

Metagenomic Nanopore sequencing of influenza virus direct from clinical respiratory samples

Kuaima Lewandowski^{1*}, Yifei Xu^{2*}, Steven .T Pullan^{1*#}, Sheila F. Lumley³, Dona Foster^{2,5},
Nicholas Sanderson^{2,5}, Alison Vaughan^{2,5}, Marcus Morgan³, Nicole Bright²,
James Kavanagh², Richard Vipond¹, Miles Carroll¹, Anthony C. Marriott¹,
Karen E Gooch¹, Monique Andersson³, Katie Jeffery³, Timothy EA Peto^{2,3,5},
Derrick W. Crook^{2,3,5}, A Sarah Walker², Philippa C. Matthews^{3,4,5}

* These authors contributed equally to this work

¹ Public Health England, National Infection Service, Porton Down, Salisbury, SP4 0JG, UK

² Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK

³ Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS

16 Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK

17 ⁴ Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University
18 of Oxford, South Parks Road, Oxford OX1 3SY, UK

⁵ Oxford NIHR BRC, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK

21 **# Corresponding author:** steven.pullan@phe.gov.uk

Keywords: influenza, Nanopore, metagenomic, diagnosis, epidemiology, sequencing

23 **Running title: Nanopore sequencing of influenza virus**

26 **Abstract:** (max 250 words)

27 Influenza is a major global public health threat as a result of its highly pathogenic variants, large
28 zoonotic reservoir, and pandemic potential. Metagenomic viral sequencing offers the potential of
29 a diagnostic test for influenza which also provides insights on transmission, evolution and drug
30 resistance, and simultaneously detects other viruses. We therefore set out to apply Oxford
31 Nanopore Technology to metagenomic sequencing of respiratory samples. We generated
32 influenza reads down to a limit of detection of 10^2 - 10^3 genome copies/ml in pooled samples,
33 observing a strong relationship between the viral titre and the proportion of influenza reads ($p =$
34 4.7×10^{-5}). Applying our methods to clinical throat swabs, we generated influenza reads for 27/27
35 samples with high-to-mid viral titres (Cycle threshold (Ct) values <30) and 6/13 samples with low
36 viral titres (Ct values 30-40). No false positive reads were generated from 10 influenza-negative
37 samples. Thus Nanopore sequencing operated with 83% sensitivity (95% CI 67-93%) and 100%
38 specificity (95% CI 69-100%) compared to the current diagnostic standard. Coverage of full
39 length virus was dependent on sample composition, being negatively influenced by increased
40 host and bacterial reads. However, at high influenza titres, we were able to reconstruct >99%
41 complete sequence for all eight gene segments. We also detected Human Coronavirus and
42 generated a near complete Human Metapneumovirus genome from clinical samples. While
43 further optimisation is required to improve sensitivity, this approach shows promise for the
44 Nanopore platform to be used in the diagnosis and genetic analysis of influenza and other
45 respiratory viruses.

46

47 **Introduction**

48 Influenza A is an RNA Orthomyxovirus of approximately 13Kb length, with an eight-segment
49 genome. It is typically classified on the basis of Haemagglutinin (HA) and Neuraminidase (NA),

50 of which there are 16 and 9 main variants respectively [1]. Genetic reassortment underpins the
51 potential for transmission between different host species [2], and for the evolution of highly
52 pathogenic variants [3–6], recognised in the WHO list of ‘ten threats to global health’ [7].
53 Seasonal influenza causes an estimated 650,000 deaths globally each year, and H3N2 alone
54 kills 35,000 each year in the USA [1,8]. Certain groups are particularly at risk, including older
55 adults, infants and young children, pregnant women, those with underlying lung disease, and
56 the immunocompromised [9]. The burden of disease disproportionately affects low/middle
57 income settings [10]. Influenza diagnostics and surveillance are fundamental to identify the
58 emergence of novel strains, to improve prediction of potential epidemics and pandemics [4,11],
59 and to inform vaccine strategy [12]. Diagnostic data facilitate real-time surveillance, can
60 underpin infection control interventions [13,14] and inform the prescription of Neuraminidase
61 Inhibitors (NAI) [9].

62
63 Currently, most clinical diagnostic tests for influenza depend on detecting viral antigen, or PCR
64 amplification of viral nucleic acid derived from respiratory samples [15]. These two approaches
65 offer trade-offs in benefits: antigen tests (including point-of-care tests (POCT)) are typically rapid
66 but low sensitivity [16–18], while PCR is more time-consuming but more sensitive [9].
67 Irrespective of test used, most clinical diagnostic facilities report a non-quantitative (binary)
68 diagnostic result, and the data generated for influenza have limited capacity to inform insights
69 into epidemiological linkage, vaccine efficacy or anti-viral susceptibility. Given this, there is an
70 aspiration to generate new diagnostic tests that combine speed (incorporating potential for
71 POCT [19,20]), sensitivity, detection of co-infection [21,22], and generation of quantitative or
72 semi-quantitative data that can be used to identify drug resistance and reconstruct phylogeny to
73 inform surveillance, public health strategy, and vaccine design.

74

75 The application of Oxford Nanopore Technologies (ONT; <https://nanoporetech.com/>) to
76 generate full-length influenza sequences from clinical respiratory samples can address these
77 challenges. ONT offers a ‘third-generation’, portable, real-time approach to generating long-read
78 sequence data, with demonstrated success across a range of viruses [21,23–25]. To date,
79 Nanopore sequencing of influenza has been reported using high titre virus from an *in vitro*
80 culture system, producing full length genome sequences through direct RNA sequencing [26] or
81 targeted enrichment by either hybridisation of cDNA [27] or influenza-specific PCR amplification
82 [28].

83

84 We therefore aimed to optimise a metagenomic protocol for detecting influenza viruses directly
85 from clinical samples using Nanopore sequencing. We determine its sensitivity compared to
86 existing diagnostic methods and its accuracy compared to short-read (Illumina) sequencing,
87 using clinical samples from hospital patients during an influenza season, and samples from a
88 laboratory controlled infection in ferrets.

89 **Results**

90 **Method optimisation to increase proportion of viral reads derived from throat swabs**

91 We first sequenced five influenza A positive and five influenza-negative throat swabs, each
92 spiked with Hazara virus control at 10^4 genome copies/ml. Using the SISPA approach [21]
93 followed by Nanopore sequencing, we produced metagenomic data dominated by reads that
94 were bacterial in origin, with extremely few viral reads detected. Passing the sample through a
95 0.4 μ m filter prior to nucleic acid extraction increased the detection of viral reads by several
96 orders of magnitude (Fig S1). Filtration is relatively expensive, so we also assessed the
97 alternative approach of adding a rapid centrifugation step to pellet bacterial and human cells,
98 followed by nucleic acid extraction from the supernatant. We used a pooled set of influenza A
99 positive samples (concentration 10^6 genome copies/ml), to provide a large enough sample to

100 assess reproducibility, with the Hazara control spiked in at 10^4 genome copies/ml. Enrichment
101 for influenza and Hazara was similar for filtration vs centrifugation, based on reads mapping to
102 the viral genome (Fig S2). As centrifugation is simpler and cheaper, we selected this approach
103 for all further testing.

104

105 **Method optimisation to reduce time for cDNA synthesis**

106 Synthesis of tagged, randomly primed cDNA and its subsequent amplification via SISPA [21]
107 required lengthy reverse transcription and PCR steps (1h and 3h 45min) respectively.
108 Optimising these stages upgraded the reverse transcriptase from SuperScriptIII to
109 SuperScriptIV (ThermoFisher), reduced incubation time to 10min (processing time reduction of
110 50min) and reduced the PCR extension time within each cycle from 5min to 2min (1h 30min
111 processing time reduction). Comparing this final method with our original protocol, using
112 triplicate extractions from the pooled set of influenza A positive samples, demonstrated no
113 significant loss in performance in the more rapid protocol (Fig S3) and we adopted this
114 approach as our routine protocol.

115

116 **Consistent retrieval of Hazara virus by Nanopore sequencing**

117 Starting with an influenza A positive sample pool (10^6 genome copies/ml), we made three
118 volumetric dilution series using three independent influenza-negative pools (Fig 1). The total
119 quantity of cDNA after preparation for sequencing was consistently higher in all samples using
120 negative pool-3 as diluent (Fig 2A), indicating the presence of a higher concentration of non-
121 viral RNA within pool-3. This is likely due to host cell lysis or higher bacterial presence, and
122 demonstrates the variable nature of throat swab samples.

123

124 We consistently retrieved Hazara virus reads from all three dilution series by Nanopore
125 sequencing, independently of influenza virus titre in the sample (Fig 2B). Sequencing from

126 dilution series 1 and 2 gave a consistent proportion of total reads mapping to the Hazara
127 genome, across dilutions and between the first two pools with mean values per pool of 1.4×10^3
128 ± 660 RPM (reads per million (of total reads) \pm standard deviation) and $1.2 \times 10^3 \pm 350$ RPM
129 respectively. The pool-3 dilution series generated 260 ± 340 RPM Hazara reads across samples,
130 and showed a decreasing trend associated with increased dilution factor, as increasingly more
131 non-viral RNA was introduced from this high-background pool.

132

133 **Limit of influenza virus detection by Nanopore from pooled samples**

134 Nanopore sequencing of the triplicate SISPA preparations of the influenza A positive pool
135 produced mean $5.3 \times 10^4 \pm 3.6 \times 10^4$ RPM mapping to the influenza A genome (Fig 2B). Across the
136 dilution series, the proportion of influenza reads was strongly associated with influenza virus
137 titre (p -value = 4.7×10^{-5}), but was also influenced by which negative pool was used for dilution,
138 consistent with the pattern observed for the Hazara control. Sequencing the negative controls
139 (pools with no influenza virus spike) generated no reads mapping to influenza. At influenza virus
140 titres $< 10^3$ copies/ml, influenza reads were inconsistently detected across the samples (Fig 2B),
141 suggesting the limit of detection is between 10^2 - 10^3 influenza copies/ml.

142

143 **Retrieval and reconstruction of complete influenza genomes from pooled/spiked samples**

144 For the Hazara virus control (10^4 genome copies/ml spike), genome coverage was 81.4-99.4%
145 (at 1x depth) for pools 1 and 2. Coverage in the high-background pool 3 was more variable
146 (21.5-96.5%; Fig 3A). Influenza A genome coverage at 10^6 copies/ml was $\geq 99.3\%$ for each
147 segment in all samples (Fig 3A). At 10^4 genome copies/ml of influenza, mean 1x coverage per
148 segment was 90.3% for pools 1 and 2, but was substantially reduced in the high-background
149 pool 3 to 5.7% (Fig 3A). At influenza titres $< 10^4$ copies/ml, coverage was highly variable across

150 genome segments. However, when present at 10^3 copies/ml, 2/3 pools had sufficient data for
151 correct subtyping as H3N2 (Table 1).

152

153 **Influenza detection from individual clinical samples**

154 Having demonstrated our ability to retrieve influenza sequences from pooled influenza-positive
155 material diluted with negative samples, we next applied our methods to individual anonymised
156 clinical samples, 40 testing influenza-positive and 10 influenza-negative in the clinical diagnostic
157 laboratory. Data yield varied between flow cells (range 2.5×10^6 - 13.2×10^6 reads from up to 12
158 multiplexed samples). Within flow cells, barcode performance was inconsistent when using a
159 stringent, dual barcode, demultiplexing method [22]. From each clinical sample, the range of
160 total reads generated was 1.0×10^5 to 2.4×10^6 (median 3.8×10^5) (Table S1).

161

162 Reads mapping to either influenza A or B genomes were present in all 27 samples with Cycle
163 threshold (Ct) < 30 (range 6 to 274,955 reads). At Ct > 30 , 6/13 samples generated influenza
164 reads (range 6 to 92,057), (difference between sensitivity at a Ct threshold of 30, $p < 0.0001$, Fig
165 4) The highest Ct value at which any influenza reads were detected was Ct 36.8 (Sample 37; 17
166 reads influenza A). No reads classified as influenza were obtained from sequencing the ten
167 GeneXpert-negative samples (Table S1). Based on this small dataset, sensitivity is 83% and
168 specificity 100% (95% CI 67-93% and 69-100%, respectively). There was a strong correlation
169 between Ct value and both reads per sample classified as influenza ($R^2 = 0.604$) and
170 number of influenza reads per million reads ($R^2 = 0.623$) (Fig 4).

171

172 **Detection of Hazara virus internal control**

173 Detection of the control virus (Hazara at 10^4 genome copies/ml) was highly variable,
174 demonstrating that levels of background non-target RNA are a major source of inter-sample
175 variation. Hazara reads per sample ranged from 0 to 13.5×10^3 ($0-3.5 \times 10^4$ RPM) with a median

176 of 70 (160 RPM) and mean of 706 (1.7×10^3 RPM) (Table S1). Four (8%) of 50 samples
177 generated no detectable Hazara reads, two with high numbers of influenza reads (Sample 6: Ct
178 18.4, 1.5×10^4 influenza A reads and Sample 1: Ct 13.5, 1.5×10^5 influenza B reads) acting to
179 dilute the control signal. The other two samples contained no detectable influenza reads
180 (Sample 34: Ct 35.9, Sample 46, Flu negative). The lack of control detection therefore indicates
181 a loss of assay sensitivity due to high levels of background nucleic acid present in some
182 samples.

183

184 **Comparison with Illumina sequencing**

185 A subset of 15 samples were selected from across the viral titre range and re-sequenced on an
186 Illumina MiSeq. Proportions of reads generated that mapped to the influenza genome were
187 similar across the two sequencing technologies (Figure S4).

188

189 **Influenza phylogeny and typing**

190 We reconstructed the phylogeny using consensus sequences for the HA gene (Fig 5). This
191 demonstrates closely related sequences, as expected within one location in a single influenza
192 season, and complete concordance between the sequences obtained by Nanopore vs Illumina
193 for the subset of isolates sequenced by both technologies.

194

195 **Detection of other RNA viruses in clinical samples**

196 Within the 50 clinical samples sequenced, we found limited evidence of other RNA viruses.
197 Sample 6 produced 109 reads mapping to Human Coronavirus in addition to $>1.5 \times 10^4$ influenza
198 A reads, suggesting co-infection. We also derived $>4.0 \times 10^4$ reads from Human
199 Metapneumovirus from an influenza-negative sample, providing a near complete (99.8%)
200 genome from one sample (Figure S1, Sample I), further detailed here [29].

201

202 **Animal time-course study**

203 Finally, we used samples collected from a previous animal experiment [30] to test the
204 reproducibility of our methods across a time-course model of influenza A infection (three ferrets
205 pre-infection (day -3) and then at days 1, 2, 3 and 5 following laboratory infection with influenza
206 A). The proportion of viral reads present at each timepoint was highly congruent with viral titre
207 (titre shown in Fig 6A and sequencing reads in Fig 6B). Consensus genome sequences were
208 generated from days two, three and five and were 100% concordant with Illumina-derived
209 consensus sequences from the same cDNA.

210

211 **DISCUSSION**

212 To our knowledge, this is the first report of successfully applying metagenomic Nanopore
213 sequencing directly to respiratory samples to detect influenza virus and generate influenza
214 sequences. The approach demonstrates excellent specificity; sensitivity varies by viral titre, but
215 is comparable to existing laboratory diagnostic tests for Ct values <30. Our optimised protocol
216 depletes human and bacterial nucleic acids, and reduces the time from sample to sequence.
217 This method has the potential to be further optimised and validated to improve sensitivity for
218 influenza, identify other RNA viruses, detect drug-resistance mutations, and provide insights into
219 quasispecies diversity [31,32]. At a population level, this sequence-based diagnostic data can,
220 in addition, provide phylo-epidemiological reconstruction, insights into transmission events,
221 potential for estimating vaccine efficacy [33], and approaches for public health intervention [34].

222

223 Whole genome viral sequencing can accurately trace outbreaks across time and space [35].
224 The metagenomic method employed here produced >90% complete genomes for 17/27
225 samples with a Ct value ≤30, demonstrating the ability of metagenomics to produce sufficient

226 data for influenza diagnostics and genome characterisation, whilst also detecting and
227 sequencing other common RNA viruses.

228
229 Despite time reductions in wet laboratory processing, this method requires further modification
230 to simplify and accelerate the protocol if it is to become viable as a near-to-patient test. High
231 error rates are a recognised concern in Nanopore sequence data, and cross-barcode
232 contamination can create challenges when low and high titre samples are batched together [22].
233 To avoid these problems, we batched samples according to Ct value, and applied stringent
234 barcode demultiplexing criteria; however, this reduces the total data available for analysis [22].
235 For future primary diagnostic use it would be preferable to sequence samples individually using
236 a lower throughput flow cell e.g. ONT Flongle. Careful optimisation of laboratory and
237 bioinformatic methods are required to resolve individual sequence polymorphisms, particularly
238 for drug resistance alleles.

239
240 IDSA guidelines [9] recommend nasal/nasopharyngeal specimens for influenza diagnosis, but
241 throat swabs are easier to collect in clinical practice and therefore accounted for the majority of
242 our diagnostic samples. Further work is needed to investigate the sensitivity and specificity of
243 our protocol for a wider array of respiratory sample types (also including bronchoalveolar
244 lavage, sputum and saliva), which may yield different degrees of contaminating bacterial and/or
245 human reads. Loss of assay sensitivity due to the presence of high-level background DNA from
246 either host or bacterial origin is a fundamental issue for metagenomic approaches, even in cell
247 free sample types such as cerebrospinal-fluid [36]. This challenge is exacerbated in throat
248 swabs, as seen in our data. Our use of hazara virus as an internal positive control allows us to
249 identify those sample in which sensitivity has dropped below 10^4 viral genome copies per ml. In
250 our test set 8% of samples showed insufficient sensitivity for hazara virus, however half of these
251 contained a high titre of influenza, so only 4% were true sensitivity failures. This figure is in line

252 with the reported 6% failure rate due to high background for RNA virus detection from a
253 clinically validated metagenomic sequencing assay for pathogen detection in cerebrospinal-fluid
254 [36]

255
256 At the higher Ct values in our clinical samples (Ct 30-40), the sensitivity of Nanopore
257 sequencing was reduced compared to the current PCR-based test (Cepheid). Further
258 optimisation will be required to maximise the diagnostic yield from this group of samples, without
259 sacrificing specificity.

260
261 The correlation between Ct value and Nanopore reads confirms semi-quantitative output. Using
262 samples from the ferret influenza model, collected under standardized laboratory conditions,
263 demonstrated excellent reproducibility of viral read proportions at a given viral titre across
264 biological replicates. However, we observed heterogeneity in output between clinical samples
265 as well as between Nanopore flowcells, suggesting that the current platform is not yet
266 sufficiently reliable for reproducibly generating quantitative data. In addition, the detection of
267 positive controls can be impaired in high background samples also creating further uncontrolled
268 variability in the test yield.

269
270 Future application of this method will involve real-time laboratory testing of respiratory samples,
271 running the platform head-to-head with existing clinical diagnostics to further assess sensitivity
272 and specificity, and using influenza sequence data to investigate transmission events.
273 Identifying instances of nosocomial transmission may shed light on healthcare-acquired
274 infection, thus helping to improve infection control practice. Assessment of diversity within deep
275 sequence datasets provides an opportunity to investigate the relationship between within-host
276 polymorphisms and clinical outcomes. Long-read sequences confer the potential advantage of
277 identifying viral haplotypes and ascertaining the extent to which significant polymorphisms are

278 transmitted together or independently [25]. We have shown that the method is robust for the
279 identification of commonly circulating influenza strains in human populations, but further
280 investigation is required to ascertain the extent to which it performs reliably in other (avian,
281 animal) strains.

282

283 In summary, our methods show promise for generating influenza virus sequences directly from
284 respiratory samples. The 'pathogen agnostic' metagenomic sequencing approach offers an
285 opportunity for simultaneous testing for a wide range of potential pathogens, providing a faster
286 route to optimum treatment and contributing to antimicrobial stewardship. Longer term, this
287 approach has promise as a routine laboratory test, providing data to inform treatment, vaccine
288 design and deployment, infection control policies, and surveillance.

289 **Methods**

290 **Study cohort and sample collection**

291 We collected respiratory samples from the clinical microbiology laboratory at Oxford University
292 Hospitals NHS Foundation Trust, a large tertiary referral teaching hospital in the South East of
293 England. We worked with anonymised residual material from throat and nose swabs generated
294 as a result of routine clinical investigations, between January and May 2018. Samples were
295 collected using a sterile polyester swab inoculated into 1-3 ml of sterile viral transport medium
296 (VTM), using a standard approach as described on the CDC website [37]. Workflow is shown in
297 Fig 1.

298

299 During the study, respiratory samples submitted to the clinical diagnostic laboratory were
300 routinely tested by a PCR-based test using GeneXpert (Cepheid) to detect influenza A and B,
301 and respiratory syncytial virus (RSV). Samples from patients in designated high-risk locations
302 (haematology, oncology and critical care) were tested using Biofire FilmArray (Biomérieux) to

303 detect an expanded panel of bacterial and viral pathogens. Quantitative data (Cycle threshold,
304 Ct) were generated by the GeneXpert, and we used the Influenza Ct value to estimate viral titre
305 in clinical samples. Using GeneXpert, up to 40 PCR cycles are performed before a sample is
306 called negative (ie positives have Ct <40). Quantification was not available for Biofire results.

307 For methodological assessment, we focused on four categories of samples:

308 • Positive pool: we pooled 19 throat swab samples that had tested positive for influenza A
309 in the clinical diagnostic laboratory to provide a large enough sample to assess
310 reproducibility (Fig 1B);

311 • Negative pools: we generated three pools of throat swab samples that had tested
312 negative for influenza (consisting of 24, 38 and 38 individual samples respectively) (Fig
313 1B);

314 • Individual positive samples: we included 40 individual samples (35 throat swabs and 5
315 nasal swabs) that had tested positive for influenza A or B, selected to represent the
316 widest range of GeneXpert Ct values (13.5 to 39.3; valid test result range 12 to 40).

317 • Individual negative samples: we selected 10 individual throat swab samples that were
318 influenza negative.

319

320 **Quantification of viral RNA in samples**

321 We quantified viral titres in Hazara virus stocks and pooled influenza A positive throat swabs by
322 qRT-PCR using previously described assays and standards [38,39].

323

324 **Optimisation of methods**

325 Prior to establishing the protocol detailed in full below, we assessed the impact of two possible
326 optimisation steps, as follows:

327 (i) Centrifugation vs filtration: We investigated two approaches to depleting human/bacterial
328 nucleic acid from our samples, filtration of the raw sample via a 0.4µm filter (Sartorius) before

329 further processing, versus a hard spin (16,000 xg for 2 min). cDNA libraries for this comparison
330 were produced as described previously [21].

331 (ii) Reduced time cDNA synthesis: To assess the possibility of time-saving in the cDNA
332 synthesis steps, we compared performance of the previously described protocol [21] to a
333 modified version with two alterations, first using SuperScript IV (ThermoFisher) in place of
334 Superscript III (ThermoFisher) for reverse transcription with incubation time reduced from 60min
335 to 10min at 42°C, and secondly reducing the cDNA amplification PCR extension cycling time
336 from 5min to 2min.

337

338 **Positive control**

339 Prior to nucleic acid extraction, each sample was spiked with Hazara virus virions to a final
340 concentration of 10⁴ genome copies per ml as a positive internal control. This is an enveloped
341 negative-stranded RNA virus (genus Orthonairovirus, order Bunyavirales) with a tri-segmented
342 genome of 11980, 4575 and 1677 nucleotides in length (Genbank KP406723-KP406725). It is
343 non-pathogenic in humans, and would therefore not be anticipated to arise in any of our clinical
344 samples. Cultured virions from an SW13 cell line were provided by the National Collection of
345 Pathogenic Viruses (NCPV), catalogue no. 0408084v).

346

347 **Nucleic acid extraction**

348 Samples were centrifuged at 16,000 xg for 2min. Supernatant was eluted, without disturbing
349 pelleted material, and used in nucleic acid extraction. Total nucleic acid was extracted from 100
350 µl of supernatant using the QIAamp viral RNA kit (Qiagen) eluting in 50ul of H₂O, followed by a
351 DNase treatment with TURBO DNase (Thermo Fisher Scientific) at 37°C for 30min. RNA was
352 purified and concentrated to 6µl using the RNA Clean & ConcentratorTM-5 kit (Zymo Research)
353 following manufacturer's instructions. Randomly amplified cDNA was prepared for each sample
354 using a Sequence Independent Single Primer (SISPA) approach, adapted from our previously

355 described workflow [21], based on the Round A/B methodology [24]. For reverse transcription,
356 4 μ l of RNA and 1 μ l of Primer A (5'-GTTTCCCACTGGAGGATA-N9-3', 40 pmol/ μ l) [24] were
357 mixed and incubated for 5min at 65°C, then cooled to room temperature. First strand synthesis
358 was performed by the addition of 2 μ l SuperScriptIV First-strand Buffer, 1 μ L 12.5mM dNTPs,
359 0.5 μ L 0.1 M DTT, 1 μ l H₂O, and 0.5 μ L SuperScriptIV (ThermoFisher) before incubation for
360 10min at 42°C. Second strand synthesis was performed by addition of 1 μ l Sequenase Buffer,
361 3.85 μ l H₂O and 0.15 μ l Sequenase (Affymetrix) prior to incubation for 8min at 37°C, followed by
362 addition of 0.45 μ l Sequenase Dilution Buffer, 0.15 μ l Sequenase and a further incubation at
363 37°C for 8min. Amplification of cDNA was performed in triplicate using 5 μ l of the reaction as
364 input to a 50 μ l AccuTaq LA reaction (Sigma) according to manufacturer's instructions, using 1 μ l
365 Primer B (5'-GTTTCCCACTGGAGGATA-3') [24], with PCR cycling conditions of: 98°C for 30s;
366 30 cycles of 94°C for 15s, 50°C for 20s, and 68°C for 2min, followed by 68°C for 10min.
367 Amplified cDNA was pooled from the triplicate reactions and purified using a 1:1 ratio of AMPure
368 XP beads (Beckman Coulter, Brea, CA) and quantified by Qubit High Sensitivity dsDNA kit
369 (Thermo Fisher), both according to manufacturer's instructions.

370

371 **Nanopore Library Preparation and Sequencing**

372 Multiplex sequencing libraries were prepared using 250ng of cDNA from up to 12 samples as
373 input to the SQK-LSK108 or SQK-LSK109 Kit, barcoded individually using the EXP-NBD103
374 Native barcodes (Oxford Nanopore Technologies) and a modified “One-pot” protocol (Quick
375 2018). Libraries were sequenced on FLO-MIN106 flow cells on the MinION Mk1b or GridION
376 device (Oxford Nanopore Technologies), with sequencing proceeding for 48h. Samples were
377 batched according to the GeneXpert Ct value (see supplementary data file 1).

378

379 **Illumina methods**

380 Nextera XT V2 kit (Illumina) sequencing libraries were prepared using 1.5ng of amplified cDNA
381 as per manufacturer's instructions and sequenced on a 2x150 bp-paired end Illumina MiSeq
382 run, by Genomics Services Development Unit, Public Health England. Read mapping and data
383 analysis as described previously [21]

384

385 **Bioinformatic analysis**

386 Nanopore reads were basecalled using Guppy (Oxford Nanopore Technology, Oxford, UK).
387 Output basecalled fastq files were demultiplexed using Porechop v0.2.3
388 (<https://github.com/rwick/Porechop>). Reads were first taxonomically classified against RefSeq
389 database using Centrifuge v1.0.3. Reads were then mapped against the reference sequence
390 selected from Centrifuge report using Minimap2 v2.9. A draft consensus sequence was
391 generated by using a majority voting approach to determine the nucleotide at each position. The
392 resulting draft consensus sequences were BLASTed against a flu sequence database that
393 included >2,000 H1N1 and H3N2 seasonal influenza sequences between 2018 and 2019, and
394 downloaded from the Influenza Research Database [40]. Reads were again mapped against the
395 reference sequence using Minimap2 v2.9 and the number of mapped reads were calculated
396 using samtools v1.5 and Pysam (<https://github.com/pysam-developers/pysam>). The subtype of
397 the influenza A virus derived from each clinical sample was determined by the subtype of HA
398 and NA reference sequence. Consensus sequence was built using Nanopolish v0.11.0 and
399 margin_cons.py script (<https://github.com/zibraproject/zika-pipeline>).

400

401 **Ferret study**

402 We applied our sequencing approach to residual samples collected in a previous time-course
403 experiment undertaken in a controlled laboratory environment [30]. We tested ferret nasal saline
404 wash samples from three independent animals over an eight day time course, from three days

405 prior to first exposure with influenza H1N1pdm09 and at days 1, 2, 3 and 5 post-infection.
406 Sampling and plaque assays of viral titre were described previously [30].

407

408 **Ethics approval**

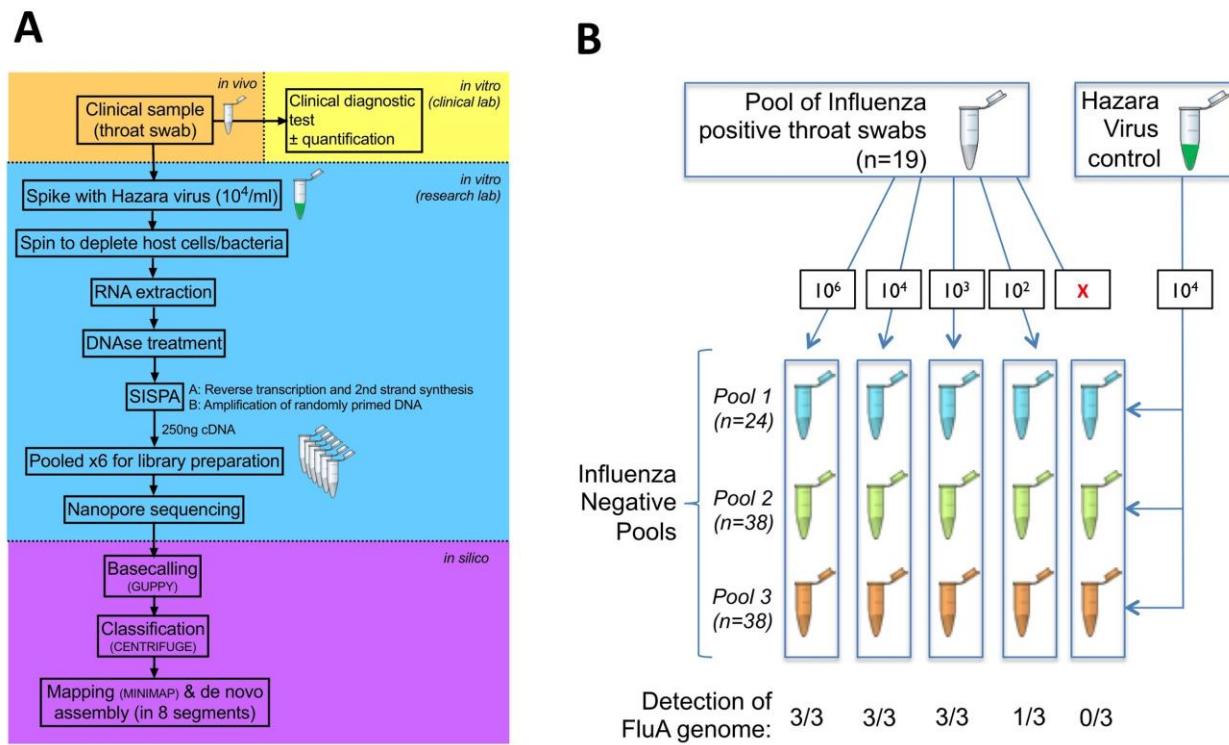
409 The study of anonymised discarded clinical samples was approved by the London - Queen
410 Square Research Ethics Committee (17/LO/1420). Ferret samples were residual samples from
411 an existing study [30], for which the project license was reviewed by the local Animal Welfare
412 and Ethics Review Board of Public Health England (Porton) and was subsequently granted by
413 the Home Office.

414

415 **Data availability**

416 Following removal of human reads, our sequence data have been uploaded to the European
417 Bioinformatics Institute <https://www.ebi.ac.uk/>, project reference PRJEB32861.

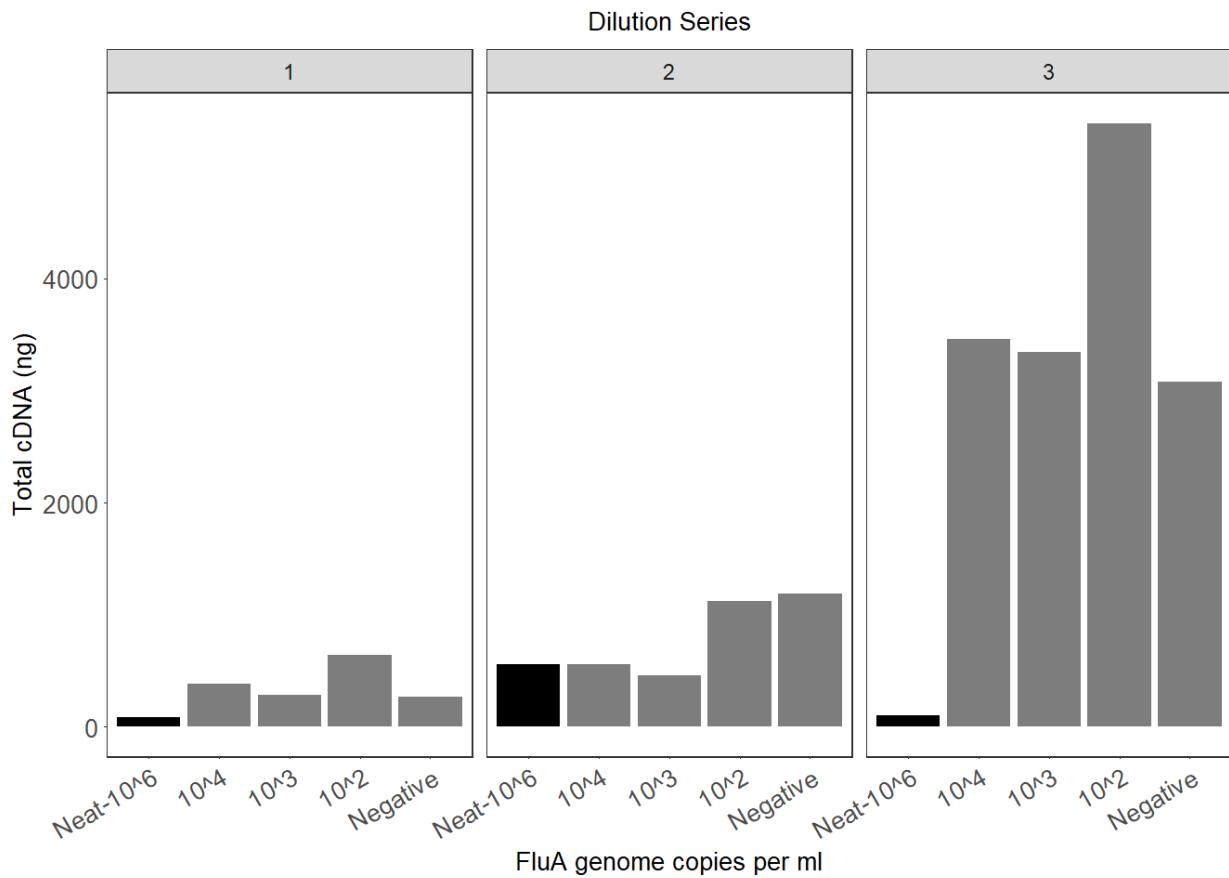
418


419 **Funding**

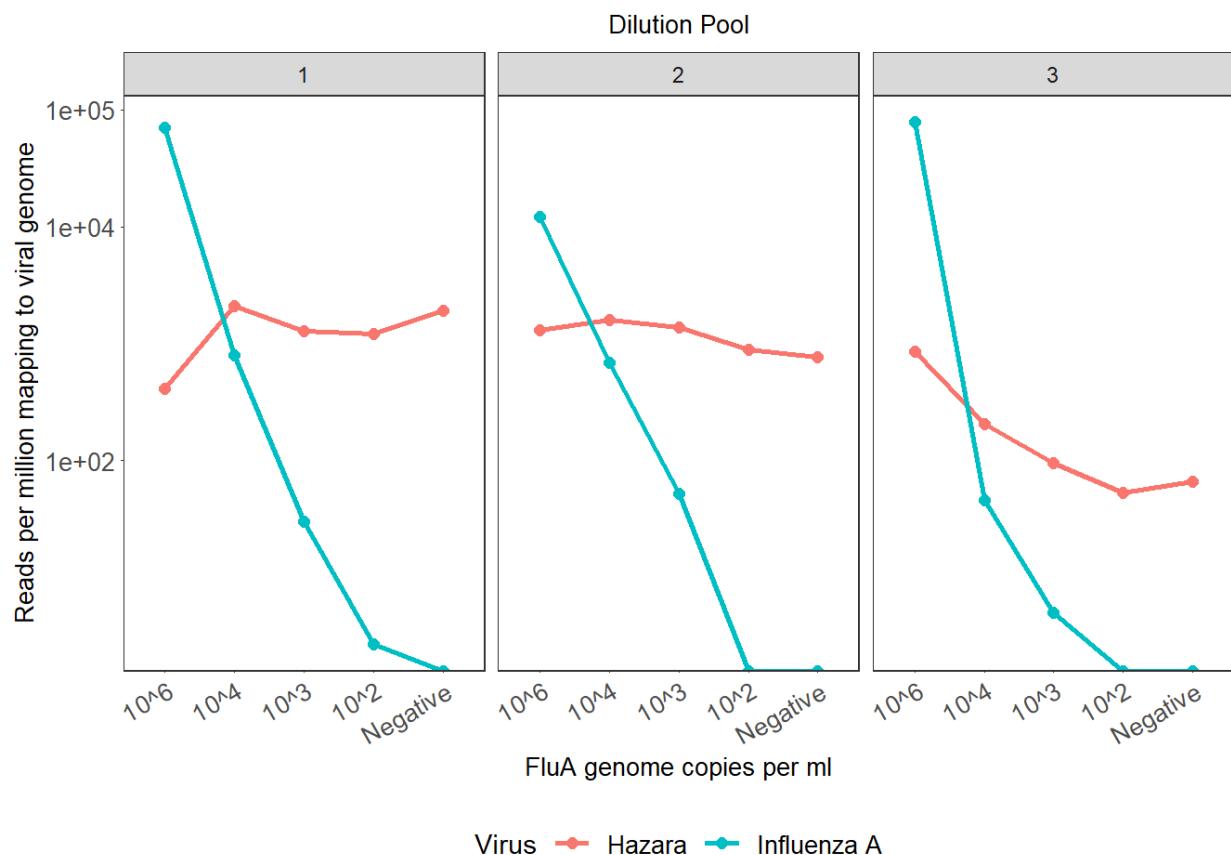
420 The study was funded by the NIHR Oxford Biomedical Research Centre. Computation used the
421 Oxford Biomedical Research Computing (BMRC) facility, a joint development between the
422 Wellcome Centre for Human Genetics and the Big Data Institute supported by Health Data
423 Research UK and the NIHR Oxford Biomedical Research Centre. The views expressed in this
424 publication are those of the authors and not necessarily those of the NHS, the National Institute
425 for Health Research, the Department of Health or Public Health England. PCM is funded by the
426 Wellcome Trust (grant ref 110110). DWC, TEAP and ASW are NIHR Senior Investigators.

427
428

429 Figures and legends


430 **Figure 1: Schematic to show processing protocol through clinical and research pipelines**
431 **for influenza diagnosis.** (A) Clinical sample collection (orange), clinical diagnostic testing
432 (yellow), sample processing and sequencing using Oxford Nanopore Technologies (blue),
433 processing of sequence data (purple). (B) Outline of pooled influenza-positive samples into
434 influenza-negative background, to generate varying titres of influenza virus (from zero up to 10^6
435 genome copies/ml), undertaken in triplicate, and spiked with a standard titre of Hazara virus
436 control at 10^4 genome copies/ml).

437


438 **Figure 2. Characteristics of three pools of influenza-negative throat swabs, and Nanopore**
439 **sequence results following spiking with influenza A.** (A) Total concentration of cDNA
440 produced per pooled sample following amplification by the SISPA reaction, grouped by dilution
441 series. The 10^6 sample in each pool is the original, undiluted material, represented by the black
442 filled bars. Samples diluted to influenza titres of 10^4 , 10^3 and 10^2 contain more cDNA due to
443 higher background material (bacterial/human) present in the diluent. Dilution series 1 and 2
444 contain comparable amounts of background material; dilution series 3 contains substantially
445 more background. (B) Viral reads generated by Nanopore sequencing of samples with different
446 titres of influenza A, and a consistent titre of Hazara virus (10^4 genome copies/ml). Graphs show
447 reads per million of total reads mapping to influenza A or Hazara virus genomes, across the
448 three individual dilution series. Note logarithmic scale on y-axis.

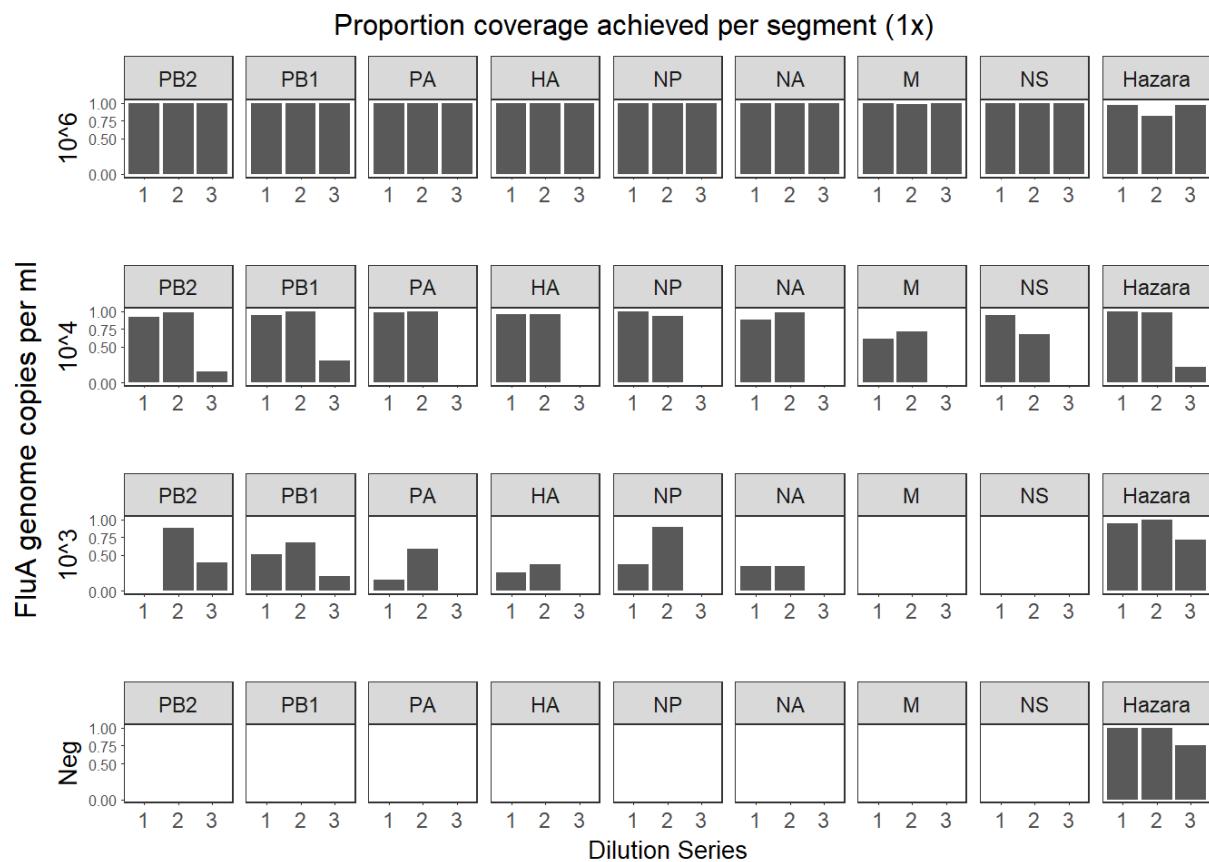
449 A

450

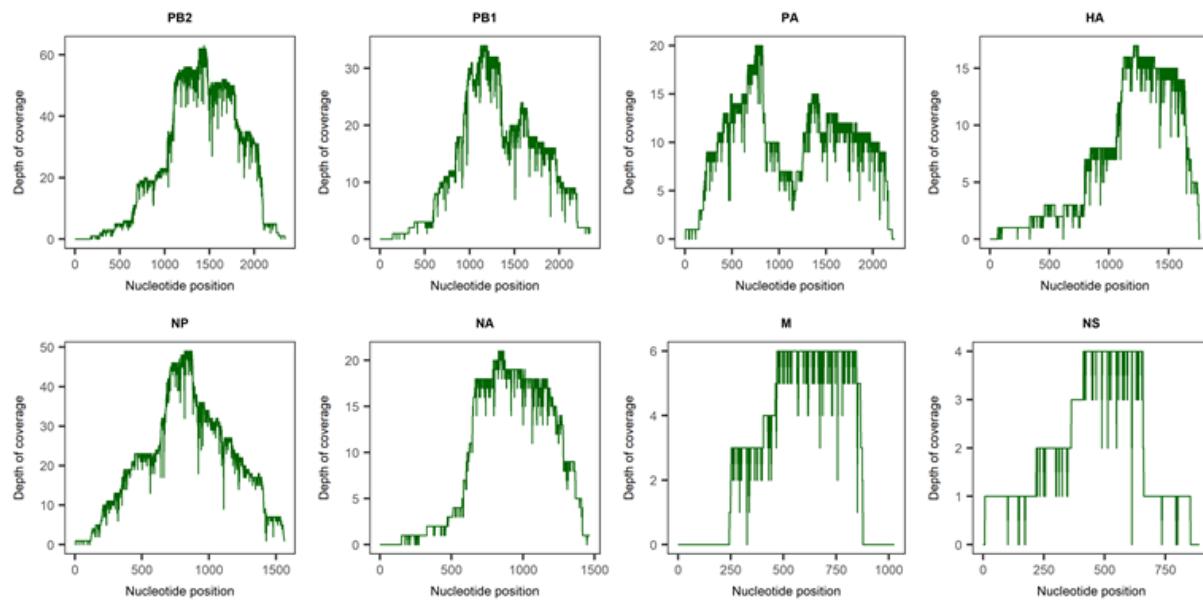
451 B

452

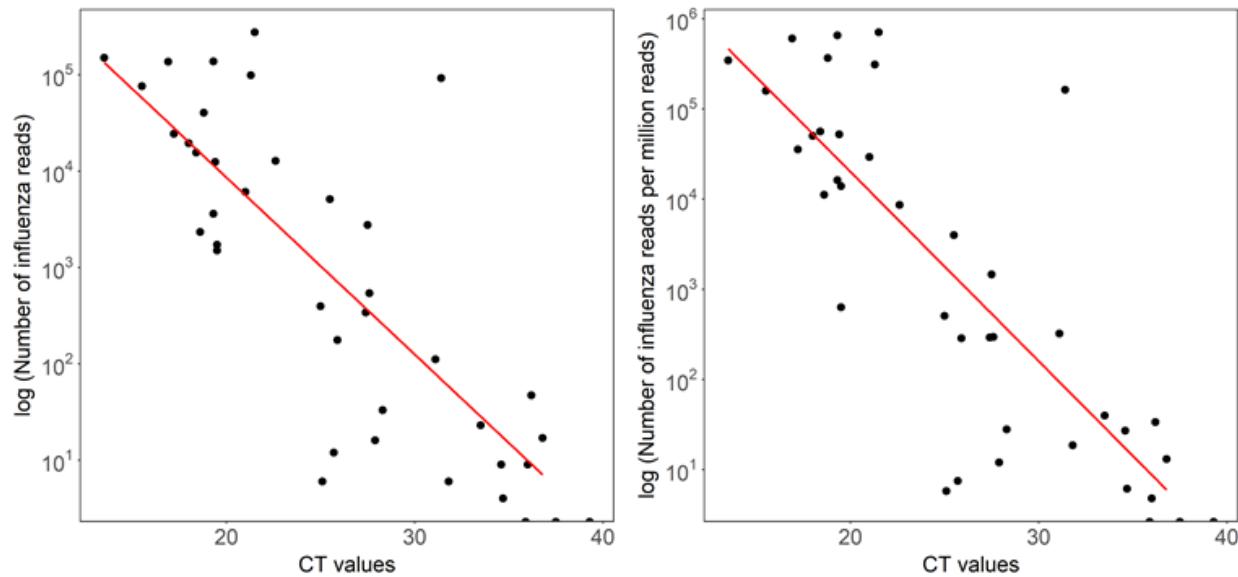
453


454

455

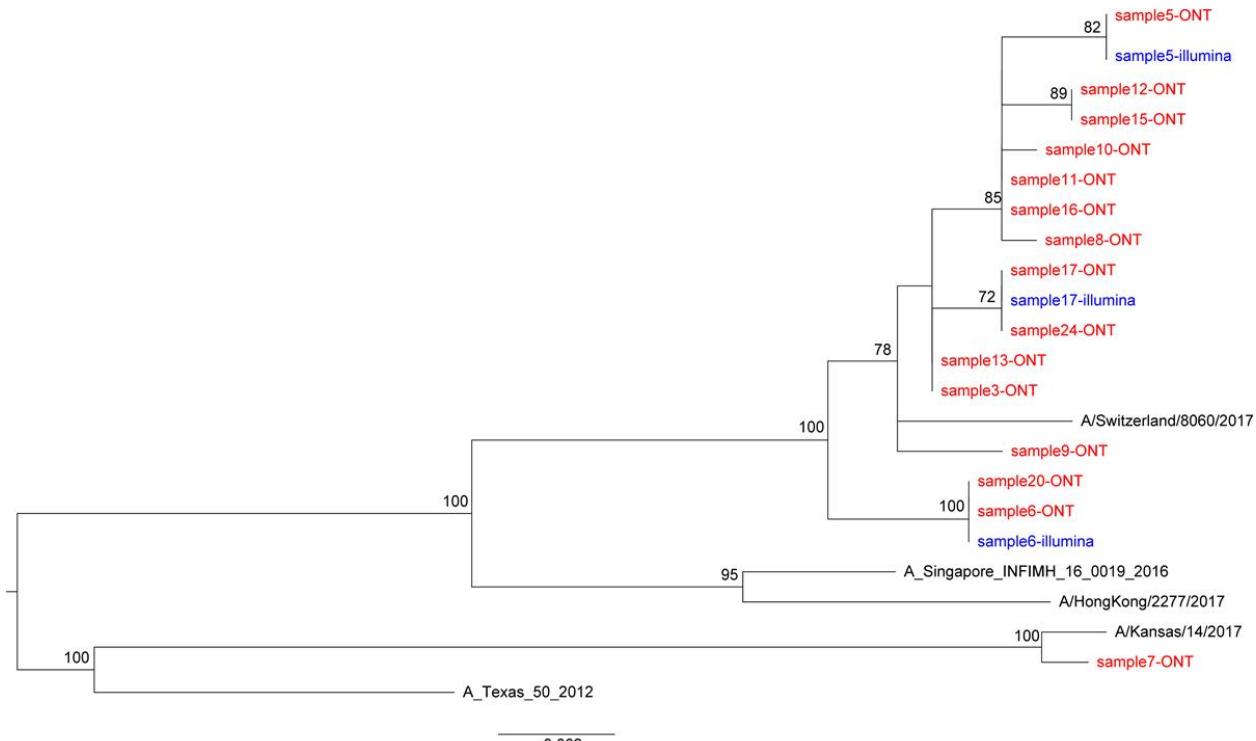

456

457 **Figure 3. Coverage of influenza and Hazara genome segments achieved by Nanopore**
458 **sequencing from pooled samples** (A) Data from three dilution series of pooled influenza
459 positive samples, diluted with three separate negative sample pools to generate different titres
460 of influenza virus. Each individual dilution was spiked with Hazara at 10^4 genome copies/ml.
461 Proportion of genome covered at 1x depth is shown for each of the eight influenza genome
462 segments (encoding: PB2 - polymerase subunit, PB1 - polymerase subunit, PA - polymerase
463 acidic protein ,HA - hemagglutinin, NP- nucleocapsid protein, NA - neuraminidase, M - matrix
464 proteins, NS - nonstructural proteins) across the three dilution series. Coverage of the Hazara
465 genome is plotted as total of all three genome segments for simplicity. (B) Representative
466 coverage plot of influenza A genome segments from the dilution series 1 sample at 10^4
467 influenza copies per ml.


A:

B:

468 **Figure 4: Total and proportion of influenza reads derived by Nanopore sequencing of**
469 **individual samples across a range of Ct values.** Ct values were derived by testing using
470 GeneXpert (Cepheid) in a clinical diagnostic laboratory. (A) Correlation between Ct value and
471 total number of influenza reads generated. $R^2 = 0.604$, p-value = 2.47e-08. (B) Correlation
472 between Ct value and number of influenza reads per million reads. $R^2 = 0.623$, p-value = 1.07e-
473 08.



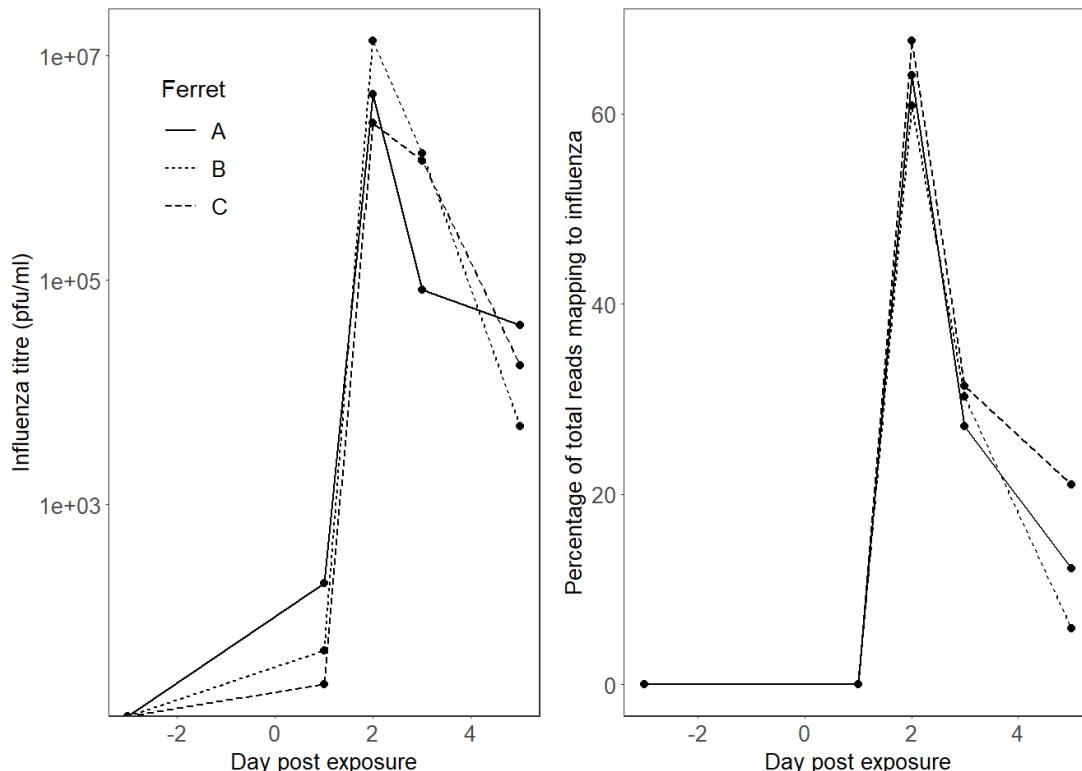
474

475

476

477 **Figure 5: Phylogenetic trees of consensus Influenza HA gene derived by Nanopore and**
478 **Illumina sequencing.** Maximum likelihood tree generated using 500 bootstrap replicates in
479 RAxML v8.2.10 software. Bootstrap values >70 are shown. Scale bar shows substitutions per
480 site. Red and blue indicate sequences derived from Nanopore and illumina sequencing,
481 respectively. References sequences are shown in black.

482
483


484

485

486 **Figure 6: Time course experiment showing influenza A infection in three laboratory**

487 **ferrets.** Infection was introduced at day 0. Samples were collected three days prior to infection,
488 and at days 1, 3 and 5 post infection. (A) Influenza titre (log scale) and (B) proportion of total
489 nanopore reads (linear scale) mapping to influenza A from metagenomic sequencing of ferret
490 nasal washes taken pre and post influenza challenge.

491 A B

492

493

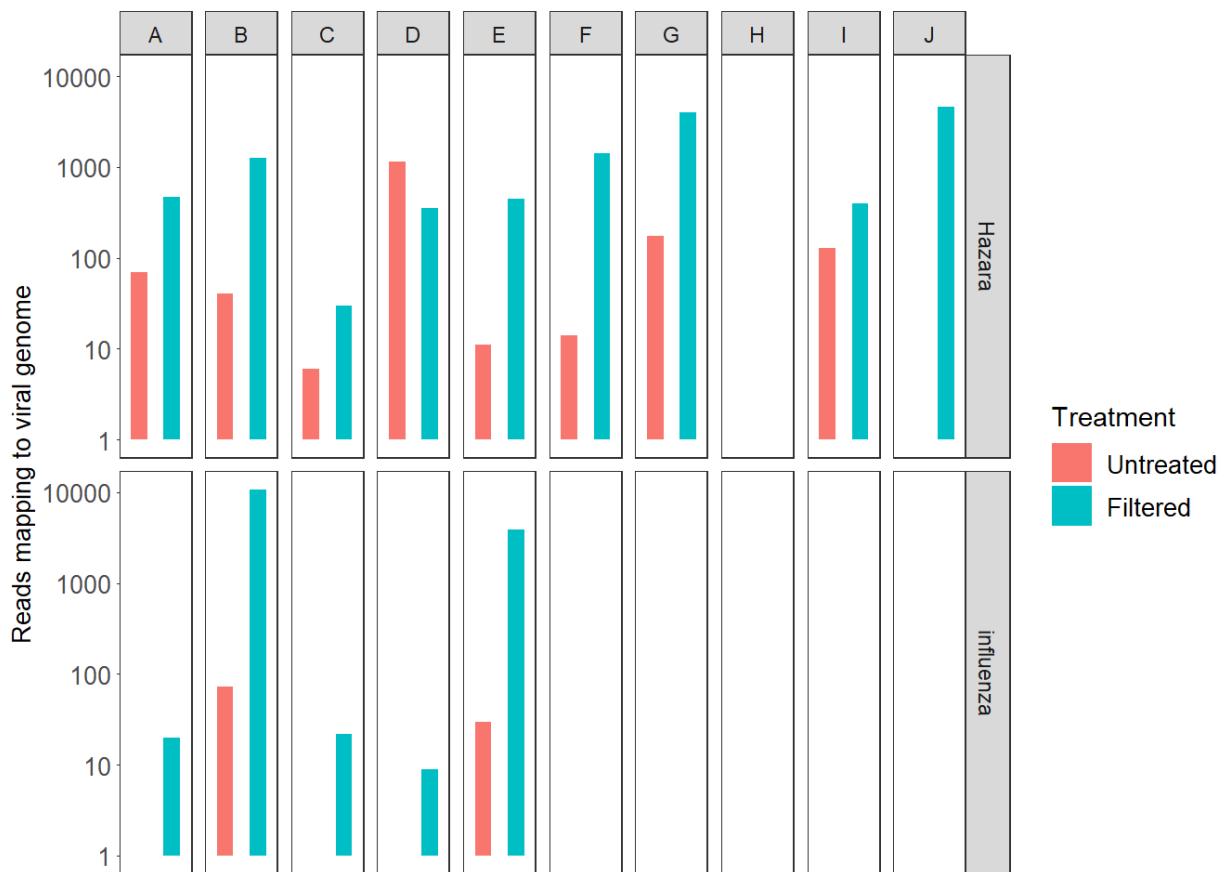
494

495

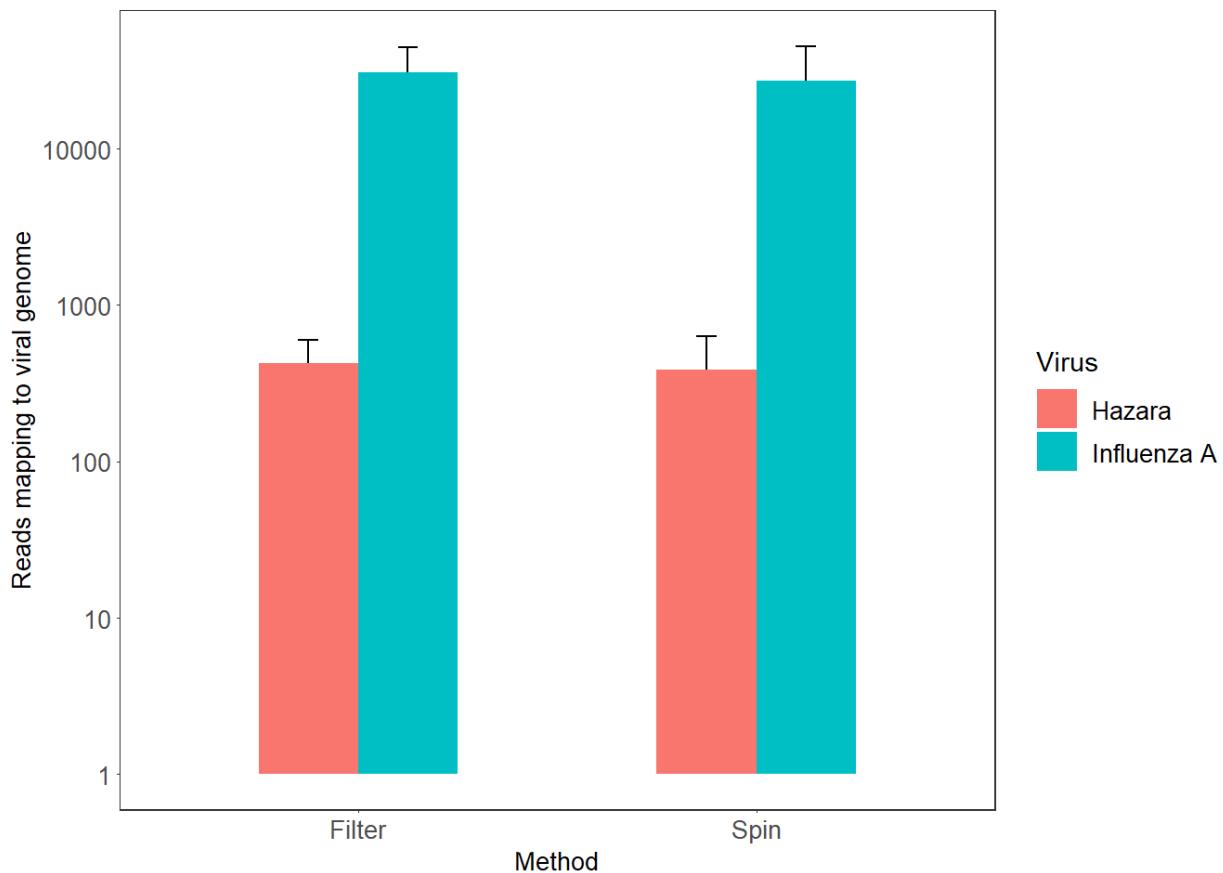
496

497 **Table 1. Summary of results from Nanopore sequencing based on pooled samples with**
498 **varying titres of Influenza A, and a consistent titre of Hazara virus control.** Each dilution is
499 undertaken in triplicate (shown as 3 dilution pools).

500

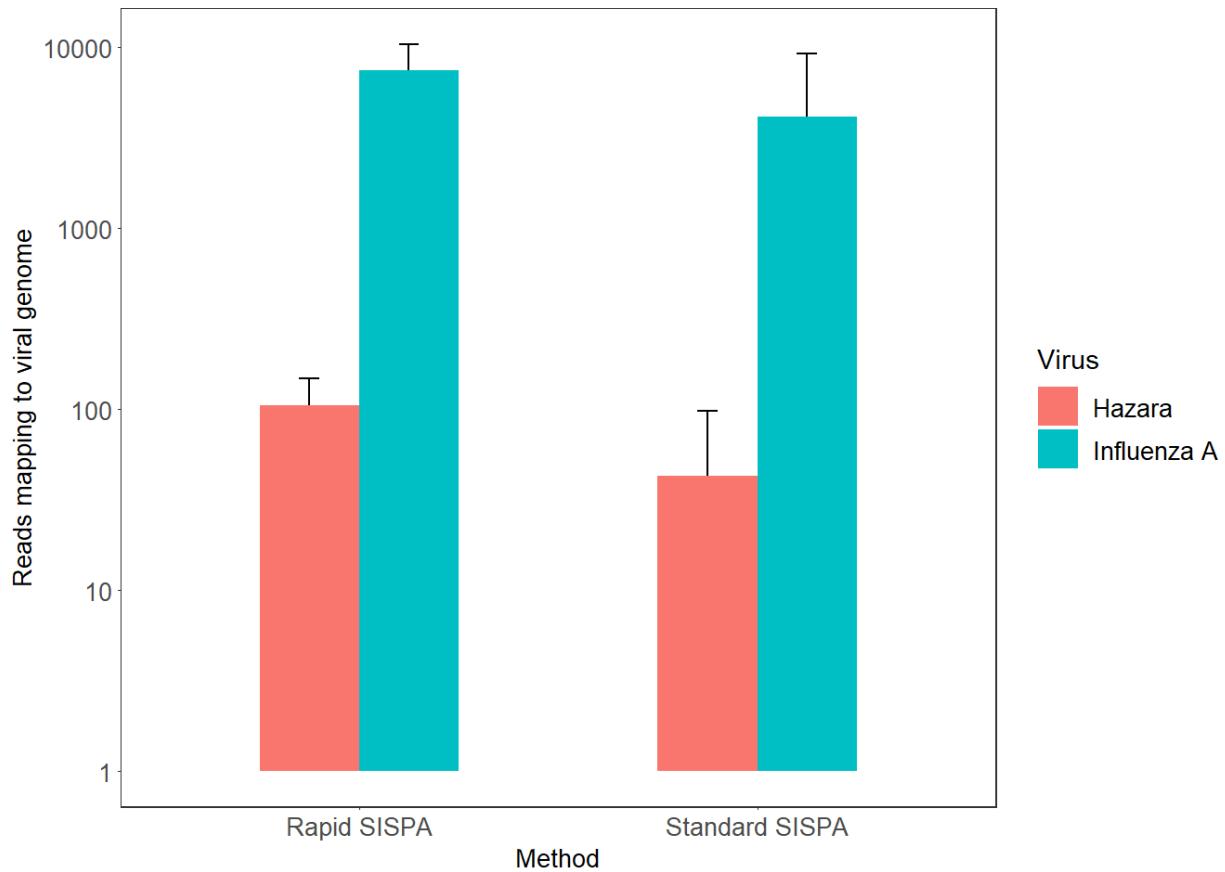

Influenza A Genome	Dilution Pool	Total Reads	Influenza A Reads (reads per million)	Influenza A Subtyping	Hazara Reads (reads per million)
Copies/ml					
10⁶	1	473,718	33,103 (6.9x10 ⁴)	H3N2	527 (1.1x10 ³)
	2	572,106	6,957 (1.2x10 ⁴)	H3N2	102 (178)
	3	526,852	41,196 (7.8x10 ⁴)	H3N2	534 (1.0x10 ³)
10⁴	1	354,163	280 (791)	H3N2	738 (2.1x10 ³)
	2	433,033	299 (690)	H3N2	691 (1.6x10 ³)
	3	43,512	2 (46)	Not possible	9 (207)
10³	1	231,929	7 (30)	H3N2	298 (1.3x10 ³)
	2	461,281	24 (52)	H3N2	638 (1.4x10 ³)
	3	397,672	2 (5)	Not possible	38 (96)
10²	1	375,183	1 (3)	Not possible	453 (1.2x10 ³)
	2	671,133	0 (0)	Not possible	598 (891)
	3	37,897	0 (0)	Not possible	2 (53)

Negative	1	903,430	0 (0)	N/A	1731 (1.9x10 ³)
	2	900,471	0 (0)	N/A	692 (768)
	3	818,549	0 (0)	N/A	54 (66)
501					
502					
503					
504					
505					
506					
507					
508					
509					
510					
511					
512					
513					
514					
515					


516 **Supplementary material**

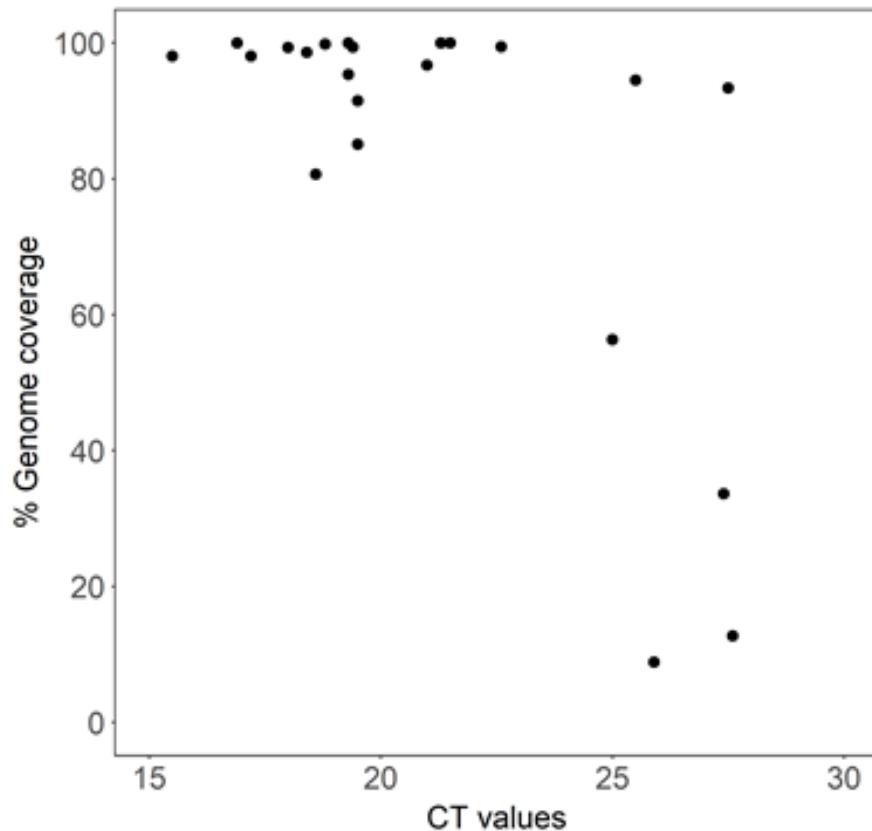
517 **Figure S1 Comparison of viral read detection in throat swab samples with and without a**
518 **filtration step.** Five influenza A positive throat swab samples (A-E) and five negative samples
519 (F-J) were spiked with Hazara virus as positive control at 10^4 genome copies/ml and sequenced
520 with and without filtration via a 0.4 μ m filter prior to RNA extraction. Reads mapping to influenza
521 or Hazara are shown for each sample.

522



525 **Figure S2 Comparison of Filtration and Centrifugation as Pre-extraction treatments to**
526 **improve viral detection.** Using a pool of 19 influenza A positive samples as input, triplicate
527 extractions utilising either supernatant separation by centrifugation at 16,000 xg for 2 min, or
528 filtration via a 0.4 μ m filter, were processed and all samples sequenced on a single flow cell.
529 Mean total read numbers for each virus are plotted for each treatment, error bars indicate
530 standard deviation.

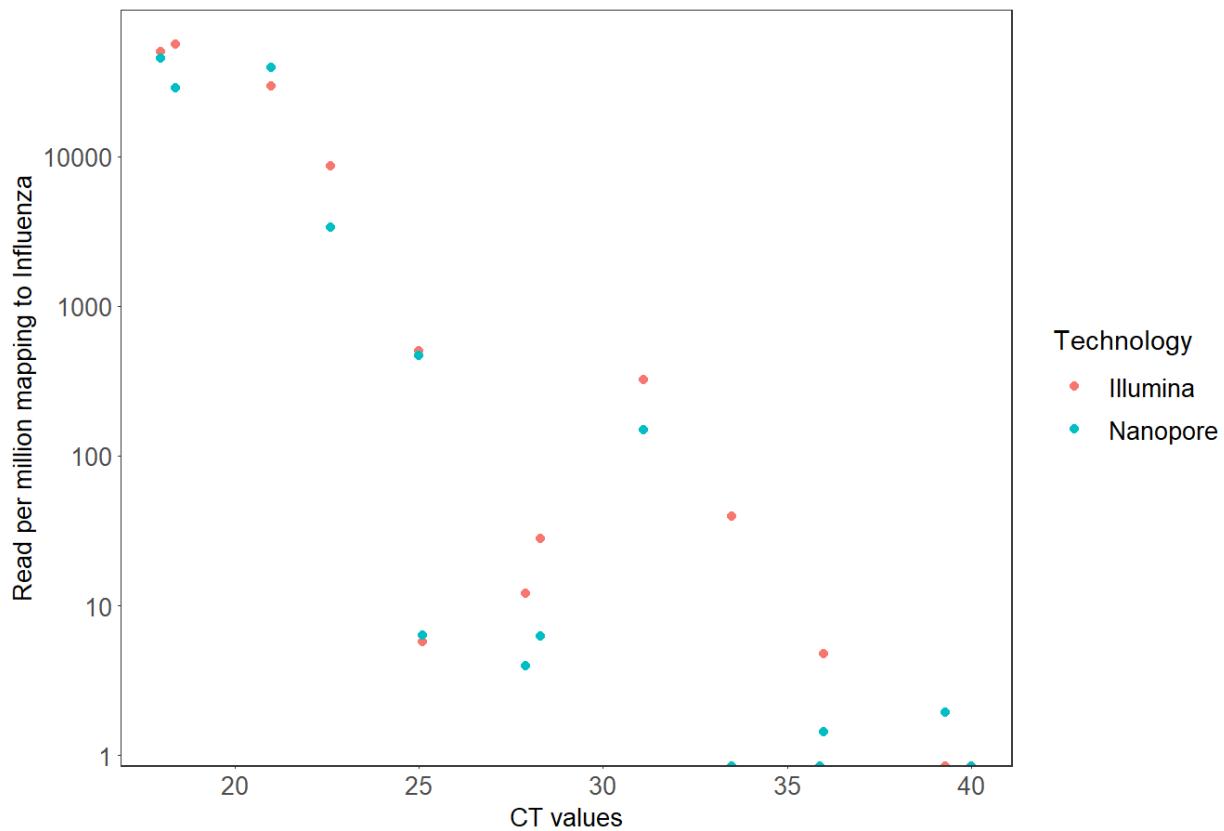
531


532 **Figure S3. Assessment of effect of original and reduced processing time method on**
533 **metagenomic viral sequencing.** Using a pool of influenza A positive samples as input,
534 triplicate extractions were processed by either existing (standard) or reduced incubation times
535 (rapid) method and all samples sequenced on a single flow cell. Mean total read numbers for
536 each virus are plotted for each treatment, error bars indicate standard deviation.

537

538

539 **Figure S4. Coverage of influenza sequences recovered by nanopore metagenomic**
540 **sequencing.** Ct values were derived by testing using GeneXpert (Cepheid) in a clinical
541 diagnostic laboratory. Genome coverage shown is the proportion of bases of the reference
542 sequence that were called in the final consensus sequence for each sample.



543

544

545

546 **Figure S5. Comparison of proportions of influenza reads derived by Nanopore or Illumina**
547 **sequencing for a subset of the individual samples across a range of Ct values.** Ct values
548 were derived by testing using GeneXpert (Cepheid) in a clinical diagnostic laboratory.
549 Proportions are shown as number of influenza reads per million reads.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

565 **Table S1. Summary data for the 50 individual throat swab samples.**

566

567

568

569

570

571 References

- 572 1. Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, et al.
573 Influenza. *Nat Rev Dis Primers.* 2018;4: 3.
- 574 2. Joseph U, Su YCF, Vijaykrishna D, Smith GJD. The ecology and adaptive evolution of
575 influenza A interspecies transmission. *Influenza Other Respi Viruses.* 2017;11: 74–84.
- 576 3. Humphreys M. The influenza of 1918: Evolutionary perspectives in a historical context. *Evol
577 Med Public Health.* 2018;2018: 219–229.
- 578 4. Smith GJD, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, et al. Origins and
579 evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. *Nature.* 2009;459: 1122–1125.
- 581 5. Sutton TC. The Pandemic Threat of Emerging H5 and H7 Avian Influenza Viruses. *Viruses.*
582 2018;10. doi:10.3390/v10090461
- 583 6. Xiang D, Pu Z, Luo T, Guo F, Li X, Shen X, et al. Evolutionary dynamics of avian influenza
584 A H7N9 virus across five waves in mainland China, 2013–2017. *J Infect.* 2018;77: 205–211.
- 585 7. Ten health issues WHO will tackle this year [Internet]. [cited 22 Jan 2019]. Available:
586 <https://www.who.int/emergencies/ten-threats-to-global-health-in-2019>
- 587 8. WHO | Burden of disease. World Health Organization; 2018; Available:
588 https://www.who.int/influenza/surveillance_monitoring/bod/en/
- 589 9. Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM Jr, Fry AM, et al. Clinical
590 Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on
591 Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of
592 Seasonal Influenza. *Clin Infect Dis.* 2018; doi:10.1093/cid/ciy866
- 593 10. Iuliano AD, Roguski KM, Chang HH, Muscatello DJ, Palekar R, Tempia S, et al. Estimates
594 of global seasonal influenza-associated respiratory mortality: a modelling study. *Lancet.*
595 2018;391: 1285–1300.
- 596 11. WHO | Burden of disease. World Health Organization; 2018; Available:
597 https://www.who.int/influenza/surveillance_monitoring/bod/en/
- 598 12. Morris DH, Gostic KM, Pompei S, Bedford T, Łuksza M, Neher RA, et al. Predictive
599 Modeling of Influenza Shows the Promise of Applied Evolutionary Biology. *Trends
600 Microbiol.* 2018;26: 102–118.
- 601 13. Blanco N, Eisenberg MC, Stillwell T, Foxman B. What Transmission Precautions Best
602 Control Influenza Spread in a Hospital? *Am J Epidemiol.* 2016;183: 1045–1054.
- 603 14. Sansone M, Wiman Å, Karlberg ML, Brytting M, Bohlin L, Andersson L-M, et al. Molecular
604 characterization of a nosocomial outbreak of influenza B virus in an acute care hospital
605 setting. *J Hosp Infect.* 2019;101: 30–37.
- 606 15. Ito Y. Clinical Diagnosis of Influenza. *Methods Mol Biol.* 2018;1836: 23–31.

607 16. Green DA, StGeorge K. Rapid Antigen Tests for Influenza: Rationale and Significance of
608 the FDA Reclassification. *J Clin Microbiol.* 2018;56. doi:10.1128/JCM.00711-18

609 17. Benirschke RC, McElvania E, Thomson R, Kaul K, Das S. Clinical Impact of Rapid Point-of-
610 Care Polymerase Chain Reaction Influenza Testing In An Urgent Care Setting: A Single
611 Center Study. *J Clin Microbiol.* 2019; doi:10.1128/JCM.01281-18

612 18. Schmidt RLJ, Simon A, Popow-Kraupp T, Laggner A, Haslacher H, Fritzer-Szekeress M, et
613 al. A novel PCR-based point-of-care method facilitates rapid, efficient, and sensitive
614 diagnosis of influenza virus infection. *Clin Microbiol Infect.* 2018;
615 doi:10.1016/j.cmi.2018.12.017

616 19. Votintseva AA, Bradley P, Pankhurst L, Del Ojo Elias C, Loose M, Nilgiriwala K, et al.
617 Same-Day Diagnostic and Surveillance Data for Tuberculosis via Whole-Genome
618 Sequencing of Direct Respiratory Samples. *J Clin Microbiol.* 2017;55: 1285–1298.

619 20. Yan Y, Jia X-J, Wang H-H, Fu X-F, Ji J-M, He P-Y, et al. Dynamic quantification of avian
620 influenza H7N9(A) virus in a human infection during clinical treatment using droplet digital
621 PCR. *J Virol Methods.* 2016;234: 22–27.

622 21. Kafetzopoulou LE, Efthymiadis K, Lewandowski K, Crook A, Carter D, Osborne J, et al.
623 Assessment of metagenomic Nanopore and Illumina sequencing for recovering whole
624 genome sequences of chikungunya and dengue viruses directly from clinical samples. *Euro
625 Surveill.* 2018;23. doi:10.2807/1560-7917.ES.2018.23.50.1800228

626 22. Xu Y, Lewandowski K, Lumley S, Pullan S, Vipond R, Carroll M, et al. Detection of Viral
627 Pathogens With Multiplex Nanopore MinION Sequencing: Be Careful With Cross-Talk.
628 *Front Microbiol.* 2018;9: 2225.

629 23. Karamitros T, van Wilgenburg B, Wills M, Klenerman P, Magiorkinis G. Nanopore
630 sequencing and full genome de novo assembly of human cytomegalovirus TB40/E reveals
631 clonal diversity and structural variations. *BMC Genomics.* 2018;19: 577.

632 24. Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V, et al. Rapid
633 metagenomic identification of viral pathogens in clinical samples by real-time nanopore
634 sequencing analysis. *Genome Med.* 2015;7: 99.

635 25. McNaughton AL, Roberts HE, Bonsall D, de Cesare M, Mokaya J, Lumley SF, et al.
636 Illumina and Nanopore methods for whole genome sequencing of hepatitis B virus (HBV)
637 [Internet]. *bioRxiv.* 2018. p. 470633. doi:10.1101/470633

638 26. Keller MW, Rambo-Martin BL, Wilson MM, Ridenour CA, Shepard SS, Stark TJ, et al.
639 Direct RNA Sequencing of the Coding Complete Influenza A Virus Genome. *Sci Rep.*
640 2018;8: 14408.

641 27. Eckert SE, Chan JZ-M, Houniet D, PATHSEEK consortium, Breuer J, Speight G.
642 Enrichment by hybridisation of long DNA fragments for Nanopore sequencing. *Microb
643 Genom.* 2016;2: e000087.

644 28. Rambo-Martin BL, Keller MW, Wilson MM, Nolting JM, Anderson TK, Vincent AL, et al.
645 Mitigating Pandemic Risk with Influenza A Virus Field Surveillance at a Swine-Human
646 Interface [Internet]. *bioRxiv.* 2019. p. 585588. doi:10.1101/585588

647 29. Xu Y, Lewandowski K, Lumley S, Sanderson ND, Vaughan A, Vipond RT, et al. Nanopore
648 metagenomic sequencing of full length human metapneumovirus (HMPV) within a unique
649 sub-lineage [Internet]. bioRxiv. 2018. p. 496687. doi:10.1101/496687

650 30. Gooch KE, Marriott AC, Ryan KA, Yeates P, Slack GS, Brown PJ, et al. Heterosubtypic
651 cross-protection correlates with cross-reactive interferon-gamma-secreting lymphocytes in
652 the ferret model of influenza. *Sci Rep.* 2019;9: 2617.

653 31. Meinel DM, Heinzinger S, Eberle U, Ackermann N, Schönberger K, Sing A. Whole genome
654 sequencing identifies influenza A H3N2 transmission and offers superior resolution to
655 classical typing methods. *Infection.* 2018;46: 69–76.

656 32. Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC. The genomic
657 and epidemiological dynamics of human influenza A virus. *Nature.* 2008;453: 615–619.

658 33. Thompson CP, Lourenço J, Walters AA, Obolski U, Edmans M, Palmer DS, et al. A
659 naturally protective epitope of limited variability as an influenza vaccine target. *Nat
660 Commun.* 2018;9: 3859.

661 34. Kafetzopoulou LE, Pullan ST, Lemey P, Suchard MA, Ehichioya DU, Pahlmann M, et al.
662 Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak.
663 *Science.* 2019;363: 74–77.

664 35. Dudas G, Bedford T. The ability of single genes vs full genomes to resolve time and space
665 in outbreak analysis [Internet]. bioRxiv. 2019. p. 582957. doi:10.1101/582957

666 36. Miller S, Naccache SN, Samayoa E, Messacar K, Arevalo S, Federman S, et al. Laboratory
667 validation of a clinical metagenomic sequencing assay for pathogen detection in
668 cerebrospinal fluid. *Genome Res.* 2019;29: 831–842.

669 37. CDC. Influenza (flu) including seasonal, avian, swine, pandemic, and other. In: Centers for
670 Disease Control and Prevention [Internet]. 29 Mar 2019 [cited 2 Apr 2019]. Available:
671 <https://www.cdc.gov/flu>

672 38. Lewandowski K, Bell A, Miles R, Carne S, Wooldridge D, Manso C, et al. The Effect of
673 Nucleic Acid Extraction Platforms and Sample Storage on the Integrity of Viral RNA for Use
674 in Whole Genome Sequencing. *J Mol Diagn.* 2017;19: 303–312.

675 39. Marriott AC, Dove BK, Whittaker CJ, Bruce C, Ryan KA, Bean TJ, et al. Low dose influenza
676 virus challenge in the ferret leads to increased virus shedding and greater sensitivity to
677 oseltamivir. *PLoS One.* 2014;9: e94090.

678 40. Squires RB, Noronha J, Hunt V, García-Sastre A, Macken C, Baumgarth N, et al. Influenza
679 research database: an integrated bioinformatics resource for influenza research and
680 surveillance. *Influenza Other Respi Viruses.* 2012;6: 404–416.

681