

1 **Comparative *in silico* analysis of *ftsZ* gene from different**
2 **bacteria reveals the preference for core set of codons in**
3 **coding sequence structuring and secondary structural**
4 **elements determination**

5

6

7 Ayon Pal*, Barnan Kr Saha, Jayanti Saha

8

9

10 Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj
11 University, Raiganj – 733134, West Bengal, INDIA

12

13

14 *ayonpal.ruc@gmail.com

16 **Abstract**

17 The deluge of sequence information in the recent times provide us with an excellent
18 opportunity to compare organisms on a large genomic scale. In this study we have tried to
19 decipher the variation in the gene organization and structuring of a vital bacterial gene called
20 *ftsZ* which codes for an integral component of the bacterial cell division, the FtsZ protein.
21 FtsZ is homologous to tubulin protein and has been found to be ubiquitous in eubacteria.
22 FtsZ is showing increasing promise as a target for antibacterial drug discovery. Our study of
23 *ftsZ* protein from 143 different bacterial species spanning a wider range of morphological and
24 physiological type demonstrates that the *ftsZ* gene of about ninety three percent of the
25 organisms involved in our analyses show relatively biased codon usage profile and significant
26 GC deviation from their genomic GC content. We have also detected a tendency among the
27 different organisms to utilize a core set of codons in structuring the *ftsZ* coding sequence. Our
28 meticulous analysis of the *ftsZ* gene linked with the corresponding FtsZ protein show that
29 there is a bias towards the use of specific synonymous codons particularly in the helix and
30 strand regions of the multi-domain FtsZ protein. Overall our findings suggest that in an
31 indispensable and vital protein such as FtsZ, there is an inherent tendency to maintain form
32 and structure for optimized performance in spite of the extrinsic variability in coding features.

33

34 **Keywords:**

35 *ftsZ*, Z-ring, binary fission, codon usage, RSCU, protein secondary structures, clustering, core
36 codons, RSCU, CUB

38 **Introduction**

39 Codon usage bias (CUB) or the preference of an organism for a certain subset of
40 codons coding for the different amino acids of polypeptides has intrigued molecular
41 biologists and evolutionists for decades [1]. This is a universal phenomenon observed in
42 prokaryotes, eukaryotes [2] as well as viruses [3] and is predominantly dependent on
43 selection, mutation, and genetic drift [4]. CUB has been found to be an important factor
44 contributing to gene and genome evolution [5,6] and has also been found to be an important
45 determinant of gene expression levels at the transcription level [2]. Codon usage pattern has
46 not only been found to vary between organisms but also between coding sequences or genes
47 within an organism [4]. In this study we have tried to decipher the variation in the gene
48 organization and structuring of a vital bacterial gene called *ftsZ* which codes for an integral
49 component of the bacterial cell division, the FtsZ protein. The process of bacterial cytokinesis
50 is initiated by the assembly of the tubulin-like GTPase called FtsZ which is essential for
51 bacterial cell division [7]. FtsZ is homologous to tubulin protein which acts as the building
52 block of the microtubule cytoskeleton in eukaryotes FtsZ [8]. During cell division, FtsZ
53 interacts with other membrane associated proteins like FtsW, FtsK, FtsQ and FtsI and helps
54 in anchoring FtsZ to the bacterial cytoplasmic membrane [9]. FtsZ is reported to be a highly
55 conserved protein [8] with a relative molecular mass of 40,000 and is ubiquitous in
56 eubacteria. It is also found in the members of Euryarchaea, chloroplasts of plants and some
57 mitochondria [10]. Higher plants have also been found to contain two distinct families of
58 FtsZ homologues that seem to have diverged early in the evolution of plants [11]. Mutant
59 bacteria which lacks FtsZ protein cannot divide but elongate into filamentous form. During
60 cytokinesis, the FtsZ protein assemble into a contractile ring that provides a stage for
61 assembly of the cell division apparatus and constricts at the leading edge of the invaginating
62 septum [7]. FtsZ is a vital cell-division protein in prokaryotes and is showing increasing

63 promise as a target for antibacterial drug discovery [12]. Looking at the ubiquity and
64 conserved nature of FtsZ, it has been projected as a potent target and has been studied
65 extensively [13] for the discovery of next-generation antibacterial agents that can be used to
66 counter drug-resistances to the commonly used drugs for methicillin resistant *Staphylococcus*
67 *aureus* (MRSA), tuberculosis, and other microorganism mediated infections [14]. The *ftsZ*
68 gene is regarded as an essential cell division gene in many bacteria including *E. coli* [15] and
69 it has been found that the C-terminal domain for FtsZ is highly variable in both size and
70 alignment among the bacterial species [16].

71 The major objectives of our study was to decipher the codon usage pattern of the *ftsZ*
72 gene to find out if there exist any codon usage bias in the structuring of the *ftsZ* coding
73 sequence among different types of bacteria. We have tried to find out if the codon usage
74 pattern is a random phenomenon or has it been influenced by certain features such as the
75 lifestyle of the organism [17-21]. This includes their free-living behaviour or pathogenic
76 association with specific host organisms and ecological associations. We have also tried to
77 unravel whether the codon structuring of the *ftsZ* gene is to certain extent influenced by the
78 Gram nature of the organism. The Gram nature of a bacterium, although primarily attributed
79 to the cell wall construction of the bacterium, has been found to manifest a host of
80 comparative features in the organisms ranging from simple morphology to advanced
81 physiological, biochemical, ecological and molecular characteristics such as GC content. We
82 have also attempted to estimate the compositional divergence of the *ftsZ* coding sequences.
83 The FtsZ protein is a very vital component of bacterial cell division that demonstrates
84 promiscuous variability both in terms of gene sequence and amino acid composition. This
85 compositional variability in a conserved protein such as FtsZ has been our impetus to
86 decipher and track whether there exists the preference for a ‘core’ set of codons in coding the
87 gene sequence across a diverse group of bacteria. In our study we have tried to explore the

88 codon usage tendency based on the positioning of the different amino acids in the different
89 types of structural elements of the FtsZ protein. It has been reported that codon usage can
90 play an important role in the translation process as well as the folding behaviour of nascent
91 polypeptides [22,23]. We have adopted a unique approach to further explore the codon usage
92 bias profile of the *ftsZ* sequence by linking the codon utilization profile with the secondary
93 structural components of the protein. Thus, we have strived to correlate the coding pattern of
94 the *ftsZ* gene with the structural attributes of the FtsZ protein. We have meticulously analysed
95 the 61 sense codons coding for the twenty standard amino acids to find out the preference of
96 disposition of specific codons in specific secondary structural elements of the FtsZ protein.

97

98 Materials and methods

99 The *ftsZ* gene sequence of 143 bacteria were selected, and their whole genome
100 sequences were retrieved from the NCBI GenBank [24] sequence database. The *ftsZ* coding
101 sequences (CDS) and their corresponding amino acid sequences were screened out from the
102 whole genome sequences of the bacteria using Perl scripts generated in our lab. Analysis of
103 different codon usage bias parameters like effective number of codons (Nc) [25], GC content,
104 guanine and cytosine content at the third position of the codon (GC3) [25] and
105 hydrophobicity were also estimated.

106 The Nc determines the degree of bias for the use of codons [26] with value
107 ranging from 20 to 61, where lower value indicates higher codon usage bias and vice versa.
108 The GC content plays a critical role in genome evolution [27], and it has been found to range
109 from 13% to 75% in cellular organisms [28,29]. The GC content does not remain constant
110 throughout the genome of an organism but varies based on different regions and coding
111 sequences of the genome. The measurement of different GC based attributes like GC content
112 and GC3 content thus play a significant role in analysing the genomic as well as genic

113 organization. The GC3 and GC content of each individual *ftsZ* sequence was calculated using
114 our in house developed tool using Perl. The Nc-plot [25], which is a parabolic curve used to
115 measure and explore codon usage bias, and detect the effect of base content on CUB [30] was
116 also constructed.

117 Statistical analysis such as non-parametric One way ANOVA on Ranks [31]
118 was used to find out whether there is a preferred set of codon for each of the amino acid that
119 is used in the structuring of the *ftsZ* coding sequences. Two factor ANOVA on codon usage
120 of *ftsZ* CDS was also performed to study the frequency of the individual 61 sense codons and
121 their interrelation with lifestyle and Gram nature of the organisms. A two factor ANOVA was
122 also designed to study the interrelationship of the twenty different amino acids with lifestyle
123 and Gram nature of the bacteria.

124 The degree of identity in FtsZ protein sequences among the 142 organisms
125 considered for this study was analysed using Clustal Omega. This application employs HMM
126 profile-profile techniques along with seeded guide trees to produce multiple alignments
127 [32]. For clustering of similar proteins based on their sequence similarities, the program CD-
128 HIT [33] was used. All the 143 *ftsZ* CDS were subjected to clustering using CD-HIT with a
129 similarity threshold of 50%. Representative amino acid sequences of *ftsZ* of the four main
130 clusters as identified by CD-HIT were subjected to secondary structure (helix, strands and
131 other elements) prediction using SSpro module of SCRATCH Protein Predictor [34].
132 Accurately predicting protein secondary structure is important for the study of protein
133 evolution, structure and function. The SSpro program was accessed through the SCRATCH
134 suite of protein structure predictors hosted at <http://scratch.proteomics.ics.uci.edu>.

135 The *ftsZ* gene sequences were further aligned with their corresponding amino
136 acid sequences and secondary structure mark-up sequence generated using SSpro. With the
137 help of this triple alignment, we have identified each of the synonymous codons that are used

138 for coding the amino acids, and we have linked those codons with the amino acids of the
139 predicted secondary structural elements. The relative synonymous codon usage (RSCU)
140 value which is measured by the ratio between the actual observed values of the codon and the
141 theoretical expectations was also calculated. RSCU reflects the relative usage preference for
142 the specific codons encoding the same amino acid [35]. If RSCU value equals to 1, codon
143 usage is supposed to be unbiased but if RSCU>1, specific codon frequency is higher than
144 other synonymous codons and codon usage is considered to be biased [26]. The RSCU values
145 of the *ftsZ* CDS were calculated after splitting the sequences based on their propensity in
146 constituting the different secondary structural classes as predicted by SSpro.

147

148 **Results and discussion**

149 A comprehensive codon usage analysis of the *ftsZ* gene and its corresponding protein
150 (*FtsZ*) was carried out in 143 spp. of bacteria of which 74 are non-pathogenic and 69 are
151 pathogenic in nature. On the basis of the nature of cell wall, 43 are Gram positive, 99
152 organisms are Gram negative and one organism called *Gardnerella vaginalis* 409-05 is Gram
153 variable in nature. A list of the organisms considered in this study along with their Gram
154 nature and lifestyle is presented in Table 1.

155

156 **Table 1:** Details of the different bacterial species along with their lifestyle, Gram nature and codon
157 usage attributes considered in the study.

<i>Organism</i>	<i>Lifestyle</i>	Gram Nature	Genomic Nc	<i>ftsZ</i> Nc	Genomic GC3	<i>ftsZ</i> GC3	Genomic GC	<i>ftsZ</i> GC
<i>Acetobacter malorum</i>	NP	Negative	45.41	40.62	0.69	0.6933	56.5	62.62
<i>Acinetobacter baumannii</i>	P	Negative	46.408	40.11	0.2974	0.1885	39	43.11
<i>Acinetobacter johnsonii</i> XBB1	NP	Negative	47.345	39.98	0.39	0.3384	38.5	45.95
<i>Actinobacillus pleuropneumoniae</i> serovar 5b str. L20	P	Negative	43.98	42.48	0.48	0.4796	41.3	47.11
<i>Actinomyces odontolyticus</i> ATCC 17982	P	Positive	37.24	33.9	0.808	0.7556	65.4	66.67
<i>Aerococcus viridans</i>	P	Positive	47.09	34.65	0.339	0.1463	39.4	43.81

<i>Aeromonas enteropelogenes</i>	P	Negative	39.009	31.64	0.821	0.7818	60	62.24
<i>Afipia broomeae</i> ATCC 49717	NP	Negative	42.26	34.41	0.8	0.8211	61.3	68.2
<i>Aggregatibacter actinomycetemcomitans</i>	P	Negative	45.48	43.73	0.56	0.4048	44.2	45.2
<i>Alcaligenes faecalis</i>	P	Negative	44.39	40.8	0.714	0.6238	56.81	57.5
<i>Aliivibrio wodanis</i>	P	Negative	45.7	41.07	0.273	0.1973	38.3	43.25
<i>Alteromonas macleodii</i> ATCC 27126	NP	Negative	53.15	42.82	0.411	0.2791	44.7	48.16
<i>Anaerostipes hadrus</i> DSM 3319	NP	Positive	42.424	41.37	0.257	0.209	37.1	44.13
<i>Anaplasma marginale</i> str. Florida	P	Negative	55.68	56.88	0.52	0.5459	49.8	51.49
<i>Anoxybacillus gonensis</i>	NP	Positive	47.027	42.2	0.443	0.5079	41.7	48.08
<i>Arcobacter butzleri</i> RM4018	P	Negative	33.144	30.85	0.0568	0.01974	27	31.31
<i>Arthrobacter</i> sp. ATCC 21022	NP	Positive	41.9	35.98	0.776	0.7443	64.5	66.18
<i>Bacillus anthracis</i> str. Ames	P	Positive	43.808	36.21	0.249	0.1347	35.4	40.48
<i>Bacillus mycoides</i>	NP	Positive	44.08	38.08	0.249	0.1214	35.2	32.92
<i>Bacteroides cellulosilyticus</i>	P	Negative	50.17	45.97	0.435	0.61	42.7	50.45
<i>Bartonella bacilliformis</i> KC583	P	Negative	44.84	38.92	0.279	0.2074	38.2	43.23
<i>Bifidobacterium adolescentis</i> ATCC 15703	NP	Positive	40.339	33.14	0.765	0.7975	59.2	63.58
<i>Blautia obeum</i>	NP	Positive	45.546	42.21	0.36	0.2439	41.2	45.97
<i>Bordetella bronchiseptica</i> 253	P	Negative	33.148	29.98	0.9329	0.9196	68.1	66.67
<i>Borrelia burgdorferi</i> B31	P	Negative	40.56	36.28	0.181	0.1946	28.18	37.83
<i>Brevibacillus brevis</i> NBRC 100599	NP	Positive	54.223	46.54	0.511	0.3824	47.3	50.39
<i>Brucella melitensis</i> bv. 1 str. 16M	P	Negative	44.698	54.33	0.724	0.7538	57.24	58.74
<i>Buchnera aphidicola</i> str. APS (<i>Acyrthosiphon pisum</i>)	NP	Negative	37.33	36.7	0.131	0.1479	26.4	33.94
<i>Burkholderia gladioli</i>	P	Negative	34.048	29.7	0.9136	0.9593	68	70.78
<i>Burkholderia ubonensis</i> MSMB22	NP	Negative	33.516	26.99	0.92	0.9447	67.31	67.42
<i>Butyrivibrio proteoclasticus</i> B316	NP	Positive	46.349	36.02	0.29	0.1473	40	45.01
<i>Caldicellulosiruptor bescii</i> DSM 6725	NP	Positive	44.89	49.39	0.238	0.2821	35.22	40.07
<i>Capnocytophaga ochracea</i> DSM 7271	P	Negative	48.47	44.39	0.36	0.2059	39.6	37.26
<i>Caulobacter crescentus</i> CB15	NP	Negative	35.29	29.63	0.883	0.8675	67.2	67.58
<i>Chania multitudinisentens</i> RB-25	NP	Negative	48.29	42.16	0.616	0.5896	50.9	54.72
<i>Chlamydophila pneumoniae</i> CWL029	P	Negative	50.47	61	0.326	0.3846	40.6	41.29
<i>Chromobacterium subtsugae</i>	NP	Negative	33.41	30.35	0.916	0.9539	64.8	67.41
<i>Chronobacter sakazakii</i>	P	Negative	42.83	39.1	0.744	0.6861	56.9	58.16
<i>Citrobacter amalonaticus</i>	P	Negative	46.56	40.25	0.672	0.653	53.21	56.94
<i>Clavibacter michiganensis</i> subsp. <i>sepedonicus</i>	NP	Positive	30.78	27.21	0.932	0.9576	72.4	71.58

<i>Clostridium bolteae</i> 90A9	P	Positive	48.257	47.82	0.6061	0.5505	49.6	52.21
<i>Clostridium butyricum</i>	NP	Positive	36	33.83	0.1	0.09884	28.6	35.8
<i>Comamonas testosteroni</i> TK102	P	Negative	39.89	34.91	0.8	0.8059	61.9	63.74
<i>Corynebacterium diphtheriae</i>	P	Positive	48.411	49.9	0.538	0.405	53.6	52.91
<i>Corynebacterium glutamicum</i> ATCC 13032	NP	Positive	47.47	46.74	0.56	0.3267	53.8	59.52
<i>Coxiella burnetii</i> RSA 493	P	Negative	52.24	53.76	0.49	0.5665	42.64	49.92
<i>Cupriavidus metallidurans</i> CH34	NP	Negative	40.37	30.27	0.81	0.8745	63.52	64.99
<i>Cutibacterium avidum</i> 44067	P	Positive	40.52	36.31	0.764	0.7449	63.5	64.51
<i>Deinococcus radiodurans</i> R1	NP	Positive	37.44	28.77	0.8732	0.9393	66.7	66.76
<i>Delftia acidovorans</i> SPH-1	P	Negative	34.39	30.84	0.88	0.9188	66.5	70.6
<i>Desulfovibrio vulgaris</i> str. Hildenborough	P	Negative	42.051	36.38	0.763	0.7705	63.24	63.04
<i>Edwardsiella ictaluri</i> 93-146	P	Negative	43.07	38.45	0.73	0.6878	57.4	58.31
<i>Eikenella corrodens</i> ATCC 23834	P	Negative	41.16	38.32	0.714	0.6146	55.7	53.88
<i>Eisenbergiella tayi</i>	NP	Negative	48.215	46.42	0.586	0.5222	46.8	51.42
<i>Ensifer adhaerens</i>	NP	Negative	40.38	29.21	0.815	0.8272	62.2	67.06
<i>Enterobacter (Klebsiella) aerogenes</i> KCTC 2190	P	Negative	43.77	37.36	0.7223	0.6441	54.8	57.2
<i>Enterococcus avium</i> ATCC 14025	P	Positive	50.33	38.28	0.372	0.1786	39.1	41.24
<i>Escherichia coli</i> IAI39	NP	Negative	47.96	44.85	0.606	0.5091	50.6	53.82
<i>Flavobacterium hydatis</i>	P	Negative	43.47	39.39	0.2107	0.1213	32.7	54.97
<i>Francisella philomiragia</i> subsp. <i>philomiragia</i> ATCC 25017	P	Negative	41.0375	33.83	0.15	0.08808	32.59	39.15
<i>Fusobacterium nucleatum</i>	P	Negative	33.153	30.57	0.08	0.02721	27	32.04
<i>Gallibacterium anatis</i> UMN179	P	Negative	45.371	40	0.407	0.3452	39.89	42.96
<i>Gardnerella vaginalis</i> 409-05	P	Gram Variable	44.71	43.91	0.281	0.2315	42	47.08
<i>Geobacillus subterraneus</i>	NP	Positive	42.583	43.67	0.751	0.7788	52.2	57.58
<i>Geobacter sulfurreducens</i> PCA	NP	Negative	42.76	33.86	0.791	0.8571	60.9	62.15
<i>Gluconobacter oxydans</i> 621H	NP	Negative	42.58	38.42	0.751	0.7771	60.84	65.17
<i>Granulibacter bethesdensis</i> CGDNIH1	P	Negative	46.099	37.13	0.707	0.8012	59.1	66.06
<i>Haemophilus influenzae</i> Rd KW20	P	Negative	43.909	44.54	0.329	0.244	38.2	41
<i>Halomonas boliviensis</i> LC1	NP	Negative	49.93	50.66	0.644	0.5198	54.6	55.53
<i>Helicobacter pylori</i> 26695	P	Negative	47.028	44.64	0.505	0.4167	38.9	43.78
<i>Ketogulonicigenium vulgare</i> WSH-001	NP	Negative	40.641	39.63	0.816	0.7981	61.73	64.03
<i>Klebsiella oxytoca</i>	P	Negative	44.152	39.72	0.728	0.6802	55.2	58.42
<i>Kocuria kristinae</i>	P	Positive	29.198	24.56	0.947	0.9577	71.8	70.75

<i>Lactobacillus amylovorus</i>	NP	Positive	44.77	44.07	0.262	0.1527	38.08	41.21
<i>Lactobacillus crispatus</i> ST1	P	Positive	44.95	36.61	0.273	0.1238	36.9	41.67
<i>Lactococcus garvieae</i> Lg2	P	Positive	47.9	34.19	0.311	0.161	38.8	43.29
<i>Lactococcus lactis</i> subsp. <i>lactis</i> II1403	NP	Positive	43.739	33.67	0.24	0.1161	35.3	41.95
<i>Methylobacterium aquaticum</i>	NP	Negative	33.251	26.96	0.921	0.9819	70.9	73.81
<i>Microbacterium foliorum</i>	NP	Positive	34.69	30.91	0.87	0.8455	67.9	67.8
<i>Micrococcus luteus</i> NCTC 2665	P	Positive	30.032	26.34	0.945	0.9731	73	73.85
<i>Moraxella catarrhalis</i> BBH18	P	Negative	47.72	44.35	0.403	0.3443	41.7	44.92
<i>Morganella morganii</i> subsp. <i>morganii</i> KT	P	Negative	43.39	38.92	0.653	0.6038	51.1	54.49
<i>Mycobacterium abscessus</i>	P	Positive	42.411	30.91	0.795	0.8455	64.1	67.87
<i>Neisseria gonorrhoeae</i> FA 1090	P	Negative	44.08	43.97	0.69	0.6	52.7	52.67
<i>Neorhizobium galegae</i> bv. <i>orientalis</i> str. HAMBI 540	NP	Negative	41.17	32.05	0.81	0.7837	61.25	65.83
<i>Obesumbacterium proteus</i>	NP	Negative	49.55	40.26	0.55	0.467	49.05	52.63
<i>Ochrobactrum anthropi</i> ATCC 49188	NP	Negative	46.8	36.7	0.675	0.6106	56.15	61.66
<i>Oenococcus oeni</i> PSU-1	NP	Positive	49.59	48.33	0.36	0.3065	37.9	44.23
<i>Orientia tsutsugamushi</i> str. Boryong	P	Negative	42.74	36.9	0.18	0.1351	30.5	35.02
<i>Pantoea ananatis</i> LMG 20103	NP	Negative	47.16	42.46	0.672	0.5794	53.7	55.24
<i>Phaeobacter gallaeciensis</i> DSM 26640	NP	Negative	45.35	41.71	0.738	0.7275	59.42	63.33
<i>Photobacterium kishitanii</i>	NP	Negative	44.94	39.99	0.309	0.2	38.8	45.09
<i>Photorhabdus temperata</i> subsp. <i>thracensis</i>	NP	Negative	50.35	44.89	0.452	0.4028	44.1	48.92
<i>Piscirickettsia salmonis</i> LF-89 = ATCC VR-1361	P	Negative	48	45.74	0.366	0.4731	39.62	43.83
<i>Pluralibacter gergoviae</i>	P	Negative	39.67	36.02	0.807	0.7534	59	59.2
<i>Polynucleobacter asymbioticus</i> QLW-P1DMWA-1	NP	Negative	51.531	41.18	0.4	0.2448	44.8	47.05
<i>Porphyromonas gingivalis</i> ATCC 33277	P	Negative	52.9	51.39	0.543	0.6288	48.4	52.26
<i>Prevotella melaninogenica</i> ATCC 25845	P	Negative	48.031	41.73	0.29	0.3109	40.99	47.93
<i>Prevotella ruminicola</i> 23	NP	Negative	46.06	41.02	0.505	0.4396	47.7	51.75
<i>Prochlorococcus marinus</i> str. AS9601	NP	Negative	40.69	37.8	0.173	0.2081	31.3	39.78
<i>Propionibacterium acnes</i> KPA171202	NP	Positive	48.063	45.69	0.67	0.5992	60	60.85
<i>Proteus mirabilis</i> HI4320	P	Negative	46.533	40.77	0.344	0.3184	38.88	45.24
<i>Providencia stuartii</i> MRSN 2154	P	Negative	49.64	45.56	0.392	0.3684	41.3	47.98
<i>Pseudoalteromonas luteoviolacea</i>	NP	Negative	51.78	47.2	0.372	0.3288	42	46.06
<i>Ralstonia pickettii</i> 12J	P	Negative	38.84	31.7	0.831	0.8312	63.62	64.17
<i>Ralstonia solanacearum</i> GMI1000	NP	Negative	34.87	28.7	0.896	0.9603	66.96	70.33
<i>Rhizobium etli</i> CFN 42	NP	Negative	42.22	33.46	0.802	0.7994	61.05	65.28

<i>Rhodanobacter thiooxydans</i>	NP	Negative	33.406	29.32	0.898	0.9163	67.2	67.85
<i>Rhodobacter sphaeroides</i> 2.4.1	NP	Negative	34.94	29.33	0.914	0.9228	68.78	70.95
<i>Rhodococcus aetherivorans</i>	NP	Positive	33.051	29.55	0.913	0.9336	70.44	69.67
<i>Rhodococcus equi</i> 103S	P	Positive	34.749	30.2	0.878	0.8315	68.8	71.68
<i>Rhodospirillum rubrum</i> ATCC 11170	NP	Negative	37.7	35.01	0.88	0.8929	65.33	69.87
<i>Rickettsia conorii</i> str. Malish 7	P	Negative	44.194	42.27	0.23	0.2379	32.4	38.04
<i>Riemerella anatipestifer</i> ATCC 11845 = DSM 15868	NP	Negative	45.19	42.56	0.257	0.1646	35	36.49
<i>Rothia dentocariosa</i>	P	Positive	48.9	40.33	0.58	0.496	53.8	57.84
<i>Rothia dentocariosa</i> ATCC 17931	NP	Positive	49.34	47.28	0.575	0.448	53.7	55.45
<i>Salinibacter ruber</i> DSM 13855	NP	Negative	38.68	31.59	0.864	0.9605	66.12	67.12
<i>Salinispora tropica</i> CNB-440	NP	Positive	36.56	35.49	0.85	0.7911	69.5	66.49
<i>Salmonella enterica</i> subsp. <i>enterica</i> serovar <i>Typhi</i> str. CT18	P	Negative	47.73	41.55	0.646	0.6818	51.88	57.64
<i>Selenomonas noxia</i> ATCC 43541	NP	Negative	44.83	38	0.69	0.7037	55.8	60.93
<i>Serratia fonticola</i>	NP	Negative	46.17	37.3	0.69	0.6712	53.8	57.84
<i>Serratia rubidaea</i>	P	Negative	38.52	36.06	0.836	0.7281	59.25	58.4
<i>Shewanella baltica</i> OS678	NP	Negative	50.59	45.79	0.537	0.4018	46.28	50.76
<i>Shigella dysenteriae</i> Sd197	NP	Negative	48.9	44.82	0.613	0.5273	50.92	54.17
<i>Shigella flexneri</i> 2a str. 301	P	Negative	48.64	44.97	0.603	0.5291	50.67	54.17
<i>Sinorhizobium fredii</i> NGR234	NP	Negative	41.64	33.64	0.8167	0.8261	62.4	66.27
<i>Staphylococcus aureus</i>	P	Positive	41.019	34.09	0.207	0.07407	32.7	38.53
<i>Staphylococcus capitis</i> subsp. <i>capitis</i>	NP	Positive	41.48	37.79	0.192	0.1179	32.94	39.98
<i>Stenotrophomonas maltophilia</i>	P	Negative	32.627	26.77	0.88	0.8976	66.4	68.12
<i>Streptococcus agalactiae</i> 2603V/R	NP	Positive	44.496	36.22	0.22	0.1273	35.6	40.05
<i>Streptococcus pneumoniae</i> R6	P	Positive	47.61	38.53	0.314	0.193	39.7	44.52
<i>Streptomyces lydicus</i>	NP	Positive	31.6	28.92	0.928	0.9067	72.05	71.13
<i>Thioalkalivibrio versutus</i>	NP	Negative	36.13	33.78	0.874	0.8987	66.2	64.94
<i>Treponema denticola</i> ATCC 35405	NP	Negative	49.47	42.35	0.37	0.2383	37.9	39.8
<i>Tropheryma whipplei</i> str. Twist	P	Positive	54.87	52.62	0.429	0.4834	46.3	51.47
<i>Vibrio alginolyticus</i> NBRC 15630 = ATCC 17749	P	Negative	50.85	45.75	0.401	0.2763	44.7	48.02
<i>Weissella cibaria</i>	NP	Positive	45.69	37.12	0.414	0.308	44.9	48.74
<i>Wolbachia endosymbiont of Drosophila melanogaster</i>	NP	Negative	46.88	41.99	0.245	0.1648	35.2	38.4
<i>Xanthomonas campestris</i> pv. <i>campestris</i> str. ATCC 33913	NP	Negative	36.64	30.17	0.853	0.8745	65.1	66.42
<i>Xenorhabdus bovienii</i> SS-2004	NP	Negative	51.25	48.23	0.475	0.4486	45	49.91

<i>Xylella fastidiosa</i> 9a5c	NP	Negative	48.926	42.99	0.556	0.4735	52.64	54.45
<i>Yersinia al dovae</i>	NP	Negative	50.561	48.11	0.541	0.4928	47.7	51.91
<i>Yersinia pestis</i> CO92	P	Negative	51.021	45.27	0.54	0.5117	47.61	52.52

158

159

160 After analysing the codon usage data of *ftsZ* from the 142 species we found that
161 *Kocuria kristinae*, which is a pathogenic, Gram-positive bacteria exhibits the lowest Nc value
162 of 24.65 among all the organisms. On the other hand, *Chlamydophila pneumoniae* CWL 029,
163 a pathogenic, Gram-negative bacteria exhibited the highest Nc value of 61. A higher Nc value
164 indicates poor codon bias of the gene [36]. Analysing the mean genomic Nc value of all the
165 organisms studied, it was observed that the lowest mean genomic Nc value (29.198) is
166 depicted by the organism *Kocuria kristinae*, a pathogenic, Gram-positive bacteria whereas
167 the maximum mean genomic Nc value (55.68) is depicted by a pathogenic, Gram-negative
168 bacteria called *Anaplasma marginale* str. Florida. Our observations primarily suggest that the
169 degree of codon bias in the pathogenic organisms span a wider range.

170 Following the trend in Nc values, we clearly observed that the mean genomic Nc in
171 majority of the organisms is higher than the genic Nc of *ftsZ*. This suggests that the *ftsZ* gene
172 is subjected to greater codon bias in comparison to the genomic Nc. But in case of nine
173 organisms, exceptions were evident. These organisms include *Haemophilus influenzae* Rd
174 KW20, *Halomonas boliviensis* LC1, *Geobacillus subterraneus*, *Anaplasma marginale* str.
175 Florida, *Corynebacterium diphtheriae*, *Coxiella burnetii* RSA 493, *Caldicellulosiruptor bescii*
176 DSM 6725, *Brucella melitensis* bv. 1 str. 16M and *Chlamydophila pneumoniae* CWL029.
177 Most of these organisms are Gram negative and pathogenic in nature.

178 In case of GC3 content, *Arcobacter butzleri* RM 4018, a pathogenic Gram negative
179 strain depicted the lowest GC3 value for *ftsZ* gene (0.01974). The maximum GC3 content for

180 *ftsZ* was shown by *Methylobacterium aquaticum* (0.9819), a non-pathogenic Gram negative
181 bacteria.

182 Statistical analysis demonstrated a significant positive correlation between the mean
183 genomic Nc and *ftsZ* genic Nc by Spearman's Rank correlation ($\rho=0.863$, $p<<0.01$). We have
184 also detected a significant negative correlation between the Nc and GC3 of the *ftsZ* gene
185 ($(\rho=-0.491$, $p<<0.01$) by Spearman's rank correlation.

186 The study of the relation between Nc and GC3 is an important analytical tool for
187 examining codon bias. So, to better understand the codon usage bias profile of the *ftsZ* genes
188 an Nc-plot was constructed. Analysis of the Nc-plot shows that the *ftsZ* genes of three
189 pathogenic organisms—*Anaplasma marginale* str. Florida, *Brucella melitensis* bv. 1 str. 16M
190 and *Chlamydophila pneumoniae* CWL029 occupy distinct positions on the Nc-plot (Fig 1).
191 The common features shared by these three organisms are that they are Gram negative and
192 pathogenic in nature. The bacteria *Anaplasma marginale* is a member of the order
193 Rickettsiales. It is a small, obligate intracellular bacteria that typically have short genomes
194 due to reductive evolution and survive as endosymbionts. It is also responsible for an
195 infectious, noncontagious disease called bovine anaplasmosis in cattle and other ruminants
196 [37]. The other organism *Brucella melitensis* is responsible for brucellosis, a common health
197 hazard in people living in close vicinity of cattle [38]. The third organism called
198 *Chlamydophila pneumoniae* represents an intracellular pathogen instigating different acute
199 and chronic infections and has been found to be associated with chronic neurological
200 disorders such as Alzheimer's disease and multiple sclerosis. Infection by *C. pneumoniae*
201 which is a common cause of human respiratory disease [39] has also been suspected to cause
202 chronic fatigue syndrome and the linked syndrome polymyalgia rheumatic in some patients
203 [40].

204 In order to study the compositional divergence of the gene sequences coding for *FtsZ*
205 protein in the selected organisms with respect to their whole genome, the difference between
206 the mean genomic GC content with the GC content of *ftsZ* gene, mean genomic Nc with Nc
207 of *ftsZ* and the difference between average whole genome GC3 content with that of the *ftsZ*
208 coding sequence was analysed.

209

210 **Difference between mean genomic GC and *ftsZ* GC:**

211 The guanine-cytosine (GC) composition of bacterial genomes is a very important
212 taxonomic marker from the genomics perspective. The GC content of a genome as well as
213 that of a gene have been reported to be a significant genomic indicator for comparison
214 between covalently closed circular plasmid DNA and chromosomes [41], and for
215 distinguishing between vertically and horizontally transferred genes [42]. In our study we
216 found that, out of the 143 organisms, the *ftsZ* CDS of 49 organisms depicted greater than 10%
217 GC skew in comparison to their genomic GC content. Among these organisms, *Coxiella*
218 *burnetii* RSA 493, *Rickettsia conorii* str. Malish 7, *Staphylococcus aureus*, *Bacteroides*
219 *cellulosilyticus*, *Fusobacterium nucleatum*, *Lactococcus lactis* subsp. *lactis* II1403,
220 *Anaerostipes hadrus* DSM 3319 and *Acinetobacter johnsonii* XBB1 demonstrates 15%
221 greater usage of guanine and cytosine residues in their *ftsZ* CDS in comparison to the whole
222 genome GC content. In comparison to the genomic GC content, a relatively greater usage of
223 guanine and cytosine residues (more than 20% to 68%) was observed in the *ftsZ* CDS of
224 *Francisella philomiragia* subsp. *philomiragia* ATCC 25017, *Staphylococcus capitis* subsp.
225 *capitis*, *Clostridium butyricum*, *Prochlorococcus marinus* str. AS9601, *Buchnera aphidicola*
226 str. APS, *Borrelia burgdorferi* B31 and *Flavobacterium hydatis*. The GC content of *ftsZ* CDS
227 in comparison to the genomic GC of *Flavobacterium hydatis* was an extraordinarily 68%
228 greater. On the other hand, the GC content of *ftsZ* CDS in comparison to the genomic GC

229 content of organisms like *Bacillus mycoides*, *Capnocytophaga ochracea* DSM 7271,
230 *Salinispora tropica* CNB-440, *Eikenella corrodens* ATCC 23834 and *Bordetella*
231 *bronchiseptica* 253 was found to be 2% to 6% lower. A Mann-Whitney U test was conducted
232 to statistically validate the difference between the genomic GC content and the *ftsZ* genic GC
233 content of the 143 species. The results suggest that the genomic GC content and *ftsZ* GC
234 content differs significantly ($U=8536.50$, $p=0.016$). All of the above findings clearly suggest
235 that the nucleotide composition of the gene coding for FtsZ protein in a large number of
236 species deviates significantly from their genomic GC content. The deviation of GC content of
237 a coding sequence or a patch of nucleotides from the genomic GC content is a possible
238 pointer towards horizontal gene transfer or HGT [43], and our analysis using Mann-Whitney
239 U test also points in that direction.

240

241 **Difference between mean genomic Nc and *ftsZ* Nc:**

242 Out of the 143 organisms, about 93% (134 species) demonstrated relatively biased
243 codon usage configuration in terms of Nc value. Of these 143 organisms, 21 species *viz.*,
244 *Lactococcus garvieae* Lg2, *Ensifer adhaerens*, *Mycobacterium abscessus*, *Aerococcus*
245 *viridans*, *Cupriavidus metallidurans* CH34, *Enterococcus avium* ATCC 14025, *Deinococcus*
246 *radiodurans* R1, *Lactococcus lactis* subsp. *lactis* II1403, *Butyrivibrio proteoclasticus* B316,
247 *Neorhizobium galegae* bv. *orientalis* str. HAMBI 540, *Ochrobactrum anthropi* ATCC 49188,
248 *Geobacter sulfurreducens* PCA, *Rhizobium etli* CFN 42, *Polynucleobacter asymbioticus*
249 QLW-P1DMWA-1, *Burkholderia ubonensis* MSMB22, *Granulibacter bethesdensis*
250 CGDNIH1, *Alteromonas macleodii* ATCC 27126, *Sinorhizobium fredii* NGR234, *Serratia*
251 *fonticola* and *Streptococcus pneumoniae* R6 demonstrated Nc values of *ftsZ* coding
252 sequences that are 20% or less than their mean genomic Nc values. This is suggestive of a
253 significant codon bias existing within the *ftsZ* CDS. On the other hand, the *ftsZ* CDS of two

254 Gram negative and pathogenic species *Chlamydophila pneumoniae* CWL029 and *Brucella*
255 *melitensis* bv. 1 str. 16M were found to display Nc values twenty units greater than their
256 mean genomic Nc score.

257

258 **Difference between mean genomic GC3 and genic *ftsZ* GC3:**

259 Out of the 143 organisms, the *ftsZ* CDS of organisms like *Fusobacterium nucleatum*,
260 *Arcobacter butzleri* RM4018, *Staphylococcus aureus*, *Aerococcus viridans*, *Lactobacillus*
261 *crispatus* ST1, *Enterococcus avium* ATCC 14025, *Lactococcus lactis* subsp. *lactis* II1403,
262 *Bacillus mycoides*, *Butyrivibrio proteoclasticus* B316 had GC3 content which was
263 substantially less (upto 66% lesser) than the mean genomic GC3 content. Barring
264 *Lactococcus lactis* subsp. *lactis* II1403, *Bacillus mycoides* and *Butyrivibrio proteoclasticus*
265 B316, the remaining organisms are pathogenic in nature. This is an interesting observation
266 which shows that the *ftsZ* ORFs of these pathogenic bacteria are structured without
267 significant bias towards G and C ending codons. Organisms like *Prochlorococcus marinus*
268 str. AS9601, *Piscirickettsia salmonis* LF-89 and *Bacteroides cellulosilyticus* on the other
269 hand, had significantly greater GC3 (20%, 29% and 40% respectively) in their *ftsZ* CDS
270 compared to their genomic GC3 content.

271

272 **Analysis of codon usage to detect ‘core’ set of codons used in structuring of** 273 ***ftsZ*:**

274 The individual usage frequency of the 61 sense codons from the 143 organisms were
275 calculated. Out of the 61 sense codons, the two non-degenerate codons coding for methionine
276 and tryptophan were eliminated. For the remaining 18 amino acids, the 59 codons were
277 grouped in to their degenerate classes of 2, 3, 4 and 6 codons. This analysis was performed to
278 find out if there exists a preferred set of ‘core’ codons for each of the amino acids used in

279 structuring of the *ftsZ* CDS. A Kruskal-Wallis one way analysis of variance on ranks was
280 carried out for the amino acids coded by 3, 4 and 6 codons, whereas Mann-Whitney Rank
281 Sum test was used to test the codon preference in the two codon family amino acids. The
282 results established the fact that, out of the 18 amino acids, the codons of three amino acids
283 namely aspartic acid, histidine and alanine are randomly utilised on a global scale for
284 structuring the *ftsZ* CDS. On the other hand, the codons for the remaining 15 amino acids
285 show a non-random utilization pattern. These amino acids include cysteine, glutamine,
286 phenylalanine, glycine, isoleucine, lysine, leucine, asparagine, proline, glutamine, arginine,
287 serine, threonine, valine and tyrosine. Table 2 contains the Mann-Whitney U statistic and the
288 H-value with degrees of freedom for the Kruskal-Wallis one way analysis of variance on
289 ranks with their corresponding *p*-value obtained from the tests. Our analysis using both the
290 above mentioned robust inferential statistical tools suggest that for all the 18 amino acids
291 (except aspartic acid, histidine and alanine) the differences in the median values among the
292 codon groups are greater than would be expected by chance and hence there is a statistically
293 significant difference at *p*=<0.001 level. This is an important finding suggesting the antiquity
294 and conservation of a preferred set of codons in structuring of a vital gene such as the *ftsZ*
295 gene.

296 **Table 2:** Mann-Whitney U statistic and the H-value with degrees of freedom for the Kruskal-Wallis one
297 way ANOVA on ranks on codon usage to detect 'core' set of codons used in structuring of *ftsZ*.

Sl. No.	Amino acid	Degenerate codon family	Mann-Whitney U statistic	H-value with degrees of freedom (df) for the Kruskal-Wallis one way analysis of variance on ranks	p-value
1	Cys	2	8029.50	-	<0.001
2	Glu	2	5622.00	-	<0.001
3	Phe	2	8375.50	-	0.008
4	Lys	2	7552.00	-	<0.001
5	Asn	2	6426.00	-	<0.001

6	Gln	2	6384.00	-	<0.001
7	His	2	9211.00	-	0.145
8	Asp	2	9565.50	-	0.346
9	Tyr	2	8696.50	-	0.001
10	Ile	3	-	229.853, df=2	<0.001
11	Gly	4	-	273.266, df=3	<0.001
12	Thr	4	-	70.997, df=3	<0.001
13	Val	4	-	49.583, df=3	<0.001
14	Ala	4	-	3.777, df=3	0.287
15	Pro	4	-	69.438, df=3	<0.001
16	Leu	6	-	144.051, df=5	<0.001
17	Arg	6	-	406.291, df=5	<0.001
18	Ser	6	-	76.847, df=5	<0.001

298

299

300

301 **Two factor ANOVA on codon usage of *ftsZ* CDS to study the relationship**
302 **of the frequency of the individual 61 sense codons and their interrelation**
303 **with lifestyle and Gram nature of bacteria:**

304 Sixty one separate variance analysis tests called two factor (or two way) ANOVA was
305 performed to find out how the two major factors namely lifestyle (pathogenic or non-
306 pathogenic), Gram nature and interaction of these two factors influence the coding
307 composition of the *ftsZ* CDS in the selected organisms at $p<0.01$ level of significance. A
308 critical analysis of the results show that the compositional bias of eight codons coding for six
309 amino acids is influenced mostly by the Gram nature of the organisms and in some instances
310 by the interaction of lifestyle and Gram nature. In our study, we find that the compositional
311 bias of the codons AUG (methionine), UCA (serine), UAU (tyrosine) and UAC (tyrosine) is
312 influenced solely by the Gram nature of the organism. On the other hand, the compositional

313 frequency of the codons GGA (glycine), CUU (leucine), CUG (leucine) and ACA (threonine)
314 is influenced by the interaction between the Gram nature of the organism and their lifestyle
315 preference of being either pathogenic or non-pathogenic. The two way ANOVA results
316 suggest that the codon organization of the *ftsZ* CDS is determined largely by the Gram nature
317 and pathogenic/non-pathogenic nature of the organisms, and it is a non-randomly constituted
318 sequence in terms of codon deployment.

319

320 **Utilization of two factor ANOVA on *ftsZ* CDS to study the frequency of the**
321 **individual 20 amino acids and their interrelation with lifestyle and Gram**
322 **nature:**

323 To further comprehend the codon deployment pattern of the *ftsZ* CDS, a two way
324 ANOVA was carried out by grouping the different codons according to the amino acids they
325 code (for example alanine is coded by four codons and these four codons are clubbed into a
326 single category to estimate the total frequency of alanine residues present in the CDS).
327 Twenty discrete two way ANOVA analysis was carried out to find if the two factors namely
328 lifestyle, Gram nature and interaction of these two factors influence the amino acid
329 composition of the *ftsZ* CDS in the selected organisms (at $p<0.01$ level of significance) or, is
330 the amino acid composition random in nature. All the post-hoc pairwise multiple comparison
331 in the analysis was performed using the Holm-Sidak method of pairwise multiple comparison
332 [44,45]. The results show that the compositional frequency of the amino acids glutamic acid,
333 phenylalanine, leucine, valine, glutamine, threonine and tryptophan is influenced neither by
334 the lifestyle nor the Gram nature of the organism. But, the frequency of the amino acids like
335 aspartic acid, histidine, glycine, methionine, cysteine and tyrosine is influenced by the Gram
336 nature of the organism ($p<0.01$ level). This shows that the compositional frequency of at least
337 one amino acid from the four different chemical classes of amino acids is directly associated

338 with the Gram nature of the bacteria. Another interesting observation is that the two sulphur
339 containing amino acids methionine and cysteine are both involved in inducing compositional
340 variability based on the wall nature of the bacterium. The hydroxymethyl side chain
341 containing polar amino acid serine was found to be unique in the sense that a two factor
342 ANOVA on composition frequency of serine detected that it is influenced both by the Gram
343 nature and lifestyle of the organism. No amino acid other than serine was found to be
344 influenced by the lifestyle of the organism. Thus, serine appears to be the only amino acid in
345 the FtsZ protein which acts as a marker of the lifestyle of the bacterial species considered in
346 this study. In case of the compositional frequency of the remaining amino acids like alanine,
347 isoleucine, proline, lysine, arginine and asparagine the effect of lifestyle was found to rest on
348 the Gram nature of the organisms at $p < 0.01$ level.

349

350 **Identity and cluster based analysis of *ftsZ* CDS:**

351 The sequence identity of the 143 FtsZ proteins were determined using Clustal Omega
352 [32]. We observed that the identity of the FtsZ proteins fluctuated tremendously among the
353 different bacterial species. The identity was found to range from 13% to 93% among the
354 organisms selected for this study. The FtsZ protein of organisms like *Pluralibacter*
355 *gergoviae*, *Chronobacter sakazakii*, *Shigella flexneri* 2a str. 301, *Salmonella enterica* subsp.
356 *enterica* serovar *Typhi* str. CT18, *Klebsiella oxytoca*, *Citrobacter amalonaticus*, *Enterobacter*
357 *aerogenes* KCTC 2190, *Escherichia coli* IAI39, *Shigella dysenteriae* Sd197, *Edwardsiella*
358 *ictaluri* 93-146, *Obesumbacterium proteus*, *Yersinia aldovae*, *Yersinia pestis* CO92, *Serratia*
359 *rubidaea*, *Pantoea ananatis* LMG 20103, *Chania multitudinisentens* RB-25, *Serratia*
360 *fonticola*, *Photorhabdus temperata* subsp. *thracensis*, *Xenorhabdus bovienii* SS-2004,
361 *Morganella morganii* subsp. *morganii* KT, *Proteus mirabilis* HI4320 and *Providencia*
362 *stuartii* MRSN 2154 was found to share greater than 90% identity. On the other hand

363 organisms like *Chromobacterium subtsugae*, *Helicobacter pylori* 26695, *Arcobacter butzleri*
364 RM4018, *Ralstonia solanacearum* GMI1000 and *Fusobacterium nucleatum* was found to
365 share less than 15% identity in their FtsZ protein sequences.

366 The 143 *ftsZ* CDS were subjected to clustering using CD-HIT with a 50% similarity
367 threshold. A tabular account of the 17 clusters generated using CD-HIT along with the
368 number of representative sequences for each cluster is given in Table 3. From the data given
369 in Table 3, it is quite evident that the majority of the sequences are grouped together in the
370 first two clusters which contains 43% of the total *ftsZ* CDS (41 sequences in Cluster 0 and 21
371 sequences in Cluster 1). The amino acid sequence of the corresponding *ftsZ* CDS representing
372 the first four cluster i.e., *Pseudoalteromonas luteoviolacea* (Cluster 0), *Cutibacterium avidum*
373 44067 (Cluster 1), *Streptococcus agalactiae* 2603V/R (Cluster 2) and *Burkholderia*
374 *ubonensis* MSMB22 (Cluster 3) were subjected to secondary structure prediction using SSpro
375 module of SCRATCH Protein Predictor (<http://scratch.proteomics.ics.uci.edu/>)[46]. SSpro
376 catalogues three classes of secondary structure and based on that, the amino acid residues
377 constituting the four FtsZ proteins have been identified as H (alpha helix), E (strand) and C
378 (all the rest secondary structural elements). We have meticulously aligned the *ftsZ* gene
379 sequences with their corresponding amino acid sequence, and secondary structure mark-up
380 sequence generated using SSpro. Using this triple alignment for each of the four
381 representative sequence, we have identified the individual codons coding for each of the
382 different amino acids. Then we have tied the same with the codons encoding the different
383 secondary structures (Figs. 2-5). We have analysed the RSCU values of the *ftsZ* CDS by
384 splitting the sequences according to the tendency of the residues in constituting the three
385 different secondary structural element classes. A graphical representation of the RSCU values
386 is given in Fig. 6. An amino acid wise comparative analysis of the four representative *ftsZ*
387 CDS is discussed in the succeeding sections.

388 **Table 3:** Clusters of *ftsZ* gene sequences generated using CD-HIT with a similarity threshold of 50 percent.
389

Cluster at 50% identity	No. of sequences in the cluster	Representative sequence	Length of the representative sequence
Cluster 0	41	<i>Pseudoalteromonas luteoviolacea</i>	418
Cluster 1	21	<i>Cutibacterium avidum</i> 44067	417
Cluster 2	9	<i>Streptococcus agalactiae</i> 2603V/R	419
Cluster 3	6	<i>Burkholderia ubonensis</i> MSMB22	399
Cluster 4	4	<i>Butyrivibrio proteoclasticus</i> B316	412
Cluster 5	3	<i>Acinetobacter johnsonii</i> XBB1	398
Cluster 6	2	<i>Neisseria gonorrhoeae</i> FA 1090	392
Cluster 7	2	<i>Geobacter sulfurreducens</i> PCA	383
Cluster 8	2	<i>Anaplasma marginale</i> str. Florida	412
Cluster 9	1	<i>Fusobacterium nucleatum</i>	360
Cluster 10	1	<i>Deinococcus radiodurans</i> R1	371
Cluster 11	1	<i>Helicobacter pylori</i> 26695	385
Cluster 12	1	<i>Arcobacter butzleri</i> RM4018	377
Cluster 13	1	<i>Chromobacterium subtsugae</i>	400
Cluster 14	1	<i>Ralstonia solanacearum</i> GMI1000	408
Cluster 15	1	<i>Borrelia burgdorferi</i> B31	399
Cluster 16	1	<i>Selenomonas noxia</i> ATCC 43541	412

390
391

392 **Amino acid wise comparative RSCU analysis of the helix, strand and other
393 structural element constituting residues:**

394 A RSCU analysis of the sense codons used for coding the amino acids of the FtsZ
395 protein was carried out. The triple markup sequences from *Pseudoalteromonas luteoviolacea*,
396 *Cutibacterium avidum* 44067, *Streptococcus agalactiae* 2603V/R and *Burkholderia*
397 *ubonensis* MSMB22, described in the preceding section was used to classify the codons into
398 three types based on the type of secondary structural elements they constitute. An amino acid
399 wise description of the RSCU of the sixty one sense codons used in structuring of the *ftsZ*
400 CDS is described below. On the basis of chemical nature, the amino acids have been
401 classified into four groups— non-polar, polar basic, polar acidic and polar neutral.

402 **Non Polar amino acids:**

403 **Glycine:** In case of glycine, the residues constituting the helix in proteins are encoded
404 by the codons GGU, GGA, GGG and GGC. *Burkholderia* does not use the codons GGU and

405 GGA. The codon GGC is used by all the four organisms— *Cutibacterium*, *Burkholderia*,
406 *Pseudoalteromonas*, and *Streptococcus*. The codon GGU is used by three organisms except
407 *Burkholderia* whereas GGG is shared by *Burkholderia* and *Streptococcus*. GGA is absent
408 only in *Burkholderia*. In case of the strand region, *Cutibacterium* utilizes all the four codons
409 whereas *Burkholderia* and *Pseudoalteromonas* use only two codons GGU and GGC.
410 Likewise, *Streptococcus* also prefers the two codons GGU and GGG only. This suggests that
411 in these three bacterial species there is a preference towards a certain subset of codons in
412 coding the glycine residues positioned in the strand regions. In all the remaining secondary
413 structural elements, all the organisms are found to use GGU, GGG and GGC. The GGA
414 codon was found to be absent in *Burkholderia*.

415 **Alanine:** The amino acid alanine is near universally encoded by GCU, GCC, GCA
416 and GCG. In the helix region, we observed that *Burkholderia* does not use the codon GCU.
417 GCG and GCC codons are used by all the four organisms. GCA is found to be absent in
418 *Cutibacterium*. All the four codons are found to be employed by *Streptococcus*. But in the
419 strand region, GCU and GCA are used only by *Streptococcus*. Two other codons, GCG and
420 GCC are used by *Burkholderia* alone. In the remaining regions, all the four codons are used
421 randomly by all the organisms.

422 **Valine:** It is encoded by GUU, GUC, GUA and GUG. In the helix region, GUU is
423 not used by *Burkholderia* but the codon GUG is used by all the four organisms. Codon GUC
424 is found to be absent in *Pseudoalteromonas*, whereas GUA was shared by two organisms,
425 *Pseudoalteromonas* and *Streptococcus*. In contrast to the helix region, in the strand region
426 *Pseudoalteromonas* use all the valine synonym triplets. *Cutibacterium* was found to use three
427 codons, GUG, GUC and GUA, but in *Streptococcus* it was GUU, GUC and GUA.
428 *Burkholderia* majorly uses GUG and GUC and a small frequency of GUU. *Burkholderia* does
429 not use the codon GUA. In all the remaining regions, GUU was not used by *Burkholderia*.

430 All the four organisms use two codons i.e. GUG and GUC. Codon GUA was found only in
431 *Streptococcus* and *Pseudoalteromonas*.

432 **Methionine:** Since methionine is coded by a single codon AUG, we observed that
433 for all the three regions, the codon AUG is preferred by all the four species.

434 **Leucine:** It is one of the three amino acids which is encoded by six different codons
435 UUA, UUG, CUU, CUC, CUG and CUA. In the helix elements, the codon CUC is present
436 only in *Burkholderia* and *Cutibacterium*, but CUG is present in all the four organisms. CUU
437 present only in *Pseudoalteromonas* and *Streptococcus*. The codon UUA is found to be used
438 by only one organism— *Pseudoalteromonas*. Codon UUG used by all the organisms whereas
439 the codon CUA is totally absent in the helix region. In the strand region, *Burkholderia* uses
440 only one codon CUG, whereas *Cutibacterium* use the codons CUC and CUG and
441 *Pseudoalteromonas* uses three codons (CUU, UUA, and UUG). *Streptococcus* uses CUA,
442 CUC, CUU and UUG codons. It was observed that there are two codons which are used by
443 only two organisms— CUA is used by *Streptococcus* and UUA by *Pseudoalteromonas* alone.
444 No organism was found to use all the 6 codons. Now if we look at the remaining regions, it
445 was observed that the codon CUA is not used by any of the species. The codon CUG is used
446 by three organisms except *Streptococcus*. Codon CUC is used by *Burkholderia* and
447 *Cutibacterium* whereas CUU and UUA is not used by *Burkholderia* and *Cutibacterium* and
448 *Pseudoalteromonas* does not use the codon UUG.

449 **Isoleucine:** In the helix regions, the codon AUU is absent in *Burkholderia*. The codon
450 AUC is used by all the organisms whereas AUA remains totally absent. But in the strand
451 regions, codon AUA is used only by *Pseudoalteromonas* which also uses the other two
452 codons AUU and AUC. *Burkholderia* uses only AUC but *Streptococcus* uses AUU and AUC.
453 In the rest of the remaining regions, codon AUU is not used by *Burkholderia*. Similarly AUC

454 is not used by *Streptococcus* but used by the remaining three organisms. Codon AUA is not
455 used by any of the organisms.

456 **Proline:** In the helix regions, codon CCA is used by only two organisms—
457 *Pseudoalteromonas* and *Streptococcus* whereas codon CCC is used by a single organism,
458 *Cutibacterium*. Three organisms use the codon CCU except *Burkholderia*. CCG is used by
459 *Burkholderia* alone. In the strand regions, out of the four codons of proline, CCC is used by
460 *Cutibacterium* and CCU by *Pseudoalteromonas*. The rest two codons aren't used. In case of
461 the remaining secondary structural elements, *Cutibacterium* is found to use all the four
462 codons. Codon CCU and CCA are not used by *Burkholderia* whereas the codon CCC is used
463 by *Cutibacterium* and *Streptococcus*; CCG codon is not used by *Pseudoalteromonas*.

464 **Phenylalanine:** Phenylalanine, a non-polar aromatic amino acid is encoded by two
465 codons— UUU and UUC. Considering the codon usage of the phenylalanine residues in the
466 helix regions, the codon UUU is used by *Pseudoalteromonas* and *Streptococcus* whereas
467 UUC is used by all the organisms except *Pseudoalteromonas*. But in strand elements, codon
468 UUU is only used by *Streptococcus* and *Pseudoalteromonas*. The use of UUC is totally
469 avoided here. In case of the remaining secondary structural elements, UUU codon is used by
470 all the four species.

471 **Tryptophan:** The amino acid tryptophan is encoded by a single codon UGG in a
472 near universal manner. In case of helix elements of *ftsZ* CDS, this amino acid is totally
473 absent. In the strand elements, UGG is used only by *Streptococcus* whereas in the remaining
474 elements, tryptophan is found to be used by *Burkholderia* and *Streptococcus*.

475 **Tyrosine:** In the helix regions, we found that the codon UAC is used by
476 *Burkholderia* alone. Similarly *Pseudoalteromonas* use the codon UAU. In strand regions,
477 UAU remains totally absent whereas UAC is used by *Burkholderia* alone. UAC is not used

478 by *Pseudoalteromonas*. In the remaining regions, UAU is found to be used by the organisms
479 *Streptococcus* and *Pseudoalteromonas*.

480 **Polar Basic amino acids:**

481 **Histidine:** In the helix regions, histidine is coded by CAC in three of the organisms
482 except *Streptococcus*. Similarly, another codon CAU is preferred in the helix regions by all
483 the three organisms except *Cutibacterium*. In the extended strand regions, our analysis shows
484 that the amino acid histidine isn't used by any of the four organisms. For the rest of the
485 remaining secondary structural elements CAU is preferred by all the four organisms except
486 *Streptococcus* which uses CAC.

487 **Lysine:** This amino acid is encoded by two codons— AAA and AAG. In the helix
488 regions lysine is found to be coded by the homo triplet AAA in the studied organisms except
489 *Burkholderia*. AAG was found to be employed by all the four organisms. In the strand
490 regions, the triplet AAA is used by the organisms *Pseudoalteromonas* and *Streptococcus*
491 whereas AAG is preferred by *Burkholderia* and *Cutibacterium*. For the remaining secondary
492 structural elements, the preference for AAA is restricted to *Pseudoalteromonas* and
493 *Streptococcus*, a scenario exactly similar to the strand region.

494 **Arginine:** This is one of the three amino acid which is encoded by the maximum
495 number of degenerate codons – CGU, CGC, CGA, CGG, AGA and AGG. In the helix
496 regions, none of the four organisms were found to use the codon CGA. The remaining
497 organisms display preference towards the use of specific codons. The codon AGA is used by
498 only one organism *Pseudoalteromonas* whereas AGG is preferred by *Cutibacterium* and
499 *Pseudoalteromonas*. *Streptococcus* does not use the codon CGC whereas CGG is used by
500 *Burkholderia* alone. *Streptococcus* uses the codon CGU in the maximum frequency than the
501 remaining organisms whereas it was found to be absent in *Pseudoalteromonas*. In the strand
502 regions only three codons are used out of the six— AGA, CGC and CGU. This suggests the

503 preference of the organism towards specific codons for encoding the amino acids that have
504 the propensity to be included in the strand regions of FtsZ protein. AGA is used by
505 *Pseudoalteromonas* alone whereas CGC is used by all except *Streptococcus*. *Burkholderia*
506 does not use the codon CGU. *Cutibacterium* on the other hand uses two codons— CGC and
507 CGU whereas *Streptococcus* use only CGU. *Burkholderia* uses the codon CGC only for
508 encoding the amino acids in the strand regions.

509 In the remaining structural elements, out of the six codons two are totally absent and
510 this are CGG and AGA. CGA is used only by *Cutibacterium*, whereas AGG is used only by
511 *Streptococcus*. The codon CGC is used by three organisms except *Pseudoalteromonas*. CGU
512 is found to be used by *Cutibacterium*, *Pseudoalteromonas*, *Streptococcus* and comparatively
513 in lesser frequency by *Burkholderia*.

514 **Polar acidic amino acids**

515 **Aspartic acid:** In the helix region, all the four organisms use both the codons GAU
516 and GAC, but the frequency of GAU used by *Cutibacterium* is very low. In contrast to the
517 helix regions, in strand regions we found that *Pseudoalteromonas* does not use aspartic acid.
518 *Streptococcus* use GAU alone whereas GAC is used by *Burkholderia* and *Cutibacterium*.

519 **Glutamic acid:** This amino acid is represented by the codons GAA and GAG. In the
520 helix, GAG is used by all the four organisms whereas GAA is used by all except
521 *Cutibacterium*. In the E region, GAA is used by *Burkholderia* and *Streptococcus* whereas
522 GAG is used by *Cutibacterium* alone. Both the codons are found to remain absent in
523 *Pseudoalteromonas*. In the rest of the structural elements, GAG is preferred by all the
524 organisms, but GAA is not used by *Cutibacterium*.

525 **Polar Neutral amino acids:**

526 **Serine:** It is encoded by six codons— UCU, UCC, UCA, UCG, AGU, AGC. We
527 have observed a preferential usage of certain codons encoding the different amino residues

528 constituting the different structural elements. In the helix regions, AGC is used by all the
529 organisms except *Cutibacterium*. The codon AGU is found to be preferred by *Streptococcus*
530 and *Cutibacterium*. UCA and UCC codons are found to be used only by *Streptococcus* and
531 *Cutibacterium* respectively. *Burkholderia* and *Cutibacterium* was found to prefer UCG,
532 whereas *Pseudoalteromonas* and *Streptococcus* use UCU. The use of the codon UCU by
533 *Pseudoalteromonas* was found to be comparatively higher than the rest of the organisms. In
534 the strand regions, the codon AGU and UCU were found to be avoided by all the four
535 organisms. *Burkholderia* prefers the codons AGC, UCC and UCG whereas *Cutibacterium*
536 prefers only two codon UCC and UCG. *Pseudoalteromonas* and *Streptococcus* was found to
537 use only one codon which is UCG and UCA respectively. In the rest of the structural
538 elements, AGC was found to be preferred by all the four organisms. The codons AGU and
539 UCA are used by *Streptococcus* and *Pseudoalteromonas* whereas UCC is used by
540 *Cutibacterium* alone. All the four organisms use the codon UCG, but in *Burkholderia* the
541 frequency of usage is relatively greater.

542 **Threonine**: In the helix elements, ACC and ACA are preferred by three organisms.
543 ACC remains absent in *Pseudoalteromonas* whereas ACA is absent in *Burkholderia*. All the
544 four organisms preferentially use the codon ACG but ACU is absent only in *Burkholderia*. In
545 the extended strand elements, ACG used by all the organisms. ACA and ACU codons are
546 used by *Streptococcus* and *Pseudoalteromonas* whereas *Burkholderia* and *Cutibacterium* use
547 the codon ACC.

548 **Asparagine**: This amino acid is encoded in general by two codons- AAU and AAC.
549 In the helix regions, AAC is preferred by all the organisms. Likewise codon AAU is also
550 used by all the organisms but the relative usage frequency is very low in *Burkholderia*. But in
551 the strand region, AAU is used by two organisms *Pseudoalteromonas* and *Streptococcus*. The
552 codon AAC is employed by all the organisms except *Pseudoalteromonas*. In the remaining

553 structural elements, we did not observe any fixed preference for a particular codon in the
554 organisms considered in this analysis.

555 **Glutamine:** In case of helix regions, codons CAA and CAG are used by three
556 organisms. CAA was absent in *Burkholderia* whereas CAG was absent in
557 *Pseudoalteromonas*. The use of the amino acid glutamine in the helix region was absent in
558 *Cutibacterium*. CAG is used by three organisms (*Burkholderia*, *Pseudoalteromonas* and
559 *Streptococcus*) but not used by *Cutibacterium*. The codon CAA was not used by any of the
560 organisms in the strand regions. In the other secondary structural elements, the codon CAG is
561 used by all the organisms whereas the codon CAA is used by all the organisms except
562 *Burkholderia*.

563 **Cysteine:** In the helix elements, the codon UGU was avoided by all the organisms.
564 The use of this sulphur containing amino acid in the helix regions of *Burkholderia* and
565 *Cutibacterium* are found to be fulfilled by the codon UGC. Apart from the helix structural
566 elements, cysteine was found to be totally absent in the other secondary structural elements in
567 all the four organisms.

568 Our study clearly shows that a differential RSCU pattern is evident in the coding
569 nature of the various secondary structural elements of the FtsZ proteins from different
570 bacteria. It may be suggested that this variation could be attributed to the differential folding
571 pattern of the different domain region of the FtsZ protein. The FtsZ protein has two major
572 domains— one is the GTPase domain and the other is the C-terminal domain. Our findings
573 suggest that the use of specific codons coding for the amino acids in the different secondary
574 structural elements of the FtsZ protein is less organism specific but more codon specific. The
575 helix regions demonstrates a comparative higher bias towards use of specific codons in
576 coding the amino acids than the strand or the other secondary structural element regions.

577

578 **Conclusions**

579 The FtsZ protein is ubiquitous in bacteria and plays a vital role in bacterial cell
580 division. From the evolutionary stand point it might be regarded as the counterpart of the
581 eukaryotic tubulin protein. Our study of the gene sequences coding for FtsZ from 142
582 bacterial species demonstrating different lifestyle and Gram nature showed that the degree of
583 sequence identity among the protein fluctuates from a mere thirteen percent to a whooping
584 ninety eight percent. This is suggestive of a compositional variability both in the coding
585 sequence and amino acid sequence. We found that about one third of the selected organisms
586 depicted more than ten percent GC variation in their *ftsZ* CDS compared to their genomic GC
587 content. Thus, our study clearly suggest that the nucleotide composition of the gene coding
588 for FtsZ protein in a large number of species deviates significantly from their genomic GC
589 content. The codon usage pattern analysis also demonstrated that the *ftsZ* gene of about
590 ninety three percent of the organisms showed relatively biased codon usage profile. In this
591 study, we have also captured the existence of a ‘core’ set of codons in the structuring of the
592 *ftsZ* gene despite the presence of a varying degree of identity among the *ftsZ* sequences. This
593 is probably due to the constraint exerted by nature to maintain form and function in an
594 important physiological protein FtsZ that plays a major role role in successful completion of
595 bacterial cell division. By the utilization of inferential statistical methods such as a two way
596 ANOVA, we were able to capture the influence of Gram nature of the bacteria and their
597 lifestyle pattern on the amino acid compositional frequency of the FtsZ protein. Finally, a
598 cluster analysis followed by an amino acid wise comparative RSCU analysis of the different
599 secondary structural elements of the FtsZ protein tied with the *ftsZ* CDS, demonstrated the
600 presence of bias towards specific triplet codons coding the amino acids of the different
601 secondary structural elements of a multi domain protein like FtsZ. In conclusion, it may be
602 stated that the *ftsZ* gene coding for an indispensable cell division protein called FtsZ in a

603 large number of bacteria, differing in terms of cellular morphology, physiology, biochemistry
604 and a host of other features displays a very biased codon usage pattern with a highly skewed
605 GC content. Along with the existence of a preferred ‘core’ set of codons, the different
606 secondary structural elements of the multi-domain FtsZ protein was also found to display bias
607 towards specific synonymous codons particularly in the helix and strand regions. All these
608 suggest that in an indispensable and vital protein such as FtsZ, there is an inherent tendency
609 to maintain form and structure for optimized performance in spite of the extrinsic variability
610 in coding features.

611

612 **Acknowledgements**

613 The authors are grateful to Prof. Subhasis Mukhopadhyay and Late Prof. A. K. Bothra
614 for their support and encouragement.

615

616 **Figures**

617 **Fig 1: An Nc-plot depicting the correlation between Nc and GC3 of the 143 *ftsZ* genes**
618 **selected from 143 different bacteria. The continuous curve depicts the null hypothesis**
619 **that the GC bias at the synonymous site is solely due to mutation but not selection.**

620 **Fig 2: The markup of the FtsZ protein amino acid sequence of *Pseudoalteromonas***
621 ***luteoviolacea* with the secondary structural elements that has been colour coded to tie**
622 **up with the corresponding codons of the *ftsZ* gene.**

623 The codons coding for the *ftsZ* gene has been tied to the secondary structural elements using
624 the following colour code. Orange= residues/codons in helix regions; red= residues/codons in
625 strand regions; black= residues/codons in other secondary structural elements.

626

627 **Fig 3: The markup of the FtsZ protein amino acid sequence of *Cutibacterium avidum***
628 **44067 with the secondary structural elements that has been colour coded to tie up with**
629 **the corresponding codons of the *ftsZ* gene.**

630 The codons coding for the *ftsZ* gene has been tied to the secondary structural elements using
631 the following colour code. Orange= residues/codons in helix regions; red= residues/codons in
632 strand regions; black= residues/codons in other secondary structural elements.

633

634 **Fig 4: The markup of the FtsZ protein amino acid sequence of *Streptococcus agalactiae***
635 **2603V/R with the secondary structural elements that has been colour coded to tie up**
636 **with the corresponding codons of the *ftsZ* gene.**

637 The codons coding for the *ftsZ* gene has been tied to the secondary structural elements using
638 the following colour code. Orange= residues/codons in helix regions; red= residues/codons in
639 strand regions; black= residues/codons in other secondary structural elements.

640

641 **Fig 5: The markup of the FtsZ protein amino acid sequence of *Burkholderia ubonensis***
642 **MSMB22 with the secondary structural elements that has been colour coded to tie up**
643 **with the corresponding codons of the *ftsZ* gene.**

644 The codons coding for the *ftsZ* gene has been tied to the secondary structural elements using
645 the following colour code. Orange= residues/codons in helix regions; red= residues/codons in
646 strand regions; black= residues/codons in other secondary structural elements.

647

648 **Fig 6: A graphical representation of the relative synonymous codon usage (RSCU)**
649 **values of the *ftsZ* coding sequences expressed by splitting the sequences according to the**
650 **tendency of the residues in constituting the three different secondary structural element**
651 **classes in the four bacterial species.**

652 Burk=*Burkholderia ubonensis* MSMB22, Cuti=*Cutibacterium avidum* 44067,

653 Pseudoalter=*Pseudoalteromonas luteoviolacea*, Strepto=*Streptococcus agalactiae* 2603V/R.

654 The suffix H, E and C refers to the helix, strand and other secondary structural elements of

655 the FtsZ protein respectively.

656

657

658 References

659 1. Powell JR, Dion K (2015) Effects of codon usage on gene expression: empirical studies on
660 *Drosophila*. *Journal of molecular evolution* 80: 219-226.

661 2. Zhou Z, Dang Y, Zhou M, Li L, Yu C-h, et al. (2016) Codon usage is an important determinant of
662 gene expression levels largely through its effects on transcription. *Proceedings of the National
663 Academy of Sciences* 113: E6117.

664 3. Belalov IS, Lukashev AN (2013) Causes and Implications of Codon Usage Bias in RNA Viruses.
665 *PLOS ONE* 8: e56642.

666 4. Prat Y, Fromer M, Linial N, Linial M (2009) Codon usage is associated with the evolutionary age
667 of genes in metazoan genomes. *BMC Evolutionary Biology* 9: 285.

668 5. Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon
669 bias. *Nat Rev Genet* 12: 32-42.

670 6. Sharp PM, Matassi G (1994) Codon usage and genome evolution. *Curr Opin Genet Dev* 4: 851-
671 860.

672 7. Arjes HA, Lai B, Emelue E, Steinbach A, Levin PA (2015) Mutations in the bacterial cell division
673 protein FtsZ highlight the role of GTP binding and longitudinal subunit interactions in assembly and
674 function. *BMC Microbiology* 15: 209.

675 8. Margolin W (2005) FTSZ AND THE DIVISION OF PROKARYOTIC CELLS AND
676 ORGANELLES. *Nature reviews Molecular cell biology* 6: 862-871.

677 9. OLIVEIRA JR AF, FOLADOR EL, GOMIDE ACP, GOES-NETO A, AZEVEDO VAC, et al.
678 (2018) Cell Division in genus *Corynebacterium*: protein-protein interaction and molecular docking of
679 SepF and FtsZ in the understanding of cytokinesis in pathogenic species. *Anais da Academia
680 Brasileira de Ciências* 90: 2179-2188.

681 10. Erickson HP (1997) FtsZ, a tubulin homologue in prokaryote cell division. *Trends Cell Biol* 7:
682 362-367.

683 11. Stokes KD, Osteryoung KW (2003) Early divergence of the FtsZ1 and FtsZ2 plastid division gene
684 families in photosynthetic eukaryotes. *Gene* 320: 97-108.

685 12. Ma S, Ma S (2012) The development of FtsZ inhibitors as potential antibacterial agents.
686 *ChemMedChem* 7: 1161-1172.

687 13. Hurley KA, Santos TMA, Nepomuceno GM, Huynh V, Shaw JT, et al. (2016) Targeting the
688 Bacterial Division Protein FtsZ. *Journal of Medicinal Chemistry* 59: 6975-6998.

689 14. Ojima I, Kumar K, Awasthi D, Vineberg JG (2014) Drug discovery targeting cell division
690 proteins, microtubules and FtsZ. *Bioorg Med Chem* 22: 5060-5077.

691 15. Dai K, Lutkenhaus J (1991) ftsZ is an essential cell division gene in *Escherichia coli*. *Journal of*
692 *bacteriology* 173: 3500-3506.

693 16. Erickson HP (1995) FtsZ, a prokaryotic homolog of tubulin? *Cell* 80: 367-370.

694 17. Supek F, Skunca N, Repar J, Vlahovicek K, Smuc T (2010) Translational selection is ubiquitous
695 in prokaryotes. *PLoS Genet* 6: e1001004.

696 18. Roller M, Lucić V, Nagy I, Perica T, Vlahovicek K (2013) Environmental shaping of codon usage
697 and functional adaptation across microbial communities. *Nucleic acids research* 41: 8842-8852.

698 19. Botzman M, Margalit H (2011) Variation in global codon usage bias among prokaryotic
699 organisms is associated with their lifestyles. *Genome biology* 12: R109-R109.

700 20. Hart A, Cortés MP, Latorre M, Martinez S (2018) Codon usage bias reveals genomic adaptations
701 to environmental conditions in an acidophilic consortium. *PLOS ONE* 13: e0195869.

702 21. Carbone A, Képès F, Zinovyev A (2004) Codon Bias Signatures, Organization of Microorganisms
703 in Codon Space, and Lifestyle. *Molecular Biology and Evolution* 22: 547-561.

704 22. Marin M (2008) Folding at the rhythm of the rare codon beat. *Biotechnol J* 3: 1047-1057.

705 23. Saunders R, Deane CM (2010) Synonymous codon usage influences the local protein structure
706 observed. *Nucleic Acids Research* 38: 6719-6728.

707 24. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, et al. (2013) GenBank.
708 *Nucleic acids research* 41: D36-D42.

709 25. Wright F (1990) The 'effective number of codons' used in a gene. *Gene* 87: 23-29.

710 26. Wang L, Xing H, Yuan Y, Wang X, Saeed M, et al. (2018) Genome-wide analysis of codon usage
711 bias in four sequenced cotton species. *PLOS ONE* 13: e0194372.

712 27. Šmarda P, Bureš P, Horová L, Leitch IJ, Mucina L, et al. (2014) Ecological and evolutionary
713 significance of genomic GC content diversity in monocots. *Proceedings of the National Academy of*
714 *Sciences* 111: E4096.

715 28. McCutcheon JP, Moran NA (2010) Functional convergence in reduced genomes of bacterial
716 symbionts spanning 200 My of evolution. *Genome Biol Evol* 2: 708-718.

717 29. Lassalle F, Périan S, Bataillon T, Nesme X, Duret L, et al. (2015) GC-Content evolution in
718 bacterial genomes: the biased gene conversion hypothesis expands. *PLoS genetics* 11: e1004941-
719 e1004941.

720 30. Shang M LF, Hua J, Wang K, (2011) Analysis on codon usage of chloroplast genome of
721 *Gossypium hirsutum*. *Scientia Agricultura Sinica* 44: 245-253.

722 31. Zhou Y, Skidmore ST (2018) A Reassessment of ANOVA Reporting Practices: A Review of
723 Three APA Journals. *Journal of Methods and Measurement in the Social Sciences*; Vol 8, No 1
724 (2017).

725 32. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, et al. (2011) Fast, scalable generation of
726 high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol* 7: 539.

727 33. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein
728 or nucleotide sequences. *Bioinformatics* 22: 1658-1659.

729 34. Magnan CN, Baldi P (2014) SSpro/ACCpro 5: almost perfect prediction of protein secondary
730 structure and relative solvent accessibility using profiles, machine learning and structural similarity.
731 *Bioinformatics (Oxford, England)* 30: 2592-2597.

732 35. Wang S-F, Su M-W, Tseng S-P, Li M-C, Tsao C-H, et al. (2016) Analysis of codon usage
733 preference in hemagglutinin genes of the swine-origin influenza A (H1N1) virus. *Journal of*
734 *Microbiology, Immunology and Infection* 49: 477-486.

735 36. Pal A, Banerjee R, Mondal UK, Mukhopadhyay S, Bothra AK (2015) Deconstruction of Archaeal
736 Genome Depict Strategic Consensus in Core Pathways Coding Sequence Assembly. *PLOS ONE* 10:
737 e0118245.

738 37. Quiroz-Castañeda RE, Amaro-Estrada I, Rodríguez-Camarillo SD (2016) *Anaplasma marginale*:
739 Diversity, Virulence, and Vaccine Landscape through a Genomics Approach. *BioMed Research*
740 *International* 2016: 9032085.

741 38. Wallach JC, Samartino LE, Efron A, Baldi PC (1997) Human infection by *Brucella melitensis*: an
742 outbreak attributed to contact with infected goats. *FEMS Immunology & Medical Microbiology* 19:
743 315-321.

744 39. Contini C, Seraceni S, Cultrera R, Castellazzi M, Granieri E, et al. (2010) *Chlamydophila*
745 *pneumoniae* Infection and Its Role in Neurological Disorders. *Interdisciplinary Perspectives on*
746 *Infectious Diseases* 2010: 273573.

747 40. White P, Murphy M, Moss J, Armstrong G, Spencer SP (2007) Chronic fatigue syndrome or
748 myalgic encephalomyelitis. *BMJ* 335: 411.

749 41. Nishida H (2012) Evolution of genome base composition and genome size in bacteria. *Frontiers in*
750 *microbiology* 3: 420-420.

751 42. Garcia-Vallve S, Romeu A, Palau J (2000) Horizontal gene transfer in bacterial and archaeal
752 complete genomes. *Genome Res* 10: 1719-1725.

753 43. Lawrence JG, Ochman H (2002) Reconciling the many faces of lateral gene transfer. *Trends*
754 *Microbiol* 10: 1-4.

755 44. Holm S (1979) A Simple Sequentially Rejective Multiple Test Procedure. *Scandinavian Journal of*
756 *Statistics* 6: 65-70.

757 45. Aickin M, Gensler H (1996) Adjusting for multiple testing when reporting research results: the
758 Bonferroni vs Holm methods. *American Journal of Public Health* 86: 726-728.

759 46. Cheng J, Randall AZ, Sweredoski MJ, Baldi P (2005) SCRATCH: a protein structure and
760 structural feature prediction server. *Nucleic acids research* 33: W72-W76.

761

762

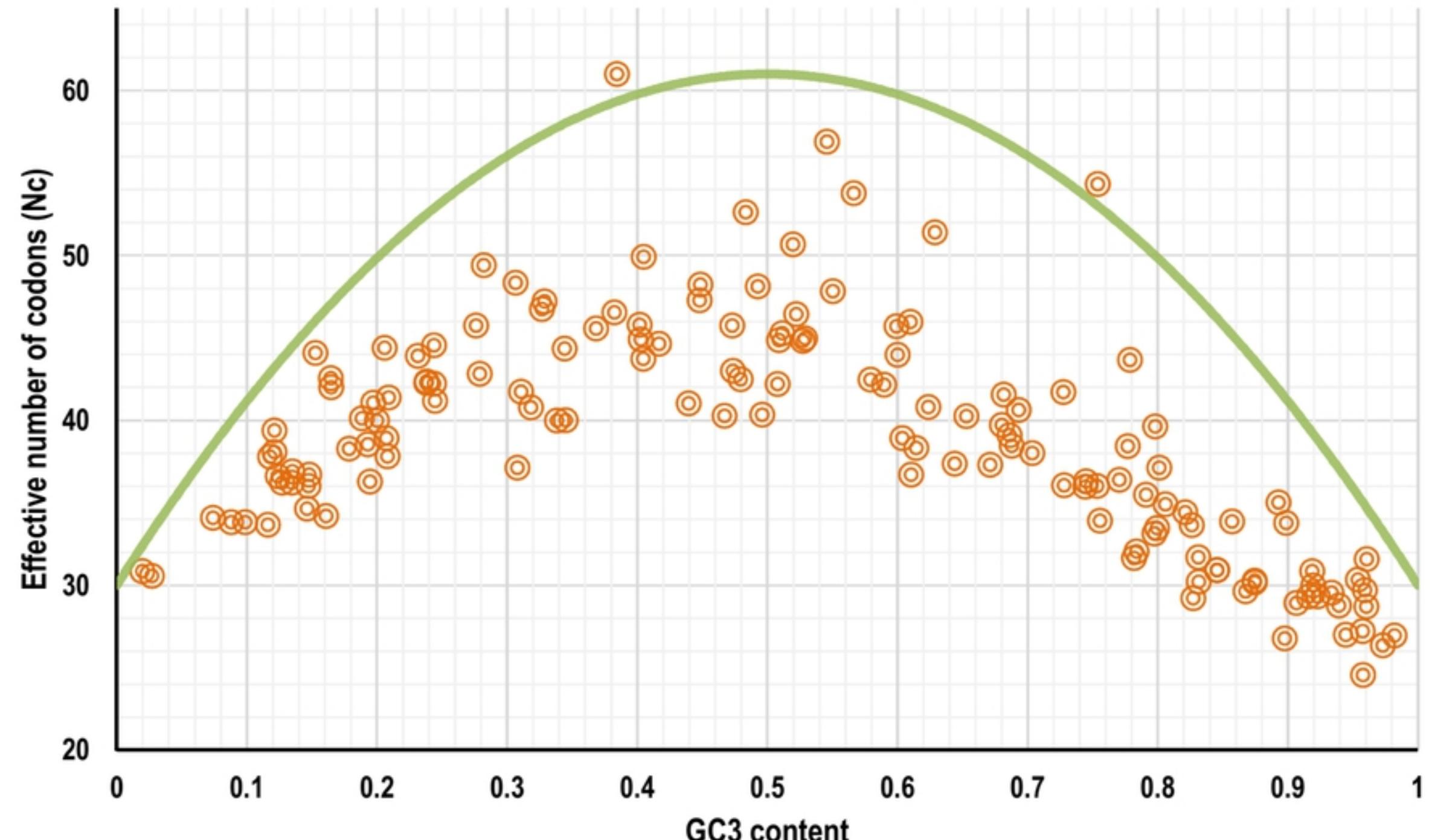


Figure 1

Cluster 0: *Pseudoalteromonas luteoviolacea*

Codons tied to SSE using colour code:

ATGTTGATATTATGGAGCAACACGGCGAAGAAGCCGTATAAAAAGTAATTGGTGTGGCGGCGGCGTAACGCTGTTGAGCACATGGTAAAACAGAAAATTGAAGGTGTGCGCTTCATCGTCGCGAATACTGACGCACAGCTGAGAAATCATCTGCAGATGTGACAGTACAGTTAGGCACGGCAATTACGCAGGGCTTAGGCCTGGTGCCAAACCTGAAAGTAGGTAAAATGCCGAGAGGAAGATGTTGAAACAAATCAAGGCAAGCCTTGAAGGGTGCAGACATGGTGTATTGCAGCAGGTATGGTGGCGGTACAGGCACAGGTGCAGCACCTGTGGTGCACCGGTGGCTAAGAACTGGGTATTGACTGTTGGGTTACTCGTCCATTTGACTTGGAAAGGGAAAACCGCATGGCGCTGCCGATCATGGTATCGGAGAACTGTCGAAATTGTAGACTCGCTTATTACAATTCCCTAACAAACAAGTTACTGAAAGTGTGGCAAAGGAACTACATTAATTAGACGCGTTGCGAAAGCGAATGACGTTTGTATGGTGCCTACAAGGTATTGCAGAGTTGATTACTCGTCAGGTCTGATTAATGTCGACTTGCTGATGTAAGAACTGTAATGTCAGCGATGGCACGGCCATGATGGGTACTGCTGCGGCGTCAGGACCTGATAGGGGACAAGAAGCTGCAGAACGGCAATCTCAAGCCCATTACTGAGGATGTTGACCTGACAGGTGCAGGGGGCATTCTGTTAATATTACAGCTGGCATGGATATCACCATTGAAAGAATTGAAAGTGGTGGTAATCACGTTAACGGTTGCATCTGAAAATGCGACTGTTGAGTGGGTGCGGTTATTGATCCTGAAATGAGCGATGAGTTAAGAGTGAUTGTTGTCGCGACGGGATTAGGTGGCGAACGTAAGCCTCAATTGGCATCGTAGACAAAGGCATTCAAGGGCTTGCTGGACAAGCTGCAACGGGTACTCATGGACCAAGTCATACCAATGACGATTGTTACCAAGTGGTGGTGCAGGAAACAAGCCTGTTGAGACACAACAAAATGATGCAAGGTTGGGCTTAATGTTGAAATCTAATGCGTCAGTAAAAGAATCGATCAAAACGACTGAGCAACCAAGAGTCTGGTGAGAAGAAAGGTGATTATTGCGATATCCTGACATTGAGAAAAACAGTCAGACTAG

Figure 2

Cluster 1: *Cutibacterium avidum* 44067

Codons tied to SSE using colour code:

GTGGCTATTCCATCC **CAGAAC** TACCTCGCCGTG **ATCAAGGTCGTGGGGT** AGGCCGGTGGCCGCTGCAATGCCGTTACCGCATGATCGAG **GCAGGGACTCAAGGGAGTT** **GAGTTCTCGCTGTCAAC** ACCGATGCCAGGG
TCCTC ACGAGCGATGCCGAC **GTCAAGCTCGAC** ATCGGCAGGGACCTCACC CGAGGACTGGGTGCAGGTGCGGAC **CCTGACAAGGGACGT** CAGGCTGCCGAGGAT **CAC** **GCTGACGAGATCGAGGAGTCCCTC** AAGGGCGCCGAC
CATGGTCTTCGT CACCGCCGGT GAGGGCGGTGGG **ACTGGCACAGGTGCTGCTCCGTCGCCAAGATTGCTCGTTCC** CTCGGGGCCCTGACCATTGGTGTGCGTACCCGCCGTTTC **TCCCTCGAG** **GGCCACCGCC** TTCCG
TCCCAGGCCGAGTCCGGTATCGGCAATCTGCGCGACGAG **GTCGAC** **ACCCCTCATCGTCATTCCC** AACGACAAGTTGGAC **ATGACGGACCAGCAGATCGCC** **ATCCTGGACGCCCTCAAACAGGCCGACCAGGTGCTGATG**
AAGGTGTTCCGGCATTACCGACCTCATCACG ACGCCGGGTCAAGATCAACTTGGAC **TCGCCGACGTCAAGTCGGTCATG** TCGAACGCCGGATCGGCCCTCGGCGAGGAC **CGCGCCCGTGC**
TGGCCGGAGATGGCCATC **TCGTCCCCGCTGCTCGAGGTGTCCATCGACGGTGCTCGC** **GGCGTACTGCTGTCATCGCCGGT** GGCTCCGACCTCGGT **CTGTTCGAGGTGCCAGTGCGGCCAATCTCATCG** **GGGGCCGCTGCT**
CACGACGAGGCC **AAACATCATCTTCGGCACCATCATC** GACGATGCCCTCGCGATGAG **GTGCGCGTACCGTCATCGCGGCCGGTTGAG** **AATGGCCAGCCCACCAGCACCAAGCAACCTGGCATCAGCCAGCGTCCGGCCT**
CCCGTCCGGCAATGAGCAATCGTCTCGCAGGAGTCTTGGTACCGGGGAGCCCCGTCGGATCTTCCCTCAGCGCGAACCGTCAGGGCAGCGGCAACCAGCAGCCAGCCCAGGGCAGCCC
GTTCGGTATCGTCCCTCCAGCGGGAGCAGTTGAACCAGCCGGTCCAGCAGCAGGACGAGCGTCCCGCAGGTGATGAGGCCGAGGGATGATCTGGATATCCCC **GACTTC** TTGAAG

Figure 3

Cluster 2: *Streptococcus agalactiae* 2603V/I

Codons tied to SSE using colour code

ATGACA **TTTCATTT** GATA CAGCTGCTCAAGGGCAGTG **ATTAAGTAATTGGTGTGGAGGTGGCAATGCCATCAACCGTATGGTCGACGAAGGTGTTACAGCGTA** **GAATTATCGCAGCAACACAGAT**
TACAAGCATTGAGT **AGTACAAAAGCTGAGACTGTTATTCACTGGGACCTAAATTGACT** CGTGGTTGGGTGCAGGAGGTCAA **CCTGAGGTTGGTCGAAAGCCGCTGAAGAA** **AGC** **GAAGAAAACACTGACGGAAGCTATTAGG**
TGGTGCCTGAT **ATGGTCTTCATCACTGCTGGTATGGGAGGGAGGC** TCTGGA **ACTGGAGCTGCCTCTTATTGCTCGATGCCAAAGAT** **TTAGGTGCGCTTACAGTTGGTGTAAACACGTCCCTT** **GGTTTGAA** **GGAA** **AGT**
AAGCGTGGACAATTGCTG **TAGAAGGAATCAATCAACTCGTGAGCAT** **GTAGACACTCTATTGATTATCTCA** **AAACAACAATTGCTTGAA** **ATTGTTGATAAGAAAACACCG** **CTTTGGAGGCTCTAGCGAAGCGGATAACCG**
TTCTCGTCAAGGTGTCAGGGATTACCGATTGATTACCA **AATCCAGGATTGATTAACCTTGAC** **TTGCCGATGTGAAAACCGTAATG** **GC** **AAACAAA** **GGGAATGCTCTTATGGGTATTGGTATCGGT** **AGTGGAGAAGAA** **CGG**
TGTGGTAGAGCGGCACGTAGGCAATC **TATTCACCACCTCTGAAAACA** **ACTATTGACGGTGCTGAGGATGTTATCGTCAACGTTACTGGT** **GGTCTTGACTTAACC** **TTGATTGAGGCAGAAGAGGCTTCACAAATTGTGAAAC**
CAGGCAGCAGGTCAAGGAGTG **AACATCTGGCTGGTACCTCAATT** **GATGAAAGTATGCGTGATGAA** **ATTCGTGTAAACAGTTGCGCAACGGGTGTCGTAAGACCGCGTAGAAAAGGTTGGCTCCACAAGCTAGATCTG**
CTACTA **ACTACCGTGAGACAGTGAAACCCAGCTCATT** **CACATGGCTTGATCGTCA** **TTGATATGGCAGAACAGTTGAATTGCCAAACAAACACGTCGTTGGAAACCAACTCAGGCATCTGCTTTGGTATTGGGAA**
TCTTCGGCGTGAAATCGATTGTCGTACACAGATTCACTGGCTTGATCGTCA **TTGATATGGCAGAACAGTTGAATTGCCAAACAAACACGTCGTTGGAAACCAACTCAGGCATCTGCTTTGGTATTGGGAA** **CAATTTCGAAATCGTAA**

Figure 4

Cluster 3: *Burkholderia ubonensis* MSMB22

Codons tied to SSE using colour code:

Figure 5

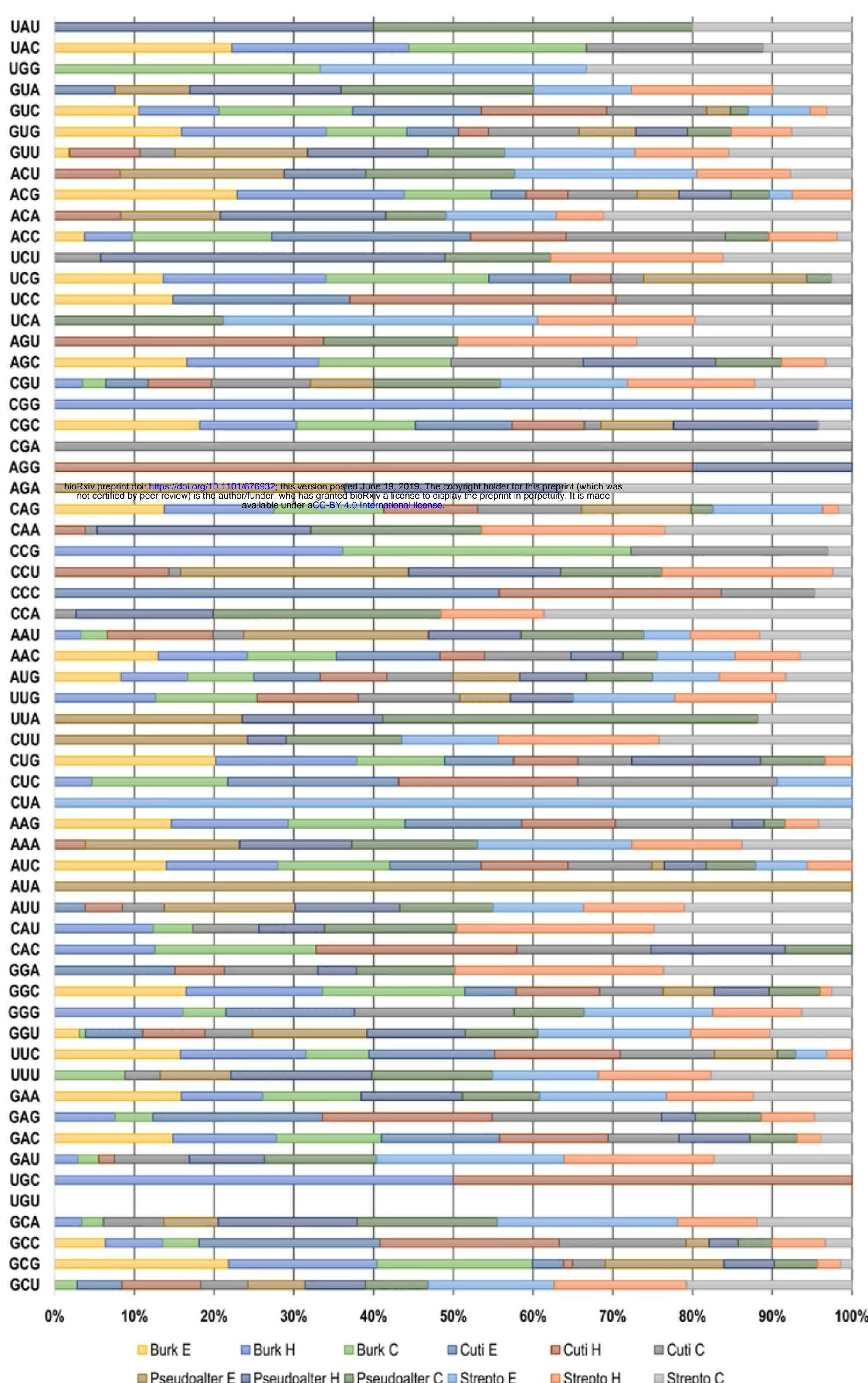


Figure 6