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Highlights 

• Gamma, alpha and beta band activity has significant diagnostic ability to identify 

ESM defined eloquent cortical areas. 

• We present a novel method to combine gamma and low frequency activity for 

enhanced identification. 

• We quantify how identification is dependent on analysis time window, cortical 

function, and patient’s attentional engagement. 

• With further development, this approach may offer an alternative to ESM 

mapping with reduced burden for patients. 

Abbreviations 

DMTS: Delayed match-to-sample 

ESM: Electrical Stimulation Mapping 

ROC: Receiver Operator Characteristic curve 

AUROC: Area Under the Receiving Operating Characteristic curve 

GLM: Generalized Linear Model  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 20, 2019. ; https://doi.org/10.1101/677195doi: bioRxiv preprint 

https://doi.org/10.1101/677195
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

Abstract 

Electrical stimulation mapping (ESM) is the gold standard for identification of 

“eloquent” areas prior to resection of epileptogenic tissue, however, it is time 

consuming and may cause side effects, especially stimulation-induced seizures and 

after-discharges. Broadband gamma activity (55 – 200 Hz) recorded with subdural 

electrocorticography (ECoG) during cognitive tasks has been proposed as an attractive 

tool for mapping cortical areas with specific function but until now has not proven 

definitive clinical value. Fewer studies have addressed whether the alpha (8 – 12 Hz) 

and beta (15 – 25 Hz) band activity could also be used to improve eloquent cortex 

identification. We compared alpha, beta and broadband gamma activity, and their 

combination for the identification of eloquent cortical areas defined by ESM. Ten 

patients participated in a delayed-match-to-sample task, where syllable sounds were 

matched to visually presented letters and responses given by keyboard. We used a 

generalized linear model (GLM) approach to find the optimal weighting of low 

frequency bands and broadband gamma power to predict the ESM categories. 

Broadband gamma activity increased more in eloquent areas than in non-eloquent 

areas and this difference had a diagnostic ability (area under (AU) the receiving 

operating characteristic curve - AUROC) of ~70%. Both alpha and beta power 

decreased more in eloquent areas. Alpha power had lower AUROC than broadband 

gamma while beta had similar AUROC. AUROC was enhanced by the combination of 

alpha and broadband gamma (3% improvement) and by the combination of beta and 

broadband gamma (7% improvement) over the use of broadband gamma alone. 

Further analysis showed that the relative performance of broadband gamma and low 
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frequency bands depended on multiple factors including the time period of the 

cognitive task, the location of the electrodes and the patient’s attention to the 

stimulus. However, the combination of beta band and broadband gamma always gave 

the best performance. We show how ECoG power modulation from cognitive testing 

periods can be used to map the probability of eloquence by ESM and how this 

probability can be used as an aid for optimal ESM planning. We conclude that low 

frequency power during cognitive testing can contribute to the identification of 

eloquent areas in patients with focal refractory epilepsy improving its precision but 

does not replace the need of ESM.  
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1. Introduction 

Invasive cortical mapping for the precise characterization of ‘eloquent’ cortical areas is 

necessary to avoid or decrease neurological or cognitive complications following 

resection of pathologic brain tissue. In the current gold standard, electrical cortical 

stimulation mapping (ESM), electrical stimulation of subdural electrode-pairs, disrupts 

function or produces neurological symptoms (Hamberger, 2007; Penfield and Boldrey, 

1937). If the stimulation impairs a specific cognitive function (e.g., speech production) 

or produces neurological symptoms (e.g., paraesthesia), the underlying cortex is 

labelled as ‘eloquent’ and is preserved during resection. Despite its usefulness 

(Ojemann et al., 1989), ESM can elicit after-discharges or seizures (Lee et al., 2010; 

Lesser et al., 1984), or induce pain (Lesser et al., 1985). In addition, it requires the 

patient’s continuous compliance, rendering it challenging to use especially in 

paediatric populations (Arya et al., 2015). The procedure is also time consuming, 

requiring the individual testing of each implanted electrode, restricting the maximum 

number of electrodes that can be tested and precluding the use of high density arrays 

(Bouchard et al., 2013; Mesgarani et al., 2014; Muller et al., 2016) so limiting the spatial 

resolution of the technique (Hermiz et al., 2018). These and other factors motivate the 

search for alternative ways to identify eloquent cortex (Brunner et al., 2009; Crone et 

al., 2006, 1998b, 1998a; Lachaux et al., 2007; Vansteensel et al., 2010). 

Activation of neuronal networks leads to a change in the spectral power of electrical 

field potentials of local neuronal populations (Buzsaki, 2004; Buzsáki et al., 2012; Fries 

et al., 2007). For example, different studies have reported enhancement of gamma 

band power (>30Hz) during processing of visual (Gray et al., 1989) and auditory 
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(Brosch et al., 2002) stimuli, motor action preparation (Pfurtscheller et al., 1993; 

Vansteensel et al., 2013), and sensorimotor integration (Murthy and Fetz, 1992). 

Gamma power varies with high temporal and spatial resolution, such that increasing 

gamma power is specific to active neuronal populations (Aoki et al., 1999, p. 199; Arya 

et al., 2018; Buzsáki et al., 2012; Crone et al., 2006, 1998a; Hamilton et al., 2018; 

Leuthardt et al., 2007; Miller et al., 2007; Nagasawa et al., 2010; Sinai et al., 2005; Wu et 

al., 2010). Consequently, gamma modulation has been proposed as an alternative for 

ESM (Aoki et al., 1999; Arya et al., 2017; Brunner et al., 2009; Crone et al., 2006, 1998a; 

Lachaux et al., 2003; Leuthardt et al., 2007; Miller et al., 2007; Sinai et al., 2005; 

Vansteensel et al., 2013; Wang et al., 2016; Wu et al., 2010) whereby a task-dependent 

increase in gamma power indicates eloquent cortex. However, results are mixed and 

gamma band-based mapping typically has insufficient accuracy in the identification of 

ESM results, with some studies (Wu et al., 2010) reporting high sensitivity but low 

specificity, while others report the opposite (Bauer et al., 2013). In a recent review Arya 

et al. highlighted the heterogeneity in the diagnostic threshold and the cognitive task 

employed (Arya et al. 2018). In addition there is heterogeneity in the criteria used 

during ESM (Mooij et al., 2018). Moreover, it has recently been suggested that 

broadband gamma activity composing cortical field potentials, registered by 

electrocorticography (ECoG) electrodes, may over-represent dendritic processes more 

than neuronal action potentials (Leszczynski et al., 2019). 

Activation of neuronal networks is typically accompanied by a reduction in power in 

the alpha (8 – 12 Hz) and beta (15 – 25 Hz) frequency bands. Recent empirical evidence 

demonstrates that alpha and beta power is related to active inhibition processes 
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(Jensen and Mazaheri, 2010) and can be highly spatially specific to activated 

populations (de Pesters et al., 2016; Muller et al., 2016). Thus, activity in lower 

frequency bands represents a plausible source of additional information for cortical 

mapping. Moreover, given that different frequency bands have different functions 

(Scheeringa and Fries, 2017) and are not directly correlated to each other (Bonaiuto et 

al., 2018), additional information may come from the combination of frequency bands. 

A limited number of studies have investigated the use of lower frequency bands for 

cortical mapping (Bauer et al., 2013; Crone et al., 1998b; Hermes et al., 2012; Leuthardt 

et al., 2007; Sinai et al., 2005; Vansteensel et al., 2013; Wu et al., 2010). The results from 

these studies have been have been variable in terms of mapping performance and the 

combination of frequency bands has not yet been fully investigated (Leuthardt et al., 

2007; Wu et al., 2010). In addition, while there is considerable heterogeneity between 

studies in the task employed, few studies have directly compared different tasks in the 

same group of patients. Thus, little is known about how the cognitive engagement of 

the patient, i.e., the task performed during cortical mapping, impacts the quality of 

ECoG based mapping.  

We hypothesized that alpha and beta band power modulation, either on their own or 

in combination with the broadband gamma power modulation, could enhance the 

accuracy of the identification of eloquent cortex compared with the use of broadband 

gamma alone. 

To investigate this, we registered ECoG signals from subdural electrodes in 10 patients 

with drug resistant focal epilepsy who underwent ESM for the identification of 

eloquent cortex. Patients performed a delayed match-to-sample (DMTS) task or 
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listened to the same stimuli without an active task. We show that beta band power 

generally had equal diagnostic ability to gamma, while alpha power was less effective. 

Withdrawing attention from the stimuli reduced the diagnostic ability. The 

combination of gamma and beta frequency bands, using a Generalized Linear Model 

(GLM) was consistently better than either band individually. 

2. Materials and Methods 

2.1. Participants 

We included 10 patients (mean age: 40.1 years; 4 females; 3 left handed) with drug-

resistant focal epilepsy, who underwent continuous ECoG with subdural electrodes as 

part of pre-surgical evaluation. The remaining patients of our full data set were 

excluded from this study as ESM was not performed in those patients. Patients 

volunteered as participants for the study and performed the DMTS task. The study 

complies with the Declaration of Helsinki for research studies in humans. Written 

informed consent was obtained from all patients before admittance to the ward. All 

experimental procedures were approved by the Medical Ethical Committee of the 

Maastricht University Medical Center, Maastricht, Netherlands. 

2.2. Electrode implantation 

The electrode implantation scheme was strictly chosen according to the individual 

patient protocol depending on the hypothesis of the probable location of the 

epileptogenic zone, as established by the multidisciplinary epilepsy surgery-working 

group of the Academic Center for Epileptology. If clinically indicated, language and 
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verbal memory lateralization was established preoperatively using fMRI or a Wada test 

(Wada and Rasmussen, 2007). The number of implanted electrodes per patient varied, 

with electrodes’ contact points ranging between 24 and 88 per patient. Henceforth we 

will use the word electrode to refer to the electrode’s contact point. The day after 

implantation, a computer tomography and a 3T magnetic resonance imaging scan of 

the brain was acquired to verify the location of implanted electrodes and to exclude 

post-surgical complications. 

2.3. Electrical-cortical stimulation mapping (ESM) 

Electrical-cortical stimulation mapping (ESM) was performed using bipolar 

stimulation between electrode pairs sequentially, selecting neighbouring electrode 

pairs of the subdural grid and/or strips. The procedure for ESM mapping differs 

between centres, with consequences for the reproducibility of comparisons between 

ESM and ECoG response based mapping approaches (Mooij et al., 2018). In our study 

ESM mapping proceeded as follows: The stimulation of an electrode-grid was planned 

by selecting non-continuous electrode pairs (Figure 1A). Bipolar electrical stimulation 

was applied between a pair of electrodes (e.g. electrode pair 1-2). If no neurological 

symptoms or function disturbances were observed, electrical stimulation was applied 

to the next planned pair (pair 3-4), which included neither of the electrodes included 

in the first pair. If instead, symptoms were generated by the stimulation of pair 1-2, 

then electrical stimulation was applied to a neighbouring pair of electrodes that 

included one of the previously stimulated electrodes and (if possible) one functionally 

silent electrode e.g. pair 1-5. If this pair resulted in symptoms (Figure 1B) electrode 1 

would be labelled as eloquent. If a pair that includes the second electrode of the first 
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pair (e.g. pair 2-3) resulted in no symptoms, that electrode would be labelled as non-

eloquent. In a different scenario (Figure 1C), if pair 1-5 resulted negative and pair 2-3 

resulted in positive, electrode 1 would be labelled non-eloquent and electrode 2 would 

be labelled eloquent. Thus, if an electrode tested positive in at least two neighbouring 

pairs in any direction (i.e., horizontal, vertical or diagonal), the electrode was 

considered eloquent. 

 

Figure 1: Schematic representation of two possible ESM cases in a toy example of a 2 by 

4 electrodes ECoG grid. A) Planned stimulation pairs. B) Case one, in which electrode 1 is 

found to be eloquent after symptoms are produced during electrical stimulation at pair 1-

2 and 1-5, but not 2-3. C) Case two in which electrode 2 is found to be eloquent after 

symptoms are produced at pair 1-2 and 2-3 but not 1-5. 

The stimulation was performed with a constant current stimulator (Osiris cortical 

stimulator, Inomed, Emmendingen, Germany) with the following stimulation settings: 

trains of square wave pulses, pulse frequency 50 Hz, pulse duration 0.2 milliseconds, 
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with a train duration of 3 to 7 seconds (depending on the function tested and the 

specific patient conditions). The current was increased in (1-)2 mA steps to a maximum 

of 15 mA (e.g., 1 mA, 3 mA etc.). During ESM for language testing, participants 

performed a reading task and, if reading was impaired, testing was extended with 

additional tasks (e.g., naming, counting, tongue movement task). ESM was stopped if 

any of the following end-points was reached: 1) a clear and reproducible generation of 

neurological symptoms, 2) impairment of any of the performed (cognitive) tasks, or 3) 

reaching the maximum stimulus intensity of 15 mA without causing symptoms, deficits 

or after-discharges. This procedure was then repeated at the next planned electrode 

pair. Stimulated electrodes that resulted in neurological signs or symptoms or 

cognitive impairment were labelled as eloquent and assigned to one of nine functional 

categories defined by the clinical neurophysiologists (motor, sensory, mixed 

sensorimotor, language temporobasal, language Broca, language Wernicke, emotion, 

visual, and auditory). This categorization was used as the ground truth against which 

our identification results were compared during the subsequent analyses. 

All tests were performed in the epilepsy-monitoring unit (EMU) by an expert clinical 

neurophysiologist (V.H.K.M. or D.M.W.H). The selection of electrode pairs for 

stimulation and the total number of electrodes stimulated per session was decided 

individually for each participant by the clinical neurophysiologist. For the remainder of 

the text we use the term ‘eloquent’ interchangeably to refer to  areas of cortex and to 

ESM positive electrodes, under the assumption that those electrodes correspond to 

eloquent cortex. 

2.4. Delayed match-to-sample task 
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The stimuli and tasks were designed to test hypotheses about the processing of 

acoustic properties in the language network under varying conditions of attention, yet 

we reasoned that, considering the task properties, the same data might also be useful 

to test our current hypothesis. 

A trial consisted of a speech sound stimulus comprising a spoken consonant-vowel 

syllable of 340 milliseconds duration followed, after a jittered interval of 550-750 

milliseconds, by a written cue displayed for 500 milliseconds. After the presentation of 

the written cue, a 1,500 milliseconds period was allowed for a button response followed 

by an inter-trial interval (ITI) of 1,000 milliseconds as baseline before the next trial 

began (Figure 2 B). The written cue was either a complete syllable, a vowel, or 

consonant letter, depending on the specific block. The cue either matched or did not 

match the previous sound stimulus. Participants were asked to compare the syllable 

sound with the written cue and respond ‘match’ or ‘mismatch’ as quickly and 

accurately as they could. The stimuli matched in 50% of the trials, and ‘match’/‘non-

match’ trials were balanced across conditions and randomized per participant. The 

identical sound stimuli were also presented in a passive listening condition in which 

sound onsets were jittered by 900-1100 ms while participants held their gaze steady on 

the computer screen. Stimuli were presented in the epilepsy-monitoring unit using a 

laptop computer with built-in open-field speakers. Stimulus and behavioural event 

triggers were sent to the clinical data recording equipment via a parallel port to the 

Ethernet interface box (Ethernet-102 V2, Braintronics B.V., Almere, Netherlands). All 

behavioural responses, stimuli, event identities, and timings were presented and 

logged using Presentation (Neurobehavioral Systems; www.neurobs.com, RRID: 
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SCR_002521). The task was performed in 2 to 6 sessions per patient, in which trials 

were grouped into 4 blocks of 54 trials, with each block representing a different 

attention condition. Sessions lasted approximately 15 minutes and 1 to 2 sessions were 

performed per day. The total experiment time across sessions was between 30 and 90 

mins per patient. 

2.5. ECoG data collection 

ECoG signals were recorded at 2,048 Hz sampling rate using Brain RT software 

(version 2.0.3164.0, OSG BVBA, Rumst, Belgium). One or more 64-channel Brainbox 

EEG-1166 amplifiers (Braintronics B.V., Almere, Netherlands) were used to record from 

subdural electrodes (Ad-Tech Corporation, Racine, WI, USA) that consisted of 

platinum alloy discs embedded in a flexible silicon sheet. Electrodes had an exposed 

surface with a diameter of 2.3 mm. The electrodes were arranged in strips or grids with 

interelectrode center-to-center distance of 10 mm. As common reference, an inactive 

scalp electrode located over the forehead was used at the start of the recording and 

was in most cases changed to a relatively silent (i.e., not showing any epileptic activity 

during seizures) implanted electrode after the first seizure was recorded. 

2.6. Data pre-processing 

Data were analysed in MATLAB (R2016a version 9.0.0.341360; The Mathworks Inc.; 

Natick, MA, USA) using the FieldTrip toolbox (Oostenveld et al., 2011) and custom 

scripts. Data were first cut into epochs from 1 second before the sound onset until 1 

second after the behavioural response with a maximum data length of 8 seconds. We 

then applied a discrete time filter at 50, 100, and 150 Hz to remove line noise and 
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down-sampled the data from 2048 Hz to 500 Hz. Data were re-referenced to the 

average signal recorded in all electrodes, after excluding electrodes with high noise. 

2.7. Time-frequency analysis 

We calculated time-frequency representations of ECoG signal power in 2 Hz steps 

between 6 and 250 Hz using Hanning tapers of length equal to 7 times the cycle length 

and 10 ms step size. Power was expressed as the normalized change, where the change 

was defined as the difference between post-stimulus time window and pre-stimulus 

‘baseline’ period -100 to -700 ms before sound onset. This baseline period was used to 

calculate power changes for all the events (sound, written cue and motor response) in 

the trial time window. The mean (not time resolved) spectral response was calculated 

from the normalized change from individual trial time frequency representations 

(TFRs), from the sound onset to 0.5 seconds after the behavioural response. To better 

represent the spectral response around each trial event, TFRs were aligned and cut 

around the onset of each event. Thus, we represent -0.5 to 1 second around the onset of 

the sound, -0.2 to 0.7 seconds around onset of the letters and -0.3 to 0.7 seconds 

around the onset of the behavioural response (Figure 2B). 

2.8. Band-pass filtering and power calculation 

For frequency band specific analysis we filtered at the classical alpha band (8 to 12 Hz) 

and beta band (15 and 25 Hz). We selected broadband gamma as 55 to 200 Hz, 

avoiding the possible line noise at 50 Hz. Power was calculated as the absolute value of 

the Hilbert transform. The resultant time courses were converted to normalized 

change in power from the baseline period (-0.7 to -0.1 seconds from sound onset). For 
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time course analysis, individual trials were cut and aligned around each trial event, as 

described above for TFRs. For non-time resolved analysis we first calculated average 

power of individual trials from 0 to 0.5 seconds before taking the average across trials. 

2.9. Generalized linear model (GLM) fitting and validation 

Generalized linear models (GLM) are a generalization of linear regression models given 

by two main changes in the linear regression models, first the random component 

(Gaussian) is replaced by the exponential family of distributions and second, the link 

function (XT𝛽) is replaced by a family functions (McCullagh and Nelder, 1998; Nelder 

and Wedderburn, 1972). This generalization process is achieved by an iterative 

weighting of linear regressions that are used to obtain maximum likelihood estimates 

of the parameters. Given that the power modulation response might contain 

nonlinearities, the use of a GLM allows identifying the optimal weighting for each 

frequency band combination, thus increasing the performance in eloquent-electrode’s 

identification. 

We used a GLM with binomial likelihood and logit link function (McCullagh and 

Nelder, 1998), where for each electrode the dependent variable (y) was the ESM 

response (eloquent and non-eloquent) and the predictors were the ECoG power 

change in each frequency band. Once the model was estimated, we could determine 

the optimal weighting of the power change at each frequency band as regression 

coefficients to predict the ESM response. Since calculations of AUC using the same 

data used for GLM estimation would result in an inflation of type-I errors, we 

estimated the GLM coefficients on a subset of electrodes and determined the area 
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under the receiving operating characteristic curve on the remaining portion. Thus, we 

first partitioned the eloquent and non-eloquent electrodes categories into k disjoint 

datasets and used, the data contained in k-1 partitions (i.e., leaving one partition out 

for testing later the mode’s prediction) to estimate a GLM having ECoG power change 

in each frequency band as independent variables x, and eloquent or non-eloquent ESM 

categories as the dependent variable y, (y being 0 for non-eloquent electrodes, and 1 for 

eloquent electrodes). Both quadratic and interaction terms were included in the 

estimation in order to benefit from possible non-linearities in the ECoG response 

(power change) and for possible interactions among the two. The model was then used 

to predict the ESM response in the left out partition. The whole procedure was 

repeated for all the partitions (i.e., k-fold cross-validation, in our case we used k = 10). 

The resulting prediction, concatenated across all the test partitions, was compared 

with the ground truth ESM by means of area under the receiver operator characteristic 

(ROC) curve. Finally, the whole procedure was repeated 20 times randomly selecting 

the partitions and the results were averaged. When considering each frequency band 

alone, we performed a similar analysis including the quadratic terms, but using only 

the one predictor of interest. 

2.10. Area under the receiver operator characteristic curve analysis 

The area under (AU) the receiver operator characteristic (ROC) curve or AUROC is a 

measure of discriminative ability for continuous predictors such as prediction models. 

The ROC curve is drawn in a space that represents sensitivity (true positive divided by 

the sum of true positive and false negative) against 1-specificity (true negative divided 

by the sum of true negative and false positive). The curve connects the combinations of 
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sensitivity and specificity for all possible risk thresholds. AUC is the magnitude of the 

area under this curve. The models being evaluated are the ones generated by the GLM 

for the different frequency bands and their combination. The threshold of AUC needed 

to determine the usability of a diagnostic test depends on the planned use of the 

prediction model and the cost or morbidity generated by the proposed intervention. In 

the present study, the proposed intervention consists of an inexpensive additional 

cognitive task in combination with an automatic computer analysis of the cortical 

frequency power changes. Thus, the required threshold for the AUROC is relatively 

lower compared to more expensive tests such for example ESM (Kundu et al., 2016). 

We aimed to calculate the diagnostic ability of the three frequency bands, and of their 

combination. We did not implement a diagnostic test, for which we believe more data, 

and an optimized behavioural task, would be required. Previous studies have 

quantified the sensitivity and specificity of changes in cortical power. However these 

values are determined by both the diagnostic ability and the discrimination threshold 

applied. We calculated the area under the curve (AUC) from the receiver operating 

characteristic (ROC) curve (Green and Swets, 2000). This procedure calculates the 

ratio of sensitivity to specificity for all potential discrimination thresholds. The 

resulting AUROC represents the maximum performance (i.e., correct discrimination) 

of an ‘ideal observer’ using the optimal threshold. The diagnostic ability may be 

considered significant if the AUROC is different from chance (50% correct). In our 

analysis, AUROC was higher than 0.5 when the response (i.e., power change within a 

given frequency band) in eloquent electrodes was greater than in non-eloquent 

electrodes, and less than 0.5 when the response in eloquent electrodes was lower than 
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the response in non-eloquent electrodes. Significance was therefore tested using a two-

tailed test, where the null distribution was empirically calculated by randomly 

permuting (1000 times) the labels between eloquent and non-eloquent electrodes and 

calculating the corresponding AUROC from the permuted data. 

2.11. Bootstrap procedure for statistical testing receiver operator 
characteristic 

Statistical differences among the different models resulting from the GLM fitting (each 

frequency band and their combination-see previous section) were tested using a 

bootstrap analysis. We constructed a distribution of AUROC values for each model by 

creating multiple datasets of the same size as the original by randomly drawing 

electrodes with replacement. On each dataset we computed the AUROC as in the 

previous step for each model and obtained a distribution of values across 1000 

bootstrap samples. Statistical comparisons were then carried out by comparing the 

differences between models. We considered the difference between two models as 

significant when one model outperformed the other in more than 95% of the cases. 

2.12. Function-specific analysis 

We were interested to study whether different functional areas might exhibit 

characteristic power spectra, however we were limited by the low numbers of 

electrodes representing some eloquent ESM categories. We therefore grouped 

electrodes into two loosely defined categories which we call ‘receptive’ and ‘expressive’. 

Those electrodes labelled as auditory, visual, sensory, language-Wernicke and language-

temporobasal were grouped into the ‘receptive’ category as being more functionally 

involved in processing incoming sensory events. Those labelled as motor, mixed-
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sensorimotor and language-Broca were grouped into the ‘expressive’ category as being 

more involved in generating behavioural responses. Two neighbouring electrodes in 

one patient labelled as ‘emotion’ were excluded from the function-specific analysis as 

they did not seem to fit in either category. 

2.13. Attention dependent analysis 

To test the influence of attention, we compared power changes in the different 

frequency bands of interest (broadband gamma, alpha and beta band) from the passive 

listening condition to power changes from the different frequency bands from the 

DMTS task. To match the number of trials performed in each task we used data from 

only one DMTS condition, where the written cue represented full syllables, and used a 

comparable time window in both tasks (-0.5 seconds to 0.9 seconds from the sound 

onset). 

2.14. Probabilistic map of eloquence 

We considered how our analysis could to be clinically useful without providing a 

diagnostic test. A probabilistic map that shows the likelihood of eloquence for each 

electrode obtained before the ESM could be used to optimize the planning of the 

sequence of electrode pairs for ESM testing. We took GLM calculated probabilities for 

each patient separately using only data from the remaining patients to calculate the 

GLM beta weights. This procedure represents a special case of our standard analysis in 

which data was separated into training and test datasets: In the standard analysis the 

separation was done randomly, thus data from different patients could be included for 

training and the same could be done for testing; in the current analysis the data 
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separation was performed according to the patient identity. In this way we show how a 

probabilistic map of likelihood of eloquence in ESM can be generated for an individual 

patient without reference to the ESM results of that patient. This procedure allows, in 

a new patient, the creation of a probabilistic map of eloquence using only data from 

the DMTS task that is acquired before the ESM, enabling the incorporation of the 

probabilistic map in the planning of the ESM. 

3. Results 

3.1. Relationship between electrical cortical stimulation and frequency 
modulation 

As a descriptive analysis, we selected all the electrodes from all ESM categories and 

projected them into the common brain space from FreeSurfer to see the distribution 

and location of the electrodes from the different patients (Figure 2A). We registered in 

total 129 eloquent and 460 non-eloquent electrodes (Table 1). Eloquent electrodes were 

located bilaterally over the temporal neocortex (superior and middle temporal gyri), 

over the inferior frontal gyrus, and over the pre- and post-central gyri. 

 

Table 1: Electrode details. Number of electrodes in each ESM category, total number of 

eloquent, seizure onset, and non-eloquent electrodes per patient. 
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We represented the change in power spectral density, relative to the baseline period (-

0.7 to -0.1 seconds from sound onset) across time (time-frequency representation, TFR) 

of the ECoG signal during each epoch of the DMTS task (Figure 2B). We observed that 

ESM categories exhibited characteristic frequency response patterns during the task. 

For example, electrodes labelled during ESM as ‘auditory’ exhibited the strongest 

activity increase in gamma and decrease in low frequency activity (alpha and beta 

power, LFA) after sound onset. Likewise, electrodes labelled as ‘visual’ exhibited an 

increase in gamma and a decrease in LFA after letter onset. Electrodes labelled as 

‘motor’ exhibited an increase gamma activity and a decrease in LFA around the button 

press. Interestingly, ‘language temporobasal’ and ‘language Broca’ electrodes seemed to 

be active after the sound onset and after letter presentation possibly pointing towards 

covert rehearsal of the sound and silent reading of the letters. For further analysis, we 

grouped all electrodes labelled as eloquent for comparison with all electrodes that 

were tested using ESM but labelled as non-eloquent. 
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Figure 2: Electrical stimulation mapping and ECoG responses. A) Electrodes tested 

during electrical-cortical stimulation mapping (ESM) in the 10 patients projected in the 

common space. All electrodes are colour coded according with the ESM category or in 

black when no category was assigned. Brains represent the 3D mesh reconstruction of 

the grey matter-cerebrospinal fluid (CSF) boundary from the FreeSurfer average brain. 

LH: left hemisphere, RH: right hemisphere, Ventral: ventral (caudal) view of left and right 

hemispheres, Dorsal: dorsal (cranial) view of left and right hemispheres. B) Illustration 

of the time course in the raw trials (upper cartoon, where events are represented at their 

average time lag from sound onset, individual trials were jittered) and the ‘exaggerated’ 

time between the events used for display time (lower cartoon). C) Time frequency 

representations (TFR) of time periods of the delayed match-to-sample task from all 

tested electrodes grouped by the ESM category. The TFRs represent the three different 

trial events (i.e., sound onset, letter onset, and button press), which are illustrated by the 

three vertical dotted lines in each TFR). 

3.2. Receiver Operating Characteristic (ROC) curve analysis 

We compared the power spectrum of eloquent and non-eloquent electrodes’ ECoG 

during the DMTS task. We observed that power was generally increased relative to 

baseline for frequencies above 50 Hz, and generally decreased for frequencies below 30 

Hz (Figure 3A). This effect was larger in eloquent electrodes (red) than non-eloquent 

electrodes (blue). To test the diagnostic ability of this difference we calculated AUROC 

(Figure 3B) and applied a permutation test for statistical assessment. AUROC was 

significant (thicker line, alpha = 0.05, double sided test, uncorrected for multiple 

comparisons) for frequencies between 50 Hz and 180 Hz and for frequencies between 6 
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and 30 Hz, indicating significant diagnostic ability, with a performance of 65 to 70% 

correct for an ideal observer. 

To represent the time courses of gamma- alpha- and beta bands over the trial we 

filtered the ECoG signal in the respective bands (grey background shading, Figure 

3A&B) and calculated the absolute value of the Hilbert transform, which was 

subsequently represented as the normalized change against pre-sound baseline period. 

We found stronger gamma power increase in eloquent as compared with non-eloquent 

electrodes (Figure 3C) during the three different DMTS task epochs. The AUROC 

values across time (Figure 3D) were larger than 0.5 and significant for all three events 

in the DMTS task. 

Alpha power (Figure 3E) showed a decrease for all the three DMTS task events with an 

overall pattern for both eloquent and non-eloquent electrodes (Figure 3E) and a 

stronger decrease from baseline in eloquent electrodes compared with in non-eloquent 

electrodes. The AUROC values were significantly below chance for all three events 

(Figure 3F). A similar pattern was observed for beta power, (Figure 3 G&H) however, 

the decrease in power was especially prominent around the button press event. 

AUROC values were generally lower, indicating greater diagnostic ability, than for the 

alpha band, especially around the button press event. 
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Figure 3: AUROC analysis. A) Normalized change in ECoG signal power spectral density 

from baseline from eloquent (red) and non-eloquent electrodes (blue). Shading width 

shows standard error, centre line shows mean. B) AUROC values across frequencies, pale 

green, non-significant, dark green significant values. Black lines show 0.25 and 97.5 

percentiles from permutation distribution. Dotted line shows chance performance. 

Background shading indicate filter boundaries for alpha, beta and gamma. C) Gamma 

power modulation during the three events of the delayed match-to-sample task (icons 

indicate sound onset, letter onset, and button press). Solid lines show mean, shadow 

width; standard error. D) AUROC values across time for gamma. E&F) Alpha power and 
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AUROC values over time, as in C&D. G&H) Beta power and AUROC values over time, as 

in C&D. 

Next we calculated AUROC values across time using the weights from the GLM, 

including 10-fold cross-validation (Figure 4A). For smoothing, and to reduce 

processing time, we used a sliding window using a 100ms window and 50ms step size. 

The GLM based AUROC values for gamma-only closely matched standard AUC values 

(Figure 4A, green line). For alpha-only (red) and beta-only (blue) the GLM based AUC 

values also closely matched the standard AUROC, except that values were above 0.5 

rather than below due to the fitting procedure, see section 2.10. Interestingly, time 

courses for the three individual band models AUROC values peaked at different time 

periods of the trial. The gamma-only model performed best during the sound epoch 

while the beta-only model performed best during the button press epoch. The alpha-

only model performed generally worse than the other models, but interestingly 

outperformed the gamma-only model around the letter onset and late after the button 

press. The combined GLM AUROC values (Figure 3G–dashed lines) tended to be either 

higher than, or equal to whichever individual curve was highest at any given time 

point. This was especially true for the gamma&beta model (blue dashed lines), 

although the alpha&gamma (red dashed) model also tended to outperform the 

gamma-only model. Interestingly the three-band model (black dashed) did not 

outperform the gamma&beta model.  

To statistically test the AUROC results of each model against chance performance and 

against each other, we first reduced the dimensionality of the data by calculating 

average power for each electrode, collapsing the data over the time dimension. Using 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 20, 2019. ; https://doi.org/10.1101/677195doi: bioRxiv preprint 

https://doi.org/10.1101/677195
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

this data we conducted a bootstrap analysis in which we constructed a distribution of 

1000 AUROC values for each model by creating multiple datasets of the same size as 

the original by randomly drawing electrodes with replacement. For each dataset, and 

the original, we compute the AUROC for each model using 10-fold cross-validation. 

Histograms in Figure 4B show the distribution of AUROC values of the single band 

models, vertical lines show the AUROC values from the original dataset. All three 

models performed better than chance, with 100 percent of the resampled datasets 

returning AUROC values greater than 0.5. Of the three models the alpha-only model 

(red) performed the worse, with an AUROC of 0.64 in the original dataset, the gamma 

only (green) and beta only (blue) performed similarly and the distributions 

substantially overlapped. The gamma-only approach has previously been used most 

widely, therefore to test the value of alpha- and beta bands we made pairwise 

comparisons of those models against the gamma-only model. Figure 4C. The alpha-

only model was worse than the gamma-only model in 98% of datasets, which we 

consider to show a significant difference. The mean performance reduction was 8.8% 

(vertical line). While the beta-only model offered a slight performance advantage on 

average (1.3%) this was not significant. We next compared the performance of the 

combination based models (Figure 4D). The three combination models generally 

performed better than the individual-band models although the alpha&gamma (red 

dashed) model performed the worst. The beta&gamma (blue dashed) and three-band 

(black dashed) model performed approximately equally. In pairwise comparisons with 

the gamma-only model, all three models offered enhanced performance although this 

just failed to meet the threshold of significance for the alpha&gamma model (94% of 

datasets improved). The beta&gamma and three band models both performed 
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significantly better than the gamma-only model (in 100% of datasets) offering 

respectively an average 7.6% and 7.4% improvement. Interestingly, their distributions 

completely overlapped indicating that there was no advantage to including the alpha 

band to the beta&gamma model. 

 

Figure 4: A) AUROC values using GLM approach across time for alpha band, gamma 

Beta (solid lines), and the combinations (dashed lines). B) Distribution of the AUROC 

values from 1000 bootstrap samples for single models. Vertical lines show ROC AUC 

values from all electrodes without resampling. C) Pairwise comparison from bootstrap 

distribution of alpha (red) and beta (blue) AUROC values with gamma values. Vertical 

lines show mean percentage change from gamma performance. D&E) Distribution of 
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AUROC values for combination models, as in B. E) pairwise comparisons of combination 

models with gamma-only model. 

3.3. AUROC performance depends on functional category 

Alpha-, beta- and gamma band activity have been ascribed different functional roles, 

with gamma associated with feedforward processes and alpha associated with feedback 

processes (Scheeringa and Fries, 2017). The beta band has been associated with motor 

activity, whereby beta power drops in preparation for a motor response. Thus, different 

frequency bands may have relatively different importance in different cortical areas, 

depending on the area’s place in the cortical hierarchy (Felleman and Van Essen, 1991). 

Specifically, we can anticipate that receptive areas, being early in the hierarchy, may 

have a high dependence on gamma, while expressive areas, being late in the hierarchy 

may be more dependent on alpha and beta. Importantly to our current question, this 

implies that patients with many expressive electrodes will be poorly mapped using 

gamma. For those patients, alpha or beta may be more informative, or their 

combination with gamma may give a greater improvement. To test this hypothesis we 

divided all eloquent electrodes into two loose categories which we defined as 

expressive and receptive and repeated our analysis (Figure 5) for each group separately. 

Notice that this grouping was intended as a procedural means to split the data into 

denominated groups. With the possible exception of primary areas, all cortical areas 

have roles in both processing stimuli and generating responses, thus the distinction 

between expressive and receptive areas is only an approximation. 
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Descriptively, gamma (Figure 5A) after sound onset showed power increase from 

baseline for all electrodes that peaked at ~100 ms after sound onset. Receptive 

electrodes (red line, line shading shows standard error) showed the highest power 

followed by expressive electrodes (green). Non-eloquent electrodes (blue) showed the 

weakest response. After letter onset, gamma showed an increase in power for all 

electrodes. While power in receptive electrodes peaked soon after letter onset, power 

in expressive electrodes continued to increase reaching a peak shortly before button 

press. Non-eloquent electrodes showed low power after a weak response to letter onset 

and button-press. Alpha power (Figure 5B) was suppressed in all channels with greater 

suppression for eloquent than non-eloquent channels. Interestingly, alpha power 

suppression was approximately even in both expressive and receptive channels for the 

majority of the time course, with only a slight difference as the end of the trial where 

expressive channels showed somewhat greater suppression. By contrast, beta band 

(Figure 5C) suppression was considerably stronger in expressive channels than 

receptive channels at all time points of the trial after sound onset. With our stated 

caveat about the distinction between expressive and receptive areas, these data 

supported our grouping as ‘receptive’ electrodes seemed most involved at the start of 

the trial during stimulus processing, and ‘expressive’ electrodes seemed most involved 

at the end of the trial near the behavioural response. 

We calculated AUROC values for the three bands separately and for the three 

combination models using the time-averaged responses and tested significance of the 

difference using the bootstrap method. In receptive (Figure 5D) electrodes the 

distribution of gamma (green) AUROC values was higher than the alpha-only (red) or 
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beta-only (blue) models, however the distributions heavily overlapped. Pairwise 

comparisons (Figure 5E) showed that this difference was not significant (alpha- and 

beta-only models overlapped the performance of gamma-only). In expressive 

electrodes (Figure 5F) the beta-only model outperformed both gamma-only and alpha-

only models. Pairwise comparisons (Figure 5G) showed that this difference 

corresponded to a 6.1% increase but did not pass significance (93% of datasets). The 

alpha-only model performed significantly worse than the gamma-only model, 

corresponding to 11% drop. 

Analysis of the combination models showed that in receptive channels all three models 

offered approximately equal performance (Figure 5H), which was somewhat better 

than the individual band models, however pairwise comparisons (Figure 5I) showed 

that this improvement failed to meet the threshold for significance. Among expressive 

channels the combination models offered better performance (Figure 5J) and a greater 

improvement over the gamma-only model (Figure 5K). In the alpha-gamma model 

mean improvement was 3% but failed to reach significance, while the beta-gamma and 

three band models both showed an improvement in 100% of dataset with a mean 

improvement of 11%. These results were in line with our expectation that expressive 

electrodes, being higher in the cortical hierarchy, would be most sensitive to low 

frequency power modulations. Regardless of the interpretation, taken together these 

results suggest that eloquent areas may be best mapped using gamma or beta-band 

power depending on the distribution of electrodes in an individual patient. However, 

irrespective of the ESM functional category, the combination of beta and gamma bands 

was reliably the best measure for the identification of eloquent electrodes. 
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Figure 5: AUROC analysis per functional category. A,B,C) Gamma, Alpha and Beta 

power modulation for the three subtypes of electrodes (receptive, expressive, and non-

eloquent) during the three events of the delay match-to-sample task. D) Distribution of 

the AUROC values from 1000 bootstrap samples for single models (solid lines) and 

receptive channels. E) Pairwise comparison from bootstrap distribution of alpha (red) 

and beta (blue) AUROC values with gamma values for receptive channels. H&I) F & G) 

Same as D & E for expressive channels. H to K, same as D to G using combined models 

(dashed lines). 

3.4. The influence of attention on AUROC values 
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Most patients performed well in the task, however one patient performed poorly and 

withdrew from the experiment after only two sessions (out of a planned 5). This 

experience prompted us to question how well ECoG mapping would perform in a less 

demanding task, which might be particularly relevant when applying ECoG mapping in 

paediatric populations, patients with low cognitive ability or patients who are 

otherwise unable or unwilling to engage in cognitive testing. Our cognitive experiment 

included a passive listening condition in which auditory syllables were presented 

without any explicit task. We repeated our analysis using the ECoG response, from 

eloquent (red lines) and non-eloquent electrodes (blue lines), during the sound 

presentation in the active (solid lines, delayed match-to-sample task) tasks and passive 

condition (dashed lines, Figure 6). Gamma band (Figure 6A) responses were weaker in 

the passive task compared to active task for both eloquent and non-eloquent 

electrodes. Similarly, alpha and beta band suppression Figure 6B & C) was weaker in 

the passive task compared to the active task, especially late in the response. 

As before we calculated AUROC values of the GLM models and tested significance 

using the time-averaged responses, however here we used only the period from sound 

onset to 900 ms which could be compared for both tasks. In the DMST data AUROC 

values were unsurprisingly lower than in previous analysis (Figure 4H) where we had 

used the response during the entire DMTS task. However, when comparing the 

performance of the three bands and the combination, the pattern matched our 

previous findings. Comparing the two tasks (Figure 6D) showed that withdrawing 

attention from the stimuli in the passive task suppressed the performance of all 

models. In pairwise comparisons between the two tasks we found that performance of 
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the models dropped by as much as 11.9% in the three-band models. The drop was 

significant (p < 0.05) for all models expect for the alpha-only model (p = 0.19).  

These data showed that an active task which engages attention is required for optimal 

mapping using ECoG, with important implications for studies which attempt to classify 

eloquent cortex without explicit cognitive tasks (Vansteensel et al., 2013). Nevertheless, 

the GLM approach using gamma and beta band activity offered a significant 

improvement over single-band models. Notice, that this analysis was possible because 

we had collected passive data in all patients. 

 

Figure 6. Attention effect on AUOC values. A,B,C) Gamma, Alpha and Beta power 

modulation across time for eloquent (red) and non-eloquent (blue) electrodes during the 

active (DMTS, solid lines, darker shading) and the passive (dashed lines, lighter shading) 
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listening tasks. D) Effect of attention of diagnostic ability per model. Vertical lines show 

5 and 95 percentiles from 1000 bootstrap samples, horizontal offset to aid visibility. E) 

AUROC values for all models, separately for active (DMTS) and passive task. E) Pairwise 

comparison between active and passive task per single band model. Negative values 

imply a better performance in the active task. F) Same as E but using combination 

models. 

3.5. Probabilistic map of likely eloquence 

We aimed to use the GLM fitting to calculate a map showing the probability that each 

electrode would be eloquent given the ECoG power modulation during the DMTS (i.e., 

GLM-ECoG). Such a map could be used to optimally plan the sequence of ESM 

mapping. For this analysis we used data from the full trial and full dataset (i.e. data 

presented in Figure 2H & I) and used the gamma&beta combination model. As in the 

main analysis we estimated GLM weights on a training dataset and applied those 

weights to a test dataset here training and testing was performed in splits containing 

data from all patients. However unlike in the main analysis, for the creation of the 

probabilistic map the training dataset comprised of all electrodes from all patients 

minus one and the testing dataset comprised of all electrodes from the remaining 

patient. Thus, this analysis could be performed for a new patient using data available 

before the ESM (i.e., data from the DMTS task). After calculating the prediction of all 

electrodes in the dataset the AUROC for this procedure was 0.73, as compared to 0.76 

using the K-fold approach, in line with the results from the standard analysis. 
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The output of the GLM (i.e., GLM response) corresponds to a prediction of the 

binomial probability that an electrode is eloquent or not. To visualize the relationship 

between GLM prediction and the empirical probability of eloquence we binned 

electrodes into 10 equally spaced bins (with 50% overlap) according to the output of 

the GLM. Figure 7A shows the number of electrodes per bin (black line, rightward Y 

axis) and the proportion of those electrodes with a positive ESM response (blue line 

and coloured dots, leftward Y axis). The proportion of eloquent channels across the 

whole population is shown by horizontal line. We then showed how the GLM estimate 

could be used to map five representative patients. The probability of eloquence was 

represented by colour-coding the electrode locations, with darker-red colours 

indicating higher probability of eloquence (see dot colours in Figure 7A). For 

comparison, electrodes that were eventually labelled as eloquent by the ESM were 

marked with a central black dot while electrodes eventually labelled as non-eloquent 

were marked with a central white dot. For completeness, electrodes labelled as seizure 

onset were labelled with a red ring. Patient 4 and 8 appear to have a good match 

between ESM and ECoG prediction in that darkest coloured dots also have black 

centres. Eloquent areas were far from seizure onset zones allowing a safe resection. 

Patient 7 also had good match between ESM and the ECoG prediction however the 

overlap between eloquent areas and seizure onset zone precluded a safe resection. 

Patient 3 showed a good match between ESM and ECoG however notice that the 

estimated probabilities were generally low in this patient such that ESM positive 

electrodes were found at a level of ECoG response that would be negative in other 

patients. This observation indicates that a fixed diagnostic threshold applied to all 

patients may not be the ideal approach. Patient 2 showed the reverse pattern, in this 
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patient no eloquent electrodes were found with ESM despite quite high ECoG 

responses. In this patient the seizure onset zone was located at the temporal pole, 

while ESM results do not contra indicate a full resection of the temporal lobe, the 

ECoG power modulation response seems to suggest active cortex above the 5th row of 

the grid. These results could be taken into account as additional source of information 

when planning a resection for the removal of epileptogenic tissue while preserving 

regions with high ECoG power modulation responses. 

 

Figure 7. Probabilistic maps of likely eloquence. A) Relationship between GLM response 

(i. e., prediction of the binomial probability that an electrode is eloquent or not) and 

probability of eloquence (leftward axis) and numbers of electrodes (rightward axis). Dot 

colours indicate colour-scale used in other panels. B) Electrode locations projected onto 

the individual patient MRI in five example patients. Dot colour indicates GLM response, 

dot centres indicate ESM results, white: non-eloquent, black: eloquent, coloured: not 
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mapped. Red rings indicate seizure onset zones. Blue bodies in the bottom left of each 

brain reconstruction indicate the brain orientation and observer view. 

4. Discussion 

We found that activity in the alpha, beta and broadband gamma frequency ranges 

could be used to identify eloquent cortex at above chance level, and with rates in line 

with previous reports (Arya et al., 2018). Combining frequency bands via a generalized 

linear model (GLM) enhanced the information given by each band alone, thereby 

increasing the prediction of eloquence. Combining the beta band with the broadband 

gamma was found to be more useful than combining the alpha band with broadband 

gamma. Time-resolved analysis showed that the different frequency bands alternated 

as the ‘better’ measure throughout the trial. Likewise segregating the signal from the 

eloquent electrodes into receptive and expressive groups showed that the relative 

performance of alpha, beta and broadband gamma depended on the cortical area, 

whereby broadband gamma gave better results in receptive areas and beta band gave 

better results in expressive areas in line with previous results reported by Wu et al. 

(2010). These analyses reveal that whether relatively lower frequency alpha/beta or 

higher frequency broadband gamma power are the ‘better’ measure, will depend on 

several factors, including the patient’s implantation scheme, the task performed, and 

the selected analysis window. Our GLM approach cuts through this complexity 

because, regardless of which band provided the better diagnostic ability, the combined 

approach allowed a performance at least as good as the best individual frequency band 

and typically offered an improvement. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 20, 2019. ; https://doi.org/10.1101/677195doi: bioRxiv preprint 

https://doi.org/10.1101/677195
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 
 

Previous studies have investigated whether ECoG recording could be used as an 

alternative to ESM by testing whether a significant response could be used as a 

diagnostic criterion for identifying eloquent cortex. Here we investigated the 

diagnostic ability without implementing a diagnostic test. After demonstrating that 

ECoG responses can reliably predict the probability of an eloquent ESM response, we 

showed how a probabilistic map could be constructed that could be used to guide 

ESM. Guided ESM may reduce the time and effort from both the patient and the 

clinical team to stimulate all possible pairs of electrodes from an implanted grid. The 

time-consuming aspect of ESM becomes especially problematic as the number of 

electrodes increases, which is the case with the use of high-density ECoG grids. High-

density grids have become more frequently used as they increase the spatial resolution 

of the mapping procedure, thereby increasing surgical precision and decreasing the 

risk of postsurgical neurological deficits (Escabí et al., 2014). However, cortical 

mapping using ESM in a high-density grid is time consuming and becomes impractical 

due to the sequential pairwise testing of electrodes. In contrast, the mapping of 

eloquent cortex using the frequency modulation responses from an appropriate 

cognitive task analyses the signal from all channels simultaneously. Thus, this 

approach has the potential to significantly improve the general time efficiency of the 

mapping procedure. Because ESM can cause seizures, after-discharges (Aungaroon et 

al., 2017; Blume et al., 2004) and, in some cases, pain (e.g., when performed in the 

proximity parieto-opercular cortex –Mazzola et al., 2012), frequency modulation 

mapping might also reduce the chance of side effects, potentially allowing the 

implementation of cortical mapping in high-density ECoG grids. Our procedure to 

create a probabilistic map could be used to guide ESM mapping in a high-density grid 
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such that boundaries between eloquent and non-eloquent cortex could be identified 

with ECoG and confirmed with ESM. 

Although the DMTS task was not explicitly designed to test whether a specific 

electrode was eloquent or not, it is fascinating that these data were able to be used to 

identify the eloquent electrodes with performance similar to that reported in previous 

studies using tasks specifically designed for that purpose. This aspect points to the 

wide cortical network that is recruited even when performing a relatively simple task. 

The used DMTS task involves auditory processing of the syllable, maintenance of the 

auditory stimulus in short term memory, visual perception of the written cue, 

comparison of the auditory and visual stimuli for a match to sample decision, a motor 

response, and error monitoring post-response. It hence engages different relevant 

stages in human cognition. Nevertheless, we do not argue that the DMTS task used 

here is the optimal task. An optimal task would presumably include a wider range of 

motor actions (our task only included moving the index and middle finger of the right 

hand), a wider range of visual stimuli (to activate e.g. face- place- and motion-sensitive 

areas), and a language production section – and has to be feasible in the limited 

amount of time the patient is available for functional cortical mapping. Our main 

finding is a first proof of concept that the inclusion of low frequency bands, especially 

the beta band, improves the identification of eloquent electrodes.  

We would expect that a similar analysis in a dataset acquired during the performance 

of a structured cognitive task explicitly designed to activate eloquent cortex would 

result in better performance of the ECoG mapping. Such tasks should contain language 

comprehension and production components to activate cortical areas belonging to the 
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language network, different memory components to activate cortical areas of the 

memory network, and specific motor components, among others. These tasks could be 

selected according to the probable location of the seizure onset zone and the ECoG 

implantation scheme. Moreover, similar to the DMTS task used in our study, one task 

can encompass many cognitive and motor components, allowing the test of multiple 

functions per task. The use of those different specific tasks could increase the 

sensitivity and specificity by including the power modulation in the beta band. 

However, this also represents an increase in the complexity and time require for 

cognitive testing, thus the task used in the present study seems to be a very good 

compromise as it tests different cognitive aspects in one relatively simple, easy and 

short task. 

The possibility also exists that including low frequency power was only useful in the 

context of a non-optimal task. It may be that, in an optimal task all eloquent cortices 

may be sufficiently activated, such that they can be readily identified using power 

modulation responses in the broadband gamma alone. Our finding that the beta band 

was more useful in identifying receptive areas than expressive areas argues against this 

possibility, since the task was arguably better tuned for identifying receptive areas than 

expressive areas (e.g. auditory cortex was adequately activated, while IFG (Broca’s area) 

was only weakly involved during covert rehearsal and reading). Ultimately, additional 

data or re-analysis of data collected by other groups will be required to clarify this 

aspect. 

4.1. Limitations 
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4.1.1. True gold standard 

In order to better understand the validity of cortical mapping with ECoG from 

cognitive tasks it is relevant to evaluate whether false positives identified by ECoG 

mapping are in fact false positives or perhaps may be false negatives in the ESM 

mapping. The true test of whether an area is eloquent or not is the effect of surgical 

resection of that area on the neuropsychological function after resection. Currently, 

ESM is the best predictor of the effect of resection on cognitive performance, however 

to control for the possibility of false negatives in ESM, it will be important to evaluate 

the cognitive performance of patients after surgical resection. However, these data is 

not available in our study. 

4.1.2. Extension of GLM method to include more indicators 

In our analysis we used the power of broadband gamma, alpha and beta bands as 

indicators for the eloquence of electrodes. However, with the cross-validation 

procedure implemented in our analysis it is possible in principle to include a multitude 

of indicators. Other factors that might improve mapping could include power 

modulations in other frequency bands, power modulations in additional, more specific 

tasks, and responses measured in other modalities (e.g., functional mapping using 

fMRI based Blood Oxygenation Level Dependant–BOLD–responses of Transcranial 

Magnetic Stimulation). Prior predictions about the likelihood of eloquence at a 

particular cortical area and seizure onset zone (e.g., Positron emission tomography–

PET– or EEG) may also be of interest and help to increase mapping accuracy. 
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4.1.3. From diagnostic ability to diagnostic test 

Given the relatively small number of patients included in the present study and the 

task used, which was developed to study language processing rather than cortical 

mapping, the method described is not ready to be used as a diagnostic test. In order to 

further develop our findings into a reliable diagnostic test it will be important to 

replicate our analysis in a larger population and to compare the results with the 

presence of neurological or cognitive impairments after neurosurgical resection. With 

additional data, optimal settings for the test data (frequency bands, time window of 

interest, task, etc.) and an optimal diagnostic criterion might be identifiable. However, 

inspection of the probabilistic maps of individual patients in this sample seem to argue 

against this possibility. They suggest that between-patient variability in the overall 

level of ECoG responsiveness is too huge to instigate a universal criterion. The 

optimized ECoG test should be tailored to the individual frequency profile. This then 

should clearly outperform ESM in predicting presence of neurological or cognitive 

impairments after neurosurgical resection - before replacing ESM as diagnostic 

procedure. More likely, the optimized ECoG test will be of use in addition to or as a 

screening before ESM. 

4.2. Conclusion 

Using advanced signal analysis (time frequency analysis, GLM, AUROC and 

bootstrapping) in combination to functional and attentional specific analysis we have 

shown that including alpha and especially beta power modulations from a DMTS task 

can improve the diagnostic ability in the identification of eloquent cortical areas over 

the use of broadband gamma alone. We conclude that ECoG mapping may be a useful 
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additional tool to identify eloquent cortical areas but does not replace the need for 

electrical stimulation mapping. Further studies using tasks specifically designed for 

eloquent cortical area identification, the use of tailored individual frequency bands, 

and comparison of different models with post-resection outcomes will elucidate 

whether this approach could replace or enhance ESM in clinical settings 
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