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Abstract 

In early phase clinical trial, finding maximum-tolerated dose (MTD) is a very 

important goal. Many researches show that finding a correct MTD can improve 

drug efficacy and safety significantly. Usually, dose-finding trials start from very 

low doses, so in many cases, more than 50% patients or cohorts do not have dose-

limiting toxicity (DLT), but DLT may occur suddenly and increase fast along with 

just two or three doses. Although some fantastic models were built to find MTD, 

little consideration was given to those ‘0 DLTs’ and the ‘jump’ of DLTs. We 

developed a Bayesian zero-inflated binomial regression for dose-finding study 

based on Hall (2000), which analyses dose-finding data from two aspects: 1) 

observation of only zeros, 2) number of DLTs based on binomial distribution, so it 

can help us analyse if the cohorts without DLT have potential possibility to have 

DLT and fit the ‘jump’ of DLTs.  

Keywords: dose-limiting toxicity, maximum-tolerated dose, metropolis algorithm, 

zero-inflated binomial regression.  

1. Introduction 

In clinical trial, finding maximum-tolerated dose (MTD) is one of the chief goals in phase 

1 or 2. MTD is generally defined as maximum dose can be tolerated by patients, and the 

tolerance is usually measured via the probability of dose-limiting toxicity (DLT) which 

is the toxicity occurred in patients. For example, we have 8 dose levels for a drug, 1 mg, 

2, mg, 4 mg, 8 mg, 12 mg, 16 mg, 22 mg, and 35 mg. The first 5 cohorts were enrolled 

with 3 patients for each, and the last 3 cohorts were enrolled with 6 patients for each. Our 

data is presented as follows: 
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Doses (mg) 1 2 4 8 12 16 22 35 
Number of Patients 3 3 3 3 3 6 6 6 

Number of DLTs 0 0 0 0 0 1 2 4 

From cohort 1 to 5, no DLT occurred, because dose-finding studies usually start from 

very low doses. 1 DLT occurred at dose level 6, 2 DLTs occurred at dose level 7, and 4 

DLTs occurred at dose level 8. More than 50% cohorts in our data do not have DLT.  If 

we define MTD as the dose with 33% of probability of DLT (P(DLT)), then based on the 

observed P(DLT), 22 mg may be MTD in our study. However, our analysis should be 

based on the potential P(DLT) curve with prior information (i.e., historical studies) 

instead of observed curve, because in early phase studies, especially, oncology studies, 

sample size is always small. O'Quigley (1990) proposed a continual reassessment method 

(CRM) for MTD finding. This is a very influential method in clinical trial and some basic 

theories were stated in his paper. The potential P(DLT) curve was assumed to be 

monotonic with dose levels, and a Bayesian binomial framework was built so that prior 

information can be incorporated. A significant development of CRM is a two-parameter 

Bayesian logistic regression proposed by Neuenschwander (2008), which is widely used 

in pharmaceutical industry. This is a very flexible model for adaptive dose-find design, 

and covariates can be added in easily (Bailey, 2009). Another logistic based Bayesian 

model is proposed by Tighiouart (2005). Apparently, binomial regression is the most 

suitable for DLT-based dose-finding studies, since DLT is a yes/no variable. But so far, 

to our knowledge, little work has been done to discuss those ‘0 DLTs’ in dose-finding 

data. Since dose-finding trials usually start from very low doses, more than 50% cohorts 

or patients may have no DLT, but DLT may occur suddenly and increase fast along with 

just two or three doses, like our example above. This implies that in this kind of studies, 

P(DLT) may be fit in two curves, one curve is for 0 DLTs, and the other curve is for non-

0 DLTs, and these two curves are not independent. To explore this question, a zero-

inflated binomial (ZIB) regression may be a good lever. 

ZIB regression is a statistical model to fit binary data with excessive zeros, which was 

inspired by zero-inflated Poisson regression (Lambert, 1992) and first proposed by Hall 

(2000). ZIB is a mixture of observation of only zeros and a weighted binomial 

distribution. Two unknown parameters in ZIB are probability of observation from only 

zeros and probability of success in binomial distribution, and for regression, logit link 

functions can be imposed on these two parameters to incorporate covariates.  An EM 

algorithm is given in Hall (2000) for parameter estimation. However, as we introduced 
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before, prior information is very important in dose-finding studies, since our analysis will 

be based on potential P(DLT) curves with historical information. To incorporate prior 

information and calculate probabilities of under dose, target dose, and over dose for safety 

control, it is necessary to develop a Bayesian algorithm for ZIB regression.  

In this paper, we developed a Bayesian ZIB (BZIB) regression for dose-finding study 

based on Hall (2000). In Section 2, we introduced a general Bayesian framework for ZIB 

regression, and simulations were conducted to evaluate the performance of our Bayesian 

algorithm. In Section 3, we conducted simulations to assess the accuracy of BZIB 

regression in dose-finding study, and applied BZIB regression to our data in introduction. 

Our conclusion is in Section 4. 

2. BZIB Regression 

2.1 Bayesian Inference for ZIB regression 

First, let us discuss a BZIB regression in a general situation.  Assuming we have 𝑁 

samples. Let 𝑛𝑖 denote the ith sample size, and 𝑦𝑖  denote the number of successful events 

of ith sample, 𝑖 = 1, 2, … , 𝑁. ZIB can be written as: 

𝑦𝑖~ {
0,  
𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖 , 𝜋𝑖),

𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖;

        𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝𝑖 ,
 

where, 𝜋𝑖  is the probability of success in ith sample, and 𝑝𝑖  is the probability that 𝑦𝑖  is 

from the observation of only zeros. This implies that ZIB regression can be written as: 

𝑦𝑖 = {
0,
𝑘,

 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖 + (1 − 𝑝𝑖)(1 − 𝜋𝑖)𝑛𝑖;                             

         𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑝𝑖)(𝑛𝑖
𝑘

)𝜋𝑖
𝑛𝑖 (1 − 𝜋𝑖)𝑛𝑖−𝑘 , 𝑘 = 1,2, … , 𝑛𝑖 ,

 

logit links can be imposed on 𝑝𝑖  and 𝜋𝑖 , so 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝒁𝑖 𝜸, and 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝑿𝑖𝜷. 𝒁 

and 𝑿 are covariate matrices. Let 𝑢𝑖 = 1 when 𝑦𝑖 = 0, and 𝑢𝑖 = 0 when 𝑦𝑖 = 1, the joint 

density of ZIB regression is: 

𝑝(𝒚|𝜸, 𝜷) = ∏ {[
1

1 + 𝑒−𝒁𝑖𝜸
+

𝑒 −𝒁𝑖𝜸

1 + 𝑒 −𝒁𝑖𝜸
(

𝑒−𝑿𝑖𝜷

1 + 𝑒−𝑿𝑖𝜷
)

𝑛𝑖

]

𝑢𝑖𝑁

𝑖=1

× [
𝑒−𝒁𝑖𝜸

1 + 𝑒−𝒁𝑖𝜸
(

𝑛𝑖

𝑦𝑖

) (
1

1 + 𝑒−𝑿𝑖𝜷
)

𝑛𝑖

(
𝑒−𝑿𝑖𝜷

1 + 𝑒−𝑿𝑖𝜷
)

𝑛𝑖−𝑦𝑖

]

1−𝑢𝑖

}. 
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Let 𝑝(𝜸) and 𝑝(𝜷) denote the prior distribution of 𝜸 and 𝜷, respectively. The posterior 

distribution of ZIB regression is: 

𝑝(𝜸, 𝜷|𝒚) ∝ 𝑝(𝒚|𝜸, 𝜷) 𝑝(𝜸)𝑝(𝜷). 

To estimate 𝜸 and 𝜷, an easy way is to use metropolis algorithm which is a Markov 

chain Monte Carlo (MCMC) sampling method (Ghosh, 2006; Metropolis, 1953; Hoff, 

2009). Metropolis algorithm requires posterior distributions and candidate parameters 

from proposal distributions. For simplicity, we usually assume that 𝜸 and 𝜷 are 

independent. We assign normal priors to our parameters, and adopt normal distributions 

as our proposal distributions, since the range of our parameters are (−∞, +∞). Using un-

bold 𝛾 and 𝛽 to represent each single parameter in 𝜸 and 𝜷, our algorithm is shown as 

follows: 

Algorithm 

Let 𝛾(𝑠) and 𝛽(𝑠) denote the values sampled from sth iteration, 𝑠 = 1, 2, … , 𝑆. 𝛾(0) and 

𝛽(0) are initial values. 

for s in 0:S: 

1. Sample candidate 𝛾 randomly from proposal distribution 𝑁(𝛾(𝑠), 1), 

𝛾𝑐𝑎𝑛𝑑~𝑁(𝛾(𝑠) ,1). 

2. Calculate acceptance ratio of 𝛾, 𝛼𝛾 =
𝑝(𝒚|𝛾𝑐𝑎𝑛𝑑 ,𝛽(𝑠))𝜙(𝛾𝑐𝑎𝑛𝑑|𝜇𝛾 ,𝜎𝛾)

𝑝(𝒚|𝛾(𝑠) ,𝛽(𝑠))𝜙(𝛾(𝑠)|𝜇𝛾 ,𝜎𝛾)
. 𝜙(∙) 

is a normal  probability density function, 𝜇𝛾 and 𝜎𝛾 are prior mean and prior 

standard deviation for 𝛾. 

3. Compare 𝛼 and 𝜔, 𝜔 is randomly generated from 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0, 1). 

1) If 𝜔 < 𝛼𝛾 , accept candidate 𝛾, 𝛾𝑠+1 = 𝛾𝑐𝑎𝑛𝑑. 

2) If 𝜔 ≥ 𝛼𝛾 , reject candidate 𝛾, 𝛾𝑠+1 = 𝛾𝑠 . 

4. Apply Step 1, 2, and 3 to 𝛽 with proposal distribution 𝑁(𝛽(𝑠), 1), and prior 

𝑁(𝜇𝛽 ,𝜎𝛽 ). That is: 

𝛽𝑐𝑎𝑛𝑑~𝑁(𝛽(𝑠), 1), 

and acceptance ratio of 𝛽 is: 

𝛼𝛽 =
𝑝(𝒚|𝛾(𝑠) ,𝛽𝑐𝑎𝑛𝑑)𝜙(𝛽𝑐𝑎𝑛𝑑|𝜇𝛽, 𝜎𝛽)

𝑝(𝒚|𝛾(𝑠) ,𝛽(𝑠))𝜙(𝛽(𝑠)|𝜇𝛽, 𝜎𝛽)
. 
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In Step 2, to avoid the overflow of extreme large values and improve the efficiency of 

computation, we can do log transform for 𝛼, and the log of the density of ZIB regression 

is: 

log 𝑝(𝒚|𝜸, 𝜷) = ∑ {𝑢𝑖 log[𝑒 𝒁𝒊𝜸 + (1 + 𝑒𝑿𝒊𝜷)
−𝑛𝑖

] − log(1 + 𝑒𝒁𝒊𝜸)
𝑁

𝑖=1

+ (1 − 𝑢𝑖) [𝑦𝑖𝑿𝒊𝜷 − 𝑛𝑖 log(1 + 𝑒𝑿𝒊𝜷) + log (
𝑛𝑖

𝑦𝑖

)]}. 

Correspondingly, we compare log 𝜔 with log 𝛼 in Step 3. 

2.2 Simulation Study 

To assess the performance of Metropolis algorithm for ZIB regression, and the accuracy 

of our estimation, we conducted 500 simulations on the data generated from ZIB 

regression with 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛾0 + 𝛾1𝑋𝑖  and 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽1 𝑋𝑖 , and 

𝑋~𝑃𝑖𝑜𝑠𝑠𝑜𝑛(10)/5. A non-informatively normal prior, 𝑁(0, 10000), was assigned to 

each 𝛾0, 𝛾1, 𝛽0, and 𝛽1 . We proposed three cases: 1) 𝛾0 = 2, 𝛾1 = −1, 𝛽0 = −4, 𝛽1 = 2; 

2) 𝛾0 = 1, 𝛾1 = −0.5, 𝛽0 = −1, 𝛽1 = 0.5; 3) 𝛾0 = 2, 𝛾1 = −1.5, 𝛽0 = −1.5, 𝛽1 = 1, 

with sample size of 𝑛 = 100 and 𝑛 = 200. For each simulation, we ran 10000 MCMC 

iterations with 5000 burn-ins in R 3.4.3. The performance of our algorithm is evaluated 

by mean and standard deviation (SD) of the estimates from simulations, percentage of 

bias between true values and estimated values, and coverage probability (CP). Our 

simulation results are presented in Table 1. 

 

Table 1: Simulation Results of BZIB Regression  

Case n Parameter Mean (SD) Bias (%) CP 

1 

100 

𝛾0 2.057 (1.11) -0.029 0.952 

𝛾1 -1.043 (0.512) -0.043 0.954 

𝛽0 -4.131 (0.792) -0.033 0.922 

𝛽1  2.062 (0.357) -0.031 0.938 

200 

𝛾0 2.066 (0.752) -0.033 0.912 

𝛾1 -1.036 (0.342) -0.036 0.918 

𝛽0 -4.098 (0.526) -0.025 0.92 

𝛽1  2.046 (0.237) -0.023 0.914 
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Case n Parameter Mean (SD) Bias (%) CP 

2 

100 

𝛾0 1.1 (0.824) -0.1 0.928 

𝛾1 -0.553 (0.386) -0.106 0.932 

𝛽0 -1.043 (0.526) -0.043 0.936 

𝛽1  0.513 (0.242) -0.026 0.914 

200 

𝛾0 1.012 (0.54) -0.012 0.954 

𝛾1 -0.509 (0.257) -0.018 0.956 

𝛽0 -1.024 (0.341) -0.024 0.92 

𝛽1  0.513 (0.154) -0.026 0.932 

3 

100 

𝛾0 2.179 (0.974) -0.09 0.956 

𝛾1 -1.635 (0.527) -0.09 0.956 

𝛽0 -1.541 (0.494) -0.027 0.932 

𝛽1  1.025 (0.227) -0.025 0.936 

200 

𝛾0 2.091 (0.678) -0.046 0.954 

𝛾1 -1.561 (0.354) -0.041 0.968 

𝛽0 -1.531 (0.322) -0.021 0.916 

𝛽1  1.016 (0.15) -0.016 0.914 

1) Bias (%) =
true value−estimated value

true  value
× 100%.  

2) CP =
∑ 𝐼(𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 ∈(𝛿2.5%,𝛿97.5%))500

𝑚 =1

500
, (𝛿2.5% ,𝛿97.5%) is 95% credible interval. 

Except 𝛾0 has 10% bias in Case 2 (𝑛 = 100), all other biases are less than 5%, and all 

SDs are small which indicates that our estimation is very stable. All CPs are greater than 

90%. Overall, metropolis algorithm performed well on ZIB regression.  

3. Application to Dose-Finding Study 

In this section, we will introduce the application of BZIB regression to dose-finding 

studies. Assuming we have 𝑁 cohorts. Let 𝑛𝑖 denote the number of patients, 𝑦𝑖  denote the 

number of DLTs, and  𝜋𝑖  denote the probability of DLT, in ith cohort. 𝑝𝑖  is the probability 

that 𝑦𝑖  is generated from observation of only zeros. Imposing logit links on 𝑝𝑖  and 𝜋𝑖 , that 

is, 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛾0 + 𝛾1𝑑𝑜𝑠𝑒𝑖 , and 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽1𝑑𝑜𝑠𝑒𝑖 . It is reasonable to assume 

that 𝑝𝑖  is decreasing with doses (i.e., the probability of 0 DLT should be getting smaller 

as the increasement of doses) and 𝜋𝑖  is increasing with doses, so we have 𝛾1 < 0, and 

𝛽1 > 0.  
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3.1 Prior Specification 

As per our assumption, a below 0 and an above 0 truncated normal prior can be assigned 

to 𝛾1 and 𝛽1, respectively (Tibaldi, 2008). Regular normal priors can be assigned to 

𝛾0 and 𝛽0, since we have no restrictions for them. Usually, we do not use non-informat ive 

prior in dose-finding studies due to small sample size. However, since we lack historical 

data for this study, by discussing with team, our guesstimates are 1) 𝑝1 is greater than 

50%, 2) 𝑝8 should be close to 0, 3) 𝜋1 should be close to 0, 4) 𝜋8 is no less than 50%, 5) 

22 mg may be MTD. Based on our guesstimates, the priors we used are: 𝛾0~𝑁(2.5, 2), 

𝛾1~𝑇𝑁0−(−0.1, 2), 𝛽0~𝑁(−5, 2), 𝛽1 ~𝑇𝑁0+(0.1, 0.15). Mean and 95% Credible 

Interval (CI) of Prior Probabilities of observing only zeros and DLT at each dose are 

shown in Figure 1. Both curves for 𝑝𝑖  and 𝜋𝑖  comply with our guesstimates, and the broad 

95% CI indicates that our priors are weakly informative. 

 

Figure 1: Mean and 95% CI of Prior Probabilities in BZIB regression. 

3.2 Criteria to Select Recommended Dose 

We adopted the criteria in Neuenschwander (2008) to select recommended dose based on 

the MCMC values of 𝜋𝑖  sampled from posterior distribution, 𝜋𝑖̃. If we categorize 

estimated probabilities of DLT into three intervals: 1) Under dose interval: (0, 0.16], 2) 

Target dose interval: (0.16, 0.33], and 3) Over dose interval: (0.33, 1], then the 

probability of under dose, target dose, and over dose at each dose level will be calculated 

as: 
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1. P(under dosei ) =
∑ 𝐼(0<𝜋𝑖

(𝑠)̃
≤0.16)𝑆

𝑠=1

𝑆
, 

2. P(target dosei ) =
∑ 𝐼(0.16<𝜋𝑖

(𝑠)̃
≤0.33)𝑆

𝑠=1

𝑆
, 

3. P(over dosei ) =
∑ 𝐼(0.33<𝜋𝑖

(𝑠)̃
≤1)𝑆

𝑠=1

𝑆
. 

The recommended dose is defined as the dose with P(over dose) ≤ 𝜏 and maximum 

P(target dose) . 𝜏 is the threshold of over dose control proposed by Babb (1998). In this 

paper, we use 𝜏 = 0.25. 

3.3 Dose-Finding Simulation 

We conducted 1000 dose-finding simulations based on 11 scenarios (S1 – S11) to access 

the accuracy of our BZIB regression in dose-finding study. We have 8 cohorts in each 

scenario, and 3 patients will be enrolled each time, and the maximum sample size is 48. 

Our simulation start enrolling patients from the first cohort and if the recommended dose 

from BZIB regression is higher than the current dose, we escalate the current dose one 

more level, otherwise, we deescalate the current dose to recommended dose. When 

recommended dose is equal to current dose, no less than 6 patients at current dose, and 

P(target dose) of current dose is greater than or equal to 50%, our simulation stops, and 

the recommended dose will be claimed as our selected target dose (or MTD in the given 

doses).  

To test the necessity of zero-inflated part in our model, we compared our BZIB 

regression with two very widely-used logistic regressions in dose-finding studies in 

pharmaceutical industry, which do not concern the observation of zeros. The description 

of these two models are below. 

Model 1: Regular Bayesian logistic regression (RBLR) (Guédé, 2014; Tibaldi, 2008).  

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) =  𝛽0 + 𝛽1 𝑑𝑜𝑠𝑒𝑖 , 𝛽1 > 0. 

Where, 𝛽0 is imposed with a normal prior, 𝛽1  is imposed with a truncated normal prior. 

In our simulation, we gave 𝛽0 and 𝛽1  the same prior as in our BZIB regression. 

Model 2: Two-parameter Bayesian logistic regression (TBLR) (Neuenschwander, 

2008). 
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𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = log 𝛽0 + 𝛽1 log (
𝑑𝑜𝑠𝑒𝑖

𝑑𝑜𝑠𝑒𝑟𝑒𝑓

), 𝛽0 > 0 𝑎𝑛𝑑 𝛽1 > 0. 

Where, 𝑑𝑜𝑠𝑒𝑟𝑒𝑓 is an arbitrary referent dose. (log 𝛽0 , log 𝛽1 ) is imposed with a 

bivariate normal prior. In our simulation, our 𝑑𝑜𝑠𝑒𝑟𝑒𝑓 is 22 mg, and we adopted a weakly 

informative prior proposed by Neuenschwander (2015), since we lack historical data for 

this study, and the prior probabilities provided by this prior comply with our guesstimates 

in Section 3.1. Please see Figure 2. 

 

Figure 2: Mean and 95% CI of Prior Probabilities in TBLR. 

Table 2 shows the scenarios and the probabilit ies that observed target doses were 

selected as MTD with BZIB regression, RBLR, and TBLR. Values for target doses are 

bold. In Scenario 1, all observed probabilities of DLT are in under dose interval, and all 

three models selected 35 mg with the highest probability, this is because 35 mg is the 

highest dose which cannot be escalated. However, RBLR performed very conservatively 

with just 54.2% at 35 mg. Scenario 2 has no target dose either, and all observed 

probabilities of DLT are in over dose interval. All three models showed very low 

probability to select over doses. Scenario 3 and 4 have target doses in high dose part, and 

no less than half cohorts have no DLT. RBLR was not able to provide adequate accuracy 

to select target doses in Scenario 4. Scenario 5 has two target doses in the middle part, 

and our three models provided the similar accuracies. Scenario 6 and 7 have relatively 

low target doses. In Scenario 6, although BZIB regression has a lower accuracy than 

RBLR and TBLR, its probability of selecting target dose is still greater than 50%, and 
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furthermore, BZIB regression has lower probability to select over doses than RBLR and 

TBLR. In Scenario 7, BZIB regression is the only model reached accuracy of 50%. 

Scenario 8 – 11 have big jumps between target doses and its next doses, and no less than 

half cohorts have no DLT. In Scenario 8 and 9, BZIB regression has significantly higher 

accuracy than the other two models. In Scenario 10 and 11, although all models selected 

target doses successfully, BZIB regression has the highest accuracy.  

All in all, except Scenario 5 and 6, BZIB regression has obviously higher accuracies 

than RBLR and TBLR. In Scenario 5, all three models have similar accuracies, and in 

Scenario 6, BZIB regression has better performance in safety control. 

 

Table 2: Scenarios and Dose-Finding Simulation Results 

  Doses (mg) 

  1 2 4 8 12 16 22 35 

S1 

Obs. P(DLT) 0 0 0.01 0.02 0.05 0.07 0.08 0.1 

BZIB Selection (%) 0.1 0.1 0.3 0.4 2.4 5.3 14.8 76.6 

RBLR Selection (%) 0 0 0 0.2 0.7 8.2 36.7 54.2 

TBLR Selection (%) 0 0 0 0.1 0.9 6.1 12 80.9 

S2 

Obs. P(DLT) 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

BZIB Selection (%) 3.4 0.3 0.1 0 0 0 0 0 

RBLR Selection (%) 1.1 0.8 0.1 0 0 0 0 0 

TBLR Selection (%) 0.7 0 0 0 0 0 0 0 

S3 

Obs. P(DLT) 0 0 0 0 0.12 0.27 0.43 0.56 

BZIB Selection (%) 0 0 0 0.4 16.5 64.8 17.8 0.5 

RBLR Selection (%) 0 0 0 0 36 59.8 4.2 0 

TBLR Selection (%) 0 0 0 0.1 29.3 60 10.5 0.2 

S4 

Obs. P(DLT) 0 0 0 0 0 0.12 0.28 0.46 

BZIB Selection (%) 0 0 0 0.4 0.2 33.3 60.6 5.5 

RBLR Selection (%) 0 0 0 0 0.2 52 47.1 0.7 

TBLR Selection (%) 0 0 0 0 0.3 44.6 52.2 2.9 

S5 

Obs. P(DLT) 0.03 0.06 0.08 0.17 0.23 0.38 0.44 0.56 

BZIB Selection (%) 0 0.7 9.1 34.7 41.1 12.8 1.4 0.1 

RBLR Selection (%) 0 0.6 6.5 38 39.6 14.1 0.6 0 

TBLR Selection (%) 0.1 1.1 11.1 32.1 35.1 16.3 3.1 0.1 
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  Doses (mg) 

  1 2 4 8 12 16 22 35 

S6 

Obs. P(DLT) 0.03 0.07 0.18 0.39 0.45 0.53 0.61 0.7 

BZIB Selection (%) 3.9 22.3 54.8 14 2.2 0.4 0 0 

RBLR Selection (%) 0 2.9 60.4 32.6 3.2 0.2 0 0 

TBLR Selection (%) 0.1 6.2 62 24.8 3.6 0.4 0 0 

S7 

Obs. P(DLT) 0.23 0.31 0.42 0.53 0.61 0.73 0.81 0.92 

BZIB Selection (%) 34.1 21 17.3 2 0 0 0 0 

RBLR Selection (%) 7.3 23.9 21.3 1.2 0 0 0 0 

TBLR Selection (%) 11.2 24.2 9.6 0.8 0.1 0 0 0 

S8 

Obs. P(DLT) 0 0 0 0 0 0.09 0.2 0.68 

BZIB Selection (%) 0 0 0 0.1 0.3 15.6 83.2 0.8 

RBLR Selection (%) 0 0 0 0 0 26.9 73.1 0 

TBLR Selection (%) 0 0 0 0 0.3 25.6 73.2 0.9 

S9 

Obs. P(DLT) 0 0 0 0 0 0.11 0.27 0.89 

BZIB Selection (%) 0 0 0 0.7 0.7 31.3 67.2 0.1 

RBLR Selection (%) 0 0 0 0 0.2 50 49.8 0 

TBLR Selection (%) 0 0 0 0 0.2 48.5 51.2 0.1 

S10 

Obs. P(DLT) 0 0 0 0 0.1 0.22 0.75 0.9 

BZIB Selection (%) 0 0 0.2 0.7 16.5 81.4 1.2 0 

RBLR Selection (%) 0 0 0 0 25.6 74 0.4 0 

TBLR Selection (%) 0 0 0 0.1 22.6 77 0.3 0 

S11 

Obs. P(DLT) 0 0 0 0 0.09 0.18 0.84 0.95 

BZIB Selection (%) 0 0 0.1 0.4 12.8 85.9 0.8 0 

RBLR Selection (%) 0 0 0 0 18.9 80.9 0.2 0 

TBLR Selection (%) 0 0 0 0 15.8 83.9 0.3 0 

1) Obs. P(DLT) is observed probability of DLT based on which number of DLTs is generated in 

each cohort. 

2) BZIB Selection, RBLR Selection, and TBLR Selection are the probability of a dose selected 

as target dose with BZIB regression, RBLR, and TBLR. 

3.4 Application to an Example 

Now, let us apply BZIB regression to the data in our introduction. We ran BZIB 

regression in R 3.4.3 with 20000 iterations and 10000 burn-ins. Our R code can be found 
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in Appendix A. Our estimates of probabilities of under dose, target dose, over dose, and 

DLT are shown in Table 3. 25 mg is added as a predicted dose, and assuming 6 patients 

are enrolled at it. As per our criteria of recommended dose, the P(over dose) of the first 

7 doses are less than 0.25, and among them, 22 mg has the maximum P(target dose), so 

22 mg is recommended as MTD in our doses. Table 4 shows the estimates of probabilit ies 

of 𝑦~0 and 𝑦 = 0, we can see that both P(y~0) and P(𝑦 = 0) are decreasing with doses, 

which is in accordance with our assumption. P(𝑦1~0) = 0.633, which implies that 0 in 

the first cohort is more likely from the observation of only zeros than binomial 

distribution, and all other P(𝑦𝑖~0)s are small, which indicates that number of DLTs in 

these cohorts are very likely generated from a binormal distribution. P(y = 0) can be 

interpreted as the potential possibility that 𝑦 = 0, given 𝑝𝑖  and 𝜋𝑖 . We can see that 

although 12 mg has no DLT out of 3 patients, it has around 18% of possibility to have at 

least one DLT. 

Table 3: Estimates of Probabilities of Under Dose, Target Dose, Over Dose, and DLT 

Doses (mg) P(under dose) P(target dose) P(over dose) P(DLT) 

1 0.998 0.002 0 0.014 

2 0.998 0.002 0 0.016 

4 0.996 0.004 0 0.021 

8 0.991 0.009 0 0.036 

12 0.967 0.032 0 0.064 

16 0.806 0.19 0.004 0.112 

22 0.186 0.609 0.205 0.252 

25* 0.035 0.418 0.548 0.356 

35 0 0.01 0.99 0.727 

*25 mg is a predicted dose. 

Table 4: Estimates of P(𝑦~0) and P(𝑦 = 0) 

Doses (mg) 1 2 4 8 12 16 22 25* 35 

P(𝑦𝑖~0) 0.633 0.209 0.006 0 0 0 0 0 0 

P(y = 0) 0.985 0.962 0.939 0.895 0.821 0.489 0.175 0.071 0 

*25 mg is a predicted dose. 
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4. Conclusion 

In this paper, we provided a very clear Bayesian framework for ZIB regression and its 

application in DLT-based dose-finding studies. We found that metropolis algorithm 

performed very stably on BZIB regression via simulations. In our dose-finding 

simulations, we compared BZIB regression with RBLR and TBLR, and our simulation 

results show that BZIB regression has better performance when data has excessive zeros, 

and big jump between target dose and its next dose. Even for the data without excessive 

zeros, BZIB regression provides higher accuracy in all scenarios with high target doses 

than the other two models as well, and either better safety control or higher accuracy in 

scenarios with low target doses.  

Additionally, compared with the logistic regressions which do not concern observation 

of zeros, BZIB regression has more flexibility. First, BZIB regression analyses dose-

finding data from two aspects: 1) observation of only zeros, 2) number of DLTs based on 

binomial distribution, that is, two curves will be fit for data analysis. And when 𝑝 goes to 

0, BZIB regression goes to a regular logistic regression. Second, one additional control 

for selecting recommended dose can be added on P(y = 0) if necessary (i.e., 1 −

P(y = 0) ≤ φ, the value of φ should be determined based on the studies). 
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Appendix A: R code 

#### R package “truncnorm” and “progress” need to be installed #### 
library(truncnorm) 
library(progress) 
 
set.seed(10) 
 
#### data #### 
n = c(3, 3, 3, 3, 3, 6, 6, 6)  # number of patients in each cohort 
## n1 is used for prediction ## 
n1 = c(3, 3, 3, 3, 3, 6, 6, 6, 6)  # assume 6 patients were enrolled at 25 mg 
x = c(1, 2, 4, 8, 12, 16, 22, 35)  # administered doses 
y = c(0, 0, 0, 0, 0, 1, 2, 4)  # number of DLTs in each cohort 
doses = c(1, 2, 4, 8, 12, 16, 22, 25, 35) # 25 mg is for prediction 
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#### priors #### 
#### gamma0 ~ N(2.5, 2) #### 
mur0 = 2.5 
sigr0 = 2 
 
#### gamma1 ~ TN(-0.1, 2) #### 
mur1 = -0.1 
sigr1 = 2 
 
#### beta0 ~ N(-5, 2)#### 
mub0 = -5 
sigb0 = 2 
 
#### beta1 ~ TN(0.1, 0.25)#### 
mub1 = 0.1 
sigb1 = 0.15 
 
#### number of iteration and burn-in #### 
niter = 20000 
nburnin = 10000 
 
#### log liklihood #### 
loglkh = function(x, y, n, r0, r1, b0, b1, u){ 
  n_fac = factorial(n) 
  y_fac = factorial(y) 
  ny_fac = factorial(n-y) 
  ll = u*log(exp(r0+r1*x)+(1+exp(b0+b1*x))^(-n))-log(1+exp(r0+r1*x))+ 
    (1-u)*(y*(b0+b1*x)-n*log(1+exp(b0+b1*x))+log(n_fac/(y_fac*ny_fac))) 
  return(ll) 
} 
 
#### sigmoid funcitons #### 
sigmoid = function(z){ 
  return(1/(1+exp(-z))) 
} 
 
#### initial values #### 
r0 = 0 
r1 = -0.5 
b0 = 0 
b1 = 0.5 
 
r_0 = r_1 = b_0 = b_1 = NULL 
 
#### u #### 
u = (y == 0)*1 
 
pb <- progress_bar$new(total = niter) 
for(i in 1:niter){ 
  #### updata gamma0 #### 
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  r0_cand = rnorm(1, r0, 1) 
  logar = sum(loglkh(x, y, n, r0_cand, r1, b0, b1, u))+ 
    log(dnorm(r0_cand, mur0, sigr0))-  
    sum(loglkh(x, y, n, r0, r1, b0, b1, u))- 
    log(dnorm(r0, mur0, sigr0)) 
   
  w = runif(1, 0, 1) 
   
  if(log(w) < logar){r0 = r0_cand} 
   
  r_0 = c(r_0, r0) 
   
  #### updata gamma1 #### 
  r1_cand = rtruncnorm(1, a=-Inf, b = 0, r1, 1) 
  logar = sum(loglkh(x, y, n, r0, r1_cand, b0, b1, u))+ 
    log(dtruncnorm(r1_cand, a=-Inf, b=0, mur1, sigr1))-  
    sum(loglkh(x, y, n, r0, r1, b0, b1, u))- 
    log(dtruncnorm(r1, a=-Inf, b=0, mur1, sigr1)) 
   
  w = runif(1, 0, 1) 
   
  if(log(w) < logar){r1 = r1_cand } 
   
  r_1 = c(r_1, r1) 
   
  #### updata beta0 #### 
  b0_cand = rnorm(1, b0, 1) 
  logar = sum(loglkh(x, y, n, r0, r1, b0_cand, b1, u))+ 
    log(dnorm(b0_cand, mub0, sigb0))-  
    sum(loglkh(x, y, n, r0, r1, b0, b1, u))- 
    log(dnorm(b0, mub0, sigb0)) 
   
  w = runif(1, 0, 1) 
   
  if(log(w) < logar){b0 = b0_cand } 
   
  b_0 = c(b_0, b0) 
   
  #### updata beta1 #### 
  b1_cand = rtruncnorm(1, a=0, b=Inf, mean = b1, sd = 1) 
  logar = sum(loglkh(x, y, n, r0, r1, b0, b1_cand, u))+ 
    log(dtruncnorm(b1_cand, a = 0, b = Inf, mub1, sigb1))-  
    sum(loglkh(x, y, n, r0, r1, b0, b1, u))- 
    log(dtruncnorm(b1, a = 0, b = Inf, mub1, sigb1)) 
   
  w = runif(1, 0, 1) 
   
  if(log(w) < logar){b1 = b1_cand} 
   
  b_1 = c(b_1, b1) 
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  pb$tick() 
} 
 
#### MCMC values #### 
r0_mc = r_0[(nburnin+1):niter] 
r1_mc = r_1[(nburnin+1):niter] 
b0_mc = b_0[(nburnin+1):niter] 
b1_mc = b_1[(nburnin+1):niter] 
 
# estimates of parameters 
params = c(mean(r0_mc), mean(r1_mc), mean(b0_mc), mean(b1_mc)) 
names(params) = c("gamma0", "gamma1", "beta0", "beta1")  
 
tmp_tox0 = matrix(nrow = length(doses), ncol = niter-nburnin) 
tmp_tox = matrix(nrow = length(doses), ncol = niter-nburnin) 
pcat = matrix(nrow = length(doses), ncol = 3) 
 
for(i in 1:length(doses)){ 
  tmp_tox[i, ] = sigmoid(b0_mc+b1_mc*doses[i]) 
  pcat[i, 1] = mean(tmp_tox[i, ]<=0.16) 
  pcat[i, 2] = mean(tmp_tox[i, ]>0.16 & tmp_tox[i, ]<=0.33) 
  pcat[i, 3] = mean(tmp_tox[i, ]>0.33) 
} 
 
for(i in 1:length(doses)){ 
  tmp_tox0[i, ] = sigmoid(r0_mc+r1_mc*doses[i]) 
} 
 
ptox = apply(tmp_tox, 1, mean) 
result = round(cbind(doses, pcat, ptox), 3)  
colnames(result) = c("doses", "punder", "ptarget", "pover", "pdlt")  
 
#### P(y~0) and P(y=0) #### 
py_0 = round(sigmoid(params[1]+params[2]*doses), 3) 
pye0 = round(py_0 + (1-py_0)*(1-ptox)^n1, 3) 
py0 = rbind(py_0, pye0) 
colnames(py0) = doses 
rownames(py0) = c("P(y~0)", "P(y=0)") 
 
#### plot MCMC values #### 
par(mfrow = c(2, 2)) 
plot(r0_mc, type="l") 
plot(r1_mc, type="l") 
plot(b0_mc, type="l") 
plot(b1_mc, type="l") 
 
#### summary #### 
summary = list("summary of P(DLT)" = round(result, 4), "P(y~0) and P(y=0)" = py0, "Estimates of 
Parameters" = params) 
summary 
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