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Abstract: (max 250 words)

Influenza is a major global public health threat as a result of its highly pathogenic variants, large
zoonotic reservoir, and pandemic potential. Metagenomic viral sequencing offers the potential of
a diagnostic test for influenza which also provides insights on transmission, evolution and drug
resistance, and simultaneously detects other viruses. We therefore set out to apply Oxford
Nanopore Technology to metagenomic sequencing of respiratory samples. We generated
influenza reads down to a limit of detection of 10%-10° genome copies/ml in pooled samples,
observing a strong relationship between the viral titre and the proportion of influenza reads (p =
4.7x107). Applying our methods to clinical throat swabs, we generated influenza reads for 27/27
samples with high-to-mid viral titres (Cycle threshold (Ct) values <30) and 6/13 samples with low
viral titres (Ct values 30-40). No false positive reads were generated from 10 influenza-negative
samples. Thus Nanopore sequencing operated with 83% sensitivity (95% CIl 67-93%) and 100%
specificity (95% CIl 69-100%) compared to the current diagnostic standard. Coverage of full
length virus was dependent on sample composition, being negatively influenced by increased
host and bacterial reads. However, at high influenza titres, we were able to reconstruct >99%
complete sequence for all eight gene segments. We also detected Human Coronavirus and
generated a near complete Human Metapneumovirus genome from clinical samples. While
further optimisation is required to improve sensitivity, this approach shows promise for the
Nanopore platform to be used in the diagnosis and genetic analysis of influenza and other

respiratory viruses.

Introduction

Influenza A is an RNA Orthomyxovirus of approximately 13Kb length, with an eight-segment

genome. It is typically classified on the basis of Haemagglutinin (HA) and Neuraminidase (NA),
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of which there are 16 and 9 main variants respectively [1]. Genetic reassortment underpins the
potential for transmission between different host species [2], and for the evolution of highly
pathogenic variants [3—6], recognised in the WHO list of ‘ten threats to global health’ [7].
Seasonal influenza causes an estimated 650,000 deaths globally each year, and H3N2 alone
kills 35,000 each year in the USA [1,8]. Certain groups are particularly at risk, including older
adults, infants and young children, pregnant women, those with underlying lung disease, and
the immunocompromised [9]. The burden of disease disproportionately affects low/middle
income settings [10]. Influenza diagnostics and surveillance are fundamental to identify the
emergence of novel strains, to improve prediction of potential epidemics and pandemics [4,11],
and to inform vaccine strategy [12]. Diagnostic data facilitate real-time surveillance, can
underpin infection control interventions [13,14] and inform the prescription of Neuraminidase

Inhibitors (NAI) [9].

Currently, most clinical diagnostic tests for influenza depend on detecting viral antigen, or PCR
amplification of viral nucleic acid derived from respiratory samples [15]. These two approaches
offer trade-offs in benefits: antigen tests (including point-of-care tests (POCT)) are typically rapid
but low sensitivity [16-18], while PCR is more time-consuming but more sensitive [9].
Irrespective of test used, most clinical diagnostic facilities report a non-quantitative (binary)
diagnostic result, and the data generated for influenza have limited capacity to inform insights
into epidemiological linkage, vaccine efficacy or anti-viral susceptibility. Given this, there is an
aspiration to generate new diagnostic tests that combine speed (incorporating potential for
POCT [19,20]), sensitivity, detection of co-infection [21,22], and generation of quantitative or
semi-quantitative data that can be used to identify drug resistance and reconstruct phylogeny to

inform surveillance, public health strategy, and vaccine design.
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The application of Oxford Nanopore Technologies (ONT; https://nanoporetech.com/) to

generate full-length influenza sequences from clinical respiratory samples can address these
challenges. ONT offers a ‘third-generation’, portable, real-time approach to generating long-read
sequence data, with demonstrated success across a range of viruses [21,23-25]. To date,
Nanopore sequencing of influenza has been reported using high titre virus from an in vitro
culture system, producing full length genome sequences through direct RNA sequencing [26] or
targeted enrichment by either hybridisation of cDNA [27] or influenza-specific PCR amplification

[28].

We therefore aimed to optimise a metagenomic protocol for detecting influenza viruses directly
from clinical samples using Nanopore sequencing. We determine its sensitivity compared to
existing diagnostic methods and its accuracy compared to short-read (lllumina) sequencing,
using clinical samples from hospital patients during an influenza season, and samples from a

laboratory controlled infection in ferrets.

Results

Method optimisation to increase proportion of viral reads derived from throat swabs

We first sequenced five influenza A positive and five influenza-negative throat swabs, each
spiked with Hazara virus control at 10* genome copies/ml. Using the SISPA approach [21]
followed by Nanopore sequencing, we produced metagenomic data dominated by reads that
were bacterial in origin, with extremely few viral reads detected. Passing the sample through a
0.4 um filter prior to nucleic acid extraction increased the detection of viral reads by several
orders of magnitude (Fig S1). Filtration is relatively expensive, so we also assessed the
alternative approach of adding a rapid centrifugation step to pellet bacterial and human cells,
followed by nucleic acid extraction from the supernatant. We used a pooled set of influenza A

positive samples (concentration 10° genome copies/ml), to provide a large enough sample to
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100 assess reproducibility, with the Hazara control spiked in at 10* genome copies/ml. Enrichment
101 for influenza and Hazara was similar for filtration vs centrifugation, based on reads mapping to
102 the viral genome (Fig S2). As centrifugation is simpler and cheaper, we selected this approach
103  for all further testing.

104

105 Method optimisation to reduce time for cDNA synthesis

106  Synthesis of tagged, randomly primed cDNA and its subsequent amplification via SISPA [21]
107  required lengthy reverse transcription and PCR steps (1h and 3h 45min) respectively.
108 Optimising these stages upgraded the reverse transcriptase from SuperScriptlll to
109  SuperScriptlV (ThermoFisher), reduced incubation time to 10min (processing time reduction of
110 50min) and reduced the PCR extension time within each cycle from 5min to 2min (1h 30min
111 processing time reduction). Comparing this final method with our original protocol, using
112 triplicate extractions from the pooled set of influenza A positive samples, demonstrated no
113 significant loss in performance in the more rapid protocol (Fig S3) and we adopted this
114  approach as our routine protocol.

115

116  Consistent retrieval of Hazara virus by Nanopore sequencing

117  Starting with an influenza A positive sample pool (10° genome copies/ml), we made three
118 volumetric dilution series using three independent influenza-negative pools (Fig 1). The total
119 quantity of cDNA after preparation for sequencing was consistently higher in all samples using
120 negative pool-3 as diluent (Fig 2A), indicating the presence of a higher concentration of non-
121  viral RNA within pool-3. This is likely due to host cell lysis or higher bacterial presence, and
122  demonstrates the variable nature of throat swab samples.

123

124  We consistently retrieved Hazara virus reads from all three dilution series by Nanopore

125 sequencing, independently of influenza virus titre in the sample (Fig 2B). Sequencing from
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126  dilution series 1 and 2 gave a consistent proportion of total reads mapping to the Hazara
127  genome, across dilutions and between the first two pools with mean values per pool of 1.4x10°
128 +660 RPM (reads per million (of total reads) + standard deviation) and 1.2x10% +#350 RPM
129 respectively. The pool-3 dilution series generated 260 +340 RPM Hazara reads across samples,
130 and showed a decreasing trend associated with increased dilution factor, as increasingly more
131 non-viral RNA was introduced from this high-background pool.

132

133 Limit of influenza virus detection by Nanopore from pooled samples

134 Nanopore sequencing of the triplicate SISPA preparations of the influenza A positive pool
135  produced mean 5.3x10* +3.6x10* RPM mapping to the influenza A genome (Fig 2B). Across the
136  dilution series, the proportion of influenza reads was strongly associated with influenza virus
137 titre (p-value = 4.7x107), but was also influenced by which negative pool was used for dilution,
138 consistent with the pattern observed for the Hazara control. Sequencing the negative controls
139 (pools with no influenza virus spike) generated no reads mapping to influenza. At influenza virus
140 titres <102 copies/ml, influenza reads were inconsistently detected across the samples (Fig 2B),
141  suggesting the limit of detection is between 10%-10° influenza copies/ml.

142

143 Retrieval and reconstruction of complete influenza genomes from pooled/spiked samples
144  For the Hazara virus control (10* genome copies/ml spike), genome coverage was 81.4-99.4%

145  (at 1x depth) for pools 1 and 2. Coverage in the high-background pool 3 was more variable
146  (21.5-96.5%; Fig 3A). Influenza A genome coverage at 10° copies/ml was =99.3% for each
147  segment in all samples (Fig 3A). At 10* genome copies/ml of influenza, mean 1x coverage per

148 segment was 90.3% for pools 1 and 2, but was substantially reduced in the high-background

149  pool 3 to 5.7% (Fig 3A). At influenza titres <10* copies/ ml, coverage was highly variable across
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150 genome segments. However, when present at 10° copies/ml, 2/3 pools had sufficient data for
151  correct subtyping as H3N2 (Table 1).

152

153 Influenza detection from individual clinical samples

154  Having demonstrated our ability to retrieve influenza sequences from pooled influenza-positive
155 material diluted with negative samples, we next applied our methods to individual anonymised
156 clinical samples, 40 testing influenza-positive and 10 influenza-negative in the clinical diagnostic
157 laboratory. Data yield varied between flow cells (range 2.5x10° - 13.2x10° reads from up to 12
158 multiplexed samples). Within flow cells, barcode performance was inconsistent when using a
159 stringent, dual barcode, demultiplexing method [22]. From each clinical sample, the range of
160 total reads generated was 1.0x10° to 2.4x10° (median 3.8x10°) (Table S1).

161

162 Reads mapping to either influenza A or B genomes were present in all 27 samples with Cycle
163  threshold (Ct) <30 (range 6 to 274,955 reads). At Ct >30, 6/13 samples generated influenza
164 reads (range 6 to 92,057), (difference between sensitivity at a Ct threshold of 30, p<0.0001, Fig
165 4) The highest Ct value at which any influenza reads were detected was Ct 36.8 (Sample 37; 17
166 reads influenza A). No reads classified as influenza were obtained from sequencing the ten
167  GeneXpert-negative samples (Table S1). Based on this small dataset, sensitivity is 83% and
168  specificity 100% (95% CIl 67-93% and 69-100%, respectively). There was a strong correlation
169 between Ct value and both reads per sample classified as influenza (R-squared =0.604) and
170  number of influenza reads per million reads (R-squared =0.623) (Fig 4).

171

172  Detection of Hazara virus internal control

173  Detection of the control virus (Hazara at 10 genome copies/ml) was highly variable,
174  demonstrating that levels of background non-target RNA are a major source of inter-sample

175  variation. Hazara reads per sample ranged from 0 to 13.5x10° (0-3.5x10* RPM) with a median
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176  of 70 (160 RPM) and mean of 706 (1.7x10° RPM) (Table S1). Four (8%) of 50 samples
177  generated no detectable Hazara reads, two with high numbers of influenza reads (Sample 6: Ct
178  18.4, 1.5x10* influenza A reads and Sample 1: Ct 13.5, 1.5x10° influenza B reads) acting to
179 dilute the control signal. The other two samples contained no detectable influenza reads
180 (Sample 34: Ct 35.9, Sample 46, Flu negative). The lack of control detection therefore indicates
181 a loss of assay sensitivity due to high levels of background nucleic acid present in some
182  samples.

183

184  Comparison with lllumina sequencing

185 A subset of 15 samples were selected from across the viral titre range and re-sequenced on an
186 lllumina MiSeq. Proportions of reads generated that mapped to the influenza genome were
187  similar across the two sequencing technologies (Figure S4).

188

189 Influenza phylogeny and typing

190 We reconstructed the phylogeny using consensus sequences for the HA gene (Fig 5). This
191 demonstrates closely related sequences, as expected within one location in a single influenza
192  season, and complete concordance between the sequences obtained by Nanopore vs lllumina
193 for the subset of isolates sequenced by both technologies.

194

195 Detection of other RNA viruses in clinical samples

196  Within the 50 clinical samples sequenced, we found limited evidence of other RNA viruses.
197  Sample 6 produced 109 reads mapping to Human Coronavirus in addition to >1.5x10* influenza
198 A reads, suggesting co-infection. We also derived >4.0x10* reads from Human
199 Metapneumovirus from an influenza-negative sample, providing a near complete (99.8%)
200 genome from one sample (Figure S1, Sample |), further detailed here [29].

201
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202  Animal time-course study

203 Finally, we used samples collected from a previous animal experiment [30] to test the
204  reproducibility of our methods across a time-course model of influenza A infection (three ferrets
205 pre-infection (day -3) and then at days 1, 2, 3 and 5 following laboratory infection with influenza
206  A). The proportion of viral reads present at each timepoint was highly congruent with viral titre
207  (titre shown in Fig 6A and sequencing reads in Fig 6B). Consensus genome sequences were
208 generated from days two, three and five and were 100% concordant with Illlumina-derived
209 consensus sequences from the same cDNA.

210

211  DISCUSSION

212  To our knowledge, this is the first report of successfully applying metagenomic Nanopore
213  sequencing directly to respiratory samples to detect influenza virus and generate influenza
214  sequences. The approach demonstrates excellent specificity; sensitivity varies by viral titre, but
215 is comparable to existing laboratory diagnostic tests for Ct values <30. Our optimised protocol
216  depletes human and bacterial nucleic acids, and reduces the time from sample to sequence.
217  This method has the potential to be further optimised and validated to improve sensitivity for
218 influenza, identify other RNA viruses, detect drug-resistance mutations, and provide insights into
219 quasispecies diversity [31,32]. At a population level, this sequence-based diagnostic data can,
220 in addition, provide phylo-epidemiological reconstruction, insights into transmission events,
221  potential for estimating vaccine efficacy [33], and approaches for public health intervention [34].

222

223  Whole genome viral sequencing can accurately trace outbreaks across time and space [35].

224  The metagenomic method employed here produced >90% complete genomes for 17/27

225 samples with a Ct value <30, demonstrating the ability of metagenomics to produce sufficient


https://paperpile.com/c/LqCbrL/dBUn
https://paperpile.com/c/LqCbrL/CfvB+35Tu
https://paperpile.com/c/LqCbrL/acla
https://paperpile.com/c/LqCbrL/vlAT
https://paperpile.com/c/LqCbrL/G7kG
https://doi.org/10.1101/676155
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/676155; this version posted June 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

226 data for influenza diagnostics and genome characterisation, whilst also detecting and
227  sequencing other common RNA viruses.

228

229  Despite time reductions in wet laboratory processing, this method requires further modification
230 to simplify and accelerate the protocol if it is to become viable as a near-to-patient test. High
231 error rates are a recognised concern in Nanopore sequence data, and cross-barcode
232  contamination can create challenges when low and high titre samples are batched together [22].
233 To avoid these problems, we batched samples according to Ct value, and applied stringent
234  barcode demultiplexing criteria; however, this reduces the total data available for analysis [22].
235  For future primary diagnostic use it would be preferable to sequence samples individually using
236 a lower throughput flow cell e.g. ONT Flongle. Careful optimisation of laboratory and
237  bioinformatic methods are required to resolve individual sequence polymorphisms, particularly
238  for drug resistance alleles.

239

240 IDSA guidelines [9] recommend nasal/nasopharyngeal specimens for influenza diagnosis, but
241 throat swabs are easier to collect in clinical practice and therefore accounted for the majority of
242  our diagnostic samples. Further work is needed to investigate the sensitivity and specificity of
243  our protocol for a wider array of respiratory sample types (also including bronchoalveolar
244  lavage, sputum and saliva), which may yield different degrees of contaminating bacterial and/or
245  human reads. Loss of assay sensitivity due to the presence of high-level background DNA from
246  either host or bacterial origin is a fundamental issue for metagenomic approaches, even in cell
247  free sample types such as cerebrospinal-fluid [36]. This challenge is exacerbated in throat
248  swabs, as seen in our data. Our use of hazara virus as an internal positive control allows us to
249 identify those sample in which sensitivity has dropped below 10* viral genome copies per ml. In
250  our test set 8% of samples showed insufficient sensitivity for hazara virus, however half of these

251 contained a high titre of influenza, so only 4% were true sensitivity failures. This figure is in line

10
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252  with the reported 6% failure rate due to high background for RNA virus detection from a
253 clinically validated metagenomic sequencing assay for pathogen detection in cerebrospinal-fluid
254  [36]

255

256 At the higher Ct values in our clinical samples (Ct 30-40), the sensitivity of Nanopore
257 sequencing was reduced compared to the current PCR-based test (Cepheid). Further
258  optimisation will be required to maximise the diagnostic yield from this group of samples, without
259  sacrificing specificity.

260

261  The correlation between Ct value and Nanopore reads confirms semi-quantitative output. Using
262 samples from the ferret influenza model, collected under standardized laboratory conditions,
263  demonstrated excellent reproducibility of viral read proportions at a given viral titre across
264  biological replicates. However, we observed heterogeneity in output between clinical samples
265 as well as between Nanopore flowcells, suggesting that the current platform is not yet
266  sufficiently reliable for reproducibly generating quantitative data. In addition, the detection of
267  positive controls can be impaired in high background samples also creating further uncontrolled
268  variability in the test yield.

269

270  Future application of this method will involve real-time laboratory testing of respiratory samples,
271 running the platform head-to-head with existing clinical diagnostics to further assess sensitivity
272 and specificity, and using influenza sequence data to investigate transmission events.
273 Identifying instances of nosocomial transmission may shed light on healthcare-acquired
274  infection, thus helping to improve infection control practice. Assessment of diversity within deep
275 sequence datasets provides an opportunity to investigate the relationship between within-host
276  polymorphisms and clinical outcomes. Long-read sequences confer the potential advantage of

277  identifying viral haplotypes and ascertaining the extent to which significant polymorphisms are

11
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278  transmitted together or independently [25]. We have shown that the method is robust for the
279 identification of commonly circulating influenza strains in human populations, but further
280 investigation is required to ascertain the extent to which it performs reliably in other (avian,
281  animal) strains.

282

283 In summary, our methods show promise for generating influenza virus sequences directly from
284  respiratory samples. The ‘pathogen agnostic’ metagenomic sequencing approach offers an
285  opportunity for simultaneous testing for a wide range of potential pathogens, providing a faster
286 route to optimum treatment and contributing to antimicrobial stewardship. Longer term, this
287  approach has promise as a routine laboratory test, providing data to inform treatment, vaccine

288  design and deployment, infection control policies, and surveillance.

289 Methods

290 Study cohort and sample collection

291  We collected respiratory samples from the clinical microbiology laboratory at Oxford University
292  Hospitals NHS Foundation Trust, a large tertiary referral teaching hospital in the South East of
293  England. We worked with anonymised residual material from throat and nose swabs generated
294  as a result of routine clinical investigations, between January and May 2018. Samples were
295 collected using a sterile polyester swab inoculated into 1-3 ml of sterile viral transport medium
296 (VTM), using a standard approach as described on the CDC website [37]. Workflow is shown in
297  Fig 1.

298

299 During the study, respiratory samples submitted to the clinical diagnostic laboratory were
300 routinely tested by a PCR-based test using GeneXpert (Cepheid) to detect influenza A and B,
301 and respiratory syncytial virus (RSV). Samples from patients in designated high-risk locations

302 (haematology, oncology and critical care) were tested using Biofire FilmArray (Biomérieux) to

12
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303 detect an expanded panel of bacterial and viral pathogens. Quantitative data (Cycle threshold,
304 Ct) were generated by the GeneXpert, and we used the Influenza Ct value to estimate viral titre
305 in clinical samples. Using GeneXpert, up to 40 PCR cycles are performed before a sample is
306 called negative (ie positives have Ct <40). Quantification was not available for Biofire results.

307  For methodological assessment, we focused on four categories of samples:

308 e Positive pool: we pooled 19 throat swab samples that had tested positive for influenza A
309 in the clinical diagnostic laboratory to provide a large enough sample to assess
310 reproducibility (Fig 1B);

311 e Negative pools: we generated three pools of throat swab samples that had tested
312 negative for influenza (consisting of 24, 38 and 38 individual samples respectively) (Fig
313 1B);

314 e Individual positive samples: we included 40 individual samples (35 throat swabs and 5
315 nasal swabs) that had tested positive for influenza A or B, selected to represent the
316 widest range of GeneXpert Ct values (13.5 to 39.3; valid test result range 12 to 40).

317 e Individual negative samples: we selected 10 individual throat swab samples that were
318 influenza negative.

319

320 Quantification of viral RNA in samples

321  We quantified viral titres in Hazara virus stocks and pooled influenza A positive throat swabs by
322  gRT-PCR using previously described assays and standards [38,39].

323

324  Optimisation of methods

325  Prior to establishing the protocol detailed in full below, we assessed the impact of two possible
326  optimisation steps, as follows:

327 (i) Centrifugation vs filtration: We investigated two approaches to depleting human/bacterial

328 nucleic acid from our samples, filtration of the raw sample via a 0.4um filter (Sartorius) before
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329  further processing, versus a hard spin (16,000 xg for 2 min). cDNA libraries for this comparison
330  were produced as described previously [21].

331 (i) Reduced time cDNA synthesis: To assess the possibility of time-saving in the cDNA
332 synthesis steps, we compared performance of the previously described protocol [21] to a
333  modified version with two alterations, first using SuperScript IV (ThermoFisher) in place of
334  Superscript Il (ThermoFisher) for reverse transcription with incubation time reduced from 60min
335 to 10min at 42°C, and secondly reducing the cDNA amplification PCR extension cycling time
336  from 5min to 2min.

337

338 Positive control

339  Prior to nucleic acid extraction, each sample was spiked with Hazara virus virions to a final
340 concentration of 10* genome copies per ml as a positive internal control. This is an enveloped
341  negative-stranded RNA virus (genus Orthonairovirus, order Bunyavirales) with a tri-segmented
342 genome of 11980, 4575 and 1677 nucleotides in length (Genbank KP406723-KP406725). It is
343  non-pathogenic in humans, and would therefore not be anticipated to arise in any of our clinical
344  samples. Cultured virions from an SW13 cell line were provided by the National Collection of
345  Pathogenic Viruses (NCPV), catalogue no. 0408084v).

346

347  Nucleic acid extraction

348 Samples were centrifuged at 16,000 xg for 2min. Supernatant was eluted, without disturbing
349 pelleted material, and used in nucleic acid extraction. Total nucleic acid was extracted from 100
350  pl of supernatant using the QlAamp viral RNA kit (Qiagen) eluting in 50ul of H,0O, followed by a
351 DNase treatment with TURBO DNase (Thermo Fisher Scientific) at 37°C for 30min. RNA was
352  purified and concentrated to 6pl using the RNA Clean & Concentrator™-5 kit (Zymo Research)
353  following manufacturer's instructions. Randomly amplified cDNA was prepared for each sample

354  using a Sequence Independent Single Primer (SISPA) approach, adapted from our previously
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355  described workflow [21], based on the Round A/B methodology [24]. For reverse transcription,
356  4pl of RNA and 1pl of Primer A (5-GTTTCCCACTGGAGGATA-N9-3', 40 pmol/pl) [24] were
357  mixed and incubated for 5min at 65°C, then cooled to room temperature. First strand synthesis
358 was performed by the addition of 2ul SuperScriptlV First-strand Buffer, 1uL 12.5mM dNTPs,
359 0.5puL 0.1 M DTT, 1ul H,O, and 0.5uL SuperScriptlV (ThermoFisher) before incubation for
360 10min at 42°C. Second strand synthesis was performed by addition of 1ul Sequenase Buffer,
361  3.85pl H,O and 0.15ul Sequenase (Affymetrix) prior to incubation for 8min at 37°C, followed by
362  addition of 0.45ul Sequenase Dilution Buffer, 0.15ul Sequenase and a further incubation at
363  37°C for 8min. Amplification of cDNA was performed in triplicate using 5ul of the reaction as
364  input to a 50ul AccuTaqg LA reaction (Sigma) according to manufacturer's instructions, using 1ul
365  Primer B (5-GTTTCCCACTGGAGGATA-3") [24], with PCR cycling conditions of: 98°C for 30s;
366 30 cycles of 94°C for 15s, 50°C for 20s, and 68°C for 2min, followed by 68°C for 10min.
367 Amplified cDNA was pooled from the triplicate reactions and purified using a 1:1 ratio of AMPure
368 XP beads (Beckman Coulter, Brea, CA) and quantified by Qubit High Sensitivity dsDNA kit
369 (Thermo Fisher), both according to manufacturer's instructions.

370

371 Nanopore Library Preparation and Sequencing
372  Multiplex sequencing libraries were prepared using 250ng of cDNA from up to 12 samples as
373 input to the SQK-LSK108 or SQK-LSK109 Kit, barcoded individually using the EXP-NBD103
374  Native barcodes (Oxford Nanopore Technologies) and a modified “One-pot” protocol (Quick
375 2018). Libraries were sequenced on FLO-MIN106 flow cells on the MinlON Mklb or GridlION
376 device (Oxford Nanopore Technologies), with sequencing proceeding for 48h. Samples were
377 batched according to the GeneXpert Ct value (see supplementary data file 1).
378

379 llumina methods
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380 Nextera XT V2 kit (lllumina) sequencing libraries were prepared using 1.5ng of amplified cDNA
381 as per manufacturer’s instructions and sequenced on a 2x150 bp-paired end lllumina MiSeq
382  run, by Genomics Services Development Unit, Public Health England. Read mapping and data
383 analysis as described previously [21]

384

385 Bioinformatic analysis

386 Nanopore reads were basecalled using Guppy (Oxford Nanopore Technology, Oxford, UK).
387 Output Dbasecalled fastq files were demultiplexed using Porechop v0.2.3

388  (https://github.com/rrwick/Porechop). Reads were first taxonomically classified against RefSeq

389 database using Centrifuge v1.0.3. Reads were then mapped against the reference sequence
390 selected from Centrifuge report using Minimap2 v2.9. A draft consensus sequence was
391 generated by using a majority voting approach to determine the nucleotide at each position. The
392 resulting draft consensus sequences were BLASTed against a flu sequence database that
393 included >2,000 HIN1 and H3N2 seasonal influenza sequences between 2018 and 2019, and
394  downloaded from the Influenza Research Database [40]. Reads were again mapped against the
395 reference sequence using Minimap2 v2.9 and the number of mapped reads were calculated

396 using samtools v1.5 and Pysam (https://github.com/pysam-developers/pysam). The subtype of

397 the influenza A virus derived from each clinical sample was determined by the subtype of HA
398 and NA reference sequence. Consensus sequence was built using Nanopolish v0.11.0 and

399 margin_cons.py script (https://github.com/zibraproject/zika-pipeline).

400

401  Ferret study

402  We applied our sequencing approach to residual samples collected in a previous time-course
403  experiment undertaken in a controlled laboratory environment [30]. We tested ferret nasal saline

404  wash samples from three independent animals over an eight day time course, from three days
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405  prior to first exposure with influenza HIN1pdmQ9 and at days 1, 2, 3 and 5 post-infection.
406  Sampling and plague assays of viral titre were described previously [30].

407

408 Ethics approval

409 The study of anonymised discarded clinical samples was approved by the London - Queen
410 Square Research Ethics Committee (17/L0O/1420). Ferret samples were residual samples from
411  an existing study [30], for which the project license was reviewed by the local Animal Welfare
412  and Ethics Review Board of Public Health England (Porton) and was subsequently granted by
413  the Home Office.

414

415 Data availability

416  Following removal of human reads, our sequence data have been uploaded to the European

417  Bioinformatics Institute https://www.ebi.ac.uk/, project reference PRJEB32861.

418
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Figures and legends

Figure 1. Schematic to show processing protocol through clinical and research pipelines

for influenza diagnosis. (A) Clinical sample collection (orange), clinical diagnostic testing

(yellow), sample processing and sequencing using Oxford Nanopore Technologies (blue),

processing of sequence data (purple). (B) Outline of pooled influenza-positive samples into

influenza-negative background, to generate varying titres of influenza virus (from zero up to 10°

genome copies/ml), undertaken in triplicate, and spiked with a standard titre of Hazara virus

control at 10* genome copies/ml).
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438  Figure 2. Characteristics of three pools of influenza-negative throat swabs, and Nanopore
439 sequence results following spiking with influenza A. (A) Total concentration of cDNA
440  produced per pooled sample following amplification by the SISPA reaction, grouped by dilution
441  series. The 10° sample in each pool is the original, undiluted material, represented by the black
442  filled bars. Samples diluted to influenza titres of 10%, 10® and 10? contain more cDNA due to
443  higher background material (bacterial/lhuman) present in the diluent. Dilution series 1 and 2
444  contain comparable amounts of background material; dilution series 3 contains substantially
445  more background. (B) Viral reads generated by Nanopore sequencing of samples with different
446 titres of influenza A, and a consistent titre of Hazara virus (10* genome copies/ml). Graphs show
447  reads per million of total reads mapping to influenza A or Hazara virus genomes, across the

448  three individual dilution series. Note logarithmic scale on y-axis.
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457  Figure 3. Coverage of influenza and Hazara genome segments achieved by Nanopore
458 sequencing from pooled samples (A) Data from three dilution series of pooled influenza
459  positive samples, diluted with three separate negative sample pools to generate different titres
460  of influenza virus. Each individual dilution was spiked with Hazara at 10* genome copies/ml.
461  Proportion of genome covered at 1x depth is shown for each of the eight influenza genome
462 segments (encoding: PB2 - polymerase subunit, PB1 - polymerase subunit, PA - polymerase
463  acidic protein ,HA - hemagglutinin, NP- nucleocapsid protein, NA - neuraminidase, M - matrix
464  proteins, NS - nonstructural proteins) across the three dilution series. Coverage of the Hazara
465 genome is plotted as total of all three genome segments for simplicity. (B) Representative
466  coverage plot of influenza A genome segments from the dilution series 1 sample at 10*

467  influenza copies per mi.
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468 Figure 4: Total and proportion of influenza reads derived by Nanopore sequencing of
469 individual samples across a range of Ct values. Ct values were derived by testing using
470 GeneXpert (Cepheid) in a clinical diagnostic laboratory. (A) Correlation between Ct value and
471  total number of influenza reads generated. R?= 0.604, p-value = 2.47e-08. (B) Correlation
472  between Ct value and number of influenza reads per million reads. R?>= 0.623, p-value = 1.07e-
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477  Figure 5: Phylogenetic trees of consensus Influenza HA gene derived by Nanopore and
478 lllumina sequencing. Maximum likelihood tree generated using 500 bootstrap replicates in
479 RAXxML v8.2.10 software. Bootstrap values >70 are shown. Scale bar shows substitutions per
480 site. Red and blue indicate sequences derived from Nanopore and illumina sequencing,
481  respectively. References sequences are shown in black.
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486 Figure 6: Time course experiment showing influenza A infection in three laboratory
487  ferrets. Infection was introduced at day 0. Samples were collected three days prior to infection,
488 and at days 1, 3 and 5 post infection. (A) Influenza titre (log scale) and (B) proportion of total
489 nanopore reads (linear scale) mapping to influenza A from metagenomic sequencing of ferret
490 nasal washes taken pre and post influenza challenge.
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Table 1. Summary of results from Nanopore sequencing based on pooled samples with

varying titres of Influenza A, and a consistent titre of Hazara virus control. Each dilution is

undertaken in triplicate (shown as 3 dilution pools).

Influenza A Dilution Total
Genome Pool Reads
Copies/ml
10° 1 473,718
2 572,106
3 526,852
10* 1 354,163
2 433,033
3 43,512
10° 1 231,929
2 461,281
3 397,672
102 1 375,183
2 671,133
3 37,897

Influenza A Reads

(reads per million)

33,103 (6.9x10%

6,957 (1.2x10%

41,196 (7.8x10%

280 (791)

299 (690)

2 (46)

7 (30)

24 (52)

2 (5)

1(3)

0(0)

0 (0)

Influenza A

Subtyping

H3N2

H3N2

H3N2

H3N2

H3N2

Not possible

H3N2

H3N2

Not possible

Not possible

Not possible

Not possible

Hazara Reads

(reads per million)

527 (1.1x10%)

102 (178)

534 (1.0x10%)

738 (2.1x10°%)

691 (1.6x10°%)

9 (207)

298 (1.3x10°)

638 (1.4x10%)

38 (96)

453 (1.2x10%)

598 (891)

2 (53)
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Negative 1 903,430 0 (0) N/A 1731 (1.9x10°)

2 900,471 0 (0) N/A 692 (768)

3 818,549 0 (0) N/A 54 (66)

501
502
503
504
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508
509
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511
512
513
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516 Supplementary material

517  Figure S1 Comparison of viral read detection in throat swab samples with and without a
518 filtration step. Five influenza A positive throat swab samples (A-E) and five negative samples
519  (F-J) were spiked with Hazara virus as positive control at 10* genome copies/ml and sequenced
520  with and without filtration via a 0.4pm filter prior to RNA extraction. Reads mapping to influenza

521  or Hazara are shown for each sample.
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525 Figure S2 Comparison of Filtration and Centrifugation as Pre-extraction treatments to
526 improve viral detection. Using a pool of 19 influenza A positive samples as input, triplicate
527  extractions utilising either supernatant separation by centrifugation at 16,000 xg for 2 min, or
528 filtration via a 0.4um filter, were processed and all samples sequenced on a single flow cell.
529 Mean total read numbers for each virus are plotted for each treatment, error bars indicate

530 standard deviation.
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532 Figure S3. Assessment of effect of original and reduced processing time method on
533 metagenomic viral sequencing. Using a pool of influenza A positive samples as input,
534 triplicate extractions were processed by either existing (standard) or reduced incubation times
535 (rapid) method and all samples sequenced on a single flow cell. Mean total read numbers for

536  each virus are plotted for each treatment, error bars indicate standard deviation.
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539 Figure S4. Coverage of influenza sequences recovered by nanopore metagenomic
540 sequencing. Ct values were derived by testing using GeneXpert (Cepheid) in a clinical
541  diagnostic laboratory. Genome coverage shown is the proportion of bases of the reference

542  sequence that were called in the final consensus sequence for each sample.
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Figure S5. Comparison of proportions of influenza reads derived by Nanopore or lllumina

sequencing for a subset of the individual samples across a range of Ct values. Ct values

were derived by testing using GeneXpert (Cepheid) in a clinical diagnostic laboratory.

Proportions are shown as number of influenza reads per million reads.
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565 Table S1. Summary data for the 50 individual throat swab samples.
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