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Abstract

A growing number of studies have examined alterations in white matter organization in people
with posttraumatic stress disorder (PTSD) using diffusion MRI (dMRI), but the results have been
mixed, which may be partially due to relatively small sample sizes among studies. Altered structural
connectivity may be both a neurobiological vulnerability for, and a result of, PTSD. In an effort to find
reliable effects, we present a multi-cohort analysis of dMRI metrics across 3,049 individuals from 28
cohorts currently participating in the PGC-ENIGMA PTSD working group (a joint partnership between
the Psychiatric Genomics Consortium and the Enhancing Neurolmaging Genetics through Meta-
Analysis consortium). Comparing regional white matter metrics across the full brain in 1,446
individuals with PTSD and 1,603 controls (2152 males/897 females) between ages 18-83, 92% of
whom were trauma-exposed, we report associations between PTSD and disrupted white matter
organization measured by lower fractional anisotropy (FA) in the tapetum region of the corpus
callosum (Cohen’s d=-0.12, p=0.0021). The tapetum connects the left and right hippocampus,
structures for which structure and function have been consistently implicated in PTSD. Results
remained significant/similar after accounting for the effects of multiple potentially confounding
variables: childhood trauma exposure, comorbid depression, history of traumatic brain injury, current
alcohol abuse or dependence, and current use of psychotropic medications. Our results show that

PTSD may be associated with alterations in the broader hippocampal network.
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Introduction

Posttraumatic stress disorder (PTSD) is a debilitating mental health condition with a lifetime
prevalence varying globally between 1-9% ', with higher rates in women. Rates of PTSD are higher in
populations exposed to greater levels of trauma, such as combat veterans 2 and civilians in conflict
zones 3. In addition to trauma type, genetics, and other sociological, psychological, and biological
factors, individual differences in brain structure and function may explain vulnerability to developing
PTSD following exposure to trauma, may result from trauma, or may be exacerbated by PTSD 4.
Diffusion MRI (dMRI) is able to model white matter tracts and assess microstructural organization °.
Fractional anisotropy (FA) is the most commonly used metric of microstructural organization,
reflecting the degree to which water is diffusing along the axon (axially) as compared with across it
(radially). Greater FA can reflect higher myelination, axonal diameter, or fiber density. Mean diffusivity
(MD) reflects the average magnitude of diffusion across all directions, axial diffusivity (AD) is diffusion
along the primary eigenvector (the dominant fiber direction), and radial diffusivity (RD) estimates
diffusion perpendicular to the primary eigenvector. Altered microstructural organization is associated
with several different psychiatric disorders and could constitute a risk factor and/or a consequence of
the disorders.

There is a lack of mechanistic evidence on the effects of stress and trauma on white matter
structure. Exposure to trauma could lead to white matter damage, as excessive glucocorticoid levels
can be neurotoxic and can impact myelination 87. Studies of white matter microstructure in PTSD
have reported inconsistent results. The majority report that PTSD is associated with lower FA 824, but
some report higher FA 2°-31_ higher and lower FA in different regions 32, or null results 33-35.
Alterations in the cingulum bundle are frequently reported %-13.16.18.21,23-29,3132.36 ' \jth differences also
observed in the uncinate, corpus callosum, and corona radiata '4.16.18.1924.2629 |nconsistent findings
may be partially due to the use of hypothesis-driven rather than whole brain approaches, choice of

analytic pipeline, selection of diffusion metrics, gender-specific studies, homogeneity of single cohort

samples such as trauma-exposed vs. unexposed controls, and focus on military vs. civilian samples.


https://doi.org/10.1101/677153
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/677153; this version posted June 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

The PGC-ENIGMA PTSD working group is an international collaborative effort of the
Psychiatric Genomics Consortium and the Enhancing Neurolmaging Genetics through Meta-Analysis
(ENIGMA) consortium that aims to increase statistical power through meta- and mega-analyses of
PTSD neuroimaging biomarkers. This collaborative approach has led to the largest PTSD
neuroimaging study to date, reporting smaller hippocampal volume in PTSD 3. Here, we applied this
approach to investigate the microstructural organization of white matter in PTSD. The ENIGMA DTI
workflow 28, which has successfully identified white matter compromise in schizophrenia °, bipolar
disorder 4°, major depression 4!, and 22q11.2 deletion syndrome 42, among others, was used by 28
cohorts to process their DTI data locally. We hypothesized the largest effects of compromised
microstructure will be evident in the fronto-limbic tracts, such as the cingulum, uncinate, fornix, and
corpus callosum; these tracts are strongly implicated in behavioral deficits of PTSD such as emotion

regulation, working memory, and episodic memory 10:16.19.20,24.43

Materials and Methods
Study Samples

The PGC-ENIGMA PTSD DTl analysis included 28 cohorts from 7 countries totaling 1,603
healthy controls and 1,446 individuals with PTSD (either formally diagnosed or with CAPS-4>40, see
Supplementary Figure 1). The age range across cohorts was 18-83 years; all but two older Vietham
era cohorts had an average age between 29-50. Of the 3,049 participants included in these analyses,
2,073 (68%) were from military cohorts, which resulted in a disproportionate number of males (70%).
The majority of cohorts included trauma-exposed controls (e.g., combat, community violence, intimate
partner violence, N=1,603), although some included trauma-unexposed controls (N=122), and one
included no control group. Table 1 contains demographic and clinical information for each cohort. All
participants provided written informed consent approved by local institutional review boards. Quality

control was completed by each site, with visual quality checking and outlier detection. Details on
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ENIGMA-DTI methods 39, inclusion/exclusion criteria, and clinical information may be found in
Supplementary Note 1, Supplementary Table 1, and Supplementary Note 2, respectively.
Image Acquisition and Processing
The acquisition parameters for each cohort are provided in Supplementary Table 2.
Preprocessing, including eddy current correction, echo-planar imaging-induced distortion correction
and tensor fitting, was carried out at each site. Recommended protocols and quality control
procedures are available on the ENIGMA-DTI and NITRC (Neuroimaging Informatics Tools and
Resources Clearinghouse) webpages. Harmonization of preprocessing schemes was not enforced
across sites to accommodate site- and acquisition-specific pipelines. Once tensors were estimated,

they were mapped to the ENIGMA DTI template and projected onto the ENIGMA-DTI template and

were averaged within ROls (http://enigma.ini.usc.edu/protocols/dti-protocols/). Further details and

ROI abbreviations can be seen in Supplementary Note 1.
Statistical Analysis

For each cohort/study, a linear model was fit using the ppcor and matrixStats packages in R
3.1.3, with the ROI FA as the response variable and PTSD and covariates as predictors. For
cohorts/studies including more than one data collection site, site was included as a fixed dummy
variable in the site-level analysis. As in prior ENIGMA disease working group meta-analyses *°, a
random-effects inverse-variance weighted meta-analysis was conducted at a central coordinating site
(the University of Southern California Imaging Genetics Center) in R (metafor package, version 1.99—

118 http://www.metafor-project.org/) to combine individual cohort estimated effect sizes (see Figure

2). Cohen’s d for the main effect of group and unstandardized 3 coefficients (regression parameters)
for continuous predictors were computed with 95% confidence intervals. We used the Cohen’s d
calculation that accounts for covariates in the fixed effects model, using the following equation:

T stat * (Mprsp + Ncontror)

Cohen's d ~
\/(nPTSD + nControl) * 4/ df
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Heterogeneity scores (/?) for each test were computed, indicating the percent of total variance in
effect size explained by heterogeneity across cohorts. Bilaterally averaged FA was the primary
imaging measure, with corresponding MD, RD, and AD examined post hoc when FA was significant
for an effect of diagnosis. Lateralized ROIs were examined post hoc when a significant association
was found with the bilateral average. The corticospinal tract was not analyzed as it has poor reliability
38 A conservative Bonferroni correction was used for multiple testing (p<0.05/24=0.0021; 18 bilateral
ROIs, 5 midline ROIs, average FA). Non-linear age term: We first conducted analyses to examine
whether a non-linear age term should be included in statistical models along with age and sex, as age
has a non-linear effect on FA 44, As this analysis did reveal a significant effect of non-linear age above
and beyond linear age, age? was included in all subsequent analyses. Primary - group comparison:
We compared PTSD cases to all controls (both trauma-exposed and unexposed), PTSD cases to
trauma-exposed controls only, and trauma-exposed to trauma un-exposed controls. Secondary -
subgroups: We examined PTSD associations in males and females separately, and in military and
civilian samples separately. These results may be found in Supplementary Note 3. Secondary -
interactions: We examined potential interactions between PTSD and age or sex. These results can be
seen in Supplementary Note 4. Secondary - additional covariates: We tested a model including
ancestry, but as this was a meta-analysis and most cohorts were primarily composed of participants
of white non-Hispanic descent, this had a very minimal impact, and we did not include this variable as
a covariate in our analysis. We examined the impact of five potentially confounding covariates on the
associations of PTSD with FA — childhood trauma, depression, alcohol dependence/abuse, traumatic
brain injury (TBI, of any severity), and use of psychotropic medications. We compared the white
matter microstructure of individuals with PTSD to that of controls with each covariate included
individually in the model, and in the subset of sites that collected data on childhood trauma,
depression, alcohol use disorders, TBI, or medication without that covariate in the model to determine

whether differences in results were due to the inclusion of the covariate or the reduction in sample

size. There were not enough participants with all five variables to simultaneously model these
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potential confounds in a single model. Details of these methods and results are provided in
Supplementary Note 5. Briefly, binary variables were created for depression, TBI, and medication
use. As depression was assessed using a variety of measures, we used published cut-offs to recode
the data as categorical depression (see Supplementary Note 2 for more details). Alcohol use
disorders and childhood trauma were coded as three-level ordinal variables based on evidence of
dose-dependent effects on brain structure and clinical severity, respectively 4°4¢: Alcohol use
disorders: 0=no alcohol use disorder, 1=alcohol abuse, 2=alcohol dependence, as measured by the
SCID or AUDIT #7; childhood trauma (as measured by the Childhood Trauma Questionnaire): 0=no
reported childhood trauma, 1=one type of childhood trauma exposure, 2=two or more types of
childhood trauma exposure; PTSD severity: To examine PTSD severity, we conducted linear
regressions on CAPS-4 score in the PTSD group for sites that collected CAPS-4. We examined linear
associations with CAPS-4 score covarying for childhood trauma, depression, alcohol use disorders,
TBI, and medication use, and we tested associations with CAPS-4 separately in military veterans and
civilians as well as males and females (see Supplementary Note 5 for more details).
Results
Group differences

We found significantly lower FA in the PTSD group in the tapetum of the corpus callosum (d=-
0.12, p=0.0021) when comparing PTSD (n=1,397) and all controls (n=1,603). Post hoc analysis
revealed a larger effect in the left than in the right tapetum (left d=-0.14, p=0.00040; right d=-0.080,
p=0.038). Post hoc analysis also revealed higher RD in the tapetum in the PTSD group (bilateral
d=0.10, p=0.0085; left d=0.12, p=0.0016).

In the analysis comparing participants with PTSD (n=1,339) to trauma-exposed controls
(n=1,481), we found lower FA and higher RD in the tapetum in PTSD, although the bilateral tapetum

was marginally significant (FA: bilateral d=-0.11, p=0.0044; left d=-0.14, p=0.00065; RD: bilateral

d=0.090, p=0.027; left d=0.12, p=0.0026) (see Table 2 and Figure 1, and see Figure 2 for site-
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specific effects). PTSD participants from cohorts that only included trauma-unexposed controls were
not included.

Comparing trauma-exposed (n=200) to trauma un-exposed controls (n=93) from 6 sites, we
found marginally lower FA in exposed controls in the tapetum, splenium of corpus callosum, and
fornix/stria-terminalis (d=-0.41, p=0.014; d=-0.48, p=0.0042; d=-0.36, p=0.019, respectively), along
with significantly higher MD and RD in the splenium (d=0.48, p=0.0017; d=0.56, p=0.00023,
respectively) and marginally higher RD in the tapetum (d=0.32, p=0.036).

Subgroups

We examined military vs. civilian cohorts, and male vs. female participants separately. All
subgroups showed non-significant associations with PTSD, but there were marginal associations with
tapetum FA in the military-only and male-only subgroups separately (see Supplementary Note 3 and
Supplementary Figure 3 for more details). Results of group-by-sex and group-by-age interactions
were not significant and are shown in Supplementary Note 4 and Supplementary Figure 4.
Additional Covariates

The role of potentially confounding variables on the association between PTSD and the
tapetum was tested in several post hoc analyses focused on left, right, and bilateral tapetum FA (see
Supplementary Figure 2). As these analyses were considered post hoc and limited to the tapetum,
we used a test-wise significance threshold of p<0.05. Results generally remained significant across
all models. Including dichotomous depression as a covariate (696 PTSD vs. 825 controls) resulted in
lower left tapetum FA in the PTSD group (left d=-0.15, p=0.0090) and borderline lower bilateral
tapetum FA (d=-0.11, p=0.090). Including AUD as a covariate (691 PTSD vs. 623 controls) resulted in
lower bilateral and left tapetum FA in the PTSD group (bilateral d=-0.14, p=0.012; left d=-0.16,
p=0.0061) and borderline lower right tapetum FA (d=-0.10, p=0.066). Including a binary TBI variable
(849 PTSD vs. 1,016 controls) resulted in lower left tapetum FA (d=-0.12, p=0.015). Including a

dichotomous psychotropic medication covariate (713 PTSD vs. 679 controls) resulted in lower

bilateral and left tapetum FA in the PTSD group (bilateral d=-0.11, p=0.050; left d=-0.014, p=0.013).
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Including childhood trauma as a covariate (367 PTSD vs. 598 controls) did not yield any significant
results, but neither did the analysis in the reduced sample, suggesting that the sample reduction
impacted these results. To control for covariate- and cohort-dependent changes in sample size, each
analysis was repeated in a smaller sample that corresponded to omitting the relevant covariate. The
tapetum results remained consistent in nearly all reduced sample analyses - significant effects
survived covariate adjustment and effects that disappeared (such as with childhood trauma) were
also absent in the reduced sample. Thus, covariates had minimal impact beyond the reduction in
sample size (see Supplementary Note 5 and Supplementary Figures 5-9). A table showing how
many participants at each site had information on these potentially confounding variables may be
found in Supplementary Table 3.
PTSD Severity
PTSD symptom severity in the PTSD group (measured by the CAPS-4, N=979 from 18 sites)

was not associated with FA (Figure 3). Subgroup analyses yielded marginal associations between
CAPS-4 score and tapetum FA in the military cohorts, but no other subgroup. Results were similar
when potentially confounding variables were included, with no significant associations, although the
tapetum was marginally significant when psychotropic medication use was included. Detailed

analyses of PTSD severity and covariates within subgroups are in Supplementary Note 5 and

Supplementary Figures 10 and 11.

Discussion

We present DTI results from a multi-cohort study conducted by the PGC-ENIGMA PTSD
consortium. In a meta-analysis of 3,049 participants from 28 sites, we found lower FA and higher RD
in the tapetum among adults with PTSD (neuroanatomical figure - Supplementary Figure 12), which
remained after accounting for several potentially confounding factors. The tapetum is a major tract
within the corpus callosum that serves as a conduit between right and left hippocampus. Prior studies

of white matter disruption in PTSD have found alterations in other hippocampal tracts, but were
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generally hindered by small sample sizes leading to inconsistent findings across studies. Our results
add to the existing literature in identifying structural disruptions that compromise putative
hippocampal functions, which are known to play a central role in PTSD symptomatology 4849,
The tapetum is a segment of the corpus callosum that connects the temporal lobes, in particular the
left and right hippocampus *°. It is one of the last corpus callosum segments to develop and
experiences rapid growth around age 14, which may make it vulnerable to the effects of trauma for a
longer period of time >'. Along with the inferior longitudinal fasciculus, cingulum, fornix, spino-limbic
tracts (not studied here), and the anterior commissure, the tapetum is a dominant hippocampal
pathway °°. Structural and functional alterations in the hippocampus are frequently reported in PTSD,
with smaller volumes 37, decreased activation, and disrupted functional connectivity with the medial
and lateral prefrontal cortices °2:°3. Here we report microstructural evidence that structural connectivity
between the left and right hippocampus may also be disrupted in PTSD. While many studies have
reported that PTSD is associated with alterations in the cingulum bundle 9-13.16,18.21,23-29.31,32.36 ' \yhjch
has a hippocampal component, the tapetum has not yet emerged for several possible reasons. Many
prior studies took an ROl approach, which limited analyses to pre-determined regions that frequently
omitted the tapetum, a small region often grouped with other tracts such as the splenium or posterior
thalamic radiation. Critically, in 2013, an error was uncovered in the JHU atlas used as part of the
TBSS pipeline, with the uncinate incorrectly identified as the inferior fronto-occipital fasciculus, and
the tapetum incorrectly identified as the uncinate 4. Thus, the tapetum was simply not examined in
prior studies, with one very recent exception showing that tapetum abnormalities are associated with
lower major depressive disorder remission *°. Finally, the precise role of the tapetum in connecting
the left and right hippocampus was only recently elucidated by mapping the subcortical connectome
with exquisitely high-resolution mapping capable of discerning the intermingling of tapetum and other
corpus callosum fibers. Super-resolution DTl conducted by the Chronic Diseases Connectome
Project that acquired 1150-direction single-subject and 391-direction 94-subject data made this ultra-

structural mapping possible °.
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Childhood trauma is the greatest single risk factor for future vulnerability to PTSD %6; numerous
studies show significant alterations in brain structure and function in individuals who had experienced
significant early life stress 4657, Some of these alterations likely contribute to a higher risk for
psychopathology, but childhood trauma exposure did not explain the association between tapetum
white matter disruption and PTSD that we report here. Depression is frequently comorbid with PTSD
%8 and is associated with disrupted white matter organization, although the affected tracts are broadly
distributed %°. Accounting for depression in group comparisons did not significantly alter our results,
suggesting that tapetum white matter disruption is specific to PTSD. Particularly in military
populations, which formed the majority of our sample, PTSD is often comorbid with traumatic brain
injury (TBI) 8°. White matter is particularly vulnerable to TBI, which produces stretching and shearing
of axons and altered neurometabolism ¢'. Accounting for TBI also did not significantly change our
results, indicating that TBI was associated with white matter damage generally, but not specifically
within the tapetum. Psychotropic medications are another potential confound, given their neurotrophic
and neuroprotective effects 2. The result in the tapetum persisted after covarying for psychotropic
medication, indicating that our findings are unlikely to be explained by medication. Lastly, PTSD can
be comorbid with alcohol use disorders, which have a poorer clinical prognosis 384, alcohol use
disorders have been associated with significant changes in white matter organization 6266 but did not
influence the present results.

We found a marginally significant association of PTSD with FA in the tapetum in male and
military subgroups separately. Although results were non-significant in female or civilian subgroups,
the effect size was slightly larger and in the same direction. The female and civilian subgroups were
smaller and therefore the analyses had lower power than in male and military subgroups. Most prior
dMRI studies in civilians report lower FA in PTSD 9.10.12-14,16,17,21-2530-32,67  Stydies of military cohorts
have been mixed, reporting higher FA 26-29:36 |ower FA 81518-20 and null results 33-35. This

discrepancy may be due to differences in age, chronicity, and type of trauma exposure, although

military personnel often also experience civilian trauma. Combat-related PTSD is often comorbid with
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TBI, which is also associated with white matter disruption, constituting a potentially confounding factor
for studies ©&.

In the absence of longitudinal data, our analysis cannot make causal inferences about the
direction of the relationship between PTSD and tapetum white matter organization. Disrupted white
matter of the tapetum may represent a vulnerability that predates the onset of PTSD, or a
pathological response to trauma. In twins discordant for exposure to combat stress, the unexposed
twins of combat veterans with PTSD have smaller hippocampal volume than the unexposed twins of
combat veterans without PTSD ©°. Individuals with two risk alleles of the FKBP5 gene have
demonstrated lower cingulum FA above and beyond the association of cingulum FA with PTSD 1:67,
These studies suggest that heritable differences in brain structure may influence risk of developing
PTSD. Evidence that alterations are caused by PTSD was observed in Israeli Defense Force recruits
with reduced structural connectivity between the hippocampus and ventromedial prefrontal cortex, but
only after exposure to military stress 7. With the varying developmental trajectories of brain structure,
function, and connectivity, along with the varying distribution of stress hormone receptors in the brain,
the complex question of vulnerability vs. consequence will require prospective longitudinal
neuroimaging studies.

Some evidence indicates that high FA is a marker of resilience to the effects of stress 772, A
putative marker of resilience is the ability to attenuate stress-induced increases in corticotropin-
releasing hormone and glucocorticoids through an elaborate negative feedback system, and to
modulate the expression of brain-derived neurotrophic factor (BDNF) 7374, BDNF has myriad
functions including supporting neuronal differentiation, maturation, and survival 7>76, In particular,
hippocampal BDNF is implicated in the development of neural circuits that promote stress
adaptations 3. These stress adaptation circuits involve white matter in the fornix and other fronto-

limbic connections 7.

Limitations
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Our study has several limitations. One limitation of TBSS studies is the inability to fully attribute
results to particular fiber bundles. Future studies may benefit by using tractography to more reliably
identify the affected bundles, but this is difficult across so many varied sites. Second, not all
participants classified as PTSD received clinician-administered interview (such as the CAPS) to
confirm diagnoses. Third, we could not reliably measure chronicity across different cohorts. Other
variables that we could not examine given the heterogeneity across sites include treatment effects,
symptom clusters, trauma types, and lifetime as opposed to current PTSD diagnosis. Although we
analyzed data from over 3,000 participants, we may have been underpowered to examine group-by-
sex interactions, as 55% of our sample came from cohorts including only males or only females or
samples that were >90% male. Diffusion metrics are not scanner invariant, and can vary even in
scanners of the same model. For this reason, we were limited to a meta-analytic approach which may
have lower power than mega-analysis. However, studies including both meta- and mega-analyses of
brain volume in other ENIGMA groups have found minimal differences 737°.

Future studies should further investigate the tapetum using high spatial and angular resolution
tractography to replicate our findings. Future and existing studies with more in-depth phenotyping
than was possible here could examine how alterations in the tapetum vary with trauma type,
chronicity, treatment, and whether they are associated with specific symptom clusters. The current
study excluded pediatric cases, so additional research on white matter disruption in pediatric trauma
and PTSD is warranted. Lastly, while we considered comorbidities as potential confounding variables,
we did not examine their association with dMRI metrics. Future collaborations with the ENIGMA Brain
Injury, MDD, and Addiction working groups will provide opportunities to separate general
neuroimaging biomarkers of psychopathology and disorder-specific effects.

Conclusions
Here we presented results from the PGC-ENIGMA PTSD working group, reporting poorer

white matter organization in the tapetum in individuals currently suffering from PTSD. We present the

largest DTI study in PTSD to date and the first to use harmonized image processing across sites,
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increasing our power to detect subtle effects. While future studies need to confirm the involvement of

the tapetum specifically, our results add to the existing literature implicating the hippocampus as a

primary area of disruption in PTSD.
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Table and Figure Legends

Table 1. Demographic information on adult cohorts included in analyses.

Table 2. Results from the group comparisons. (A) Results comparing PTSD to all controls, (B) results
comparing PTSD to trauma-exposed controls only. Cohen’s d values, uncorrected and Bonferroni-corrected p-
values, the 95% confidence interval for the d statistic, and the 1? (heterogeneity) are shown for the group
comparisons. Bolded results are significant when corrected for multiple comparisons, italicized results are
marginally significant.

Figure 1. Results from the group comparisons. (A) Results comparing PTSD to all controls; (B) results
comparing PTSD to trauma-exposed controls only; (C) results comparing trauma-exposed to unexposed
participants. Cohen’s d statistics are shown across all bilateral and midline ROIls and average FA, with bars
indicating the 95% confidence interval. The ROI abbreviations are explained in Supplementary Note 1. As
PTSD was coded “1” and control “0”, negative statistics indicate lower FA in PTSD. Total N is listed for each
comparison. Dark orange bars indicate significance (p<0.0021) and light orange bars indicates marginally
significant results (0.05>p>0.0021).

Figure 2. Site effects for tapetum result. Forest plot shows the effect sizes (Cohen’s d) for each of the 25
cohorts, scaled by sample size, with bars for 95% CI. The effect size and 95% CI of the meta-analysis is
shown at the bottom of the figure, along with effect sizes and 95% CI for the subgroup analyses of the military
cohorts, civilian cohorts, male cohorts, and female cohorts.

Figure 3. Linear association with CAPS-4 in the PTSD group. Meta-regression unstandardized 3 statistics are
shown across all bilateral and midline ROls and average FA, with bars indicating the 95% confidence interval.
The ROI abbreviations are explained in Supplementary Note 1. Dark orange bars indicate significance
(p<0.0021) and light orange bars indicates marginally significant results (0.05>p>0.0021).


https://doi.org/10.1101/677153
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/677153; this version posted June 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Table 1. Demographic information on adult cohorts included in analyses.

Total M F \| N Age Average PTSD scale Depression Type of Dataset
N PTSD Control range age scale controls

134 134 0 70 64 61-83 69.3 CAPS-4 GDS exposed Military
67 32 35 32 35 37-61 49.4 PCL-5 na exposed Civilian
70 36 34 34 36 22-59 39.9 CAPS-4 HADS-D  exposed Police
33 0 33 18 15 21-53 336 CAPS-4 HAM-D  exposed Civilian
| Duke-1  [NE7ANIV PRV 52 135 21-57 39.2 CAPS-4/5 BDI exposed Military
| Duke-2  [IEEI 61 27 36 52 23-67 40.0 SCID/DTS na exposed Military
| Duke-3 BGE 52 11 17 46 23-65 38.8 CAPS-4/5 na exposed Military
132 0 132 50 82 18-62 39.6 CAPS-4 BDI exposed Civilian

Project
49 0 49 49 0 23-58 40.3 CAPS-4 BDI no controls  Civilian
214 117 97 77 137 18-56 36 MINI/CAPS-4 na exposed Military

/PCL-M/SCID and civilian
99 8 13 44 55 19-51 35.8 PCL-M CES-D exposed Military
“ 98 52 46 46 52 18-59 34.7 CAPS-4 BDI exposed Civilian
and
unexposed

| Mclean [ 0 55 41 14 18-62 37 CAPS-5 BDI exposed Civilian
| Minster P13 0 25 14 11 19-51 29 SCID BDI exposed Civilian
162 62 100 85 77 18-69 40.2 CAPS-4 HAM-D  exposed Civilian

Wales
90 81 9 55 35 22-45 31.8 PCL-M na exposed Military
71 20 51 27 44 21-77 48.0 CAPS-5 na both Civilian
31 19 12 17 14 21-66 36.6 CAPS-5 na both Civilian
64 34 30 31 33 17-49  36.25 CAPS-4 DASS exposed Civilian
9 94 0 46 48 21-57 35.6 CAPS-4 SCID both Military
| UW-Madison [T 44 4 25 23 22-48 31 CAPS-4 BDI exposed Military
493 456 37 305 188 18-65 31.2 CAPS-4 na exposed Military
69 44 25 53 16 21-58 31.4 CAPS-4 BDI exposed Military

7 124 120 4 49 75 23-62 34.2 CAPS-4 SCID both Military

Minneapolis-1

7 130 121 9 67 63 22-59 32.9 CAPS-4 SCID Both Military

Minneapolis-2
53 46 7 36 17 25-60 39.6 PCL-5 na unexposed  Military
239 239 0 33 206 56-66 61.8 PCL-C CES-D exposed Military
67 60 7 37 30 21-60 34.1 CAPS-4 BDI exposed Military
IEEET 3049 2152 897 1446 1603 36.9
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Table 2. Results from the group comparisons. (A) Results comparing PTSD to all controls, (B) results
comparing PTSD to trauma-exposed controls only. Cohen’s d values, uncorrected and Bonferroni-corrected p-
values, the 95% confidence interval for the d statistic, and the I> (heterogeneity) are shown for the group
comparisons. Bolded results are significant when corrected for multiple comparisons, italicized results are

marginally significant.

(A) PTSD vs all controls (B) PTSD vs trauma-exposed controls
“ Meta d Meta p-value 95% Cl 12 Metad Meta p-value 95% Cl 12
uncorr./corr. uncorr./corr.

-0.02 0.63/0.97 [-0.09, 0.06] 0 -0.03 0.43/0.90 [-0.11, 0.05] 0

ACR -0.01 0.73/0.97 [-0.09,0.06] 019  -0.03 0.47/0.90 [-0.11, 0.05] 0

-0.05 0.23/0.92 [-0.12, 0.03] 0 -0.04 0.34/0.90 [-0.12, 0.04] 0

BCC -0.05 0.18/0.86 [-0.13,0.02] 0 -0.06 0.11/0.90 [-0.14, 0.02] 0

-0.05 0.18/0.86 [-0.13, 0.02] 0 -0.05 0.18/0.90 [-0.13, 0.03] 0

CGC -0.03 0.38/0.97 [-0.11, 0.04] 0 -0.04 0.36/0.90 [-0.11, 0.04] 0

0.02 0.69/0.97 [-0.06, 0.09] 0 0.01 0.74/0.95 [-0.07, 0.09] 0

-0.02 0.57/0.97 [-0.10, 0.05] 0 -0.03 0.41/0.90 [-0.11, 0.05] 0
0.02 0.57/0.97 [-0.05,0.10]  0.01 0.01 0.75/0.95 [-0.07,0.09]  0.02
EEll oo 0.87/0.97 [-0.09,0.07]  9.53 -0.01 0.82/0.95 [-0.10,0.08]  14.17

ESEl oo 0.60/0.97 [-0.10, 0.06] 0 -0.02 0.67/0.95 [-0.10, 0.06] 0

-0.02 0.59/0.97 [-0.10, 0.05] 0 -0.03 0.53/0.90 [-0.10, 0.05] 0

0.00 0.96/0.97 [-0.08, 0.07] 0 0.00 0.90/0.95 [-0.07, 0.08] 0

-0.03 0.37/0.97 [-0.11, 0.04] 0 -0.03 0.52/0.90 [-0.10, 0.05] 0

D oo 0.70/0.97 [-0.06,0.09]  0.00 0.02 0.56/0.90 [-0.06, 0.10] 0
0.00 0.96/0.97 [-0.08,0.08]  8.52 0.00 0.91/0.95 [-0.09,0.08]  8.84

Il oo 0.89/0.97 [-0.07,0.08]  0.00 0.01 0.85/0.95 [-0.07, 0.09] 0
-0.06 0.15/0.86 [-0.15,0.02] 1430  -0.04 0.33/0.90 [-0.13,0.04]  13.44

EEE oo 0.63/0.97 [-0.09,0.06]  0.00 -0.02 0.53/0.90 [-0.10, 0.05] 0
EE oo 0.020/0.24 [-0.18,-0.02] 9.29  -0.11 0.0078/0.09  [-0.20,-0.03]  6.38
EEE o003 0.41/0.97 [-0.04,0.11]  0.01 0.04 0.27/0.90 [-0.04,0.12]  0.01

B o000 0.97/0.97 [-0.07,0.08]  0.01 -0.01 0.73/0.95 [-0.09, 0.07] 0
-0.12 0.0021/0.050  [-0.19, -0.04] 0 -0.11  0.0044/0.094  [-0.19,-0.04]  0.02

0.01 0.77/0.97 [-0.07, 0.09] 0 0.00 0.96/0.96 [-0.08, 0.08] 0
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Figure 1. Results from the group comparisons. (A) Results comparing PTSD to all controls; (B) results
comparing PTSD to trauma-exposed controls only; (C) results comparing trauma-exposed to unexposed
participants. Cohen’s d statistics are shown across all bilateral and midline ROIls and average FA, with bars
indicating the 95% confidence interval. The ROI abbreviations are explained in Supplementary Note 1. As
PTSD was coded “1” and control “0”, negative statistics indicate lower FA in PTSD. Total N is listed for each
comparison. Dark orange bars indicate significance (p<0.0021) and light orange bars indicates marginally
significant results (0.05>p>0.0021).
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Figure 2. Site effects for tapetum result. Forest plot shows the effect sizes (Cohen’s d) for each of the 25
cohorts, scaled by sample size, with bars for 95% CI. The effect size and 95% CI of the meta-analysis is
shown at the bottom of the figure, along with effect sizes and 95% CI for the subgroup analyses of the military
cohorts, civilian cohorts, male cohorts, and female cohorts.

Cohort PTSD Control
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Figure 3. Linear association with CAPS-4 in the PTSD group. Meta-regression unstandardized (3 statistics are
shown across all bilateral and midline ROls and average FA, with bars indicating the 95% confidence interval.
The ROI abbreviations are explained in Supplementary Note 1. Dark orange bars indicate significance
(p<0.0021) and light orange bars indicates marginally significant results (0.05>p>0.0021).
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Supplementary Information

Supplementary Note 1. Further detail of ENIGMA-DTI protocols

Supplementary Note 2. Details on depression inventories.

Supplementary Note 3. Subgroup analyses.

Supplementary Note 4. Interaction analyses.

Supplementary Note 5. Group and severity analyses covarying for childhood trauma, depression, alcohol use
disorders, traumatic brain injury, or psychotropic medication use.

Supplementary Table 1. Clinical details and inclusion and exclusion criteria for each of the cohorts included.
Supplementary Table 2. DTI acquisition parameters for each of the cohorts included.

Supplementary Table 3. Number of participants per site with information on the potentially confounding
covariates: childhood trauma (CT — binarized here), depression, alcohol use disorder (AUD — binarized here),
traumatic brain injury (TBI), and psychotropic medications. Counts are given per site, per variable, per group
for yes/no/NA (missing), with “-“ for information that was not collected.

Supplementary Figure 1. Map of cohorts included.

Supplementary Figure 2. Post-hoc examination of tapetum result. Shown are the Cohen’s d for the left, right,
and bilateral tapetum FA with 95% CI. Colors correspond to the models tested, as shown in the legend.
Red/pink=PTSD vs. control/PTSD vs. trauma-exposed controls, orange/light orange=PTSD vs. control
covarying for childhood trauma (CT)/in subset with CT without CT in model, yellow/light yellow= PTSD vs.
control covarying for psychotropic medications (med)/in subset with med without med in model, teal/light teal=
PTSD vs. control covarying for traumatic brain injury (TBI)/in subset with TBI without TBI in model, navy/light
navy= PTSD vs. control covarying for alcohol use disorders (AUD)/in subset with AUD without AUD in model,
gray/light gray= PTSD vs. control covarying for depression (dep)/in subset with dep without dep in model.
Supplementary Figure 3. Subgroups: (a) PTSD vs. control effects in females only, (b) PTSD vs. control
effects in males only, (c) PTSD vs. control effects in civilians only, and (d) PTSD vs. control effects in military
only. Shown are Cohen’s d for 23 ROls and average FA. Dark orange bars indicate significance (p<0.0021)
and light orange bars indicate marginally significant results (0.05>p>0.0021). Error bars are 95% CI.
Supplementary Figure 4. Interactions: (a) group-by-sex interaction effects and (b) group-by-age interaction
effects. Shown are regression s for 23 ROls and average FA. Dark orange bars indicate significance
(p<0.0021) and light orange bars indicate marginally significant results (0.05>p>0.0021). Error bars are 95%
Cl.

Supplementary Figure 5. Results of childhood trauma (CT) analyses: (a) linear regression with CT (coded
0=none, 1=1 type, 2=2 or more types of trauma) with sex, age, and age: in the model; (b) linear regression with
CT in PTSD group only; (c) PTSD vs. control group differences when covarying for CT; (d) PTSD vs. control
differences in the subset of participants with CT, WITHOUT CT in model. Shown are Cohen’s d or
unstandardized regression s for 23 ROls and average FA. Dark orange bars indicate significance (p<0.0021)
and light orange bars indicate marginally significant results (0.05>p>0.0021). Error bars are 95% CI.
Supplementary Figure 6. Results of depression analyses: (a) PTSD vs. control group differences when
covarying for depression; (b) PTSD vs. control differences in the subset of participants with depression,
WITHOUT depression in model; (c) PTSD+depression vs. PTSD only differences. Shown are Cohen’s d for 23
ROIs and average FA. Dark orange bars indicate significance (p<0.0021) and light orange bars indicate
marginally significant results (0.05>p>0.0021). Error bars are 95% CI.

Supplementary Figure 7. Results of alcohol use disorder (AUD) analyses: (a) PTSD vs. control group
differences when covarying for AUD; (b) PTSD vs. control differences in the subset of participants with AUD,
WITHOUT AUD in model; (c) linear association with AUD in PTSD group. Shown are Cohen’s d or
unstandardized regression s for 23 ROIls and average FA. Dark orange bars indicate significance (p<0.0021)
and light orange bars indicates marginally significant results (0.05>p>0.0021). Error bars are 95% CI.
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Supplementary Figure 8. Results of traumatic brain injury (TBI) analyses: (a) PTSD vs. control group
differences when covarying for TBI; (b) PTSD vs. control differences in the subset of participants with TBI,
WITHOUT TBI in model; (c) PTSD+TBI vs. PTSD only differences. Shown are Cohen’s d for 23 ROIs and
average FA. Dark orange bars indicate significance (p<0.0021) and light orange bars indicates marginally
significant results (0.05>p>0.0021). Error bars are 95% CI.

Supplementary Figure 9. Results of medication analyses: (a) PTSD vs. control group differences when
covarying for psychotropic medication use; (b) PTSD vs. control differences in the subset of participants with
medication, WITHOUT medication in model; (c) Medicated PTSD vs. unmedicated PTSD differences. Shown
are Cohen’s d for 23 ROIs and average FA. Dark orange bars indicate significance (p<0.0021) and light
orange bars indicate marginally significant results (0.05>p>0.0021). Error bars are 95% CI.

Supplementary Figure 10. Linear association with CAPS within subgroups: (a) military, (b) civilian, (c) males,
(d) females. Shown are unstandardized regression ps for 23 ROIs and average FA. Dark orange bars indicate
significance (p<0.0021) and light orange bars indicate marginally significant results (0.05>p>0.0021). Error
bars are 95% CI.

Supplementary Figure 11. Linear association with CAPS including potentially confounding variables: (a)
childhood trauma (0=none, 1=1 type, 2=2 or more types), (b) depression (0=no, 1=yes), (c) alcohol use
disorder (0O=none, 1=alcohol abuse, 2=alcohol dependence), (d) TBI (0=no, 1=yes), and (e) psychotropic
medication use (0=no, 1=yes). Shown are unstandardized regression fs for 23 ROIs and average FA. Dark
orange bars indicate significance (p<0.0021) and light orange bars indicate marginally significant results
(0.05>p>0.0021). Error bars are 95% CI.

Supplementary Figure 12. Tapetum displayed on the ENIGMA template FA. The left tapetum (green) and
right tapetum (blue) ROIs are displayed. Left in image is right in brain.
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Supplementary Note 1. Further detail of ENIGMA-DTI protocols

Details on scanner and acquisition parameters are provided in Supplementary Table 2. Preprocessing,
including eddy current correction, EPI induced distortion correction, and tensor fitting, was carried out at each
site. Image analysis was conducted at each site using tract-based spatial statistics (TBSS) as part of FSL
software . Individual subject FA maps were aligned to the custom ENIGMA-DTI FA template derived from 400
adult participants scanned across four sites designed for optimal multi-site harmonization 2. FA voxels were
then projected onto the ENIGMA-DTI template skeleton. This creates a unique FA skeleton in the same space
for each individual in each cohort. To minimize effects of residual registration misalignment, the regions of
interests were consistent in size across sites and the skeletonization procedure was performed individually at
each site to minimize any site-specific residual misalignment. The same projection used for the FA images also
projects the non-FA (mean, axial, and radial) images onto the skeleton. Voxels along the individual skeletons
were averaged across white matter ROIs. A total of 25 bilateral ROIls were delineated based on the JHU WM
atlas, an established WM parcellation derived using deterministic tractography . A whole-brain WM skeleton
was defined according to the tract-based spatial statistic methodology' and ROI-averaged measures of FA,
MD, AD and RD were then calculated by averaging each of these voxel measures over all skeleton voxels
encapsulated by a particular ROI. This ensured that voxels at the periphery of a fiber bundle, where residual
registration misalignment is typically maximal, were excluded from the ROl average. In other words, ROI
averaging was performed based on the core of each fiber bundle, as defined by the WM skeleton.

The multi-subject JHU white matter parcellation atlas ® was used to parcellate regions of interest from the
ENIGMA template in MNI space, with updated label identification to correct an earlier atlas error *. A total of
eighteen bilateral white matter ROIls were extracted from the skeletonized FA images and averaged (the
corticospinal tract was ignored as prior reports have shown it to have poor reliability). The table below lists 24
ROIs (some partially overlapping) that were extracted from the skeletonized images, including 5 midsagittal
regions (no lateralized components), and 18 lateralized regions (left and right are averaged to obtain bilateral
FA). The overall average FA values were calculated by averaging values for the entire white matter skeleton.
ENIGMA-DTI QA/QC protocol consists of visual inspection of the images before and after registration to the
ENIGMA template, as well as calculating the average skeleton projection distance. The distance of voxel
projection to the ENIGMA skeleton can assess the registration quality between individual images and
ENIGMA-DTI template. Higher projection distance may indicate problems with aligning individual brain to the
template. After ROI extraction, histograms of FA and diffusivity measures are computed for each ROI.

Abbreviation |Full tract name Abbreviation [Full tract name
Average FA Full skeleton average FA IC (L+R) Internal capsule
ACR (L+R) Anterior corona radiata PCR (L+R) Posterior corona radiata
ALIC (L+R) Anterior limb of internal capsule |PLIC (L+R) Posterior limb of internal capsule
BCC Body of corpus callosum PTR (L+R) Posterior thalamic radiation
CGC (L+R) Cingulum (cingulate gyrus) RLIC (L+R) Retrolenticular part of internal
capsule

CGH (L+R) Cingulum (hippocampal portion) [SCC Splenium of corpus callosum
CR (L+R) Corona radiata SCR (L+R) Superior corona radiata
EC (L+R) External capsule SFO (L+R) Superior fronto-occipital fasciculus
FX Fornix SLF (L+R) Superior longitudinal fasciculus
FXST (L+R)  |Fornix (cres) / Stria terminalis  |SS (L+R) Sagittal stratum
GCC Genu of corpus callosum UNC (L+R) Uncinate fasciculus

TAP (L+R) Tapetum
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Supplementary Note 2. Details on depression inventories.

As depression was assessed using a range of scales, we used published clinical cutoffs to establish a
categorical depression variable. For the Beck Depression Inventory (BDI), the cutoff for depression was >13 °.
For the Geriatric Depression Scale (GDS), the cutoff for depression was >4 °. For the Center for Epidemiologic
Studies — Depression scale (CES-D), the cutoff for depression was >15 ’. For the Hamilton Depression
Inventory (HAM-D), the cutoff for depression was >8 8. For the Hospital Anxiety and Depression Scale —
Depression (HADS-D), the cutoff for depression was >7 °. The Structured Clinical Interview for DSM-V (SCID)
yields a categorical variable not a score so it did not need to be converted. The cite contributing DASS scores
did not separate the depression from anxiety variables, so it was not included in the depression analyses.
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Supplementary Note 3. Subgroup analyses.

Comparing PTSD to control within the female participants (259 PTSD vs. 316 controls), we did not find any
significant effects. Within the male participants (1022 PTSD vs. 1120 controls) we found marginally lower FA in
the bilateral tapetum and SFO (d=-0.13, p=0.0052; d=-0.14, p=0.011), and lower FA in PTSD in the left
tapetum (d=-0.15, p=0.0007), along with marginally higher RD in the left tapetum (d=0.010, p=0.037). Within
the military cohorts (988 PTSD vs. 1085 controls), we found marginally lower FA and AD in the bilateral
tapetum and right SFO (FA: d=-0.11, p=0.015; d=-0.12, p=0.011; bilateral tapetum AD: d=-0.10, p=0.049) and
lower FA in PTSD in the left tapetum (d=-0.16, p=0.00066). Among civilian cohorts (409 PTSD vs. 518
controls), we did not find any significant or marginally significant results. Examining the site effects in Figure 2,
several civilian cohorts did have large effect sizes for the tapetum, so the lack of results may be due in part to
the significantly smaller civilian sample size compared to military. These results can be seen in
Supplementary Figure 3. Lastly, as results seemed to be strongest in the males-only and military-only
analyses, we further examined military females and military males separately. Among military females (44
PTSD vs. 90 controls), we did not find any significant results. Among military males (693 PTSD vs. 708
controls), we found marginally lower FA in the left tapetum (d=-0.14, p=0.012).

We similarly examined linear association with CAPS-4 score in these subgroups. In female PTSD
participants there were no significant effects. In male PTSD participants, we marginally lower FA with higher
CAPS-4 in the cingulum ($=-0.00014, p=0.050). In civilian PTSD participants we did not find any significant
effects. In military PTSD participants, we found marginally lower FA with higher CAPS-4 in the bilateral and
right tapetum ($=-0.00016, p=0.024; =-0.00020, p=0.026, respectively). These results can be seen in

Supplementary Figure 10.
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Supplementary Note 4. Interaction analyses.

Examining a group-by-age interaction variable with age, age?, sex, and group as covariates, we did not
find any significant or marginally significant results. We similarly did not detect any interactions between group
and sex. These results can be seen in Supplementary Figure 4.
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Supplementary Note 5. Full results covarying for depression, alcohol use disorders, traumatic brain injury, or
psychotropic medication use.

Potentially confounding variables
For all of the following analyses, we did not include sites with fewer than 10 subjects per cell.

We did not find any significant associations with CT covarying for age, age:, and sex. Including CT in a
model comparing PTSD and control (367 PTSD vs. 598 controls) also did not yield significant results.
Comparing PTSD and controls in the same reduced sample, without CT in the model showed higher FA in the
CGH (d=0.17, p=0.019), suggesting that the decrease in power was driving differences between these and the
main analyses. Lastly, we examined linear associations with CT in the PTSD group only, finding no significant
associations. For this analysis, there were 57 PTSD with no CT, 48 PTSD with 1 type of CT exposure, and 179
PTSD with 2 types of CT exposure across 6 sites.

Including a binary depression variable as a covariate in PTSD vs. control comparisons (696 PTSD vs.
825 controls), we found marginally lower FA in the left tapetum (d=-0.15, p=0.0090). In this reduced sample
(N=1521) without depression in the model, results were similar (left tapetum d=-0.12, p=0.048). Comparing
PTSD+Dep to PTSD only (304 PTSD+Dep vs. 225 Dep only, from 12 sites), we did not find any significant
effects.

Including AUD (coded as 0=no alcohol use disorder, 1=abuse, 2=dependence) as a covariate in PTSD
vs. control comparisons (691 PTSD vs. 623 controls), we found significantly lower FA in the right SFO (d=-
0.23, p=0.000083), and marginally lower FA and higher RD in the tapetum (bilateral d=-0.14, p=0.012; left d=-
0.16, p=0.0061; left tapetum RD d=0.12, p=0.037) and ALIC (bilateral d=-0.12, p=0.031; left d=-0.15, p=0.020).
In this reduced sample (N=1314) without AUD in the model, results were essentially the same. Examining
linear associations with AUD in the PTSD group only (419 PTSD with no AUD, 77 PTSD + alcohol abuse, 113
PTSD + alcohol dependence, across 10 sites), we found marginally higher FA in PTSD+AUD in the right SFO
(p=0.0057, p=0.0082).

Including a binary TBI variable in PTSD vs. control comparisons (849 PTSD vs. 1016 controls), we
found marginally lower FA in the left tapetum (d=-0.12, p=0.015) and right SFO (d=-0.11, p=0.027). The
analysis in this reduced sample (N=1865) without TBI in the model yielded similar results with the addition of
marginally lower FA in the bilateral tapetum (d=-0.11, p=0.026). Comparing PTSD+TBI to PTSD only (462
PTSD+TBI vs. 270 PTSD only, across 9 sites), we found marginally lower FA in the PTSD+TBI group in the
fornix/stria terminalis (d=-0.17, p=0.033).

Including a binary variable for psychotropic medication use in PTSD vs. control comparisons (713
PTSD vs. 679 controls), we found marginally lower FA in the bilateral and left tapetum (bilateral d=-0.11,
p=0.050; left d=-0.014, p=0.013). The analysis in this reduced sample (N=1392) without medication in the
model yielded similar results. Comparing medicated PTSD to unmedicated PTSD (268 med-PTSD vs. 221
unmed-PTSD, across 5 sites), we found marginally higher FA in the medicated PTSD group in the PLIC, IC,
and RLIC (d=0.30, p=0.0010; d=0.24, p=0.0097; d=0.19, p=0.042, respectively).

These results can be seen in Supplementary Figures 5-9. The similarities between the group comparisons
with the added covariate (depression, AUD, or TBI) and the group comparisons without that covariate in the
subset of the sample with that information indicate that the decrease in sample size is affecting our main
tapetum result more than the addition of the covariate itself.

Confounding variables with PTSD severity

We similarly ran analyses examining linear associations with CAPS-4 score including potentially
confounding variables. Covarying for CT, we found marginally higher FA with higher CAPS-4 score in the
uncinate and genu ($=0.00094, p=0.050; f=0.00033, p=0.030). Covarying for depression, we did not find any
significant associations with CAPS-4 score. Covarying for AUD, we did not find any significant associations
with CAPS-4 score. Covarying for TBI, we did not find any significant association with CAPS-4 score.
Covarying for psychotropic medication use, we found marginally lower FA with higher CAPS-4 score in the
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tapetum and hippocampal cingulum ($=-0.00026, p=0.032; 3=-0.00026, p=0.032). These results can be seen
in Supplementary Figure 11.
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Supplementary Table 1. Inclusion and exclusion criteria for each of the cohorts included.

Inclusion criteria

Exclusion criteria

ADNI-DoD

Beijing

Booster

Columbia

PTSD: Subjects must be Veterans of the Vietnam War, 50-90
years of age. Subjects who meet the SCID-| (for DSM-IV-TR)
criteria for current/chronic PTSD (identified by records and
verified by our telephone assessments). In addition to
meeting DSM-IV-TR criteria for current/chronic PTSD,
subjects must have a minimum current CAPS score of 50 as
determined by telephone assessment. The PTSD symptoms
contributing to the PTSD Diagnosis and Current CAPS score
must be related to a Vietham War related trauma. Must live
within 150 miles of the closest ADNI clinic in subject’s area.
Control: Subjects must be Veterans of the Vietnam War, 50-
90 years of age. Comparable in age, gender, and education
with TBI and PTSD groups May be receiving VA disability
payments for something other than TBI or PTSD — or no
disability at all. Must live within 150 miles of the closest ADNI
clinic in subject’s area

(1) household was used as the basic sample unit, and the
household member whose birthday was closest to the date of
investigation was first selected for participation, and if the
individual was unavailable, the household member whose
birthday was the next closest was selected; (2) 38-62 years,
and experienced the disaster personally; (3) right-handed.

All: 18-65 years of age, police officers, eligible for MRI. PTSD:
current PTSD diagnosis, with CAPS > 45. Controls: exposure to
at least one traumatic event (according to DSM-IV Al
criterion), with CAPS < 15

All: Males or females between the ages of 18 and 60, able to
give consent, fluent in English; PTSD: Experience of a
traumatic event or events in childhood and/or adulthood;
current DSM-V Criterion A for PTSD

PTSD: Mild Cognitive Impairment/Dementia Documented or self report history of mild/moderate severe TBI
Any history of head trauma associated with injury onset cognitive complaints, or Loss of consciousness for
>5minutes. Control: MCl/Dementia Presence of PTSD by SCID-I for DSM-IV-TR criteria, or a CAPS score of
>30 (Both current and/or a history of PTSD will be excluded). Documented or self report history of
mild/moderate severe TBI Any history of head trauma associated with injury onset cognitive complaints, or
Loss of Consciousness for >5 minutes History of PTSD or current PTSD Exclusionary criteria applied to
TBI/PTSD will be applied to controls. ALL: MCl/dementia History of psychosis or bipolar affective disorder;
History of alcohol or substance abuse/dependence within the past 5 years (by DSM IV — TR criteria); MRI-
related exclusions: aneurysm clips, metal implants that are determined to be unsafe for MRI; and/or
claustrophobia; Contraindications for lumbar puncture, PET scan, or other procedures in this study; Any
major medical condition must be stable for at least 4 months prior to enrollment. These include but are not
limited to clinically significant hepatic, renal, pulmonary, metabolic or endocrine disease, cancer, HIV
infection and AIDS, as well as cardiovascular disease. Seizure disorder or any systemic illness affecting brain
function during the past 5 years will be exclusionary Clinical evidence of stroke. Have a history of relevant
severe drug allergy or hypersensitivity. Subjects with current clinically significant unstable medical
comorbidities, as indicated by history or physical exam, that pose a potential safety risk to the subject.

Individuals with (1) mental retardation and any major psychosis (e.g., schizophrenia and organic mental
disorders); (2) drug or alcohol abuse; (3) history of head trauma or surgery;(4) a metallic embedded object
in body; (5) claustrophobia; (6) exposure to other trauma events from time of the disaster to the time of
the study.

All: history of neurological disorders, any severe or chronic systemic disease or unstable medical condition
(including endocrinological disorders), use of psychotropic medications. Females: pregnancy or
breastfeeding. PTSD: current psychotic disorder, substance-related disorder, severe personality disorder,
severe major depressive disorder (MDD) (i.e., involving high suicidal risk and/or psychotic symptoms) or
current suicidal risk. Controls: any current Axis-1 disorder and lifetime history of PTSD or MDD

1. Prior or current Axis | psychiatric diagnosis of schizophrenia, psychotic disorder, bipolar disorder,
dementia. SCID and clinical evaluation 2. Depression score of > 25 on the Hamilton Rating Scale for
Depression (HAM-D-17-item); significant depression and /or depression related impairment that is judged
to warrant pharmacotherapy or combined medication and psychotherapy. Clinical interview, HAM-D. 3.
Individuals at risk for suicide based on history and current mental state. Psychiatric history; mental status
exam by screening psychiatrist; score > 2 on item 3 of Hamilton Depression Scale 4. History of
substance/alcohol dependence within the past six months, or abuse within past two months History, urine
toxicology 5. Any psychotropic medications including: antipsychotic, antidepressant, mood stabilizer, or
stimulant medications in the last 4 weeks prior to the study (6 weeks for fluoxetine). Standing daily dosing
of benzodiazepine class of medication in the 2 weeks prior to the study (as needed use of benzodiazepines
is not an exclusion, but must be clinically judged to tolerate no benzodiazepines for the 72-hour period
before each of the fMRI days). Triptan anti-migraine medications. Other medications that may interfere
with fear circuitry and fear memory such as blood-brain-barrier penetrating B-blockers. Clinical Interview
regarding current medication treatment. History. 7. Pregnancy, or plans to become pregnant during the
period of the study. Urine B-HCG, interview 8. Paramagnetic metallic implants or devices contraindicating
magnetic resonance imaging or any other non-removable paramagnetic metal in the body. History and
MRI-Screening Questionnaire 9. Medical illness that could interfere with assessment of diagnosis, or
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Grady Trauma
Project

Groningen

INTRUST

iSCORE

All: 18-65, OEF/OIF veterans, fluent in English, free of
implanted metal objects or metal shards in eyes,
antidepressant, sleep, and anti-anxiety medication permitted

All: 18-65 years of age, English-speaking, endorsed at least 1
criterion A trauma

20-60 years, women with current PTSD diagnosis, civilian,
sufficient proficiency in German, MRI compatible

For complete inclusion and exclusion criteria, see 10

PTSD: Age 25-48, English fluency, individuals were screened
for a current PTSD diagnosis using the Weather’s et al
criterion for the PTSD checklist (PCL), a score of 44 or higher.
PTSD symptoms were further required to be combat related
and participants had to have returned from combat related
deployment within three to 36 months of study enrollment.

biological measures (SCR, fMRI), including organic brain impairment from stroke, CNS tumor, or
demyelinating disease; and renal, thyroid, hematologic or hepatic impairment Medical chart review, clinical
interview, physical exam, blood chemistry 10. Current unstable or untreated medical iliness; or resting
SBP>140 or DBP>90; or HR<60 or HR>100 History and physical exam 11. Any condition that would exclude
MRI exam (e.g. pacemaker, paramagnetic metallic prosthesis, surgical clips, shrapnel, necessity for constant
medicinal patch, some tattoos) Clinical interview, physical exam, MRI screening Questionnaire 12.
Significant claustrophobia that would preclude ability to remain calm within the MRI scanner Interview,
history; Controls: 1. Current symptomatic major Axis | psychiatric diagnosis, e.g., major depressive disorder,
psychotic disorder, bipolar disorder, obsessive compulsive disorder (OCD), PTSD, panic disorder,
agoraphobia, or eating disorder. Psychiatric Interview and SCID 2. Lifetime history of any DSM-5 Axis |
disorder Psychiatric Interview and SCID 3. History of trauma exposure that fulfills DSM-5 PTSD criteria Al
History, Life Event Checklist (LEC), SCID 4. Depression score greater than 7 on the Hamilton Rating Scale for
Depression (HAM-D-17-item) HAM-D 5. Lifetime history of substance/alcohol dependence or abuse History,
urine toxicology 6. Pregnancy, or plans to become pregnant during the period of the study. Interview, Urine
B-HCG for women of childbearing potential on each day of fMRI/emotional learning task. 7. Medical illness
that could interfere with assessment of response or biological measures (SCR, fMRI), including organic brain
impairment from stroke, CNS tumor, or demyelinating disease; orrenal, thyroid, hematologic or hepatic
impairment Medical chart review, clinical interview, physical exam, blood chemistry 8.Paramagnetic
metallic implants or devices contraindicating magnetic resonance imaging or any other non-removable
paramagnetic metal in the body. History and MRI-Screening Questionnaire 9. Medical illness that could
interfere with assessment of diagnosis or biological measures (SCR, fMRI), including organic brain
impairment from stroke, CNS tumor, or demyelinating disease; and renal, thyroid, hematologic or hepatic
impairment. Medical review of systems, clinical interview, blood pressure and pulse assessment 10. Current
unstable or untreated medical illness or resting SBP>140 or DBP>90; or HR<59 or HR>100 History and
physical exam 11. Any condition that would exclude MRI exam (e.g. pacemaker, paramagnetic metallic
prosthesis, surgical clips, shrapnel, necessity for constant medicinal patch, some tattoos) Clinical interview,
physical exam, MRI screening Questionnaire 12. Significant claustrophobia that would preclude ability to
remain calm within the MRI scanner

All: Axis | other than PTSD or MDD, current substance abuse or lifetime substance dependence (other than
nicotine), high risk for suicide, claustrophobia, neurological disorders, learning disability or developmental
delay, major medical conditions

All: Current psychotic symptoms or bipolar disorder, current substance or alcohol dependence, history of
head trauma, taking any psychoactive medication, current illegal drug use (verified with urine drug screen
within 24 hours of scan)

Neurologic disorders, history of substance abuse or dependence within the last 6 months, history of head
injury, cerebral incidental findings verified by a neuroradiologist after the MR scan, intake of
benzodiazepines, tricyclic antidepressants, anticonvulsants, primary borderline personality disorder,
current diagnosis of Axis | disorder

Any participants with conditions preventing MRI procedures (i.e. claustrophobia, shrapnel, pregnancy),
neurologic conditions (e.g., seizures, psychosis, etc.), history of TBI exceeding mild severity or spinal cord

injury, or current narcotic medicine use were excluded from the study.
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New South Wales

South Dakota

Stellenbosch
(both)

U Sydney

Primary diagnosis of PTSD

History of childhood maltreatment; Legal and mental
competency of the patient; Female; All ethnic backgrounds;
Age between 18 and 60; Fluent English speakers; Normal or
Corrected Vision

IPV trauma, normal or corrected-to-normal vision, right-
handed
18-60 years

Study 1: OIF/ OEF/OND (Operation Iragi Freedom / Operation
Enduring Freedom / Operation New Dawn) veterans

Adult patients aged >18 years with a diagnosis of current
PTSD.Able to read and understand the Informed Consent
documents and be able to read and write in English or
Afrikaans.

18-65 years of age, endorsed at least 1 criterion A trauma,
English-speaking

All: 18-60 years of age, eligible for MRI. PTSD: current PTSD
diagnosis, with CAPS > 45, military deployment >4 months.
Trauma controls: exposure to at least one traumatic event
(according to DSM-IV A1 criterion), with CAPS < 15, no
current psychiatric disorder, military deployment >4 months;
healthy controls: no current psychiatric disorder according to
DSM-IV.

Age range of 18-50; Capable of giving informed consent;
Fluent in English; Exposure to one or more life-threatening
war zone trauma events per the Combat Experiences Scale
and documented by DD-214, Combat Action Ribbon
(Marines), Combat Infantry Badge (Army), or other clear
evidence of war zone trauma exposure in Iraq or Afghanistan
since 2001; Pharmacological or psychotherapeutic treatment

Psychotic disorder, bipolar disorder, traumatic brain injury, narcotic use, active substance use disorder
within 3 months of study entry

Delirium secondary to medical iliness; History of neurological conditions that may cause significant
psychiatric symptomatology (e.g., dementia); Any contraindication to MR scans, including claustrophobia,
pregnancy, metal implants, etc.; Current alcohol or substance use disorder (within the last month); A
history of schizophrenia or other psychotic disorder; History of head injury or loss of consciousness for
longer than 5 min (including concussion); Positive pregnancy test

na

Neurological disorders, traumatic brain injury, psychosis

Study 1: (a) Current or previous seizure history; b) current crisis-related issues such as serious self-injurious
behavior, psychosis, or substance dependence (excluding alcohol dependence); (c) report of traumatic
brain injury using the Traumatic Brain Injury Checklist (Hoge et al., 2008); and (d) contraindications to fMRI
(metal objects in body, claustrophobia)

Any other major psychiatric disorder (e.g. severe mood and psychotic disorders) or any neurological
disorder, and significant head injury, any alcohol or drug use disorder within the past 6 months. Pregnancy.

History of neurological illness (Huntington’s, Parkinson’s,dementia, MS, etc). History of Seizure Disorders,
unrelated to head injury(ies). Current diagnosis of schizophrenia spectrum or other psychotic disorders (not
related to PTSD). Current diagnosis of bipolar or related disorders (not related to PTSD). Current active
homicidal and/or suicidal ideation with intent requiring crisis intervention. Cognitive disorder due to
general medical condition other than TBI. Unstable psychological diagnosis that would interfere with
accurate data collection, determined by consensus of at least two doctorate-level psychologists. Also, MRI
contra-indications for MRI including metallic implants or foreign objects deemed unsafe by the MRI
technician (such as but not limited to pace-maker, shrapnel, metallic screws). Surgery in the past 2 months
except as approved by the MRI technician (such as but not limited to dental work, colonoscopy). Weight
exceeding the capacity of the scanner table.

All: history of neurological disorders, any severe or chronic disorder; alcohol or drug abuse and/or
dependence during course of the study.

Weight of 352 pounds or over (due to constraints of MRI scanner); Women of childbearing potential with
positive pregnancy test, looking to conceive during the research timeline, or who are breastfeeding;
Metallic implants such as prostheses or aneurysm clip, or electronic implants such as cardiac pacemakers;
Neurological or serious medical condition that may contraindicate MRI or that may overlap with
physiological substrates of psychiatric conditions; History of seizures or seizure disorder; Moderate or
severe traumatic brain injury (over 20 minutes unconscious); Current active substance dependence or
dependence within 3 months (other than nicotine); Meets DSM-IV criteria for bipolar disorder,
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VA Boston

VA Minneapolis
(both)

stable for at least 8 weeks prior to beginning of study, with
no intent to begin a new course of treatment during the
study period

1. Veteran of OEF/OIF/OND (deployed at least one time to
either Afghanistan or Iraq) or 2. Active duty Service Member
(SM) not yet deployed to OEF/OIF/OND. Age 18-65 years.

All: Age 18-50 years, Right-handed (as determined by the
Edinburgh Handedness Inventory by a score > 40), Able to
safely and comfortably undergo MRI (e.g. no implanted
metal, no embedded shrapnel, claustrophobia, etc.),
participants are required to have been previously deployed in
OEF/OIF/OND. PTSD: Meets DSM-V criteria for PTSD, meets
DSM-V criteria for depression. Control: Uninjured, or
sustaining a non-cranial injury without history of blast
exposure, Post-injury interval > 3 months or more since most
recent injury (for the participants with non-cranial injuries)

Participants were veterans of Operation Enduring Freedom
and/or Operation Iraqgi Freedom, age 22-60, who had been
exposed to combat during their deployment(s).

Study 1: Veterans ages 18-60; Study 2: Veterans age 18-60
with a clinical diagnosis of TBI in their VA medical record

schizophrenia, schizoaffective disorder, psychotic disorder NOS, delirium, or any DSM-IV cognitive
disorder.; Substance dependence disorder within 3 months or any current substance dependence; Severe
psychiatric instability or severe situational life crises, including evidence of being actively suicidal or
homicidal, or any behavior that poses an immediate danger to patient or others.; Participants with
extensive experience in yoga or meditation; Current use of benzodiazepines and beta-blockers

History of neurological illness (Huntington’s, Parkinson’s, dementia, MS, etc). History of Seizure Disorders,
unrelated to head injury(ies). Current diagnosis of schizophrenia spectrum or other psychotic disorders (not
related to PTSD). Current diagnosis of bipolar or related disorders (not related to PTSD). Current active
homicidal and/or suicidal ideation with intent requiring crisis intervention. Cognitive disorder due to
general medical condition other than TBI. Unstable psychological diagnosis that would interfere with
accurate data collection, determined by consensus of at least two doctorate-level psychologists. Also, MRI
contra-indications for MRI including metallic implants or foreign objects deemed unsafe by the MRI
technician (such as but not limited to pace-maker, shrapnel, metallic screws). Surgery in the past 2 months
except as approved by the MRI technician (such as but not limited to dental work, colonoscopy). Weight
exceeding the capacity of the scanner table.

All: Not fluent in English, Ever having been formally diagnosed with dyslexia or other learning disabilities,
Left-handed (as determined by the Edinburgh Handedness Inventory by a score < 40), Post-deployment TBI
requiring hospitalization (i.e., not just treated and released directly from Emergency Center ),
Contraindications to undergoing MR imaging (e.g., metal implants, orthodontia, shrapnel, positive urine
pregnancy screen, claustrophobia, etc.), Pre- or post-deployment neurologic disorder associated with
cerebral dysfunction and/or cognitive deficit (e.g., mental retardation, HIV/AIDS, dementias, etc.), Pre-
deployment major psychiatric disorder associated with cerebral dysfunction and/or cognitive deficit (e.g.,
schizophrenia and other psychotic disorders, bipolar disorder),as determined by the Structured Clinical
Interview for the DSM-V conducted by ROVER-WISER clinicians (or the most current version of the MINI for
Veteran Controls—see criteria for Controls below), Current active psychosis, Any history of intracranial
surgery, Medical conditions associated with structural/functional compromise on MRI or cognitive
decrements; PTSD: Meets criteria for TBI group; control: 1. Meets MINI criteria for any substance use
disorders (SUDs) other than nicotine (tobacco products), Meets MINI criteria for current depressive
episode, Meets MINI criteria for PTSD, Meets MINI criteria for other major psychiatric disorder associated
with cerebral dysfunction and/or cognitive deficit (e.g., schizophrenia and other psychotic disorders,
bipolar disorder), Meets criteria for history of TBI of any severity

Participants were excluded from the study if they met criteria for 1) a current substance-induced psychotic
disorder or psychotic disorder due to a general medical condition (other than TBI), 2) current DSM-IV
substance abuse or dependence other than alcohol, caffeine, or nicotine, 3) a moderate or severe
traumatic brain injury from either impact or blast, 4) a neurologic condition other than TBI, 5) a current
unstable medical condition that would likely affect brain function (e.g., uncontrolled diabetes), or 6)
significant imminent risk of suicidal or homicidal behavior.

Study 1: Seizure disorder, dementia, or MRI safety concerns; Study 2: 1) diagnosis of schizophrenia,
schizoaffective disorder, bipolar disorder type |, severe substance use disorder, or a high risk of suicide (via
the MINI); 2) absence of QEEG more than 2SDs outside of population means of healthy age-matched
controls (in this study, EEG neurofeedback was conducted after scanning); and 3) MRI safety concerns.
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Yale/NCPTSD

Participants were recruited from the Vietnam Era Twin
Registry aka VETR (by registry definition, then, both brothers
had been in the US military at some point between 1965 and
1975; not "VA"). Participants had to be between 50 to 59
years old when recruited; both brothers needed to agree to
participate.

Participants ranged in age from 21 to 60 and had been
deployed on one or more combat tours.

For MRI component, participants needed to meet safety criteria.

Individuals were excluded from the study if they met any of the following criteria: a diagnosis of bipolar
disorder or psychotic disorder, as assessed by the SCID-1V (First, Spitzer, Gibbon, & Williams, 2002); current
benzodiazepine use; a history of ADHD, learning disorder, moderate or severe traumatic brain injury (TBI),
brain tumor, epilepsy, or a neurological disorder; current inpatient status; or an MRI contraindication.
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Supplementary Table 2. DTI acquisition parameters for each of the cohorts included.

Scanner Field Voxel size (mm) Gradient directions and b0 scans
strength b-value (mm/s2)
ADNI-DoD 1. GE Discovery MR750, 2. 3T 2x2x2 41 at b=1000 5
GE Discovery MR750w, 3. GE
Signa HDxt, 4. Siemens Tim
Trio
Philips 1.5T 1.71875x1.71875x2 16 at b=800 1
Philips Achieva 3T 2x2x2 32 at b=1000 1
GE Discovery MR750 3T 1.875x1.875x2.5 64 at b=1000 5
IGIEEE T GE Discovery MR750 3T 2x2x2 64 at b=900 5
IEITEE philips Ingenia 3T 2x2x2 32 at b=800 2
IGIEER T GE Discovery MR750 3T 2x2x2 55 at b=1000 1
Siemens Trio 3T 2x2x2 60 at b=1000 1
Project
Siemens Trio 3T 2.3x2.3x2.3 64 at b=1000 1
Philips 3T 2x2x2 87 at b=900 7
Siemens Verio Syngo 3T 2x2x2 64 at b=1000 1
EETET siemens 3T 2x2x2 30 at b=1000 1
RN  siemens Tim Trio 3T 2x2x2 48 at b=700 7
m Siemens Magnetom Prisma 3T 1.8x1.8x1.8 30 at b=1000 12
Fit Syngo MR D13D
GE Signa HDx 3T 1.72x1.72x2.5 42 at b=1250 4
Siemens Skyra 3T 2x2x2 30 at b=1000 1
Siemens Skyra 3T 1.92x1.92x2.4 45 at b=1000 3
Siemens Allegra 3T 2x2x2.5 30 at b=1000 5
GE Discovery MR750 3T 2x2x2 69 at b=1000 2
Philips Achieva 3T 1.875x1.875x2 30 at b=1000 1
RTAYEEE N GE Discovery MR750 3T 2x2x2 66 at b=1200 4
VA Boston Siemens 3T 2x2x2 60 at b=700 10
VA Houston Siemens Trio 3T 2.67x2.67x3.25 30 at b=1000 1
VNG EET [ Siemens Tim Trio 3T 2Xx2x2 30 at b=800 10
VNG EET ) [P Siemens Tim Trio 3T 2x2x2 128 at b=1500 17
VA Waco Philips Achieva 3T 1.75x1.75x2 32 at b=800 1
VETSA 1. GE Discovery MR750, 2. 3T 2.5x2.5x2.5 1. 51 at b=1000, 2. 30 at 1.2,2.1
Siemens Tim Trio b=1000
Yale/NCPTSD Siemens Tim Trio 3T 1.7x1.7x3 128 at b=1000 1
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Supplementary Table 3. Number of participants per site with information on the potentially confounding covariates: childhood trauma (CT —
binarized here), depression, alcohol use disorder (AUD — binarized here), traumatic brain injury (TBI), and psychotropic medications. Counts are
given per site, per variable, per group for yes/no/NA (missing), with “-“ for information that was not collected.

(9) Depression AUD TBI Medication
_ N PTSD Control PTSD Control PTSD Control PTSD Control PTSD Control
PTSD/control  Y/N/NA  Y/N/NA Y/N/NA  Y/N/NA Y/N/NA Y/N/NA  Y/N/NA  Y/N/NA Y/N/NA  Y/N/NA
70/64 - - 4/59/7 0/55/9 41/29/0 20/44/0  36/34/0  27/37/0 36/31/3 5/55/4
32/35 - - - - - - - - - -
34/36 - - 11/22/1 5/30/1 0/34/0 0/36/0 - - - -
18/15 - - 8/10/0 0/15/0 - - - - 18/0/0 15/0/0
| Duke-1  [EPYIED 15/2/35 24/4/107 23/12/17  4/25/107 - - 31/4/17  27/72/36  28/24/0  7/128/0
T 36/52 - - 18/18/0  15/36/1 19/17/0 7/45/0 14/22/0  18/34/0 - -
| Duke-3 VT 9/0/8  36/0/10 - - - - - - 4/13/0 4/42/0
50/82 30/9/11  27/46/9  27/23/0 7/75/0 - - - - 0/28/22  0/66/16
Project
49/0 45/1/2 - 33/14/2 - - - - - - -
77/137 35/3/39  39/38/60 - - - - 53/24/0  0/137/0 4/11/62  9/18/110
44/55 - - 29/11/4 8/44/3 - - 23/21/0 6/49/0 - -
BT s6/52 36/10/0  16/34/2  23/2/21  0/22/30 - - - - - -
[ McLean ~ [IEYYZVA 38/0/3  4/10/0  39/1/1 0/14/0 9/29/3 0/14/0 - - 36/2/3 1/13/0
| Miinster  ~ |IEVVAR] - - 10/4/0 0/11/0 - - - - 2/12/0 0/11/0
85/78 68/16/0  39/39/0 35/40/10  10/66/2 29/52/4 6/70/2 - - - -
55/36 - - 23/32/0 2/33/1 - - - - 8/47/0 0/33/3
27/44 22/5/0  28/16/0  1/5/21 3/11/30 - - - - - -
17/14 13/4/0 8/6/0 4/1/12 1/1/12 - - - - - -
31/33 - - - - 0/31/0 0/33/0 - - 22/9/0 2/31/0
46/48 - - 25/21/0 0/45/3 4/42/0 1/47/0 6/40/0 4/44/0 - -
| UW Madison  [IEEEPLYPE} - - 25/0/0 21/2/0 - - - - 9/0/16 2/0/21
305/188 - - - - 32/202/71 13/139/36  222/83/0  83/104/1  128/177/0  26/161/1
53/16 - - 50/1/2 3/12/1 29/24/0 2/14/0 13/40/0 0/16/0 - -
49/75 - - 17/10/22  13/35/27 - - 35/14/0  57/18/0 - -
67/63 - - 35/19/13  14/36/13 - - 54/13/0  45/18/0 - -
36/17 20/8/8  6/11/0 - - 24/3/9 8/9/0 32/4/0 11/6/0 31/5/0 9/17/0
33/206 23/10/0  78/122/0 22/11/0  9/195/2 - - 12/19/2  63/140/3 11/17/5  8/63/135
37/30 - - 24/13/0  20/10/0 - - - - 18/19/0 4/26/0
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Supplementary Figure 1. Map of cohorts included.
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Supplementary Figure 2. Post-hoc examination of tapetum result. Shown are the Cohen’s d for the left, right,
and bilateral tapetum FA with 95% CI. Colors correspond to the models tested, as shown in the legend.
Red/pink=PTSD vs. control/PTSD vs. trauma-exposed controls, orange/light orange=PTSD vs. control
covarying for childhood trauma (CT)/in subset with CT without CT in model, yellow/light yellow= PTSD vs.
control covarying for psychotropic medications (med)/in subset with med without med in model, teal/light teal=
PTSD vs. control covarying for traumatic brain injury (TBI)/in subset with TBI without TBI in model, navy/light
navy= PTSD vs. control covarying for alcohol use disorders (AUD)/in subset with AUD without AUD in model,
gray/light gray= PTSD vs. control covarying for depression (dep)/in subset with dep without dep in model. *

indicates significant at p<0.05.
* )_-‘ m PTSD vs. control
—_ PTSD vs. trauma-exposed control

PTSD vs. control covarying for CT

PTSD vs. control, in subset with CT

PTSD vs. control, covarying for med

PTSD vs. control, in med subset

Tapetum - right r m PTSD vs. control, covarying for TBI
PTSD vs. control, in TBI subset
® PTSD vs. control, covarying for AUD
PTSD vs. control, in subset with AUD

W PTSD vs. control, covarying for dep

PTSD vs. control, in subset with dep

Tapetum - left

Tapetum - bilateral

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2

Cohen’s d
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Supplementary Figure 3. Subgroups: (a) PTSD vs. control effects in females only, (b) PTSD vs. control
effects in males only, (c) PTSD vs. control effects in civilians only, and (d) PTSD vs. control effects in military
only. Shown are Cohen’s d for 23 ROls and average FA. Dark orange bars indicate significance (p<0.0021)
and light orange bars indicate marginally significant results (0.05>p>0.0021). Error bars are 95% CI.
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Supplementary Figure 4. Interactions: (a) group-by-sex interaction effects and (b) group-by-age interaction
effects. Shown are unstandardized regression ps for 23 ROIs and average FA. Dark orange bars indicate
significance (p<0.0021) and light orange bars indicate marginally significant results (0.05>p>0.0021). Error

bars are 95% CI.
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Supplementary Figure 5. Results of childhood trauma (CT) analyses: (a) linear regression with CT (coded
0=none, 1=1 type, 2=2 or more types of trauma) with sex, age, and age: in the model; (b) linear regression with
CT in PTSD group only; (c) PTSD vs. control group differences when covarying for CT; (d) PTSD vs. control
differences in the subset of participants with CT, WITHOUT CT in model. Shown are Cohen’s d or
unstandardized regression s for 23 ROls and average FA. Dark orange bars indicate significance (p<0.0021)
and light orange bars indicate marginally significant results (0.05>p>0.0021). Error bars are 95% CI.
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Supplementary Figure 6. Results of depression analyses: (a) PTSD vs. control group differences when
covarying for depression; (b) PTSD vs. control differences in the subset of participants with depression,
WITHOUT depression in model; (c) PTSD+depression vs. PTSD only differences. Shown are Cohen’s d for 23
ROIs and average FA. Dark orange bars indicate significance (p<0.0021) and light orange bars indicate
marginally significant results (0.05>p>0.0021). Error bars are 95% CI.
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Supplementary Figure 7. Results of alcohol use disorder (AUD) analyses: (a) PTSD vs. control group
differences when covarying for AUD; (b) PTSD vs. control differences in the subset of participants with AUD,
WITHOUT AUD in model; (c) linear association with AUD in PTSD group. Shown are Cohen’s d or
unstandardized regression s for 23 ROls and average FA. Dark orange bars indicate significance (p<0.0021)
and light orange bars indicate marginally significant results (0.05>p>0.0021). Error bars are 95% CI.
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Supplementary Figure 8. Results of traumatic brain injury (TBI) analyses: (a) PTSD vs. control group
differences when covarying for TBI; (b) PTSD vs. control differences in the subset of participants with TBI,
WITHOUT TBI in model; (c) PTSD+TBI vs. PTSD only differences. Shown are Cohen’s d for 23 ROIs and
average FA. Dark orange bars indicate significance (p<0.0021) and light orange bars indicate marginally
significant results (0.05>p>0.0021). Error bars are 95% CI.
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Supplementary Figure 9. Results of medication analyses: (a) PTSD vs. control group differences when

covarying for psychotropic medication use; (b) PTSD vs. control differences in the subset of participants with

medication, WITHOUT medication in model; (c) Medicated PTSD vs. unmedicated PTSD differences. Shown
are Cohen’s d for 23 ROIs and average FA. Dark orange bars indicate significance (p<0.0021) and light
orange bars indicate marginally significant results (0.05>p>0.0021). Error bars are 95% CI.
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Supplementary Figure 10. Linear association with CAPS within subgroups: (a) military, (b) civilian, (c) males,
(d) females. Shown are unstandardized regression ps for 23 ROIs and average FA. Dark orange bars indicate

significance (p<0.0021) and light orange bars indicate marginally significant results (0.05>p>0.0021). Error

bars are 95% CI.
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Supplementary Figure 11. Linear association with CAPS including potentially confounding variables: (a)
childhood trauma (0=none, 1=1 type, 2=2 or more types), (b) depression (0=no, 1=yes), (c) alcohol use
disorder (0O=none, 1=alcohol abuse, 2=alcohol dependence), (d) TBI (0=no, 1=yes), and (e) psychotropic
medication use (0=no, 1=yes). Shown are unstandardized regression ps for 23 ROIs and average FA. Dark
orange bars indicate significance (p<0.0021) and light orange bars indicate marginally significant results
(0.05>p>0.0021). Error bars are 95% CI.
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Supplementary Figure 12. Tapetum displayed on the ENIGMA template FA. The left tapetum (green) and
right tapetum (blue) ROls are displayed. Left in image is right in brain.
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