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Highlights

e Gamma, alpha and beta band activity has significant diagnostic ability to identify

ESM defined eloquent cortical areas.

o We present a novel method to combine gamma and low frequency activity for

enhanced identification.

o We quantify how identification is dependent on analysis time window, cortical

function, and patient’s attentional engagement.

With further development, this approach may offer an alternative to ESM

mapping with reduced burden for patients.

Abbreviations

DMTS: Delayed match-to-sample

ESM: Electrical Stimulation Mapping

ROC: Receiver Operator Characteristic curve

AUROC: Area Under the Receiving Operating Characteristic curve

GLM: Generalized Linear Model
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Abstract

Electrical stimulation mapping (ESM) is the gold standard for identification of
“eloquent” areas prior to resection of epileptogenic tissue, however, it is time
consuming and may cause side effects, especially stimulation-induced seizures and
after-discharges. Broadband gamma activity (55 - 200 Hz) recorded with subdural
electrocorticography (ECoG) during cognitive tasks has been proposed as an attractive
tool for mapping cortical areas with specific function but until now has not proven
definitive clinical value. Fewer studies have addressed whether the alpha (8 - 12 Hz)
and beta (15 - 25 Hz) band activity could also be used to improve eloquent cortex
identification. We compared alpha, beta and broadband gamma activity, and their
combination for the identification of eloquent cortical areas defined by ESM. Ten
patients participated in a delayed-match-to-sample task, where syllable sounds were
matched to visually presented letters and responses given by keyboard. We used a
generalized linear model (GLM) approach to find the optimal weighting of low
frequency bands and broadband gamma power to predict the ESM categories.
Broadband gamma activity increased more in eloquent areas than in non-eloquent
areas and this difference had a diagnostic ability (area under (AU) the receiving
operating characteristic curve - AUROC) of ~70%. Both alpha and beta power
decreased more in eloquent areas. Alpha power had lower AUROC than broadband
gamma while beta had similar AUROC. AUROC was enhanced by the combination of
alpha and broadband gamma (3% improvement) and by the combination of beta and
broadband gamma (7% improvement) over the use of broadband gamma alone.

Further analysis showed that the relative performance of broadband gamma and low
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frequency bands depended on multiple factors including the time period of the
cognitive task, the location of the electrodes and the patient’s attention to the
stimulus. However, the combination of beta band and broadband gamma always gave
the best performance. We show how ECoG power modulation from cognitive testing
periods can be used to map the probability of eloquence by ESM and how this
probability can be used as an aid for optimal ESM planning. We conclude that low
frequency power during cognitive testing can contribute to the identification of
eloquent areas in patients with focal refractory epilepsy improving its precision but

does not replace the need of ESM.
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1. Introduction

Invasive cortical mapping for the precise characterization of ‘eloquent’ cortical areas is
necessary to avoid or decrease neurological or cognitive complications following
resection of pathologic brain tissue. In the current gold standard, electrical cortical
stimulation mapping (ESM), electrical stimulation of subdural electrode-pairs, disrupts
function or produces neurological symptoms (Hamberger, 2007; Penfield and Boldrey,
1937). If the stimulation impairs a specific cognitive function (e.g., speech production)
or produces neurological symptoms (e.g., paraesthesia), the underlying cortex is
labelled as ‘eloquent’ and is preserved during resection. Despite its usefulness
(Ojemann et al., 1989), ESM can elicit after-discharges or seizures (Lee et al., 2010;
Lesser et al., 1984), or induce pain (Lesser et al., 1985). In addition, it requires the
patient’s continuous compliance, rendering it challenging to use especially in
paediatric populations (Arya et al., 2015). The procedure is also time consuming,
requiring the individual testing of each implanted electrode, restricting the maximum
number of electrodes that can be tested and precluding the use of high density arrays
(Bouchard et al., 2013; Mesgarani et al., 2014; Muller et al., 2016) so limiting the spatial
resolution of the technique (Hermiz et al., 2018). These and other factors motivate the
search for alternative ways to identify eloquent cortex (Brunner et al., 2009; Crone et

al., 2006, 1998b, 1998a; Lachaux et al., 2007; Vansteensel et al., 2010).

Activation of neuronal networks leads to a change in the spectral power of electrical
field potentials of local neuronal populations (Buzsaki, 2004; Buzsdki et al., 2012; Fries
et al., 2007). For example, different studies have reported enhancement of gamma
band power (>30Hz) during processing of visual (Gray et al., 1989) and auditory
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(Brosch et al., 2002) stimuli, motor action preparation (Pfurtscheller et al., 1993;
Vansteensel et al., 2013), and sensorimotor integration (Murthy and Fetz, 1992).
Gamma power varies with high temporal and spatial resolution, such that increasing
gamma power is specific to active neuronal populations (Aoki et al., 1999, p. 199; Arya
et al., 2018; Buzsdki et al.,, 2012; Crone et al., 2006, 1998a; Hamilton et al., 2018;
Leuthardt et al., 2007; Miller et al., 2007; Nagasawa et al., 2010; Sinai et al., 2005; Wu et
al., 2010). Consequently, gamma modulation has been proposed as an alternative for
ESM (Aoki et al., 1999; Arya et al., 2017; Brunner et al., 2009; Crone et al., 2006, 1998a;
Lachaux et al.,, 2003; Leuthardt et al., 2007; Miller et al., 2007; Sinai et al., 2005;
Vansteensel et al., 2013; Wang et al., 2016; Wu et al., 2010) whereby a task-dependent
increase in gamma power indicates eloquent cortex. However, results are mixed and
gamma band-based mapping typically has insufficient accuracy in the identification of
ESM results, with some studies (Wu et al., 2010) reporting high sensitivity but low
specificity, while others report the opposite (Bauer et al., 2013). In a recent review Arya
et al. highlighted the heterogeneity in the diagnostic threshold and the cognitive task
employed (Arya et al. 2018). In addition there is heterogeneity in the criteria used
during ESM (Mooij et al., 2018). Moreover, it has recently been suggested that
broadband gamma activity composing cortical field potentials, registered by
electrocorticography (ECoG) electrodes, may over-represent dendritic processes more

than neuronal action potentials (Leszczynski et al., 2019).

Activation of neuronal networks is typically accompanied by a reduction in power in
the alpha (8 - 12 Hz) and beta (15 - 25 Hz) frequency bands. Recent empirical evidence

demonstrates that alpha and beta power is related to active inhibition processes


https://doi.org/10.1101/677195
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/677195; this version posted June 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(Jensen and Mazaheri, 2010) and can be highly spatially specific to activated
populations (de Pesters et al.,, 2016; Muller et al.,, 2016). Thus, activity in lower
frequency bands represents a plausible source of additional information for cortical
mapping. Moreover, given that different frequency bands have different functions
(Scheeringa and Fries, 2017) and are not directly correlated to each other (Bonaiuto et
al., 2018), additional information may come from the combination of frequency bands.
A limited number of studies have investigated the use of lower frequency bands for
cortical mapping (Bauer et al., 2013; Crone et al., 1998b; Hermes et al., 2012; Leuthardt
et al., 2007; Sinai et al., 2005; Vansteensel et al., 2013; Wu et al., 2010). The results from
these studies have been have been variable in terms of mapping performance and the
combination of frequency bands has not yet been fully investigated (Leuthardt et al.,
2007; Wu et al., 2010). In addition, while there is considerable heterogeneity between
studies in the task employed, few studies have directly compared different tasks in the
same group of patients. Thus, little is known about how the cognitive engagement of
the patient, i.e., the task performed during cortical mapping, impacts the quality of

ECoG based mapping.

We hypothesized that alpha and beta band power modulation, either on their own or
in combination with the broadband gamma power modulation, could enhance the
accuracy of the identification of eloquent cortex compared with the use of broadband

gamma alone.

To investigate this, we registered ECoG signals from subdural electrodes in 10 patients
with drug resistant focal epilepsy who underwent ESM for the identification of

eloquent cortex. Patients performed a delayed match-to-sample (DMTS) task or
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listened to the same stimuli without an active task. We show that beta band power
generally had equal diagnostic ability to gamma, while alpha power was less effective.
Withdrawing attention from the stimuli reduced the diagnostic ability. The
combination of gamma and beta frequency bands, using a Generalized Linear Model

(GLM) was consistently better than either band individually.

2. Materials and Methods

2.1. Participants

We included 10 patients (mean age: 40.1 years; 4 females; 3 left handed) with drug-
resistant focal epilepsy, who underwent continuous ECoG with subdural electrodes as
part of pre-surgical evaluation. The remaining patients of our full data set were
excluded from this study as ESM was not performed in those patients. Patients
volunteered as participants for the study and performed the DMTS task. The study
complies with the Declaration of Helsinki for research studies in humans. Written
informed consent was obtained from all patients before admittance to the ward. All
experimental procedures were approved by the Medical Ethical Committee of the

Maastricht University Medical Center, Maastricht, Netherlands.

2.2. Electrode implantation

The electrode implantation scheme was strictly chosen according to the individual
patient protocol depending on the hypothesis of the probable location of the
epileptogenic zone, as established by the multidisciplinary epilepsy surgery-working

group of the Academic Center for Epileptology. If clinically indicated, language and
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verbal memory lateralization was established preoperatively using fMRI or a Wada test
(Wada and Rasmussen, 2007). The number of implanted electrodes per patient varied,
with electrodes’ contact points ranging between 24 and 88 per patient. Henceforth we
will use the word electrode to refer to the electrode’s contact point. The day after
implantation, a computer tomography and a 3T magnetic resonance imaging scan of
the brain was acquired to verify the location of implanted electrodes and to exclude

post-surgical complications.

2.3. Electrical-cortical stimulation mapping (ESM)

Electrical-cortical stimulation mapping (ESM) was performed using bipolar
stimulation between electrode pairs sequentially, selecting neighbouring electrode
pairs of the subdural grid and/or strips. The procedure for ESM mapping differs
between centres, with consequences for the reproducibility of comparisons between
ESM and ECoG response based mapping approaches (Mooij et al., 2018). In our study
ESM mapping proceeded as follows: The stimulation of an electrode-grid was planned
by selecting non-continuous electrode pairs (Figure 1A). Bipolar electrical stimulation
was applied between a pair of electrodes (e.g. electrode pair 1-2). If no neurological
symptoms or function disturbances were observed, electrical stimulation was applied
to the next planned pair (pair 3-4), which included neither of the electrodes included
in the first pair. If instead, symptoms were generated by the stimulation of pair 1-2,
then electrical stimulation was applied to a neighbouring pair of electrodes that
included one of the previously stimulated electrodes and (if possible) one functionally
silent electrode e.g. pair 1-5. If this pair resulted in symptoms (Figure 1B) electrode 1

would be labelled as eloquent. If a pair that includes the second electrode of the first

11


https://doi.org/10.1101/677195
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/677195; this version posted June 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

pair (e.g. pair 2-3) resulted in no symptoms, that electrode would be labelled as non-
eloquent. In a different scenario (Figure 1C), if pair 1-5 resulted negative and pair 2-3
resulted in positive, electrode 1 would be labelled non-eloquent and electrode 2 would
be labelled eloquent. Thus, if an electrode tested positive in at least two neighbouring
pairs in any direction (i.e., horizontal, vertical or diagonal), the electrode was

considered eloquent.

A B
1 2 3 4 1 2 3 4
[ | [ | | | [ | [ | | [ | |
[ ' (] ] [ ] ' ]
| | [ | ] | | | L ] [ | |
5 6 7 8 5 6 7 8
C , 5 3 4 @ cloquent electrode
R O non-eloquent electrode
c . c c @ non-tested electrode
| |

== planned electrode pair

*ss non-planned electrode pair

] ]
[ ] n
[] 1
H- -- -O --- O — positive planned pair
7 8

=ss positive non-planned pair
=== negative non-planned pair
Figure 1: Schematic representation of two possible ESM cases in a toy example of a 2 by
4 electrodes ECoG grid. A) Planned stimulation pairs. B) Case one, in which electrode 1 is
found to be eloquent after symptoms are produced during electrical stimulation at pair 1-
2 and 1-5, but not 2-3. C) Case two in which electrode 2 is found to be eloquent after

symptoms are produced at pair 1-2 and 2-3 but not 1-5.

The stimulation was performed with a constant current stimulator (Osiris cortical
stimulator, Inomed, Emmendingen, Germany) with the following stimulation settings:

trains of square wave pulses, pulse frequency 50 Hz, pulse duration o.2 milliseconds,
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with a train duration of 3 to 7 seconds (depending on the function tested and the
specific patient conditions). The current was increased in (1-)2 mA steps to a maximum
of 15 mA (e.g., 1 mA, 3 mA etc.). During ESM for language testing, participants
performed a reading task and, if reading was impaired, testing was extended with
additional tasks (e.g., naming, counting, tongue movement task). ESM was stopped if
any of the following end-points was reached: 1) a clear and reproducible generation of
neurological symptoms, 2) impairment of any of the performed (cognitive) tasks, or 3)
reaching the maximum stimulus intensity of 15 mA without causing symptoms, deficits
or after-discharges. This procedure was then repeated at the next planned electrode
pair. Stimulated electrodes that resulted in neurological signs or symptoms or
cognitive impairment were labelled as eloquent and assigned to one of nine functional
categories defined by the clinical neurophysiologists (motor, sensory, mixed
sensorimotor, language temporobasal, language Broca, language Wernicke, emotion,
visual, and auditory). This categorization was used as the ground truth against which

our identification results were compared during the subsequent analyses.

All tests were performed in the epilepsy-monitoring unit (EMU) by an expert clinical
neurophysiologist (V.H.K.M. or D.M.W.H). The selection of electrode pairs for
stimulation and the total number of electrodes stimulated per session was decided
individually for each participant by the clinical neurophysiologist. For the remainder of
the text we use the term ‘eloquent’ interchangeably to refer to areas of cortex and to
ESM positive electrodes, under the assumption that those electrodes correspond to

eloquent cortex.

2.4. Delayed match-to-sample task

13
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The stimuli and tasks were designed to test hypotheses about the processing of
acoustic properties in the language network under varying conditions of attention, yet
we reasoned that, considering the task properties, the same data might also be useful

to test our current hypothesis.

A trial consisted of a speech sound stimulus comprising a spoken consonant-vowel
syllable of 340 milliseconds duration followed, after a jittered interval of 550-750
milliseconds, by a written cue displayed for 500 milliseconds. After the presentation of
the written cue, a 1,500 milliseconds period was allowed for a button response followed
by an inter-trial interval (ITI) of 1,000 milliseconds as baseline before the next trial
began (Figure 2 B). The written cue was either a complete syllable, a vowel, or
consonant letter, depending on the specific block. The cue either matched or did not
match the previous sound stimulus. Participants were asked to compare the syllable
sound with the written cue and respond ‘match’ or ‘mismatch’ as quickly and
accurately as they could. The stimuli matched in 50% of the trials, and ‘match’/‘non-
match’ trials were balanced across conditions and randomized per participant. The
identical sound stimuli were also presented in a passive listening condition in which
sound onsets were jittered by 9oo-1100 ms while participants held their gaze steady on
the computer screen. Stimuli were presented in the epilepsy-monitoring unit using a
laptop computer with built-in open-field speakers. Stimulus and behavioural event
triggers were sent to the clinical data recording equipment via a parallel port to the
Ethernet interface box (Ethernet-102 V2, Braintronics B.V., Almere, Netherlands). All
behavioural responses, stimuli, event identities, and timings were presented and

logged using Presentation (Neurobehavioral Systems; www.neurobs.com, RRID:
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SCR_002521). The task was performed in 2 to 6 sessions per patient, in which trials
were grouped into 4 blocks of 54 trials, with each block representing a different
attention condition. Sessions lasted approximately 15 minutes and 1 to 2 sessions were
performed per day. The total experiment time across sessions was between 30 and 9o

mins per patient.

2.5. ECoG data collection

ECoG signals were recorded at 2,048 Hz sampling rate using Brain RT software
(version 2.0.3164.0, OSG BVBA, Rumst, Belgium). One or more 64-channel Brainbox
EEG-166 amplifiers (Braintronics B.V., Almere, Netherlands) were used to record from
subdural electrodes (Ad-Tech Corporation, Racine, WI, USA) that consisted of
platinum alloy discs embedded in a flexible silicon sheet. Electrodes had an exposed
surface with a diameter of 2.3 mm. The electrodes were arranged in strips or grids with
interelectrode center-to-center distance of 10 mm. As common reference, an inactive
scalp electrode located over the forehead was used at the start of the recording and
was in most cases changed to a relatively silent (i.e., not showing any epileptic activity

during seizures) implanted electrode after the first seizure was recorded.

2.6. Data pre-processing

Data were analysed in MATLAB (R2016a version 9.0.0.341360; The Mathworks Inc.;
Natick, MA, USA) using the FieldTrip toolbox (Oostenveld et al., 2011) and custom
scripts. Data were first cut into epochs from 1 second before the sound onset until 1
second after the behavioural response with a maximum data length of 8 seconds. We

then applied a discrete time filter at 50, 100, and 150 Hz to remove line noise and
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down-sampled the data from 2048 Hz to 500 Hz. Data were re-referenced to the

average signal recorded in all electrodes, after excluding electrodes with high noise.

2.7. Time-frequency analysis

We calculated time-frequency representations of ECoG signal power in 2 Hz steps
between 6 and 250 Hz using Hanning tapers of length equal to 7 times the cycle length
and 10 ms step size. Power was expressed as the normalized change, where the change
was defined as the difference between post-stimulus time window and pre-stimulus
‘baseline’ period -100 to -700 ms before sound onset. This baseline period was used to
calculate power changes for all the events (sound, written cue and motor response) in
the trial time window. The mean (not time resolved) spectral response was calculated
from the normalized change from individual trial time frequency representations
(TFRs), from the sound onset to 0.5 seconds after the behavioural response. To better
represent the spectral response around each trial event, TFRs were aligned and cut
around the onset of each event. Thus, we represent -0.5 to 1 second around the onset of
the sound, -0.2 to 0.7 seconds around onset of the letters and -0.3 to 0.7 seconds

around the onset of the behavioural response (Figure 2B).

2.8. Band-pass filtering and power calculation

For frequency band specific analysis we filtered at the classical alpha band (8 to 12 Hz)
and beta band (15 and 25 Hz). We selected broadband gamma as 55 to 200 Hz,
avoiding the possible line noise at 50 Hz. Power was calculated as the absolute value of
the Hilbert transform. The resultant time courses were converted to normalized

change in power from the baseline period (-0.7 to -0.1 seconds from sound onset). For
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time course analysis, individual trials were cut and aligned around each trial event, as
described above for TFRs. For non-time resolved analysis we first calculated average

power of individual trials from o to 0.5 seconds before taking the average across trials.

2.9. Generalized linear model (GLM) fitting and validation

Generalized linear models (GLM) are a generalization of linear regression models given
by two main changes in the linear regression models, first the random component
(Gaussian) is replaced by the exponential family of distributions and second, the link
function (X'p) is replaced by a family functions (McCullagh and Nelder, 1998; Nelder
and Wedderburn, 1972). This generalization process is achieved by an iterative
weighting of linear regressions that are used to obtain maximum likelihood estimates
of the parameters. Given that the power modulation response might contain
nonlinearities, the use of a GLM allows identifying the optimal weighting for each
frequency band combination, thus increasing the performance in eloquent-electrode’s

identification.

We used a GLM with binomial likelihood and logit link function (McCullagh and
Nelder, 1998), where for each electrode the dependent variable (y) was the ESM
response (eloquent and non-eloquent) and the predictors were the ECoG power
change in each frequency band. Once the model was estimated, we could determine
the optimal weighting of the power change at each frequency band as regression
coefficients to predict the ESM response. Since calculations of AUC using the same
data used for GLM estimation would result in an inflation of type-I errors, we

estimated the GLM coefficients on a subset of electrodes and determined the area
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under the receiving operating characteristic curve on the remaining portion. Thus, we
first partitioned the eloquent and non-eloquent electrodes categories into k disjoint
datasets and used, the data contained in k-1 partitions (i.e., leaving one partition out
for testing later the mode’s prediction) to estimate a GLM having ECoG power change
in each frequency band as independent variables x, and eloquent or non-eloquent ESM
categories as the dependent variable y, (y being o for non-eloquent electrodes, and 1 for
eloquent electrodes). Both quadratic and interaction terms were included in the
estimation in order to benefit from possible non-linearities in the ECoG response
(power change) and for possible interactions among the two. The model was then used
to predict the ESM response in the left out partition. The whole procedure was
repeated for all the partitions (i.e., k-fold cross-validation, in our case we used k = 10).
The resulting prediction, concatenated across all the test partitions, was compared
with the ground truth ESM by means of area under the receiver operator characteristic
(ROC) curve. Finally, the whole procedure was repeated 20 times randomly selecting
the partitions and the results were averaged. When considering each frequency band
alone, we performed a similar analysis including the quadratic terms, but using only

the one predictor of interest.

2.10. Area under the receiver operator characteristic curve analysis

The area under (AU) the receiver operator characteristic (ROC) curve or AUROC is a
measure of discriminative ability for continuous predictors such as prediction models.
The ROC curve is drawn in a space that represents sensitivity (true positive divided by
the sum of true positive and false negative) against 1-specificity (true negative divided

by the sum of true negative and false positive). The curve connects the combinations of
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sensitivity and specificity for all possible risk thresholds. AUC is the magnitude of the
area under this curve. The models being evaluated are the ones generated by the GLM
for the different frequency bands and their combination. The threshold of AUC needed
to determine the usability of a diagnostic test depends on the planned use of the
prediction model and the cost or morbidity generated by the proposed intervention. In
the present study, the proposed intervention consists of an inexpensive additional
cognitive task in combination with an automatic computer analysis of the cortical
frequency power changes. Thus, the required threshold for the AUROC is relatively

lower compared to more expensive tests such for example ESM (Kundu et al., 2016).

We aimed to calculate the diagnostic ability of the three frequency bands, and of their
combination. We did not implement a diagnostic test, for which we believe more data,
and an optimized behavioural task, would be required. Previous studies have
quantified the sensitivity and specificity of changes in cortical power. However these
values are determined by both the diagnostic ability and the discrimination threshold
applied. We calculated the area under the curve (AUC) from the receiver operating
characteristic (ROC) curve (Green and Swets, 2000). This procedure calculates the
ratio of sensitivity to specificity for all potential discrimination thresholds. The
resulting AUROC represents the maximum performance (i.e., correct discrimination)
of an ‘ideal observer’ using the optimal threshold. The diagnostic ability may be
considered significant if the AUROC is different from chance (50% correct). In our
analysis, AUROC was higher than o.5 when the response (i.e., power change within a
given frequency band) in eloquent electrodes was greater than in non-eloquent

electrodes, and less than o.5 when the response in eloquent electrodes was lower than
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the response in non-eloquent electrodes. Significance was therefore tested using a two-
tailed test, where the null distribution was empirically calculated by randomly
permuting (1000 times) the labels between eloquent and non-eloquent electrodes and

calculating the corresponding AUROC from the permuted data.

2.11. Bootstrap procedure for statistical testing receiver operator
characteristic

Statistical differences among the different models resulting from the GLM fitting (each
frequency band and their combination-see previous section) were tested using a
bootstrap analysis. We constructed a distribution of AUROC values for each model by
creating multiple datasets of the same size as the original by randomly drawing
electrodes with replacement. On each dataset we computed the AUROC as in the
previous step for each model and obtained a distribution of values across 1000
bootstrap samples. Statistical comparisons were then carried out by comparing the
differences between models. We considered the difference between two models as

significant when one model outperformed the other in more than 95% of the cases.

2.12. Function-specific analysis

We were interested to study whether different functional areas might exhibit
characteristic power spectra, however we were limited by the low numbers of
electrodes representing some eloquent ESM categories. We therefore grouped
electrodes into two loosely defined categories which we call ‘receptive’ and ‘expressive’.
Those electrodes labelled as auditory, visual, sensory, language-Wernicke and language-
temporobasal were grouped into the ‘receptive’ category as being more functionally

involved in processing incoming sensory events. Those labelled as motor, mixed-
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sensorimotor and language-Broca were grouped into the ‘expressive’ category as being
more involved in generating behavioural responses. Two neighbouring electrodes in
one patient labelled as ‘emotion’ were excluded from the function-specific analysis as

they did not seem to fit in either category.

2.13. Attention dependent analysis

To test the influence of attention, we compared power changes in the different
frequency bands of interest (broadband gamma, alpha and beta band) from the passive
listening condition to power changes from the different frequency bands from the
DMTS task. To match the number of trials performed in each task we used data from
only one DMTS condition, where the written cue represented full syllables, and used a
comparable time window in both tasks (-0.5 seconds to 0.9 seconds from the sound

onset).

2.14. Probabilistic map of eloquence

We considered how our analysis could to be clinically useful without providing a
diagnostic test. A probabilistic map that shows the likelihood of eloquence for each
electrode obtained before the ESM could be used to optimize the planning of the
sequence of electrode pairs for ESM testing. We took GLM calculated probabilities for
each patient separately using only data from the remaining patients to calculate the
GLM beta weights. This procedure represents a special case of our standard analysis in
which data was separated into training and test datasets: In the standard analysis the
separation was done randomly, thus data from different patients could be included for

training and the same could be done for testing; in the current analysis the data
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separation was performed according to the patient identity. In this way we show how a
probabilistic map of likelihood of eloquence in ESM can be generated for an individual
patient without reference to the ESM results of that patient. This procedure allows, in
a new patient, the creation of a probabilistic map of eloquence using only data from
the DMTS task that is acquired before the ESM, enabling the incorporation of the

probabilistic map in the planning of the ESM.

3. Results

3.1. Relationship between electrical cortical stimulation and frequency
modulation

As a descriptive analysis, we selected all the electrodes from all ESM categories and
projected them into the common brain space from FreeSurfer to see the distribution
and location of the electrodes from the different patients (Figure 2A). We registered in
total 129 eloquent and 460 non-eloquent electrodes (Table 1). Eloquent electrodes were
located bilaterally over the temporal neocortex (superior and middle temporal gyri),

over the inferior frontal gyrus, and over the pre- and post-central gyri.

all non- total | seizure sensory- language language language . . ]

Ptn elec eloguent eloguent onset sensory | motor rnc:itogllr [we?nicaej (B?ocz?) ttempgrohgasal) auditory visual emotion
1 40 36 4 5 0 0 2 0 0 1 1 0 0
2 39 39 0 2 0 0 0 0 0 0 0 0 0
3 40 29 11 o] 4 0 0 1 0 o] 5] 0 0
4 74 59 15 12 0 8 0 0 7 0 0 0 0
5 31 31 0 0 0 0 0 0 0 0 0 0 0
6 a4 27 14 8 4 2 0 1 0 2 3 0 2
7 79 43 36 7 5 14 2 7 7 0 1 0 0
8 74 63 11 3 1 0 3 1 0 0 2 4 0
9 a2 [si] 23 7 2 14 3 3 1 0 0 0 0
10 79 64 15 3 4 8 0 0 0 0 Q 3 0
Total 588 460 129 47 20 46 10 13 15 3 13 7 2

Table 1: Electrode details. Number of electrodes in each ESM category, total number of

eloquent, seizure onset, and non-eloquent electrodes per patient.
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We represented the change in power spectral density, relative to the baseline period (-
0.7 to -0.1 seconds from sound onset) across time (time-frequency representation, TFR)
of the ECoG signal during each epoch of the DMTS task (Figure 2B). We observed that
ESM categories exhibited characteristic frequency response patterns during the task.
For example, electrodes labelled during ESM as ‘auditory’ exhibited the strongest
activity increase in gamma and decrease in low frequency activity (alpha and beta
power, LFA) after sound onset. Likewise, electrodes labelled as ‘visual’ exhibited an
increase in gamma and a decrease in LFA after letter onset. Electrodes labelled as
‘motor’ exhibited an increase gamma activity and a decrease in LFA around the button
press. Interestingly, ‘language temporobasal’ and ‘language Broca’ electrodes seemed to
be active after the sound onset and after letter presentation possibly pointing towards
covert rehearsal of the sound and silent reading of the letters. For further analysis, we
grouped all electrodes labelled as eloquent for comparison with all electrodes that

were tested using ESM but labelled as non-eloquent.
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Figure 2: Electrical stimulation mapping and ECoG responses. A) Electrodes tested
during electrical-cortical stimulation mapping (ESM) in the 10 patients projected in the
common space. All electrodes are colour coded according with the ESM category or in
black when no category was assigned. Brains represent the 3D mesh reconstruction of
the grey matter-cerebrospinal fluid (CSF) boundary from the FreeSurfer average brain.
LH: left hemisphere, RH: right hemisphere, Ventral: ventral (caudal) view of left and right
hemispheres, Dorsal: dorsal (cranial) view of left and right hemispheres. B) Illustration
of the time course in the raw trials (upper cartoon, where events are represented at their
average time lag from sound onset, individual trials were jittered) and the ‘exaggerated’
time between the events used for display time (lower cartoon). C) Time frequency
representations (TFR) of time periods of the delayed match-to-sample task from all
tested electrodes grouped by the ESM category. The TFRs represent the three different
trial events (i.e., sound onset, letter onset, and button press), which are illustrated by the

three vertical dotted lines in each TFR).

3.2. Receiver Operating Characteristic (ROC) curve analysis

We compared the power spectrum of eloquent and non-eloquent electrodes’ ECoG
during the DMTS task. We observed that power was generally increased relative to
baseline for frequencies above 50 Hz, and generally decreased for frequencies below 30
Hz (Figure 3A). This effect was larger in eloquent electrodes (red) than non-eloquent
electrodes (blue). To test the diagnostic ability of this difference we calculated AUROC
(Figure 3B) and applied a permutation test for statistical assessment. AUROC was
significant (thicker line, alpha = 0.05, double sided test, uncorrected for multiple

comparisons) for frequencies between 50 Hz and 180 Hz and for frequencies between 6
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and 30 Hz, indicating significant diagnostic ability, with a performance of 65 to 70%

correct for an ideal observer.

To represent the time courses of gamma- alpha- and beta bands over the trial we
filtered the ECoG signal in the respective bands (grey background shading, Figure
3A&B) and calculated the absolute value of the Hilbert transform, which was
subsequently represented as the normalized change against pre-sound baseline period.
We found stronger gamma power increase in eloquent as compared with non-eloquent
electrodes (Figure 3C) during the three different DMTS task epochs. The AUROC
values across time (Figure 3D) were larger than 0.5 and significant for all three events

in the DMTS task.

Alpha power (Figure 3E) showed a decrease for all the three DMTS task events with an
overall pattern for both eloquent and non-eloquent electrodes (Figure 3E) and a
stronger decrease from baseline in eloquent electrodes compared with in non-eloquent
electrodes. The AUROC values were significantly below chance for all three events
(Figure 3F). A similar pattern was observed for beta power, (Figure 3 G&H) however,
the decrease in power was especially prominent around the button press event.
AUROC values were generally lower, indicating greater diagnostic ability, than for the

alpha band, especially around the button press event.
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Figure 3: AUROC analysis. A) Normalized change in ECoG signal power spectral density
from baseline from eloquent (red) and non-eloquent electrodes (blue). Shading width
shows standard error, centre line shows mean. B) AUROC values across frequencies, pale
green, non-significant, dark green significant values. Black lines show o0.25 and 97.5
percentiles from permutation distribution. Dotted line shows chance performance.
Background shading indicate filter boundaries for alpha, beta and gamma. C) Gamma
power modulation during the three events of the delayed match-to-sample task (icons
indicate sound onset, letter onset, and button press). Solid lines show mean, shadow

width; standard error. D) AUROC values across time for gamma. E&F) Alpha power and
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AUROC values over time, as in C&D. G&H) Beta power and AUROC values over time, as

in C&D.

Next we calculated AUROC values across time using the weights from the GLM,
including 10-fold cross-validation (Figure 4A). For smoothing, and to reduce
processing time, we used a sliding window using a 10oms window and 5oms step size.
The GLM based AUROC values for gamma-only closely matched standard AUC values
(Figure 4A, green line). For alpha-only (red) and beta-only (blue) the GLM based AUC
values also closely matched the standard AUROC, except that values were above 0.5
rather than below due to the fitting procedure, see section 2.10. Interestingly, time
courses for the three individual band models AUROC values peaked at different time
periods of the trial. The gamma-only model performed best during the sound epoch
while the beta-only model performed best during the button press epoch. The alpha-
only model performed generally worse than the other models, but interestingly
outperformed the gamma-only model around the letter onset and late after the button
press. The combined GLM AUROC values (Figure 3G-dashed lines) tended to be either
higher than, or equal to whichever individual curve was highest at any given time
point. This was especially true for the gamma&beta model (blue dashed lines),
although the alpha&gamma (red dashed) model also tended to outperform the
gamma-only model. Interestingly the three-band model (black dashed) did not

outperform the gamma&beta model.

To statistically test the AUROC results of each model against chance performance and
against each other, we first reduced the dimensionality of the data by calculating

average power for each electrode, collapsing the data over the time dimension. Using
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this data we conducted a bootstrap analysis in which we constructed a distribution of
1000 AUROC values for each model by creating multiple datasets of the same size as
the original by randomly drawing electrodes with replacement. For each dataset, and
the original, we compute the AUROC for each model using 10-fold cross-validation.
Histograms in Figure 4B show the distribution of AUROC values of the single band
models, vertical lines show the AUROC values from the original dataset. All three
models performed better than chance, with 100 percent of the resampled datasets
returning AUROC values greater than o.5. Of the three models the alpha-only model
(red) performed the worse, with an AUROC of 0.64 in the original dataset, the gamma
only (green) and beta only (blue) performed similarly and the distributions
substantially overlapped. The gamma-only approach has previously been used most
widely, therefore to test the value of alpha- and beta bands we made pairwise
comparisons of those models against the gamma-only model. Figure 4C. The alpha-
only model was worse than the gamma-only model in 98% of datasets, which we
consider to show a significant difference. The mean performance reduction was 8.8%
(vertical line). While the beta-only model offered a slight performance advantage on
average (1.3%) this was not significant. We next compared the performance of the
combination based models (Figure 4D). The three combination models generally
performed better than the individual-band models although the alpha&gamma (red
dashed) model performed the worst. The beta&gamma (blue dashed) and three-band
(black dashed) model performed approximately equally. In pairwise comparisons with
the gamma-only model, all three models offered enhanced performance although this
just failed to meet the threshold of significance for the alpha&gamma model (94% of

datasets improved). The beta&gamma and three band models both performed
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significantly better than the gamma-only model (in 100% of datasets) offering
respectively an average 7.6% and 7.4% improvement. Interestingly, their distributions

completely overlapped indicating that there was no advantage to including the alpha

band to the beta&gamma model.
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Figure 4: A) AUROC values using GLM approach across time for alpha band, gamma
Beta (solid lines), and the combinations (dashed lines). B) Distribution of the AUROC
values from 1000 bootstrap samples for single models. Vertical lines show ROC AUC
values from all electrodes without resampling. C) Pairwise comparison from bootstrap
distribution of alpha (red) and beta (blue) AUROC values with gamma values. Vertical

lines show mean percentage change from gamma performance. D&E) Distribution of
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AUROC values for combination models, as in B. E) pairwise comparisons of combination

models with gamma-only model.

3.3. AUROC performance depends on functional category

Alpha-, beta- and gamma band activity have been ascribed different functional roles,
with gamma associated with feedforward processes and alpha associated with feedback
processes (Scheeringa and Fries, 2017). The beta band has been associated with motor
activity, whereby beta power drops in preparation for a motor response. Thus, different
frequency bands may have relatively different importance in different cortical areas,
depending on the area’s place in the cortical hierarchy (Felleman and Van Essen, 1991).
Specifically, we can anticipate that receptive areas, being early in the hierarchy, may
have a high dependence on gamma, while expressive areas, being late in the hierarchy
may be more dependent on alpha and beta. Importantly to our current question, this
implies that patients with many expressive electrodes will be poorly mapped using
gamma. For those patients, alpha or beta may be more informative, or their
combination with gamma may give a greater improvement. To test this hypothesis we
divided all eloquent electrodes into two loose categories which we defined as
expressive and receptive and repeated our analysis (Figure 5) for each group separately.
Notice that this grouping was intended as a procedural means to split the data into
denominated groups. With the possible exception of primary areas, all cortical areas
have roles in both processing stimuli and generating responses, thus the distinction

between expressive and receptive areas is only an approximation.
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Descriptively, gamma (Figure 5A) after sound onset showed power increase from
baseline for all electrodes that peaked at ~100 ms after sound onset. Receptive
electrodes (red line, line shading shows standard error) showed the highest power
followed by expressive electrodes (green). Non-eloquent electrodes (blue) showed the
weakest response. After letter onset, gamma showed an increase in power for all
electrodes. While power in receptive electrodes peaked soon after letter onset, power
in expressive electrodes continued to increase reaching a peak shortly before button
press. Non-eloquent electrodes showed low power after a weak response to letter onset
and button-press. Alpha power (Figure 5B) was suppressed in all channels with greater
suppression for eloquent than non-eloquent channels. Interestingly, alpha power
suppression was approximately even in both expressive and receptive channels for the
majority of the time course, with only a slight difference as the end of the trial where
expressive channels showed somewhat greater suppression. By contrast, beta band
(Figure 5C) suppression was considerably stronger in expressive channels than
receptive channels at all time points of the trial after sound onset. With our stated
caveat about the distinction between expressive and receptive areas, these data
supported our grouping as ‘receptive’ electrodes seemed most involved at the start of
the trial during stimulus processing, and ‘expressive’ electrodes seemed most involved

at the end of the trial near the behavioural response.

We calculated AUROC values for the three bands separately and for the three
combination models using the time-averaged responses and tested significance of the
difference using the bootstrap method. In receptive (Figure sD) electrodes the

distribution of gamma (green) AUROC values was higher than the alpha-only (red) or

32


https://doi.org/10.1101/677195
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/677195; this version posted June 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

beta-only (blue) models, however the distributions heavily overlapped. Pairwise
comparisons (Figure 5E) showed that this difference was not significant (alpha- and
beta-only models overlapped the performance of gamma-only). In expressive
electrodes (Figure 5F) the beta-only model outperformed both gamma-only and alpha-
only models. Pairwise comparisons (Figure 5G) showed that this difference
corresponded to a 6.1% increase but did not pass significance (93% of datasets). The
alpha-only model performed significantly worse than the gamma-only model,

corresponding to 1% drop.

Analysis of the combination models showed that in receptive channels all three models
offered approximately equal performance (Figure 5H), which was somewhat better
than the individual band models, however pairwise comparisons (Figure 5I) showed
that this improvement failed to meet the threshold for significance. Among expressive
channels the combination models offered better performance (Figure 5J) and a greater
improvement over the gamma-only model (Figure 5K). In the alpha-gamma model
mean improvement was 3% but failed to reach significance, while the beta-gamma and
three band models both showed an improvement in 100% of dataset with a mean
improvement of 11%. These results were in line with our expectation that expressive
electrodes, being higher in the cortical hierarchy, would be most sensitive to low
frequency power modulations. Regardless of the interpretation, taken together these
results suggest that eloquent areas may be best mapped using gamma or beta-band
power depending on the distribution of electrodes in an individual patient. However,
irrespective of the ESM functional category, the combination of beta and gamma bands

was reliably the best measure for the identification of eloquent electrodes.
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Figure 5: AUROC analysis per functional category. A,B,C) Gamma, Alpha and Beta

power modulation for the three subtypes of electrodes (receptive, expressive, and non-

eloquent) during the three events of the delay match-to-sample task. D) Distribution of

the AUROC values from 1000 bootstrap samples for single models (solid lines) and

receptive channels. E) Pairwise comparison from bootstrap distribution of alpha (red)

and beta (blue) AUROC values with gamma values for receptive channels. H&I) F & G)

Same as D & E for expressive channels. H to K, same as D to G using combined models

(dashed lines).

3.4. The influence of attention on AUROC values
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Most patients performed well in the task, however one patient performed poorly and
withdrew from the experiment after only two sessions (out of a planned s5). This
experience prompted us to question how well ECoG mapping would perform in a less
demanding task, which might be particularly relevant when applying ECoG mapping in
paediatric populations, patients with low cognitive ability or patients who are
otherwise unable or unwilling to engage in cognitive testing. Our cognitive experiment
included a passive listening condition in which auditory syllables were presented
without any explicit task. We repeated our analysis using the ECoG response, from
eloquent (red lines) and non-eloquent electrodes (blue lines), during the sound
presentation in the active (solid lines, delayed match-to-sample task) tasks and passive
condition (dashed lines, Figure 6). Gamma band (Figure 6A) responses were weaker in
the passive task compared to active task for both eloquent and non-eloquent
electrodes. Similarly, alpha and beta band suppression Figure 6B & C) was weaker in

the passive task compared to the active task, especially late in the response.

As before we calculated AUROC values of the GLM models and tested significance
using the time-averaged responses, however here we used only the period from sound
onset to goo ms which could be compared for both tasks. In the DMST data AUROC
values were unsurprisingly lower than in previous analysis (Figure 4H) where we had
used the response during the entire DMTS task. However, when comparing the
performance of the three bands and the combination, the pattern matched our
previous findings. Comparing the two tasks (Figure 6D) showed that withdrawing
attention from the stimuli in the passive task suppressed the performance of all

models. In pairwise comparisons between the two tasks we found that performance of
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the models dropped by as much as 11.9% in the three-band models. The drop was

significant (p < 0.05) for all models expect for the alpha-only model (p = 0.19).

These data showed that an active task which engages attention is required for optimal
mapping using ECoG, with important implications for studies which attempt to classify
eloquent cortex without explicit cognitive tasks (Vansteensel et al., 2013). Nevertheless,
the GLM approach using gamma and beta band activity offered a significant
improvement over single-band models. Notice, that this analysis was possible because

we had collected passive data in all patients.
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Figure 6. Attention effect on AUOC values. A,B,C) Gamma, Alpha and Beta power
modulation across time for eloquent (red) and non-eloquent (blue) electrodes during the

active (DMTS, solid lines, darker shading) and the passive (dashed lines, lighter shading)
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listening tasks. D) Effect of attention of diagnostic ability per model. Vertical lines show
5 and 95 percentiles from 1000 bootstrap samples, horizontal offset to aid visibility. E)
AUROC values for all models, separately for active (DMTS) and passive task. E) Pairwise
comparison between active and passive task per single band model. Negative values
imply a better performance in the active task. F) Same as E but using combination

models.

3.5. Probabilistic map of likely eloquence

We aimed to use the GLM fitting to calculate a map showing the probability that each
electrode would be eloquent given the ECoG power modulation during the DMTS (i.e.,
GLM-ECoG). Such a map could be used to optimally plan the sequence of ESM
mapping. For this analysis we used data from the full trial and full dataset (i.e. data
presented in Figure 2H & I) and used the gamma&beta combination model. As in the
main analysis we estimated GLM weights on a training dataset and applied those
weights to a test dataset here training and testing was performed in splits containing
data from all patients. However unlike in the main analysis, for the creation of the
probabilistic map the training dataset comprised of all electrodes from all patients
minus one and the testing dataset comprised of all electrodes from the remaining
patient. Thus, this analysis could be performed for a new patient using data available
before the ESM (i.e., data from the DMTS task). After calculating the prediction of all
electrodes in the dataset the AUROC for this procedure was 0.73, as compared to 0.76

using the K-fold approach, in line with the results from the standard analysis.
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The output of the GLM (i.e., GLM response) corresponds to a prediction of the
binomial probability that an electrode is eloquent or not. To visualize the relationship
between GLM prediction and the empirical probability of eloquence we binned
electrodes into 10 equally spaced bins (with 50% overlap) according to the output of
the GLM. Figure 7A shows the number of electrodes per bin (black line, rightward Y
axis) and the proportion of those electrodes with a positive ESM response (blue line
and coloured dots, leftward Y axis). The proportion of eloquent channels across the
whole population is shown by horizontal line. We then showed how the GLM estimate
could be used to map five representative patients. The probability of eloquence was
represented by colour-coding the electrode locations, with darker-red colours
indicating higher probability of eloquence (see dot colours in Figure 7A). For
comparison, electrodes that were eventually labelled as eloquent by the ESM were
marked with a central black dot while electrodes eventually labelled as non-eloquent
were marked with a central white dot. For completeness, electrodes labelled as seizure
onset were labelled with a red ring. Patient 4 and 8 appear to have a good match
between ESM and ECoG prediction in that darkest coloured dots also have black
centres. Eloquent areas were far from seizure onset zones allowing a safe resection.
Patient 7 also had good match between ESM and the ECoG prediction however the
overlap between eloquent areas and seizure onset zone precluded a safe resection.
Patient 3 showed a good match between ESM and ECoG however notice that the
estimated probabilities were generally low in this patient such that ESM positive
electrodes were found at a level of ECoG response that would be negative in other
patients. This observation indicates that a fixed diagnostic threshold applied to all

patients may not be the ideal approach. Patient 2 showed the reverse pattern, in this
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patient no eloquent electrodes were found with ESM despite quite high ECoG
responses. In this patient the seizure onset zone was located at the temporal pole,
while ESM results do not contra indicate a full resection of the temporal lobe, the
ECoG power modulation response seems to suggest active cortex above the sth row of
the grid. These results could be taken into account as additional source of information
when planning a resection for the removal of epileptogenic tissue while preserving

regions with high ECoG power modulation responses.
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Figure 7. Probabilistic maps of likely eloquence. A) Relationship between GLM response
(i. e., prediction of the binomial probability that an electrode is eloquent or not) and
probability of eloquence (leftward axis) and numbers of electrodes (rightward axis). Dot
colours indicate colour-scale used in other panels. B) Electrode locations projected onto
the individual patient MRI in five example patients. Dot colour indicates GLM response,

dot centres indicate ESM results, white: non-eloquent, black: eloquent, coloured: not
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mapped. Red rings indicate seizure onset zones. Blue bodies in the bottom left of each

brain reconstruction indicate the brain orientation and observer view.

4. Discussion

We found that activity in the alpha, beta and broadband gamma frequency ranges
could be used to identify eloquent cortex at above chance level, and with rates in line
with previous reports (Arya et al., 2018). Combining frequency bands via a generalized
linear model (GLM) enhanced the information given by each band alone, thereby
increasing the prediction of eloquence. Combining the beta band with the broadband
gamma was found to be more useful than combining the alpha band with broadband
gamma. Time-resolved analysis showed that the different frequency bands alternated
as the ‘better’ measure throughout the trial. Likewise segregating the signal from the
eloquent electrodes into receptive and expressive groups showed that the relative
performance of alpha, beta and broadband gamma depended on the cortical area,
whereby broadband gamma gave better results in receptive areas and beta band gave
better results in expressive areas in line with previous results reported by Wu et al.
(2010). These analyses reveal that whether relatively lower frequency alpha/beta or
higher frequency broadband gamma power are the ‘better’ measure, will depend on
several factors, including the patient’s implantation scheme, the task performed, and
the selected analysis window. Our GLM approach cuts through this complexity
because, regardless of which band provided the better diagnostic ability, the combined
approach allowed a performance at least as good as the best individual frequency band

and typically offered an improvement.
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Previous studies have investigated whether ECoG recording could be used as an
alternative to ESM by testing whether a significant response could be used as a
diagnostic criterion for identifying eloquent cortex. Here we investigated the
diagnostic ability without implementing a diagnostic test. After demonstrating that
ECoG responses can reliably predict the probability of an eloquent ESM response, we
showed how a probabilistic map could be constructed that could be used to guide
ESM. Guided ESM may reduce the time and effort from both the patient and the
clinical team to stimulate all possible pairs of electrodes from an implanted grid. The
time-consuming aspect of ESM becomes especially problematic as the number of
electrodes increases, which is the case with the use of high-density ECoG grids. High-
density grids have become more frequently used as they increase the spatial resolution
of the mapping procedure, thereby increasing surgical precision and decreasing the
risk of postsurgical neurological deficits (Escabi et al., 2014). However, cortical
mapping using ESM in a high-density grid is time consuming and becomes impractical
due to the sequential pairwise testing of electrodes. In contrast, the mapping of
eloquent cortex using the frequency modulation responses from an appropriate
cognitive task analyses the signal from all channels simultaneously. Thus, this
approach has the potential to significantly improve the general time efficiency of the
mapping procedure. Because ESM can cause seizures, after-discharges (Aungaroon et
al., 2017; Blume et al., 2004) and, in some cases, pain (e.g., when performed in the
proximity parieto-opercular cortex -Mazzola et al., 2012), frequency modulation
mapping might also reduce the chance of side effects, potentially allowing the
implementation of cortical mapping in high-density ECoG grids. Our procedure to

create a probabilistic map could be used to guide ESM mapping in a high-density grid
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such that boundaries between eloquent and non-eloquent cortex could be identified

with ECoG and confirmed with ESM.

Although the DMTS task was not explicitly designed to test whether a specific
electrode was eloquent or not, it is fascinating that these data were able to be used to
identify the eloquent electrodes with performance similar to that reported in previous
studies using tasks specifically designed for that purpose. This aspect points to the
wide cortical network that is recruited even when performing a relatively simple task.
The used DMTS task involves auditory processing of the syllable, maintenance of the
auditory stimulus in short term memory, visual perception of the written cue,
comparison of the auditory and visual stimuli for a match to sample decision, a motor
response, and error monitoring post-response. It hence engages different relevant
stages in human cognition. Nevertheless, we do not argue that the DMTS task used
here is the optimal task. An optimal task would presumably include a wider range of
motor actions (our task only included moving the index and middle finger of the right
hand), a wider range of visual stimuli (to activate e.g. face- place- and motion-sensitive
areas), and a language production section - and has to be feasible in the limited
amount of time the patient is available for functional cortical mapping. Our main
finding is a first proof of concept that the inclusion of low frequency bands, especially

the beta band, improves the identification of eloquent electrodes.

We would expect that a similar analysis in a dataset acquired during the performance
of a structured cognitive task explicitly designed to activate eloquent cortex would
result in better performance of the ECoG mapping. Such tasks should contain language

comprehension and production components to activate cortical areas belonging to the
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language network, different memory components to activate cortical areas of the
memory network, and specific motor components, among others. These tasks could be
selected according to the probable location of the seizure onset zone and the ECoG
implantation scheme. Moreover, similar to the DMTS task used in our study, one task
can encompass many cognitive and motor components, allowing the test of multiple
functions per task. The use of those different specific tasks could increase the
sensitivity and specificity by including the power modulation in the beta band.
However, this also represents an increase in the complexity and time require for
cognitive testing, thus the task used in the present study seems to be a very good
compromise as it tests different cognitive aspects in one relatively simple, easy and

short task.

The possibility also exists that including low frequency power was only useful in the
context of a non-optimal task. It may be that, in an optimal task all eloquent cortices
may be sufficiently activated, such that they can be readily identified using power
modulation responses in the broadband gamma alone. Our finding that the beta band
was more useful in identifying receptive areas than expressive areas argues against this
possibility, since the task was arguably better tuned for identifying receptive areas than
expressive areas (e.g. auditory cortex was adequately activated, while IFG (Broca’s area)
was only weakly involved during covert rehearsal and reading). Ultimately, additional
data or re-analysis of data collected by other groups will be required to clarify this

aspect.

4.1. Limitations
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4.1.1. True gold standard

In order to better understand the validity of cortical mapping with ECoG from
cognitive tasks it is relevant to evaluate whether false positives identified by ECoG
mapping are in fact false positives or perhaps may be false negatives in the ESM
mapping. The true test of whether an area is eloquent or not is the effect of surgical
resection of that area on the neuropsychological function after resection. Currently,
ESM is the best predictor of the effect of resection on cognitive performance, however
to control for the possibility of false negatives in ESM, it will be important to evaluate
the cognitive performance of patients after surgical resection. However, these data is

not available in our study.

4.1.2. Extension of GLM method to include more indicators

In our analysis we used the power of broadband gamma, alpha and beta bands as
indicators for the eloquence of electrodes. However, with the cross-validation
procedure implemented in our analysis it is possible in principle to include a multitude
of indicators. Other factors that might improve mapping could include power
modulations in other frequency bands, power modulations in additional, more specific
tasks, and responses measured in other modalities (e.g., functional mapping using
fMRI based Blood Oxygenation Level Dependant-BOLD-responses of Transcranial
Magnetic Stimulation). Prior predictions about the likelihood of eloquence at a
particular cortical area and seizure onset zone (e.g., Positron emission tomography-

PET- or EEG) may also be of interest and help to increase mapping accuracy.
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4.1.3. From diagnostic ability to diagnostic test

Given the relatively small number of patients included in the present study and the
task used, which was developed to study language processing rather than cortical
mapping, the method described is not ready to be used as a diagnostic test. In order to
further develop our findings into a reliable diagnostic test it will be important to
replicate our analysis in a larger population and to compare the results with the
presence of neurological or cognitive impairments after neurosurgical resection. With
additional data, optimal settings for the test data (frequency bands, time window of
interest, task, etc.) and an optimal diagnostic criterion might be identifiable. However,
inspection of the probabilistic maps of individual patients in this sample seem to argue
against this possibility. They suggest that between-patient variability in the overall
level of ECoG responsiveness is too huge to instigate a universal criterion. The
optimized ECoG test should be tailored to the individual frequency profile. This then
should clearly outperform ESM in predicting presence of neurological or cognitive
impairments after neurosurgical resection - before replacing ESM as diagnostic
procedure. More likely, the optimized ECoG test will be of use in addition to or as a

screening before ESM.

4.2. Conclusion

Using advanced signal analysis (time frequency analysis, GLM, AUROC and
bootstrapping) in combination to functional and attentional specific analysis we have
shown that including alpha and especially beta power modulations from a DMTS task
can improve the diagnostic ability in the identification of eloquent cortical areas over

the use of broadband gamma alone. We conclude that ECoG mapping may be a useful
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additional tool to identify eloquent cortical areas but does not replace the need for
electrical stimulation mapping. Further studies using tasks specifically designed for
eloquent cortical area identification, the use of tailored individual frequency bands,
and comparison of different models with post-resection outcomes will elucidate

whether this approach could replace or enhance ESM in clinical settings
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