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Abstract

In early phase clinical trial, finding maximum-tolerated dose (MTD) is a very
important goal. Many researches show that finding a correct MTD can improve
drug efficacy and safety significantly. Usually, dose-finding trials start from very
low doses, so in many cases, more than 50% patients or cohorts do not have dose-
limiting toxicity (DLT), but DLT may occur suddenly and increase fast along with
just two or three doses. Although some fantastic models were built to find MTD,
little consideration was given to those ‘0 DLTs’ and the ‘jump’ of DLTs. We
developed a Bayesian zero-inflated binomial regression for dose-finding study
based on Hall (2000), which analyses dose-finding data from two aspects: 1)
observation of only zeros, 2) number of DLTs based on binomial distribution, so it
can help us analyse if the cohorts without DLT have potential possibility to have
DLT and fit the ‘jump’ of DLTSs.

Keywords: dose-limiting toxicity, maximum-tolerated dose, metropolis algorithm,

zero-inflated binomial regression.

1. Introduction

In clinical trial, finding maximum-tolerated dose (MTD) is one of the chief goals in phase
1or 2. MTD is generally defined as maximum dose can be tolerated by patients, and the
tolerance is usually measured via the probability of dose-limiting toxicity (DLT) which
is the toxicity occurred in patients. For example, we have 8 dose levels for a drug, 1 mg,
2, mg, 4 mg, 8 mg, 12 mg, 16 mg, 22 mg, and 35 mg. The first 5 cohorts were enrolled
with 3 patients for each, and the last 3 cohorts were enrolled with 6 patients for each. Our

data is presented as follows:
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Doses (mg) 1 2 4 8 12 16 22 35
Number of Patients 3 3 3 3 3 6 6 6
Number of DLTs 0 0 0 0 0 1 2 4

From cohort 1 to 5, no DLT occurred, because dose-finding studies usually start from
very low doses. 1 DLT occurred at dose level 6, 2 DLTs occurred at dose level 7, and 4
DLTs occurred at dose level 8. More than 50% cohorts in our data do not have DLT. If
we define MTD as the dose with 33% of probability of DLT (P(DLT)), then based on the
observed P(DLT), 22 mg may be MTD in our study. However, our analysis should be
based on the potential P(DLT) curve with prior information (i.e., historical studies)
instead of observed curve, because in early phase studies, especially, oncology studies,
sample size is always small. O'Quigley (1990) proposed a continual reassessment method
(CRM) for MTD finding. This is a very influential method in clinical trial and some basic
theories were stated in his paper. The potential P(DLT) curve was assumed to be
monotonic with dose levels, and a Bayesian binomial framework was built so that prior
information can be incorporated. A significant development of CRM is a two-parameter
Bayesian logistic regression proposed by Neuenschwander (2008), which is widely used
in pharmaceutical industry. This is a very flexible model for adaptive dose-find design,
and covariates can be added in easily (Bailey, 2009). Another logistic based Bayesian
model is proposed by Tighiouart (2005). Apparently, binomial regression is the most
suitable for DLT-based dose-finding studies, since DLT is a yes/no variable. But so far,
to our knowledge, little work has been done to discuss those ‘0 DLTs’ in dose-finding
data. Since dose-finding trials usually start from very low doses, more than 50% cohorts
or patients may have no DLT, but DLT may occur suddenly and increase fast along with
just two or three doses, like our example above. This implies that in this kind of studies,
P(DLT) may be fit in two curves, one curve is for 0 DLTSs, and the other curve is for non-
0 DLTs, and these two curves are not independent. To explore this question, a zero-

inflated binomial (ZIB) regression may be a good lever.

ZIB regression is a statistical model to fit binary data with excessive zeros, which was
inspired by zero-inflated Poisson regression (Lambert, 1992) and first proposed by Hall
(2000). ZIB is a mixture of observation of only zeros and a weighted binomial
distribution. Two unknown parameters in ZIB are probability of observation from only
zeros and probability of success in binomial distribution, and for regression, logit link
functions can be imposed on these two parameters to incorporate covariates. An EM

algorithm is given in Hall (2000) for parameter estimation. However, as we introduced
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before, prior information is very important in dose-finding studies, since our analysis will
be based on potential P(DLT) curves with historical information. To incorporate prior
information and calculate probabilities of under dose, target dose, and over dose for safety

control, it is necessary to develop a Bayesian algorithm for ZIB regression.

In this paper, we developed a Bayesian ZIB (BZIB) regression for dose-finding study
based on Hall (2000). In Section 2, we introduced a general Bayesian framework for ZIB
regression, and simulations were conducted to evaluate the performance of our Bayesian
algorithm. In Section 3, we conducted simulations to assess the accuracy of BZIB
regression in dose-finding study, and applied BZIB regression to our data in introduction.

Our conclusion is in Section 4.

2. BZIB Regression

2.1 Bayesian Inference for ZIB regression

First, let us discuss a BZIB regression in a general situation. Assuming we have N
samples. Letn; denote the ith sample size, and y; denote the number of successful events
of ith sample, i = 1,2, ..., N. ZIB can be written as:
{0, with probability p;;
Yi binomial(n;,m;), with probability 1 — p;,
where, mt; is the probability of success in ith sample, and p; is the probability that y; is
from the observation of only zeros. This implies that ZIB regression can be written as:
B {0, with probability p; + (1 — p;)(1 — m;)™;
Yi= W, with probability (1 — pl-)(?ci)nin"(l — )Wk k=12,..,n;,
logit links can be imposed on p; and 7;, so logit(p;) = Z;y, and logit(m;) = X;B.Z
and X are covariate matrices. Letu; = 1 when y; = 0, and u; = 0 when y; = 1, the joint

density of ZIB regression is:

N 1 e ~Zw e~Xif \™
p(yh,IB) - Hi:l 1+ e—Ziy + 1+ e—Ziy 1+ e—Xiﬂ

e~ Zv  my 1 X \MTVTH
1+ e 2w (yi) (1 +e-XiF) <1+e‘xiﬁ> l '

X
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Let p(y) and p(B) denote the prior distribution of y and B, respectively. The posterior

distribution of ZIB regression is:

p.Bly) xp@ly,B) p(p(B.

To estimate y and B, an easy way is to use metropolis algorithm which is a Markov
chain Monte Carlo (MCMC) sampling method (Ghosh, 2006; Metropolis, 1953; Hoff,
2009). Metropolis algorithm requires posterior distributions and candidate parameters
from proposal distributions. For simplicity, we usually assume that y and B are
independent. We assign normal priors to our parameters, and adopt normal distributions
as our proposal distributions, since the range of our parameters are (—oo, +o0). Using un-
bold y and f to represent each single parameter in y and f, our algorithm is shown as

follows:

Algorithm

Let ¥ and 8 denote the values sampled from sth iteration, s = 1,2,..., 5. y(® and

B are initial values.
forsin O:S:

1. Sample candidate y randomly from proposal distribution N(y(s), 1),
ycandNN(y(s)ll).

p(yh,cand'ﬁ (s))¢(ycand|‘uy' O'y)
p(Yr ©,89)e(y Dluy,0y)

is a normal probability density function, u, and o, are prior mean and prior

2. Calculate acceptance ratio of y, a, =

210

standard deviation for y.
3. Compare a and w, w is randomly generated from uniform(0,1).

1) If w < a,, accept candidate y, y*+! = ycand,

2) If w > a,, reject candidate y, y**! = y*.
4. Apply Step 1, 2, and 3 to 8 with proposal distribution N(8(,1), and prior
N(ug,05). That is:

ﬁcandNN(’B(S), 1)'

and acceptance ratio of g is:

POl peand)g(peandug op)
E OO e(Bugas)
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In Step 2, to avoid the overflow of extreme large values and improve the efficiency of
computation, we cando log transform for a, and the log of the density of ZIB regression
is:

N p— .
logp(ylv, B) = Z {ui log[eZ? + (1 + eX#) ] — log(1 + e)
=1

+ (1 —uy) [yl-XiB— n;log(1 + eXif) + log (T;ﬂ}

Correspondingly, we compare log w with log « in Step 3.

2.2 Simulation Study

To assess the performance of Metropolis algorithm for ZIB regression, and the accuracy
of our estimation, we conducted 500 simulations on the data generated from ZIB
regression  with  logit(p;) =y, +v1X; and logit(m;) = By + 1 X;, and
X~Piosson(10)/5. A non-informatively normal prior, N(0,10000), was assigned to
eachyg, y1, Bo, and B;. We proposed three cases:1) yo = 2,y1 = =1, = —4,1 = 2;
2) Yo=Ly1=-05p,=-1,6=05; 3) vo=2y,=-15p,=-15p =1,
with sample size of n = 100 and n = 200. For each simulation, we ran 10000 MCMC
iterations with 5000 burn-ins in R 3.4.3. The performance of our algorithm is evaluated
by mean and standard deviation (SD) of the estimates from simulations, percentage of
bias between true values and estimated values, and coverage probability (CP). Our

simulation results are presented in Table 1.

Table 1: Simulation Results of BZIB Regression

Case n Parameter Mean (SD) Bias (%) CP

Yo 2.057 (1.11) -0.029 0.952

100 Y1 -1.043 (0.512) -0.043 0.954

Bo -4.131 (0.792) -0.033 0.922

. b1 2.062 (0.357) -0.031 0.938
Yo 2.066 (0.752) -0.033 0.912

200 Y1 -1.036 (0.342) -0.036 0.918

Bo -4.098 (0.526) -0.025 0.92

B 2.046 (0.237) -0.023 0.914
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Case n Parameter Mean (SD) Bias (%) CP
Yo 1.1 (0.824) -0.1 0.928

100 Y1 -0.553 (0.386) -0.106 0.932

Bo -1.043 (0.526) -0.043 0.936

) B1 0.513 (0.242) -0.026 0.914
Yo 1.012 (0.54) -0.012 0.954

200 Y1 -0.509 (0.257) -0.018 0.956

Bo -1.024 (0.341) -0.024 0.92

b1 0.513 (0.154) -0.026 0.932

Yo 2.179 (0.974) -0.09 0.956

100 V1 -1.635 (0.527) -0.09 0.956

Bo -1.541 (0.494) -0.027 0.932

3 B1 1.025 (0.227) -0.025 0.936
Yo 2.091 (0.678) -0.046 0.954

200 Y1 -1.561 (0.354) -0.041 0.968

Bo -1.531 (0.322) -0.021 0.916

B 1.016 (0.15) -0.016 0.914

1) Bias () = T YRS SSIIALAVALe  1009%.

500
2)CP = L=y [(true ”“;ﬁe(az-s‘%”‘g”j%)), (82.50%,097.50,) 1 95% credible interval.

Except y, has 10% bias in Case 2 (n = 100), all other biases are less than 5%, and all
SDs are small which indicates that our estimation is very stable. All CPs are greater than

90%. Overall, metropolis algorithm performed well on ZIB regression.

3. Application to Dose-Finding Study

In this section, we will introduce the application of BZIB regression to dose-finding
studies. Assuming we have N cohorts. Let n; denote the number of patients, y; denote the
number of DLTs,and m; denote the probability of DLT, in ith cohort. p; is the probability
that y; is generated from observation of only zeros. Imposing logit links on p; and =;, that
is, logit(p;) = yo + v1dose;, and logit(m;) = By + Prdose;. It is reasonable to assume
that p; is decreasing with doses (i.e., the probability of 0 DLT should be getting smaller
as the increasement of doses) and m; is increasing with doses, so we have y; < 0, and
B > 0.
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3.1 Prior Specification

As per our assumption, a below 0 and an above 0 truncated normal prior can be assigned
to y; and f;, respectively (Tibaldi, 2008). Regular normal priors can be assigned to
¥ and S, since we have no restrictions for them. Usually, we do not use non-informative
prior in dose-finding studies due to small sample size. However, since we lack historical
data for this study, by discussing with team, our guesstimates are 1) p; is greater than
50%, 2) pg should be close to 0, 3) m; should be close to 0, 4) g is no less than 50%, 5)
22 mg may be MTD. Based on our guesstimates, the priors we used are: y,~N(2.5,2),
Y1~TNy-(—0.1,2), Bo~N(=5,2), B1~TNy+(0.1,0.15). Mean and 95% Credible
Interval (CI) of Prior Probabilities of observing only zeros and DLT at each dose are
shown in Figure 1. Both curves for p; and 7r; comply with our guesstimates, and the broad

95% CI indicates that our priors are weakly informative.

Prior Probabilities of Prior Probabilities of
Observing Only Zeros DLT
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Figure 1. Mean and 95% CI of Prior Probabilities in BZIB regression.

3.2 Criteria to Select Recommended Dose

We adopted the criteria in Neuenschwander (2008) to select recommended dose based on
the MCMC values of m; sampled from posterior distribution, 7,. If we categorize
estimated probabilities of DLT into three intervals: 1) Under dose interval: (0, 0.16], 2)
Target dose interval: (0.16, 0.33], and 3) Over dose interval: (0.33, 1], then the

probability of under dose, target dose, and over dose at each dose level will be calculated
as:
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¥5_,1(0<n®<0.16)
s

)

1. P(under dose;) =

¥5_,1(0.16<7¥<033)
s

2. P(target dose;) =

)

¥5_,1(033<n<1)
< :

3. P(overdose;) =

The recommended dose is defined as the dose with P(over dose) < t and maximum

P(target dose) . 7 is the threshold of over dose control proposed by Babb (1998). In this

paper, we use T = 0.25.

3.3 Dose-Finding Simulation

We conducted 1000 dose-finding simulations based on 11 scenarios (S1 — S11) to access
the accuracy of our BZIB regression in dose-finding study. We have 8 cohorts in each
scenario, and 3 patients will be enrolled each time, and the maximum sample size is 48.
Our simulation start enrolling patients from the first cohort and if the recommended dose
from BZIB regression is higher than the current dose, we escalate the current dose one
more level, otherwise, we deescalate the current dose to recommended dose. When
recommended dose is equal to current dose, no less than 6 patients at current dose, and
P(target dose) of current dose is greater than or equal to 50%, our simulation stops, and
the recommended dose will be claimed as our selected target dose (or MTD in the given

doses).

To test the necessity of zero-inflated part in our model, we compared our BZIB
regression with two very widely-used logistic regressions in dose-finding studies in
pharmaceutical industry, which do not concern the observation of zeros. The description

of these two models are below.
Model 1: Regular Bayesian logistic regression (RBLR) (Guédé, 2014; Tibaldi, 2008).
logit(m;) = By + Bidose;, By > 0.

Where, B, is imposed with a normal prior, B; is imposed with a truncated normal prior.

In our simulation, we gave B, and 3; the same prior as in our BZIB regression.

Model 2: Two-parameter Bayesian logistic regression (TBLR) (Neuenschwander,
2008).
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dose;

logit(m;) =log By + B1 log< >,ﬁ0 > 0 and B, > 0.

doseyes

Where, dose, s is an arbitrary referent dose. (logp,,logf;) is imposed with a
bivariate normal prior. In our simulation, our dosey.r is 22 mg, and we adopted a weakly
informative prior proposed by Neuenschwander (2015), since we lack historical data for
this study, and the prior probabilities provided by this prior comply with our guesstimates

in Section 3.1. Please see Figure 2.

Prior Probabilities of DLT in TBLR

1.00 - I =

075
&
o --- 95% Cl
@ .50
e — Mean
o

0.25-

0.00-

124 8 12 16 22 35
Coses

Figure 2: Mean and 95% CI of Prior Probabilities in TBLR.

Table 2 shows the scenarios and the probabilities that observed target doses were
selected as MTD with BZIB regression, RBLR, and TBLR. Values for target doses are
bold. In Scenario 1, all observed probabilities of DLT are in under dose interval, and all
three models selected 35 mg with the highest probability, this is because 35 mg is the
highest dose which cannot be escalated. However, RBLR performed very conservative ly
with just 54.2% at 35 mg. Scenario 2 has no target dose either, and all observed
probabilities of DLT are in over dose interval. All three models showed very low
probability to select over doses. Scenario 3 and 4 have target doses in high dose part, and
no less than half cohorts have no DLT. RBLR was not able to provide adequate accuracy
to select target doses in Scenario 4. Scenario 5 has two target doses in the middle part,
and our three models provided the similar accuracies. Scenario 6 and 7 have relatively
low target doses. In Scenario 6, although BZIB regression has a lower accuracy than
RBLR and TBLR, its probability of selecting target dose is still greater than 50%, and
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furthermore, BZIB regression has lower probability to select over doses than RBLR and
TBLR. In Scenario 7, BZIB regression is the only model reached accuracy of 50%.
Scenario 8 — 11 have big jumps between target doses and its next doses, and no less than
half cohorts have no DLT. In Scenario 8 and 9, BZIB regression has significantly higher
accuracy than the other two models. In Scenario 10 and 11, although all models selected

target doses successfully, BZIB regression has the highest accuracy.

All 'in all; except Scenario 5 and 6, BZIB regression has obviously higher accuracies
than RBLR and TBLR. In Scenario 5, all three models have similar accuracies, and in
Scenario 6, BZIB regression has better performance in safety control.

Table 2: Scenarios and Dose-Finding Simulation Results

Doses (mg)
1 2 4 8 12 16 22 35
Obs. P(DLT) 0 0 0.01 0.02 0.05 007 008 01
s1. BZIB Selection (%) 01 01 03 04 24 53 148 76.6
RBLR Selection (%) 0 0 0 02 0.7 82 36.7 54.2
TBLR Selection (%) 0 0 0 01 0.9 6.1 12 80.9
Obs. P(DLT) 060 065 070 075 0.80 085 090 0.9
- BZIB Selection (%) 34 03 01 0 0 0 0 0
RBLR Selection (%) 1.1 08 01 0 0 0 0 0
TBLR Selection (%) 0.7 0 0 0 0 0 0 0
Obs. P(DLT) 0 0 0 0 0.12 0.27 0.43 0.56
s3 BZIB Selection (%) 0 0 0 04 165 648 178 05
RBLR Selection (%) 0 0 0 0 36 59.8 4.2 0
TBLR Selection (%) 0 0 0 01 293 60 105 0.2
Obs. P(DLT) 0 0 0 0 0 0.12 0.28 0.46
<4 BZIB Selection (%) 0 0 0O 04 02 333 606 55
RBLR Selection (%) 0 0 0 0 0.2 52 471 0.7
TBLR Selection (%) 0 0 0 0 03 446 522 29
Obs. P(DLT) 0.03 006 0.08 0.17 0.23 0.38 044 0.56
S5 BZIB Selection (%) 0 0.7 91 347 411 128 14 01
RBLR Selection (%) 0 06 65 38 396 141 06 0
TBLR Selection (%) 01 11 111 321 351 163 31 0.1

10
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Doses (mg)
1 2 4 8 12 16 2 35
Obs. P(DLT) 0.03 0.07 0.18 039 045 053 061 0.7
S8 BZIB Selection (%) 39 223 548 14 22 04 0
RBLR Selection (%) 0 29 604 326 32 02 0
TBLR Selection (%) 01 62 62 248 36 04 0 0
Obs. P(DLT) 023 031 042 053 061 073 081 0.92
BZIB Selection (%) 341 21 173 2 0 0 0 0
> RBLR Selection (%) 73 239 213 12 0 0 0 0
TBLR Selection (%) 112 242 96 08 01 O 0 0
Obs. P(DLT) 0 0 0 0 0 009 02 068
BZIB Selection (%) 0 0 0 01 03 156 832 038
> RBLR Selection (%) 0 0 0 0 0 269 731 O
TBLR Selection (%) 0 0 0 0 03 256 732 09
Obs. P(DLT) 0 0 0 0 0 011 0.27 0.89
S BZIB Selection (%) 0 0 0 07 07 313 67.2 01
RBLR Selection (%) 0 0 0 0 02 50 498 O
TBLR Selection (%) 0 0 0 0 0.2 485 512 01
Obs. P(DLT) 0 0 0 0 01 022 075 09
s10 BZIB Selection (%) 0 0 02 07 165 814 12 O
RBLR Selection (%) 0 0 0 0O 256 74 04 O
TBLR Selection (%) 0 0 01 26 77 03 O
Obs. P(DLT) 0 0 0 0 009 0.18 084 0.95
11 BZIB Selection (%) 0 0 01 04 128 859 08 O
RBLR Selection (%) 0 0 0 0O 189 809 02 O
TBLR Selection (%) 0 0 0 0 158 839 03 O

1) Obs. P(DLT) is observed probability of DLT based on which number of DLTS is generated in
each cohort.

2) BZIB Selection, RBLR Selection, and TBLR Selection are the probability of a dose selected
as target dose with BZIB regression, RBLR, and TBLR.

3.4 Application to an Example

Now, let us apply BZIB regression to the data in our introduction. We ran BZIB
regression in R 3.4.3 with 20000 iterations and 10000 burn-ins. Our R code can be found
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in Appendix A. Our estimates of probabilities of under dose, target dose, over dose, and
DLT are shown in Table 3. 25 mg is added as a predicted dose, and assuming 6 patients
are enrolled at it. As per our criteria of recommended dose, the P(over dose) of the first
7 doses are less than 0.25, and among them, 22 mg has the maximum P (target dose), SO
22 mg is recommended as MTD in our doses. Table 4 shows the estimates of probabilities
of y~0and y = 0, we can see that both P(y~0) and P(y = 0) are decreasing with doses,
which is in accordance with our assumption. P(y;~0) = 0.633, which implies that 0 in
the first cohort is more likely from the observation of only zeros than binomial
distribution, and all other P(y;~0)s are small, which indicates that number of DLTSs in
these cohorts are very likely generated from a binormal distribution. P(y = 0) can be
interpreted as the potential possibility that y = 0, given p; and m;. We can see that
although 12 mg has no DLT out of 3 patients, it has around 18% of possibility to have at
least one DLT.

Table 3: Estimates of Probabilities of Under Dose, Target Dose, Over Dose, and DLT

Doses (mg) P(under dose) P(target dose) P(overdose) | P(DLT)
1 0.998 0.002 0 0.014
2 0.998 0.002 0 0.016
4 0.996 0.004 0 0.021
8 0.991 0.009 0 0.036
12 0.967 0.032 0 0.064
16 0.806 0.19 0.004 0.112
22 0.186 0.609 0.205 0.252
25* 0.035 0.418 0.548 0.356
35 0 0.01 0.99 0.727

*25 mg is a predicted dose.

Table 4: Estimates of P(y~0) and P(y = 0)

Doses (mg) 1 2 4 8 12 16 22 25 35
P(y;~0) | 0633 0209 0006 O 0 0 0 0 0
P(y=0) |00985 0962 0939 0895 0.821 0489 0175 0071 O

*25 mg is a predicted dose.
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4. Conclusion

In this paper, we provided a very clear Bayesian framework for ZIB regression and its
application in DLT-based dose-finding studies. We found that metropolis algorithm
performed very stably on BZIB regression via simulations. In our dose-finding
simulations, we compared BZIB regression with RBLR and TBLR, and our simulation
results show that BZIB regression has better performance when data has excessive zeros,
and big jump between target dose and its next dose. Even for the data without excessive
zeros, BZIB regression provides higher accuracy in all scenarios with high target doses
than the other two models as well, and either better safety control or higher accuracy in

scenarios with low target doses.

Additionally, compared with the logistic regressions which do not concern observation
of zeros, BZIB regression has more flexibility. First, BZIB regression analyses dose-
finding data from two aspects: 1) observation of only zeros, 2) number of DLTs based on
binomial distribution, that is, two curves will be fit for data analysis. And when p goes to
0, BZIB regression goes to a regular logistic regression. Second, one additional control
for selecting recommended dose can be added on P(y = 0) if necessary (ie., 1 —

P(y = 0) < ¢, the value of ¢ should be determined based on the studies).
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Appendix A: R code

Hi##H# R package “truncnorm” and “progress” needto be installed ####
library(truncnorm)
library(progress)

set.seed(10)

Hitit data #it

n=c(3,3,3,3,3,6,6,6) #number of patients in each cohort

## nl is used for prediction ##

nl=c(3,3,3,3,3,6,6, 6,6) #assume 6 patients were enrolled at 25 mg
x=c(1, 2,4, 8,12, 16, 22, 35) # administered doses

y=¢(0,0,0,0,0, 1,2, 4) #number of DLTs in each cohort

doses =c(1, 2,4, 8,12, 16, 22, 25, 35) # 25 mg is for prediction
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HHHE priors HiH#E

H#i##H# gamma0~ N(2.5, 2) H#it#H
mur0 =2.5

sigr0=2

HiH gammal~TN(-0.1, 2) ###H#
murl=-0.1
sigrl=2

#it# betaO ™~ N(-5, 2)###
mub0 =-5
sigh0 =2

Hi#H# betal~ TN(0.1, 0.25)H#Hi#
mubl =0.1
sigh1 =0.15

H### number of iteration and burn-in #it##
niter = 20000
nburnin = 10000

HiH#HE log liklihood Hit##
loglkh = function(x, y, n, r0, r1, b0, b1, u){
n_fac = factorial(n)
y_fac = factorial(y)
ny_fac = factorial(n-y)
Il = u*log(exp(rO+r1*x)+(1+exp(b0+b1*x))*(-n))-log(1+exp(rO+rl1*x))+
(1-u)*(y*(bO+b1*x)-n*log(1+exp(b0+b1*x))+log(n_fac/(y_fac*ny_fac)))
return(ll)

}

#iHH# sigmoid funcitons ####

sigmoid = function(z){
return(1/(1+exp(-z)))

}

HH##H# initial values #i##
r0o=0

rl1=-0.5

b0=0

b1=0.5

r0=r_1=b 0=b_1=NULL

HHHH U HHHH
u=(y==0)*1

pb <- progress_barSnew(total = niter)

for(i in 1:niter){
H##H#H updata gammaO ###H#
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r0_cand =rnorm(1, r0, 1)

logar = sum(loglkh(x, y, n, rO_cand, r1, b0, b1, u))+
log(dnorm(r0_cand, murO, sigr0))-
sum(loglkh(x, y, n, r0, r1, b0, b1, u))-
log(dnorm(r0, murO, sigr0))

w = runif(1, 0, 1)

if(log(w) < logar){rO=r0_cand}

r 0=c(r_0,r0)

####H updata gammal #i#

r1_cand = rtruncnorm(1, a=-Inf, b =0, r1, 1)

logar = sum(loglkh(x, y, n, r0, r1_cand, b0, b1, u))+
log(dtruncnorm(rl_cand, a=-Inf, b=0, murl, sigrl))-
sum(loglkh(x, y, n, r0, r1, b0, b1, u))-
log(dtruncnorm(rl, a=-Inf, b=0, mur1, sigr1))

w = runif(1, 0, 1)

if(log(w) < logar){rl=r1_cand}

r 1=c(r_1,r1)

Hi#H# updata betaO #HiH#H

b0_cand = rnorm(1, b0, 1)

logar = sum(loglkh(x, y, n, rO, r1, bO_cand, b1, u))+
log(dnorm(b0_cand, mub0, sigh0))-
sum(loglkh(x, y, n, r0, r1, b0, b1, u))-
log(dnorm(b0, mubO, sigh0))

w = runif(1, 0, 1)

if(log(w) < logar){b0 =b0_cand }

b 0=c(b_0, b0)

H### updata betal ####

bl _cand = rtruncnorm(1, a=0, b=Inf, mean = b1, sd = 1)

logar = sum(loglkh(x, y, n, r0, r1, b0, bl_cand, u))+
log(dtruncnorm(bl_cand, a =0, b = Inf, mubl, sigh1))-
sum(loglkh(x, y, n, r0, r1, b0, b1, u))-
log(dtruncnorm(bl, a=0, b = Inf, mub1l, sigh1))

w = runif(1, 0, 1)

if(log(w) < logar){bl = bl_cand}

b_1=c(b_1, bl)
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pbStick()
}

H##HE MCMC values ##Hi
rO_mc =r_0[(nburnin+1):niter]
r1_mc =r_1[(nburnin+1):niter]
b0_mc = b_0[(nburnin+1):niter]
bl _mc =b_1[(nburnin+1):niter]

# estimates of parameters
params = c(mean(r0_mc), mean(rl_mc), mean(bO_mc), mean(b1l_mc))
names(params) = ¢("gamma0", "gammal", "beta0", "betal")

tmp_tox0 = matrix(nrow = length(doses), ncol = niter-nburnin)
tmp_tox = matrix(nrow = length(doses), ncol = niter-nburnin)
pcat = matrix(nrow = length(doses), ncol = 3)

for(i in 1:length(doses)){
tmp_tox[i, ] = sigmoid(b0_mc+b1l_mc*doses]i])
pcat[i, 1] = mean(tmp_tox[i, ]<=0.16)
pcat[i, 2] = mean(tmp_tox[i, ]>0.16 & tmp_tox]i, ]<=0.33)
pcat[i, 3] = mean(tmp_tox]i, 1>0.33)
}

for(i in 1:length(doses)){
tmp_toxO[i, ] = sigmoid(rO_mc+rl_mc*doses]i])

}

ptox = apply(tmp_tox, 1, mean)
result = round(cbind(doses, pcat, ptox), 3)

colnames(result) = c("doses", "punder", "ptarget", "pover", "pdlt")
#iHtH P(y~0) and P(y=0) ##t##

py_0 = round(sigmoid(params[1]+params[2]*doses), 3)

pyeO = round(py_0 + (1-py_0)*(1-ptox)*n1, 3)

pyO =rbind(py_0, pye0)

colnames(py0) = doses

rownames(py0) = c("P(y~0)", "P(y=0)")

HiH#HE plot MCMC values ####
par(mfrow = ¢(2, 2))
plot(r0_mc, type="1")
plot(rl_mc, type="1")
plot(b0_mc, type="1")
plot(b1l_mc, type="1")

HH## summary HiH#

summary = list("summary of P(DLT)" = round(result, 4), "P(y~0) and P(y=0)" = pyO0, "Estimates of
Parameters" = params)

summary
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