Importantly, our observations differ from what has been reported for 425 

Cas9-based genome editing. High gRNA RNA/DNA duplex binding has instead been associated 426 

with lower mutagenesis efficiency46. Our data thus confirms the observation that parameters 427 

associated with Cas9 editing cannot readily be transferred to base editors47. Furthermore, the 428 

temperature at which experiments are performed might affect efficiency for certain gRNAs with 429 

low gRNA-DNA duplex binding energy and should be considered when designing base editing 430 

experiments in different organisms15. However, it remains to be confirmed whether the 431 

enrichment for certain gRNA properties we observed are specific to Target-AID or will also be 432 

transferable to other base editors as this may depend on the enzymatic properties of these 433 

proteins. Acquiring large paired gRNA and mutagenesis outcome datasets similar to those 434 

available for Cas9 genome editing24 will allow for more refined models for rational base editing 435 

activity prediction. 436 

 437 

The field of base editing is rapidly evolving, with new tools being developed constantly. One of 438 

the most recent additions to this fast-growing toolkit are engineered Cas9 enzymes with 439 

broadened PAM specificities48, which have already been shown to be compatible with base 440 

editors. More flexible PAM requirements are especially useful for base editing applications, as 441 

they increase the number of sites to be edited and also the number of potential gRNAs per site, 442 

increasing the chances of choosing optimal properties and thus greater efficiency25. Our method 443 
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allows an experimental scale which bridges saturation mutagenesis methods and genome-wide 444 

knock-out studies, alleviating the current trade-off between mutational diversity and the number 445 

of targets genes to generate new biological insights.  446 

447 
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Methods 448 
Generation of a gRNA library for Target-AID mutagenesis of essential genes in yeast 449 

The Target-AID base editor has an activity window between base 15 to 20 in the gRNA 450 

sequence starting from the PAM, and the efficiency at these different positions was 451 

characterized in Nishida et al. 2016. This allowed us to predict the mutational outcomes for a 452 

specific gRNA provided the number of editable bases in the window is not too high. To select 453 

gRNAs, we parsed a database of gRNA targets for the S. cerevisiae reference genome 454 

sequences (strain S288c)49 and applied several selection criteria. Since the screen was to be 455 

performed in the BY4741 strain, all gRNAs (unique seed sequence, no NAG site) within the 456 

database were aligned to the reference genome of that strain using Bowtie50. Only gRNAs with 457 

a single perfect alignment were kept for subsequent steps. To select gRNAs amenable to 458 

Target-AID base editing, we selected gRNAs with cytosines within the highest activity window of 459 

the editor (positions -17 to -19 starting from the PAM). To limit the total number of possible 460 

mutational outcomes, gRNAs with three cytosines within the window were removed as well as 461 

those with two cytosines at the highest activity positions. Next, we filtered out any gRNA 462 

containing a BsaI restriction site to prevent errors during the library cloning step. 463 

The list of essential genes (n=1156)3,4 was used to discriminate between gRNAs targeting 464 

essential or non-essential genes (retrieved from http://www-465 

sequence.stanford.edu/group/yeast_deletion_project/Essential_ORFs.txt). Among non-essential 466 

genes, data from Qian et al. 201251 was used to create categories of fitness effects. If the 467 

fitness score (averaged across media and replicates) of a gene was below 0.75, it was 468 

categorized as “high effect” on fitness. We excluded auxotrophic marker genes as well as 469 

CAN1, LYP1, and FCY1 because those could be used as co-selection markers23. Gene 470 

deletions with an averaged fitness score between 0.999 and 1.001 were categorized as having 471 

“no detectable effect” on fitness. We selected gRNAs targeting essential and high effect genes, 472 

as well as gRNAs targeting a set of 38 randomly chosen no effect genes. To further limit the 473 
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space of gRNAs examined, only gRNAs mapping from the 0.5th percent to the 75th percent of 474 

coding sequences were chosen. We also added gRNAs targeting all known yeast introns (Ares 475 

lab Database 4.3)52 and putative non-functional peptides53 selected with the same strategy 476 

except for the constraints on gRNA position within the sequence of interest. This resulted in a 477 

set of 39,989 gRNAs: library properties are summarized in Supplementary Figure 1. To assign a 478 

co-editing risk score to each gRNA, we defined four categories using the extended activity 479 

window sequence composition shown in Table 1. 480 

  481 
Table 1: Sequence patterns of co-editing risk categories 482 

Co-editing risk category Very Low Low Moderate High 

Sequence patterns NCDDDNN 
NDCDDNN 
NDDCDNN 

NCDDCNN 
NDCDCNN 
NDDCCNN 

NCDCNNN NCCDNNN 

N = any nucleotide, D = A or T or G 483 

 484 

Library construction 485 

The plasmids, oligonucleotides, and media used in this study are listed in as Supplementary 486 

tables 6, 7 and 8 respectively. The oligo pool was synthesized by Arbor Biosciences (Michigan, 487 

USA) and was cloned into the pDYSCKO vector using Golden Gate Assembly (New England 488 

Biolabs, Massachusetts, USA) with the following reaction parameters: 489 

NEB GG buffer 10X 2 μl 

pDYSCKO [75ng/ul] 1 μl 

Oligo pool [2ng/ul] 1 μl 

NEB GG mix 1 μl 

Water 15 μl 

 490 

The ligation mix was transformed in E. coli strain MC1061 ([araD139]B/r ∆(araA-leu)7697 491 

∆lacX74 galK16 galE15(GalS) λ- e14- mcrA0 relA1 rpsL150(strR) spoT1 mcrB1 hsdR2)54 using 492 
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a standard chemical transformation protocol and plated on ampicillin selective media to select 493 

for transformants. Serial dilution of cells after outgrowth were plated and then used to calculate 494 

the total number of clones produced by the cloning reaction. Quality control of the assembly was 495 

performed by Sanger sequencing ~10 clones per assembly reaction. Cells were scraped from 496 

plates by adding ~5 ml of sterile water, incubating a few minutes at room temperature, and then 497 

using a glass rake to resuspend colonies. Resuspended plates were then pooled together in a 498 

single flask per reaction, which was then used to make glycerol stocks of the library and cell 499 

pellets for plasmid extraction. The Qiagen Midi-Prep kit (Qiagen, Germany) was used to extract 500 

plasmid DNA from cell pellets by following the manufacturer’s instructions. The DNA 501 

concentration of each eluate was then measured using a NanoDrop (Thermofisher, 502 

Massachusetts, USA), and a normalized master library for yeast transformation was assembled 503 

by combining equal quantities of each assembly pool. 504 

Base editing time course and library preparation for deep sequencing 505 

Cells were co-transformed with pKN1252 and the pDYSCKO plasmid bearing the gRNA of 506 

interest using the protocol described below for the large-scale experiment. Transformant plates 507 

were scraped by adding ~5 ml of sterile water, incubating a few minutes at room temperature, 508 

and then using a glass rake to resuspend colonies. The resuspended cells (one pool per guide) 509 

were used to inoculate two replicate cultures per guide. Cells went through the same induction 510 

protocol as for the large-scale experiment, but scaled down to a 24 deepwell plate (see 511 

Supplementary Figures 3 and 7). The volumes used were: 3 ml for the initial SC-UL+glucose 512 

culture, 4 ml for the SC-UL+glycerol step, 3 ml for the SC-UL+galactose step, and 3 ml for the 513 

liquid canavanine co-selection step. At the end of the galactose induction step, 100 μl of a 514 

1/2000 dilution of each well was plated on SC-ULR+canavanine solid media to obtain editing 515 

survivor colonies. At the glycerol to galactose media switch, a ~1 OD pellet was sampled by 516 

spinning cells at 13 200 RPM and removing the media. Cell pellets were then stored at -80°C for 517 
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subsequent DNA extraction. The same method was used to sample ~1 OD at T=6 hours in 518 

galactose, ~2 OD at T=12 hours in galactose, and ~3 OD at the end of canavanine co-selection. 519 

Plates with selected colonies (edited at the CAN1 locus) were soaked in water and scraped, and 520 

1.4 ml of the resulting cell suspension was sampled and stored. 521 

  522 

Genomic DNA was extracted from cell pellets using a standard phenol-chloroform method from 523 

each sample55 and quantified by NanoDrop (Thermofisher, Massachusetts, USA). For each 524 

sample, we aimed to sequence both the target edit site and the CAN1 co-selection edit site. To 525 

multiplex the 240 samples in the same sequencing library, we used the row-column-plate-526 

indexed PCR (RCP-PCR) approach56. Briefly, each target locus was amplified from genomic 527 

DNA and universal adapter sequences were added to each end of the amplicon. A 1/2500 528 

dilution of the resulting product was then used as template with a set of 10 (rows) by 12 529 

(column) primers used to index each sample in a second PCR reaction. All samples for the 530 

same locus were then pooled together and normalized according to electrophoresis gel band 531 

intensity and then purified using magnetic beads. A third and final PCR reaction on the purified 532 

pools was then used to add plate indexes and Illumina adapters: this reaction was performed in 533 

quadruplicate and the products from the four reactions were pooled together for purification. 534 

Sequencing was performed using the MiSeq Reagent Kit v3 on an Illumina MiSeq for 600 cycles 535 

(IBIS sequencing platform, Université Laval). 536 

  537 

After sequencing, samples were demultiplexed using a custom python script with the reads 538 

being subdivided in four (plate barcode forward, row barcode, column barcode and plate 539 

barcode reverse). After demultiplexing, the forward and reverse reads were merged using the 540 

PANDA-Seq software57. Reads were then aligned to reference locus sequences using the 541 

Needle software from EMBOSS58. A custom script was then used to parse the alignments and 542 
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extract genotype information for each read. The sequencing reads for the base editing deep 543 

sequencing experiment were deposited on the NCBI SRA as accession number PRJNA552472. 544 

 545 

Library transformation in yeast 546 

Competent BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) cells were first transformed with 547 

the pKN1252 (p315-GalL-Target-AID) plasmid using a standard lithium acetate method. 548 

Transformants were selected by plating cells on SC-L. After 48 h of growth, multiples colonies 549 

were used to inoculate a starter liquid culture for competent cells preparation using the standard 550 

lithium acetate protocol59: a culture volume of 200 ml was used to generate enough competent 551 

cells for mass transformation. The large-scale library transformation was performed by 552 

combining 40 transformation reactions performed with 40 ul of competent cells and 5 ul of 553 

plasmid library (240 ng/ul) after the outgrowth stage and plating 100 ul aliquots on SC-UL: cells 554 

were then allowed to grow at 30°C for 48 h. A 1/1000 serial dilution of the cell recovery was 555 

plated in 5 replicates and used to calculate the number of transformants obtained. The total 556 

number of transformants reached 3.48 x106 CFU, corresponding to about 100X coverage of the 557 

plasmid pool. 558 

Target-AID mutagenesis and competition screening 559 

The mutagenesis protocol is an upscaled version of our previously published method23 and is 560 

shown in Supplementary Figure 7. Transformants were scraped by spreading 5 ml sterile water 561 

on plates and then resuspending cells using a glass rake. All plates were pooled together in the 562 

same flask, and the OD of the yeast resuspension was measured using a Tecan Infinite F200 563 

plate reader (Tecan, Switzerland). Pellets corresponding to about 6 x 108 cells were washed 564 

twice with SC-UL without a carbon source and then used to inoculate a 100 ml SC-UL +2% 565 

glucose culture at 0.6 OD two times to generate replicates A and B. Cells were allowed to grow 566 

for 8 hours before 1 x 109 cells were pelleted and used to inoculate a 100 ml SC-UL + 5% 567 
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glycerol culture. After 24 hours, 5 x 108 cells were pelleted and either put in SC-UL + 5% 568 

galactose for mutagenesis or SC-UL + 5% glucose for a mock induction control. Target-AID 569 

expression (from pKN1252) was induced for 12 hours before 1 x 108 cells were pelleted and 570 

used to inoculate a canavanine (50 μg/ml) co-selection culture in SC-ULR. After 16 hours of 571 

incubation, 5 x 107 cells of each culture were used to inoculate 100 ml SC-UR, which was grown 572 

for 12 hours before 5 x 107 cells were used to inoculate a final 100 ml SC-UR culture which was 573 

grown for another 12 hours. Cell pellets were washed with sterile water between each step, and 574 

all incubation occurred at 30°C with agitation. ~2 x 107 cells were taken for plasmid DNA 575 

extraction at the end of each mutagenesis and competition screening step. 576 

Yeast plasmid DNA extraction 577 

Yeast plasmid DNA was extracted using the ChargeSwitch Plasmid Yeast Mini Kit (Invitrogen, 578 

California, USA) by following the manufacturer’s protocol with minor modifications: Zymolase 579 

4000 U/ml (Zymo Research, California, USA) was used instead of lyticase, and cells were 580 

incubated for 1 hour at room temperature, one min at -80°C, and then incubated for another 15 581 

minutes at room temperature before the lysis step. Plasmid DNA was eluted in 70 μl of E5 buffer 582 

(10 mM Tris-HCl, pH 8.5) and stored at -20°C for use in library preparation. 583 

Next-generation library sequencing preparation 584 

Libraries were prepared by using two PCR amplification steps, one to amplify the gRNA region 585 

of the pDSYCKO plasmid pool and the second to add sample barcodes as well as the Illumina 586 

p5 and p7 sequences60. Oligonucleotides for library preparation are shown in the first part of the 587 

oligonucleotide table. Reaction conditions for the first PCR were as follows: 588 

  589 
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Phusion HF buffer (NEB) 5X 5 μl 

dNTPs 10 mM 0.5 μl 

pDYSCKO_gRNA_for 10 μM 1.25 μl 

pDYSCKO_gRNA_rev 10 μM 1.25 μl 

Phusion polymerase 0.5 μl 

Template DNA (<1 ng/μl) 5 μl 

PCR grade water 11.7 μl 

 590 

Thermocycler protocol: 591 

Temperature (°C) Time (s) Cycles 

98 30 1 

98 10 

16 58 15 

72 5 

72 5 1 

 592 

The resulting product was verified on a 2% agarose gel colored with Midori Green Advance 593 

(Nippon Genetics, Japan) and then gel-extracted and purified using the FastGene Gel/PCR 594 

Extraction Kit (Nippon Genetics, Japan). The purified products were used as the template for 595 

the second PCR reaction, with the following conditions: 596 

Phusion Mastermix-HF (NEB) 10 μl 

P5-barcode-X oligo 1.333 μM 3.75 μl 

P7-barcode-Y oligo 1.333 μM 3.75 μl 

Template DNA (~1 ng/μl) 2.5 μl 

 597 

Thermocycler protocol:  598 
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Temperature (°C) Time (s) Cycles 

98 30 1 

98 10 

15 60 10 

72 60 

72 300 1 

 599 

PCR products were verified on a 2% agarose gel colored with Midori Green Advance (Nippon 600 

Genetics, Japan) and then gel-extracted and purified using the FastGene Gel/PCR Extraction 601 

Kit (Nippon Genetics, Japan). Library quality control and quantification were performed using 602 

the KAPA Library Quantification Kit for Illumina platforms (Kapa Biosystems, Massachusetts, 603 

USA) following the manufacturer's instructions. Libraries were then run on a single lane on 604 

HiSeq 2500 (Illumina, California, USA) with paired-end 150 bp in fast mode. 605 

Large-scale screen sequencing data analysis 606 

The custom Python scripts used to analyze the are available on github 607 

(https://docker.pkg.github.com/Landrylab), and packages and software used are presented in 608 

Supplementary table 9. Raw sequencing files have been deposited on the NCBI SRA, 609 

accession number PRJNA552472. Briefly, reads were separated into three subsequences for 610 

alignment: the P5 barcode, the gRNA, and the P7 barcode. Each of these was aligned using 611 

Bowtie 50 to an artificial reference genome containing either the barcodes or gRNA sequences 612 

flanked by the common amplicon sequences. The gRNA sequences are aligned both with 0 or 1 613 

mismatch allowed, and misalignment position and type were stored. Information on barcode and 614 

gRNA alignment for each read was stored and combined to generate a barcode count per 615 

library table, a list of mismatches in alignments for each gRNA in each library, as well as 616 

mismatch types and counts for the same gRNA across all libraries. 617 
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Synthesis error within oligonucleotide libraries is one of the major limits of current large-scale 618 

genome editing screening methods. These errors can introduce gRNA sequences that cannot 619 

perform mutagenesis because the gRNA sequence does not match a site in the genome. We 620 

refer to those gRNAs as SE gRNAs. In our experiment, the stringent selection criteria used to 621 

select gRNAs limited the risk of off-target effects even for gRNAs with one mismatch, minimizing 622 

the risk that a synthesis error gRNA could lead to editing at another site in the genome. We 623 

therefore decided to use highly abundant SE gRNAs as negative controls to obtain a null 624 

distribution of abundance variation for gRNAs with no fitness effects. To differentiate synthesis 625 

errors from sequencing errors, we used the mismatch type and count table to assess whether a 626 

particular mismatched gRNA constitutes a too large fraction of the reads associated with a 627 

gRNA to be simply a repeated sequencing error. For each error, we test if: 628 

����������	���
��

�
�����
��	�����


� 0.075 

and discarded the reads associated with the specific mismatch alignment. This threshold was 629 

obtained by iteratively testing different threshold values in an effort to maximize the gain in 630 

gRNA counts while minimizing the noise added by incorrect assignments. Read counts per 631 

library for abundant (����������	���
�� � 1,000) SE gRNAs were kept to serve as negative 632 

controls when measuring fitness effects, resulting in a set of 1,032 abundant SE gRNAs. gRNAs 633 

absent from more than half of the libraries (4446 out of 39,989) were removed from the analysis 634 

before gRNA abundance calculations. 635 

Detecting mutations with high fitness effects 636 

Barcode sequencing competition experiments use DNA barcodes to measure the relative 637 

abundance of many different subpopulations of cells grown in the same pool (Robinson et al. 638 

2014). Since each gRNA is linked to its possible mutagenesis outcomes, we can use relative 639 

gRNA abundance to detect mutations with significant fitness effects. To do so, the log2 of the 640 
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relative abundance of a barcode after mutagenesis is compared with its abundance at the end 641 

of the screen: 642 

∆log����� 
 log��
����������
�
������
�

� � log��
����������
�
������
�

� 

For each gRNA, the measured fitness effect is the product of the effect of the mutational 643 

outcomes on growth and of the mutation rate within the cell subpopulation bearing this particular 644 

gRNA. Relative counts will also vary stochastically because of variation in sequencing coverage 645 

depending on the time point and replicate. To reduce the impact of these effects, a minimal read 646 

count at the end of the galactose induction step was used to filter out low abundance gRNAs. 647 

We found a minimal read threshold of n=54 provided a good tradeoff between the number of 648 

gRNAs eligible for analysis and inter-replicate correlation. 649 

Using the distribution of ∆log2 values, we calculated a z-score for each gRNA in both replicates. 650 

We then averaged z-scores between replicates and compared the score distributions between 651 

SE and Non-SE gRNAs. This revealed the presence of a left-skewed tail in the z-score 652 

distribution of valid gRNAs, which is absent in the SE. Because the number of SE gRNAs is 653 

smaller than the one of functional gRNAs by almost two orders of magnitude, a type I error 654 

(false positives) empirical threshold based solely on a weighted SE z-score distribution was not 655 

practical. To resolve this, we fitted a Gumbell left skewed distribution to the SE gRNAs z-score 656 

distribution and used it to approximate the type I error rate as a function of the z-score. We set a 657 

significance threshold such as that all gRNAs at z-scores for which the estimated false positive 658 

rate is below or equal to 5% are considered GNEs. 659 

Complementation assays 660 

Experiments were performed in heterozygous deletion mutants from the YKO project 661 

heterozygous deletion strain set (Dharmacon, Colorado, USA). For each gene, a single colony 662 
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streaked from the glycerol stock was used to prepare competent cells using the previously 663 

described lithium acetate protocol59. To generate mutant alleles of the genes of interest, we 664 

performed site-directed mutagenesis on the appropriate MoBY collection plasmid 27. These 665 

centromeric plasmids encode the yeast gene of interest under the control of their native 666 

promoters and terminators. Mutagenesis reactions were performed with the following reaction 667 

setup: 668 

 669 

Kapa HiFi buffer (Kapa biosciences) 
5X 

5 μl 

dNTPs 10μM 0.75 μl 

mutation_for 10μM (see table 7) 0.75 μl 

mutation_rev 10μM (see table 7) 0.75 μl 

Kapa Hot-start polymerase 0.5 μl 

Template plasmid DNA (15ng/ul) 0.75 μl 

PCR grade water 16.5 μl 

 670 

Thermocycler protocol: 671 

Temperature (°C) Time (s) Cycles 

95 300 1 

98 20 

20 60 15 

72 720 

72 1080 1 

 672 

After amplification, the mutagenesis product was digested with DpnI for 2 hours at 37°C and 5 ul 673 

was transformed in E. coli strain BW23474 (F-, ∆(argF-lac)169, ∆uidA4::pir-116, recA1, 674 

rpoS396(Am), endA9(del-ins)::FRT, rph-1, hsdR514, rob-1, creC510)61. Transformants were 675 

plated on 2YT+Kan+Chlo and grown at 37°C overnight. Plasmid DNA was then isolated from 676 
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clones and sent for Sanger sequencing (CHUL sequencing platform, Université Laval, Québec 677 

City, Canada) to confirm mutagenesis success. 678 

Competent cells of target genes were transformed with the appropriate mutant plasmids as well 679 

a the original plasmid bearing the wild-type gene and the empty vector62, and transformants 680 

were selected by plating on SC-U (MSG). Multiple independent colonies per transformation 681 

were then put on sporulation media until sporulation could be confirmed by microscopy. For 682 

tetrad dissection, cells were resuspended in 100ul 20T zymolyase (200mg/ml dilution in water) 683 

and incubated for 20 minutes at room temperature. Cells were then centrifuged and 684 

resuspended in 50ul 1M sorbitol before being streaked on a level YPD plate. All dissections 685 

were performed using a Singer SporePlay microscope (Singer Instruments, UK). Plate pictures 686 

were taken after five days incubation at room temperature except for the RAP1 plasmid 687 

complementation test for which the picture was taken after three days. Pictures are shown in 688 

Supplementary Image File 1. 689 

 690 

Strain construction for confirmations in RAP1 691 

Because the MoBY collection plasmid for RAP1 cannot fully complement the gene deletion 692 

(Supplementary image file 1), we instead performed confirmations by engineering mutations a 693 

diploid strain to create heterozygous mutants. RAP1 was first tagged with a modified version of 694 

fragment DHFR F[1,2] (the first half) of the mDHFR enzyme63. The mDHFR[1,2]-FLAG cassette 695 

was amplified using gene-specific primers and previously described reaction parameters63. Cells 696 

were transformed with the cassette using the previously described transformation protocol and 697 

were plated on YPD+Nourseothricine (YPD+Nat in Media table). Positive clones were identified 698 

by colony PCR and successful fragment fusion was confirmed by Sanger sequencing (CHUL 699 

sequencing platform). We then mated the confirmed clones with strain Y8205 (Matα 700 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2019. ; https://doi.org/10.1101/677203doi: bioRxiv preprint 

https://doi.org/10.1101/677203
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

can1::STE2pr-his5 lyp1::STE3prLEU2 ∆ura3 ∆his3 ∆leu2, Kindly gifted by Charlie Boone) by 701 

inoculating a 4ml YPD culture with overnight starter cultures of both strains and letting the 702 

culture grow overnight. Cells were then streaked on YPD+Nat and diploid cells were identified 703 

by colony PCR using mating type diagnosis primers64. 704 

To create heterozygous deletion mutants of the target gene, we amplified a modified version of 705 

the URA3 cassettes that could then be targeted with the CRISPR-Cas9 system to integrate our 706 

mutations of interest using homologous recombination at the target locus. The oligonucleotides 707 

we used differ from those commonly used in that they amplify the cassette without the two LoxP 708 

sites present at both ends. We found it necessary to remove those sites as one common 709 

mutational outcome after introducing a double-stranded break in the URA3 cassette was inter-710 

LoxP site recombination without the integration of donor DNA at the target locus. These 711 

modified cassettes recombine with DNA upstream the target gene on one end and the mDHFR 712 

F[1,2] fusion on the other, ensuring that the heterozygous deletion is always performed at the 713 

locus that is already tagged. Cassettes were transformed using the standard lithium acetate 714 

method, and cells were plated on SC-U (MSG) selective media. Heterozygous deletion mutants 715 

were then confirmed by colony PCR. 716 

CRISPR-Cas9 mediated Knock-in of targeted mutations 717 

Mutant alleles of target genes were amplified in two fragments using template DNA from the 718 

haploid tagged strain (See Supplementary figure 14). The two fragments bearing mutations 719 

were then fused together by a second PCR round to form the final donor DNA. This DNA was 720 

then co-transformed with a plasmid bearing Cas9 and a gRNA targeting the URA3 cassette for 721 

HDR mediated editing using a standard protocol65. Clones were then screened by PCR to verify 722 

donor DNA and mutation integration at the target locus. The targeted region of RAP1 was then 723 

Sanger sequenced (CHUL sequencing platform, Univesité Laval, Québec City, Canada) to 724 

confirm the presence of the mutation of interest. Heterozygous mutants were sporulated on 725 
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solid media until sporulation could be confirmed by microscopy using the same protocol 726 

previously described. The plates were then replica plated on YPD+Nat media, and the pictures 727 

were taken after five days at room temperature (Supplementary Image File 2). 728 

Evolutionary rate measurements and protein variant abundance 729 

Evolutionary rates were calculated using the Rate4site software66 using multiple sequence 730 

alignments and phylogenies from PhylomeDB V467 as input and using the raw calculated rates 731 

as output. Variant data was compiled using data from the 1002 Yeast Genome Project 732 

(http://1002genomes.u-strasbg.fr/files/ allReferenceGenesWithSNPsAndIndelsInferred.tar.gz). 733 

Strain-specific protein coding sequence were aligned to the S288c sequence using Fastx3668 734 

with the following parameters: fastx36 -p -s -VT10 -T 6 -m 10 -n -3 735 

querymultifasta.fasta ref_orf.db 12\> fasta_out . Alignments were then parsed 736 

with a custom Python script to identify variants. Variant abundance was measured as the 737 

number of strains in the dataset in which a specific variant was found. If the coding sequence 738 

contained ambiguous nucleotides (ex.: R or Y), separate coding sequences were generated for 739 

each possibility and each possible variant was considered as a separate occurrence. 740 

Analysis of the properties of stop codon generating gRNAs 741 

To analyse the sequence and target properties of gRNA inducing the creation of stop codons, 742 

data from multiple sources was compiled. For each target gene, length and chromosomal strand 743 

was obtained from the Saccharomyces Genome Database using the Yeastmine query 744 

interface69. Distance to centromere was obtained by calculating the minimal distance between 745 

the start of the gene and one extremity of the centromere coordinates. RNA:DNA duplex melting 746 

temperature of gRNA sequence with target genomic DNA was calculated using the 747 

MeltingTemp module from Biopython70, which uses values taken from Sugimoto et al71. 748 
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Correlation between gRNA/DNA duplex melting temperatures was assessed using Spearman’s 749 

rank correlation. 750 

Variant effect prediction resources analysis and GO enrichment 751 

All prediction data except the Envision scores were extracted from the aggregated data of the 752 

Mutfunc database31. Precomputed values were downloaded directly from the FTP server 753 

(http://ftp.ebi.ac.uk/pub/databases/mutfunc/mutfunc_v1/yeast/). This database includes 754 

precomputed SIFT scores for 5498 yeast proteins, as well as predicted variant ddG values 755 

based on protein structure (n=1057), homology models (n=1703) and protein-protein interaction 756 

interfaces (n=1109). Mutations with ∆∆G>1 considered destabilizing. 757 

Precomputed values from Envision2 were downloaded directly from the database website 758 

(https://envision.gs.washington.edu/shiny/envision_new/, file yeast_predicted_2017-03-12.csv). 759 

This file contained 34857830 mutation effect predictions spread across 4011 genes. The 760 

distribution of Envision scores for the genes targeted in the experiment that are included in the 761 

database are shown in Supplementary Figure 12.  762 

We downloaded the Uniprot database for yeast genes (query: uniprot-proteome_UP000002311) 763 

with annotations covering the following properties: Metal binding, Nucleotide binding, Site, DNA 764 

binding, Calcium binding, Binding site, Active site, Motif. We found that 6295 gRNAs targeted 765 

genes which have annotations in Uniprot, of which 519 were GNEs (ratioAll=0.0749). Statistical 766 

enrichments were calculated using this set of gRNAs as the reference population. Gene 767 

enrichments were performed using the PANTHER gene list analysis tool72. The list of genes for 768 

which 2 or more GNEs were detected was tested for enrichment against all genes targeted by 769 

the library using Fisher's exact test and False Discovery Rate calculations. The Gene Ontology 770 

datasets used were: GO molecular function complete, GO biological process complete, and GO 771 

cellular component complete. 772 
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Data Availability 773 

All raw sequencing data has been deposited on the NCBI as accession number PRJNA552472. 774 

The gRNA screen scores, predicted mutation outcomes, mutation effect predictors scores, as 775 

well as other relevant annotations are presented in Supplementary Dataset 1. Source image 776 

files for the tetrad dissections are presented as Supplementary Image 1 and 2.  777 

Code Availability 778 

The custom Python scripts used to analyze the are available on github 779 

(https://github.com/landrylaboratory), and packages and software us ed are presented in 780 

Supplementary table 9. 781 
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Figure 1 A simple parsimonious model predicts the most probable outcomes of Target-AID 963 
mutagenesis. A) gRNAs included in the time course base editing experiment had diverse C content pro-964 
files in the Target-AID activity window. Nucleotides are color coded: guanines are purple, thymines are 965 
red, adenines are green and cytosines are blue. B) Overall fraction of edited reads for all target sites rate 966 
along timepoints in the experiment: T0 (start of induction), T6 (mid induction), T12 (end of induction). The 967 
solid time point represents surviving cells plated after galactose induction, while the liquid time point 968 
represents the cell population after canavanine co-selection. Amplification of the ERO1 target site from 969 
the liquid recovery time points was unsuccessful (shown in grey), and as such the solid recovery time 970 
point was used instead for the other analysis steps. C) Fraction of genotypes with different numbers of 971 
edited nucleotides in the Target-AID activity window after co-selection for each locus. Values represents 972 
the fraction of reads with either one, two or three edits compared to the total fraction of reads that were 973 
edited. D) Editing outcome type for all sites with a total editing rate greater than one percent after co-974 
selection (n=30 cytosines across all targeted sites). The C to G/T distribution represents the sum of edit-975 
ing that resulted in a C to G or C to T mutation. Position-wise editing rates and outcome are shown in 976 
Supplementary Figures 5 and 6. E) Agreement between the predicted nucleotide total editing rank in the 977 
model used to predict mutagenesis outcomes in the large-scale experiment and the deep sequencing 978 
data (n=28 sites, 10 gRNAs). The gRNAs targeting ADE1 and SES1 were respectively excluded from the 979 
analysis because there is only one editable site in the activity window and total editing rate was too low. 980 
F) Edited read coverage of the mutation outcome prediction model and the 99th percentile of edited allele 981 
combinations (n=4 genotypes in both cases) for the gRNAs with editing activity included in the large-scale 982 
experiment. 983 
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Figure 2 A gRNA library for systematic perturbation of essential genes using the Target-AID base 985 
editor.  Essential genes (ex.: E.G.1) were scanned for sites appropriate for Target-AID mutagenesis. 986 
Mutational outcomes include silent (grey triangle), missense (black triangle) mutations, as well as stop 987 
codons (*). DNA fragments corresponding to the gRNA sequences were synthesized as an 988 
oligonucleotide pool and cloned into a co-selection base editing vector. Using gRNAs as molecular 989 
barcodes, the abundance of cell subpopulations bearing mutations is then measured after mutagenesis 990 
and bulk competition. Mutations with fitness effects are inferred from reductions in the relative gRNA 991 
abundances. 992 
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Figure 3. High-throughput forward mutagenesis by Target-AID base editing identifies sensitive 994 
sites across the yeast genome. A) Cumulative distribution of z-scores of the log2 fold-change in gRNA 995 
abundance between mutagenesis and the end of the bulk competition experiment averaged between 996 
replicates. A 5% false positive threshold was calculated by fitting a distribution to the abundance variation 997 
z-score of the sequenced gRNAs with synthesis errors (SE gRNAs) and is represented by a dotted black 998 
line. The distribution of target types in the 1,118 gRNAs with Negative Effects (GNE) is shown in the 999 
inset. B) Positions of base editing target sites in the yeast genome. Telomeric regions are depleted in 1000 
target sites because very few essential genes are located there. GNEs are shown in red, and other 1001 
gRNAs are in black. The orientation of the line matches the targeted strand relative to the annotated 1002 
coding sequence. C) Decline in gRNA abundance (on a log scale) between timepoints after mutagenesis 1003 
for gRNAs targeting GLN4, a tRNA synthetase. Median gRNA abundance across the entire library 1004 
through time is shown in green. The red lines represent the gRNAs categorized as having a significant 1005 
effect (GNE) for this gene, while non-significant gRNAs (NSG) are shown in black. The gRNA with the 1006 
most extreme z-score targets residue G267. D) Mutagenesis of GLN4-G267 confirms its essential role for 1007 
protein function. Tetrad dissection of a heterozygous deletion mutant bearing an empty vector results in 1008 
only two viable spores, while the wild-type copy in the same vector restores growth. Dissection of the two 1009 
heterozygous mutants bearing a plasmid with the most probable single mutant based on the known 1010 
activity window of Target-AID shows both mutations are lethal. 1011 
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Figure 4: GNE induced mutations are enriched in predicted deleterious effects A) SIFT score 1013 
distributions for the most likely induced mutations of both GNEs (blue) and NSGs (red). The thresholds for 1014 
the categories used in the enrichment calculations in B) are shown as black dotted lines. SIFT scores 1015 
represent the probability of a specific mutation being tolerated based on evolutionary information: the first 1016 
threshold of 0.05 was set by the authors in the original manuscript32 but might be permissive considering 1017 
the number of mutations tested in our experiment (n= 895, 12394, 704, 8520, 643, 7396, 508, 5682). All 1018 
GNE vs NSG score comparisons are significant (Welch’s t-test p-values: 1.19x10-24, 3.01x10-24, 9.00x10-1019 
12, 1.55x10-12). The box cutoff is due to the large fraction of mutations for which the SIFT score is 0. B) 1020 
Enrichment folds of GNEs over NSGs for different variant effect prediction measurements. Envision score 1021 
(Env.), SIFT score (SIFT), protein folding stability based on solved protein structures (Struct. ∆∆G), 1022 
protein folding based on homology models (Model ∆∆G) and protein-protein interaction interface stability 1023 
based on structure data (Inter. ∆∆G). The raw values used to calculate ratios are shown in 1024 
Supplementary table 1. The predictions based on conservation and experimental data are grouped under 1025 
‘Predictors’ and those based on the computational analysis of protein structures and complexes under 1026 
‘Structural’. 1027 
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Figure 5 GNE mutations are enriched for specific amino acid substitution patterns and identify 1029 
critical sites for protein function. A) Fold depletion and enrichment volcano plots for the most probable 1030 
mutations induced by GNEs in the screen. Enrichment and depletion values were calculated by 1031 
comparing the relative abundance of each mutation among GNEs and NSGs using Fisher’s exact tests. 1032 
Mutation patterns significantly depleted are shown in blue, while those that are enriched are in red. The 1033 
significance threshold was set using the Holm-Bonferroni method at 5% FDR and is shown as a dotted 1034 
grey line. B) Protein variant frequency among 1000 yeast isolates (black dots) and residue evolutionary 1035 
rate across species (blue line) for RAP1. The target site for the GNEs targeting T486 is highlighted by a 1036 
red line while the other detected GNEs target sites are shown by a grey line. C) Tetrad dissections 1037 
confirm most RAP1 GNE induced mutations indeed have strong fitness effects, as well as other 1038 
substitutions targeting these sites. 1039 
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Figure 6 gRNA and target properties affect mutagenesis efficiency. A) Since Target-AID can gener-1041 
ate both C to G and C to T mutations, many codons can be targeted to create premature stop codons. 1042 
The TGG (W) codon is the only one targeted on the non-coding strand as ACC. B) GNE ratio for SGGs 1043 
targeting different codons in essential genes, split by co-editing risk categories. C) Cumulative z-score 1044 
density of SGGs grouped by the mutational outcome generating the stop codon. A higher rate of GNE is 1045 
observed for gRNAs for which a C-to-G mutation at the highest editing activity position generates a stop 1046 
codon mutation. The significance threshold is shown as a black dotted line. D) Cumulative z-score density 1047 
of gRNAs that do not generate stop codons targeting either the coding or non-coding strand. E) SGG and 1048 
non-SGG GNE enrichment compared to the expected GNE ratio for different melting temperature ranges. 1049 
F) gRNA/DNA duplex melting temperature as a function of gRNA GC content for all gRNAs for which fit-1050 
ness effects were measured. The higher and lower efficiency thresholds are based on the enrichments 1051 
shown in panel E. 1052 
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