

1 **Title:** Attraction of *Triatoma infestans* (Klug) to adhesive yeast-baited trap under
2 laboratory conditions

3

4 Cardozo Miriam¹, Fiad Federico G.², Crocco Liliana B.¹, Gorla David E.³

5

6 Institutional affiliations:

7 1. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas
8 y Naturales. Cátedra de Introducción a la Biología. Córdoba, Argentina.

9 Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT-CONICET)-
Avda. 1000, Cnel. 1000, 7600, MENDOZA, República Argentina.

12 y Naturales. Cátedra de Introducción a la Biología. Córdoba, Argentina.

14 c. Universidad Nacional de Córdoba. Grupo de Ecología y Control de
15 Vectores. Instituto de Diversidad y Ecología Animal (IDEA-CONICET).

Rondeau 798 (Jardín Zoológico) X5000AVI, Córdoba, Argentina.

17 Corresponding author

¹⁸ E-mail address: cardozo.mir@gmail.com (MC)

19 ORCID: 0000-0002-4339-974X

20 Postal address: Instituto de Investigaciones Biológicas y Técnicas, Facultad
21 de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba.

22 Avda. Vélez Sarsfield 299, piso 5. X5000JJC, Córdoba, Argentina.

Telephone: 54+351+4332100 ext. 248 - Fax: 54+351+4332100

24

25

26 **Abstract**

27 Existing methods to detect domestic triatomines have low sensitivity. As early
28 house infestation detection is epidemiologically important, the exploration of
29 better methods is required. Hence, we measured the attractiveness of a yeast-
30 baited trap to adults and nymphs of *Triatoma infestans*, under laboratory
31 conditions.

32 The assays were conducted in an experimental arena, with an experimental and
33 a control traps placed at opposite sides and one refuge in the center area.

34 Insects were released and the number of triatomines in the yeast and control
35 traps were counted, after 3, 6 and 24 hours of the beginning of the experiment.

36 We use generalized linear models within a multimodel inference approach to
37 model the number of insects in the trap, using insect age classes, time after
38 assay initiation and date of the experiment as predictors.

39 Our results show that the attraction to CO₂ depends upon the life stage of the
40 insects. During the 24 hours of experiment a constant number of adults were
41 attracted to the yeast trap, while nymphs show attraction only up to the first
42 three hours after the initiation of CO₂ liberation. Undoubtedly, the orientation
43 response to chemical cues deserves further studies to be fully understood.

44 **Key words:** Triatominae, Chagas Disease, yeasts, carbon dioxide

45

46

47

48

49

50

51 **Introduction**

52 Chagas disease is considered one of the most important endemic diseases in
53 Latin America, affecting approximately 5–6 million individuals. The disease is
54 caused by *Trypanosoma cruzi* (Trypanosomatidae), which not only infects
55 humans but also more than 100 species of domestic and sylvatic mammals and
56 can be transmitted by over 150 species of triatomines (Triatominae, Reduviidae)
57 (WHO 2015).

58 *Triatoma infestans*, characterized by its high adaptive capacity to domestic
59 environments, is the vector with the greatest epidemiological importance in the
60 Southern Cone countries of South America (Rabinovich 1972; Lent and
61 Wygodzinsky 1979).

62 The maximum geographical expansion of *T. infestans* distribution occurred
63 between 1970 and 1980 with an estimated occupation area of 6.28 million km²,
64 including Argentina, Bolivia, Brazil, Chile, Paraguay, Peru and Uruguay. The
65 Southern Cone Initiative, coordinated by the Pan American Health Organization
66 to control the transmission of Chagas disease in Latin America from 1991
67 interrupted the vector transmission of *T. cruzi* in Chile, Uruguay and Brazil
68 through insecticide-based vector control, health education and house
69 improvement programs (Dias et al. 2002). The Initiative produced a significant
70 reduction of the distribution area of *T. infestans* to less than 1 million km²
71 (Schofield et al. 2006). Nevertheless, in arid Gran Chaco areas of Argentina,
72 Paraguay, and Bolivia, reinfestations of human dwellings continue to occur in
73 several provinces or departments (Ceballos et al. 2011; Bustamante-Gómez et
74 al. 2016).

75 Although this species has long been found almost exclusively in domiciliary and
76 peridomestic environments, a significant increase in the number of wild
77 population found in sylvatic environments was reported, mainly in the Inter-
78 Andean Valleys of Bolivia, in the Gran Chaco of Argentina, Bolivia and
79 Paraguay (Noireau et al. 1997; Rolón et al. 2011) and in a Metropolitan region
80 from Chile (Bacigalupo et al. 2010). Recent studies also evidenced the
81 presence of gene flow between sylvatic and intra-peridomestic *T. infestans*
82 populations in Argentina (Piccinali et al. 2011), suggesting that sylvatic
83 populations may be involved in the reinfestation observed in some places.
84 The prevention of Chagas disease depends on the elimination of the domestic
85 colonies of triatomines. Insecticide residual spraying is very effective, but re-
86 infestation of treated dwellings is frequent. Early detection and elimination of
87 triatomine reinfestation is critical for long-term control; however, current
88 methods used for vector-detection have low sensitivity. A number of alternatives
89 have been evaluated (Abad-Franch et al. 2011), either for the detection of
90 domestic triatomine species (like *T. infestans*), or other secondary vector
91 species that frequently invade domestic and peridomestic structures (Cavallo et
92 al. 2016; Cecere et al. 2016; Giraldez et al. 2016). A number of methods for
93 triatomine detection have been tested in different ecotopes (sylvatic, domestic
94 and peridomestic environments). Current method for routine entomological
95 surveillance used by vector control programs in Latin America is the fixed effort
96 active search, sometimes using a flushing out agent. Although widely adopted, it
97 depends heavily on operator experience and has low sensitivity when vector
98 abundance is low (Gürtler et al. 1999).

99 Passive bio-sensors such as the Gómez-Nuñez box or Maria sensors (Gómez-
100 Nuñez 1965; Wisnivesky-Colli et al. 1987) were tested with poor results
101 because of methodological and operational limitations and low sensitivity to
102 detect colonization (Pinto Dias et al. 2005). The dissection of microhabitats in
103 which triatomines feed and shelter, such as tree holes, palm crowns,
104 bromeliads, rock piles, burrows and bird nests, has been effective to capture
105 sylvatic specimens, but it requires important sampling efforts, human resources
106 and sometimes generates negative impact on the environment. Light traps have
107 the disadvantage of attracting only hungry adults, although it has been possible
108 to capture some species that are otherwise difficult to collect (Noireau and
109 Dujardin 2001; Vazquez-Prokopec et al. 2004). Traps with animal bait, such as
110 the Noireau adhesive trap, which uses a mouse as bait, were successfully used
111 in sylvatic ecotopes (Abad-Franch et al. 2000; Gürgel-Gonçalves et al. 2003;
112 Noireau et al. 1999). However, it is expensive due to host maintenance and
113 some authors reported that its efficiency depends upon the triatomine species
114 studied and the biotic region of study (Reyes-Novelo et al. 2012). As none of the
115 explored methods show reasonable sensitivity, there is a need to develop a
116 sensitive detection method for entomological vigilance.

117 Two types of non-live baited traps were also evaluated based on
118 semiochemicals (Rojas de Arias et al. 2012) and yeast. The host orientation
119 behavior of triatomines is controlled by physical and chemical signals, including
120 olfactory clues such as carbon dioxide. The carbon dioxide released by the
121 *Saccharomyces cerevisiae* cultures, is a chemical signal indicative of a food
122 source for hematophagous insects and therefore it can evoke both behavioral

123 responses: activation and attraction of the triatomines to the source (Lazzari et
124 al. 2013; Guerenstein and Lazzari 2009).

125 Several authors have demonstrated the effectiveness of yeast traps to attract
126 and capture *T. infestans* under both laboratory (Guerenstein et al. 1995;
127 Barrozo and Lazzari 2004, 2006) and natural conditions (Lorenzo et al. 1998,
128 1999; Bacigalupo et al. 2006). Other studies have also demonstrated that yeast
129 traps are a useful tool for the detection of potential new sylvatic habitats of *T.*
130 *infestans* as well as other triatomine species and they can be a suitable
131 alternative for their control (Bacigalupo et al. 2006; Botto-Mahan et al. 2002).

132 Previous studies using yeast traps for triatomine detection evaluated the device
133 during a fixed time, and generally using nymph triatomines.

134 Within the exploration efforts to find a method that improves the detection
135 sensitivity of triatomines, we report a study that measured the temporal variation
136 in attractiveness of an adhesive yeast trap for adults and nymphs of *T. infestans*
137 under laboratory conditions.

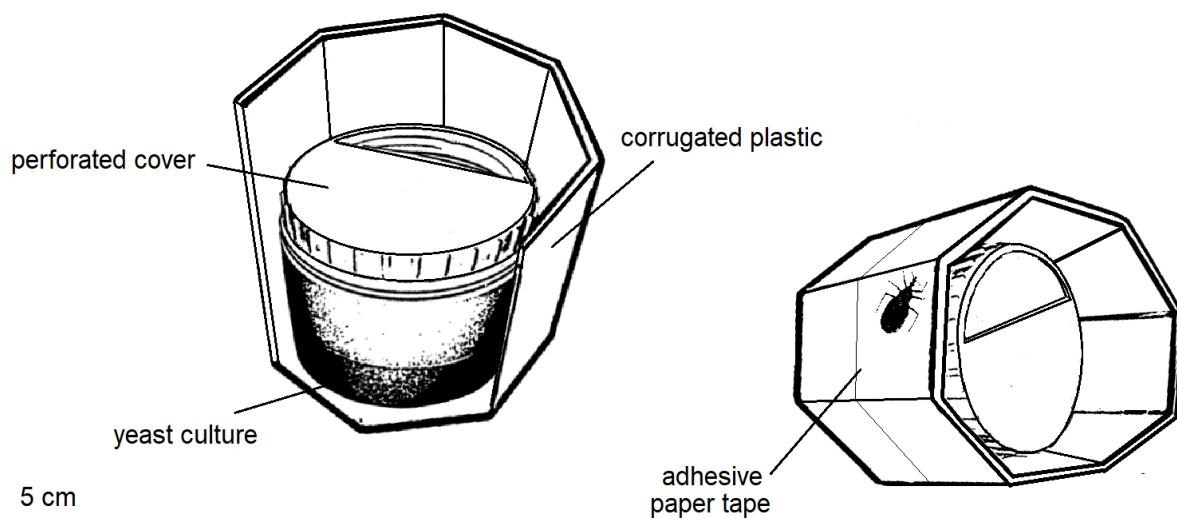
138 **Materials and methods**

139 *Experimental setting*

140 The study was designed as an experiment involving the release of insects in an
141 arena containing a baited trap (with yeast) and a non-baited trap (without yeast,
142 control trap).

143 The experimental arena measured 100 x 80 x 80 cm, with kraft paper ground
144 and non-climbable walls. Control and yeast traps were placed at opposite sides
145 of the arena and folded paper as an artificial shelter (15 x 10 cm) was placed in
146 the center.

147 During the assay, 8 insects were released in the area center and only after the
148 insects had hidden in the folded shelter the traps were placed in the arena. After
149 3, 6 and 24 hours of the beginning of the experiment, the number of triatomines
150 captured in the yeast trap, those adhered to the control, the loose ones in the
151 arena and those that remained hidden in the refuge were counted. Each time
152 the number of bugs was recorded in the traps, the replacement of the attached
153 bugs was made, making sure that there were always 8 individuals in the
154 experimental box.


155 Some tested insects were used up to 2 times with a difference of at least ten
156 days between tests to ensure independence.

157 We performed seventeen series of assays for adults of *T. infestans* and thirteen
158 series of assays for 4th and 5th nymph instars. During the test, the triatomines
159 were able to move freely throughout the experimental arena. Assays were
160 conducted at room temperature (approximately 25°C ± 2°C), in darkness
161 starting at 10.00 am and finishing 24 hours later. The position of the control and
162 the experimental traps was changed randomly in the successive trials, to
163 compensate for possible external asymmetries.

164 *Traps*

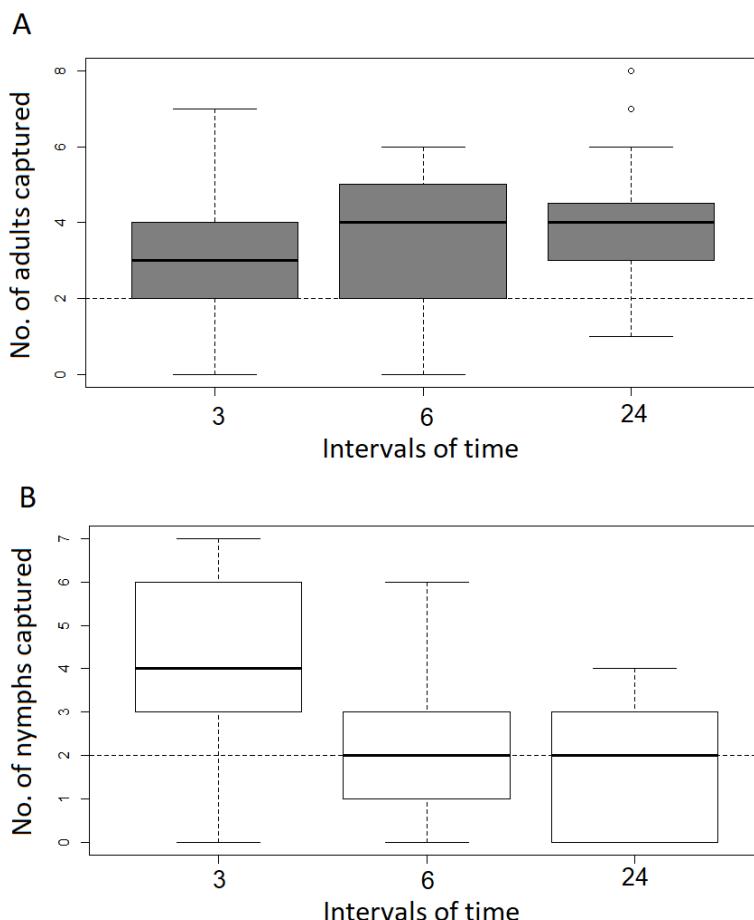
165 The experimental adhesive yeast traps (Figure 1) consisted of a plastic
166 container of 500 cm³, with a perforated cover containing a solution of 5 g of dry
167 yeast LEVEX® + 10 g of sucrose + 100 ml of water. For the purpose of this
168 work, we used the same concentration employed by Bacigalupo et al. (2006),
169 as this concentration proved to be effective for the capture of wild *T. infestans*
170 colonies in field studies.

171 The control trap had the same design of the yeast trap although it only
172 contained a solution of sucrose (10 g of sucrose + 100 ml of water). The plastic
173 container of both the yeast trap and the control trap was surrounded by a
174 rectangle of corrugated plastic, covered with adhesive paper tape Doble A®. The
175 corrugated plastic increases the adhesive surface and offers a refuge site. This
176 yeast trap design is simple and cheap, easy to transport due to its low weight
177 and volume and it can be used either horizontally or vertically so that it can be
178 put in a great variety of sylvatic and peridomestic ecotopes.

179
180 **Fig 1** Front and side view of the yeast trap prototype used to test the
181 attractiveness of the yeast culture for *Triatoma infestans*
182 *Insects*
183 The triatomines used in the assays were 180 adults and 103 nymphs (83 fifth
184 nymphal instar and 20 fourth nymphal instar) of *T. infestans*. The insects came
185 from colonies reared during many generations (>25) in the Centro de
186 Referencia de Vectores from the Servicio Nacional de Chagas (CeReVe-SNCh),
187 located in Santa María de Punilla (Córdoba, Argentina).

188 All the triatomines were fed on chicken and kept under a natural illumination
189 cycle under room temperature conditions ($26^{\circ}\text{C} \pm 5^{\circ}\text{C}$ and at $40 \pm 60\%$ relative
190 humidity). The insects were starved for approximately 15 to 30 days before the
191 experiments.

192 *Data analysis*


193 Although the results of this type of experiment has been analyzed comparing
194 proportions of trapped insects through ANOVA tests to detect contrast
195 signification (e.g. Guerenstein et al. 1995), we adopted the effect estimation
196 approach (Cumming 2012) instead of significance test. To evaluate the
197 attractiveness of the yeast solution we used generalized linear models (GLMs)
198 with Poisson error distribution. We consider alternative hypothesis that would
199 explain the variation in the number of bugs captured in the yeast trap (response
200 variable) as a function of predictor variables including the insect stages (adults
201 or nymphs), the time intervals at which the response variable was recorded (3,
202 6 and 24 hours after the beginning of the assay) and the date of the experiment.
203 The latter was considered as a temporal control to detect possible asymmetries
204 between the assays. The candidate models considered the individual effects of
205 each predictor on the response variable as well as joint models evaluating the
206 additive effects and the interactions of the possible combinations. The GLMs
207 where fitted through maximum likelihood and their relative performance were
208 measured with Akaike's information criterion (AICc), using the function aictab of
209 the package AICmodavg (Mazerolle 2017) in the R software version 3.4.3 (R
210 Core Team 2017). We assessed the significance of the effects by comparing
211 size, unconditional standard error and 95% confidence interval. The effect-size
212 estimates for each factor were averaged, using the modavg function from the

213 package AICmodavg in the R software version 3.4.3 (Mazerolle 2017), for all
214 coefficients included in models that showed a difference in AIC values ≤ 3 with
215 the model that showed the lowest AIC.

216 **Results**

217 In every replicate an average of 7.58 (95% CI [7.43;7.73]) insects, either nymph
218 instar or adults, moved out of the central refuge. On average, 3.53 (95% CI
219 [2.97;4.09]) adults and 2.71 (95% CI [1.97;3.46]) nymph instar that moved out of
220 the refuge where attracted by the yeast trap, and only 5% of adults and 7% of
221 nymph instars remained in the refuge after 24 hs.

222 Considering that the 8 insects released in each assay were able to choose
223 among 4 sites (yeast trap, control trap, refuge and out of refuge), 2 is the
224 expected number of insects to be counted at each time interval in any of these
225 sites under the hypothesis of random selection. The median number of adults
226 captured in the yeast trap was always > 2 (Fig. 2A), whereas in the nymph
227 group, the median number of captured insects in the yeast trap was 2 after the
228 first 3 hours (Fig. 2B).

229

230 **Fig 2** Number of *T. infestans* adults (A) and nymph instars (B) captured in the
231 adhesive yeast trap 3, 6 and 24 hours after the beginning of the assay. The
232 dotted line indicates the expected number of insects under the hypothesis of
233 random selection of sites by the triatomines.

234

235 From the nine candidate models of the multimodel inference approach, three of
236 them described equally well the results ($\Delta AICc \leq 3.0$) (Table 1). Two of the
237 models included the interaction between life stage factor and the time as
238 predictors. The presence of interaction indicates that the time effect depends on
239 the life stage of the triatomine, meaning that attraction to the carbon dioxide

240 source at 3, 6 and 24 hours after the beginning of the assay, differ between
241 adults and nymphs of *T. infestans*.

242

243 **Table 1 Model set.** Exhaustive list of all GLMs considered in this study to
244 explain variation of the number of insects recorded in the yeast trap (Y).

Model structure	ΔAICc
Y (life stage + time + life stage * time)	0.000
Y (life stage + time + life stage * time + date)	1.377
Y (life stage)	2.715
Y (life stage + date)	4.495
Y (life stage + time)	4.620
Y (life stage + time + date)	6.365
Y (date)	6.825
Y (time)	6.903
Y (time + date)	8.767

245 ΔAICc, represents the difference in the value of the Akaike's information
246 criterion (AIC) with respect to the AIC value of the best candidate model

247 +, additive effect of the factor

248 *, interaction effect of the factors

249 After detecting the life stage x time interaction, the response variable was
250 modelled for nymph instars and adults separately using GLMs with Poisson link,
251 considering the effects of date, time and their additive effects. Models for the
252 nymph stage showed no effect of date (coefficient estimate = 0.01, 95%CI
253 [0;0.01]), but a negative effect of time (coefficient estimate= -0.04, 95%CI [-
254 0.07; -0.01]). Models for the adult stage showed no effect of date or time, and

255 an interception estimate of 1.17 (95%CI [0.93;1.41]), meaning that number of
256 adults remained constant during the experimental periods between 2.5 and 4.1.

257 **Discussion**

258 Our results confirm the effectiveness of CO₂ liberated by a small yeast culture to
259 attract *T. infestans*. The detection of natural host odour blends or a single
260 constituent (CO₂) tends to increase the triatomine locomotor activity and trigger
261 both behavioral responses of activation and attraction (Guerenstein and Lazzari
262 2009). For the first time we report the comparative attraction during 24 hours of
263 *T. infestans* nymph instars and adults to the CO₂ liberated by a small yeast
264 culture. Our study shows that *T. infestans* adults and nymphs had higher
265 locomotion activity after the experiment started than insects in similar
266 experiments performed using other triatomine species (*T. dimidiata*, *T.*
267 *pallidipennis* *T. brasiliensis*, *T. sordida*, *T. pseudomaculata*), where more than
268 50% of the nymphs remained in the central refuge (Pires et al. 2000; Pimenta et
269 al. 2007), compared to 5% of adults and 7% of nymphs in the present study.
270 The proportion of nymphs captured in the yeast trap (34%, out of the total used
271 in the assays) was similar to that obtained for *T. infestans* in a previous study
272 (44%, Guerenstein et al. 1995).

273 Our study shows that the attractiveness to the CO₂ liberated by a small yeast
274 culture depends upon the age classes of the insects. On average, adults were
275 more attracted to the yeast trap than nymphs. During the 24 hours of
276 experimental period, a constant number of adults (2.5 - 4.1) was attracted and
277 captured in the yeast trap. However, our results showed a different behavior of
278 nymphs, that presented attraction to CO₂ only the first three hours of the assay,
279 and then declining significantly over time.

280 Even though it has been demonstrated that the attractiveness and orientation
281 towards CO₂ by *T. infestans* is limited to a temporal window at the beginning of
282 the night (Barrozo and Lazzari 2004), we observed that if a source of CO₂ is
283 offered, starved adults of *T. infestans* can respond to the chemical stimulus long
284 before the beginning of the scotophase, under laboratory conditions. This
285 behavior might be based on the possibility that the sensitivity to one specific
286 odour is not “switched-off” outside the temporal window associated with the
287 search of food, as Bodin et al. (2008) suggested.

288 The results presented in this work add new questions about the mechanisms
289 that modulate the CO₂ attraction and the possible influence of vital stage of *T.*
290 *infestans*.

291 Several studies evidence that the orientation response to stimuli is more
292 complex than believed. This process is influenced mainly by internal factors,
293 such as circadian clocks (Barrozo and Lazzari 2004), as well as the triatomine’s
294 physiological state concerning its nutritional status, the proximity to oviposition
295 and the moult cycle (Bodin et al. 2008,2009). Undoubtedly, the orientation
296 response to stimuli and chemosensitivity deserves further studies to be fully
297 understood. Not only to comprehend the biological basis but also because it is
298 fundamental for the improvement of detection techniques or development of
299 new detection tools.

300 The interpretation of the results of this study should take into account that the
301 nymph’s age and the reproductive status of females were not measured.
302 Further laboratory studies should be carried out to confirm and understand the
303 mechanisms determining the relationship between attraction to CO₂ and the life
304 stage. The adhesive yeast-baited trap used in this work should be tested under

305 field conditions to determine its sensitivity and easy-of-use before it could be
306 recommended for the use of routine activities of triatomine surveillance.

307 **References**

308 Abad-Franch F, Noireau F, Paucar, A, Aguilar H M, Carpio C, Racines VJ
309 (2000) The use of live-bait traps for the study of sylvatic *Rhodnius* populations
310 (Hemiptera: Reduviidae) in palm trees. *Papers in Entomology*. Museum,
311 University of Nebraska State at Digital Commons.

312 Abad-Franch F, Vega MX, Rolón MS, Santos WS, Rojas de Arias A (2011)
313 Community Participation in Chagas Disease Vector Surveillance: Systematic
314 Review. *PLoS NTD* 5(6): e1207 doi:10.1371/journal.pntd.0001207

315 Bacigalupo A, Torres-Pérez F, Segovia V, García A, Correa JP, Moreno L,
316 Arroyo P, Cattan PE (2010) Sylvatic foci of the Chagas disease vector *Triatoma*
317 *infestans* in Chile: description of a new focus and challenges for control
318 programs. *Mem Inst Oswaldo Cruz* 105(5):633–41

319 Bacigalupo AB, Segura JA, García A, Hidalgo J, Galuppo SG, Cattan PE
320 (2006) Primer hallazgo de vectores de la enfermedad de Chagas asociados a
321 matorrales silvestres en la Región Metropolitana, Chile. *Rev Med Chil*
322 134:1230-1236

323 Barrozo RB, Lazzari CR (2004) Orientation behavior of the blood-sucking
324 bug *Triatoma infestans* to short chain fatty acids: synergistic effect of L-lactic
325 acid and carbon dioxide. *Chem Senses* 29:833-841

326 Barrozo RB, Lazzari CR (2006) Orientation response of hematophagous
327 bugs to CO₂: the effect of the temporal structure of the stimulus. *J Comp Physiol*
328 192:827–831

329 Bodin A, Barrozo RB, Couton L, Lazzari C (2008) Temporal modulation and
330 adaptive control of the behavioural response to odours in *Rhodnius prolixus*. J
331 Insect Physiol 54:1343–1348

332 Bodin A, Vinauger C, Lazzari CR (2009) Behavioral and physiological state
333 dependency of host seeking in the bloodsucking insect *Rhodnius prolixus*. J
334 Exp Biol 212, 2386-2393

335 Botto-Mahan C, Cattan PE, Canals M (2002) Field tests of carbon dioxide
336 and conspecifics as baits for *Mepraia spinolai*, wild vector of Chagas disease.
337 *Acta Trop* 82 377–380.

338 Bustamante-Gómez M, Gonçalves Diotaiuti L, Gorla DE (2016) Distribution of
339 pyrethroid resistant populations of *Triatoma infestans* in the Southern Cone of
340 South America. PLoS NTD 10(3).e0004561.
341 doi.org/10.1371/journal.pntd.0004561

342 Cavallo MJ, Amelotti I, Gorla DE (2016) Invasion of rural houses by wild
343 Triatominae in the arid Chaco. J Vector Ecol 41(1):97 -102

344 Ceballos LA, Piccinali RV, Marcet PL, Vazquez-Prokopec GM, Cardinal, MV,
345 Schachter-Broide J, Dujardin JP, Dotson EM, Kitron U, Gürtler RE (2011)
346 Hidden sylvatic foci of the main vector of Chagas disease *Triatoma infestans*:
347 Threats to the vector elimination campaign? PLoS NTD 5(10): e1365.
348 doi.org/10.1371/journal.pntd.0001365

349 Cecere MC, Leporace M, Fernández MP, Zárate JE, Moreno C, Gürtler Re,
350 Cardinal MV (2016) Host- feeding sources and infection with *Trypanosoma cruzi*
351 of *Triatoma infestans* and *Triatoma eratyrusiformis* (Hemiptera: Reduviidae)
352 from the Calchaqui Valleys in Northwestern Argentina. J Med Entomol
353 53(3):666-673

354 Cecere MC, Vazquez-Prokopec GM, Görtler RE, Kitron U (2006)

355 Reinfestation sources for Chagas disease vector, *Triatoma infestans*, Argentina.

356 Emerg Infect Dis 12(7):1096-1102

357 Cumming G (2012) Understanding the new statistics. Effect size, confidence

358 intervals and meta-analysis. New York: Routledge.

359 Dias JCP, Silveira AC, Schofield CJ (2002) The impact of Chagas disease

360 control in Latin America - A Review. Mem Inst Oswaldo Cruz 97(5):603-612

361 Giraldez EL, López Ureta MP, Nepote M (2011) Acercamiento de triatominos

362 silvestres hacia la vivienda rural e intervenciones sobre el medio ambiente sin

363 planificación adecuada: potencial riesgo en la transmisión de la enfermedad de

364 Chagas. Resúmenes V Congreso Iberoamericano sobre desarrollo y ambiente

365 (VCISDA)

366 Gómez-Núñez JC (1965) Desarrollo de un nuevo método para evaluar la

367 infestación intradomiciliaria por *Rhodnius prolixus*. Acta Cient Venez 16:26-31

368 Guerenstein PG, Lazzari CR (2009) Host-seeking: How triatomines acquire

369 and make use of information to find blood. *Acta Trop* 110(2-3):148-58

370 Guerenstein PG, Lorenzo MG, Núñez JA, Lazzari CR (1995) Baker's yeast,

371 an attractant for baiting traps for Chagas' disease vectors. *Experientia* 51: 834-

372 837

373 Gurgel-Gonçalves R, Palma AR, Menezes MN, Leite RN, Cuba CA (2003)

374 Sampling *Rhodnius neglectus* (Triatominae) in *Mauritia flexuosa* palm trees

375 (Arecaceae): A field study in the Brazilian Savanna. *Med Vet Entomol* 17:347-9

376 Görtler RE, Cecere MC, Canale DM, Castañera R, Chuit R, Cohen JE (1999)

377 Monitoring house reinfestation by vectors of Chagas disease: a comparative

378 trial of detection methods during a four-year follow-up. *Acta Trop* 72:213-234

379 Gürtler RE, Petersen RM, Cecere MC, Schweigmann NJ, Chuit R, Gualtieri
380 JM, Wisnivesky-Colli C (1994) Chagas disease in northwest Argentina: risk of
381 domestic reinfestation by *Triatoma infestans* after a single community-wide
382 application of deltamethrin. *Trans R Soc Trop Med Hyg* 88:27-30

383 Lazzari CR, Pereira MH, Lorenzo MG (2013) Behavioral biology of Chagas
384 disease vectors. *Mem Inst Oswaldo Cruz* 108(1):34-47

385 Lent H, Wygodzinsky P (1979) Revision of the Triatominae (Hemiptera,
386 Reduviidae), and their significance as vectors of Chagas disease. *Bull Am Mus
387 Nat Hist* 163:123-520

388 Lorenzo, M.G. (1998). *Triatoma infestans* can be captured under natural
389 climatic conditions using yeast-baited traps. *Acta Trop* 30;70(3):277-84

390 Lorenzo MG, Lazzari CR (1998) Activity pattern in relation to refuge
391 exploitation and feeding in *Triatoma infestans* (Hemiptera:Reduviidae). *Acta
392 Trop* 70:163–170

393 Lorenzo MG, Manrique G, Pires HHR, de Brito Sánchez MG, Diotaiuti L,
394 Lazzari CR (1999) Yeast culture volatiles as attractants for *Rhodnius prolixus*:
395 electroantennogram responses and captures in yeast-baited traps. *Acta Trop*
396 72(1):119-124

397 Mazerolle MJ (2017) AICmodavg: Model selection and multimodel inference
398 based on (Q)AIC(c). R package version 2.1-1. <https://cran.r-project.org/package=AICmodavg>.

400 McGwire K, Segura EL, Scavuzzo M, Gómez AA, Lamfri M (2006) Spatial
401 pattern of reinfestation by *Triatoma infestans* in Chancaní, Argentina. *J Vector
402 Ecol* 31(1):17-28

403 Noireau F, Dujardin JP (2001) Flight and nutritional status of sylvatic *Triatoma*
404 *sordida* and *Triatoma guasayana*. Mem Inst Oswaldo Cruz 96(3):385-389

405 Noireau F, Flores R and Vargas (1999) Trapping sylvatic Triatominae
406 (Reduviidae) in hollow trees. Trans Roy Soc Trop Med Hyg 93:13-4

407 Noireau F, Flores R, Gutierrez T, Dujardin JP (1997) Detection of sylvatic
408 dark morphs of *Triatoma infestans* in the Bolivian Chaco. Mem Inst Oswaldo
409 Cruz 92:583-4

410 Piccinali RV, Marcket PL, Ceballos LA, Kitron U, Görtler RE, Dotson EM
411 (2011) Genetic variability, phylogenetic relationships and gene flow in *Triatoma*
412 *infestans* dark morphs from the Argentinean Chaco. Infect Genet Evol
413 11(5):895-903 doi: 10.1016/j.meegid.2011.02.013.

414 Pimenta FE, Diotaiuti L, Lustosa-Lima AC, Lorenzo MG (2007) Evaluation of
415 cultures of *Saccharomyces cerevisiae* as baits for *Triatoma dimidiata* and
416 *Triatoma pallidipennis*. Mem Inst Oswaldo Cruz 102(2): 229-231

417 Pinto-Dias JC, Vieira EP, Tadashi H, Azeredo BVM (2005) About the use of
418 "Maria" bio-sensors in the activities of epidemiological surveillance against
419 Chagas' disease in the north of Minas Gerais State. Rev Soc Bras Med Trop
420 38(5):377-382

421 Pires HRH, Lazzari CR, Diotaiuti I, Lorenzo MG (2000) Performance of yeast-
422 baited traps with *Triatoma sordida*, *Triatoma brasiliensis*, *Triatoma*
423 *pseudomaculata* and *Panstrongylus megistus* in laboratory assays. PJPH 7(6):
424 384-388

425 R Core Team (2017) R: A language and environment for statistical
426 computing. R Foundation for Statistical Computing, Vienna, Austria. URL
427 <https://www.R-project.org/>

428 Rabinovich JE (1972) Vital statistics of Triatominae (Hemiptera: Reduviidae)
429 under laboratory conditions. I. *Triatoma infestans* Klug. J Med Entomol 9:351-
430 370

431 Reyes-Novelo E, Salazar-Fleites C, Chi-Poot M, Chan-Espinoza D, Pérez-
432 Canul S, Ruiz-Piña H (2012) Eficacia de trampas cebadas con ratón en la
433 colecta de *Triatoma dimidiata* (Latreille, 1811) (Hemiptera: Reduviidae) silvestre
434 en el norte de Yucatán. Conference: Entomología Mexicana at Mexico. January
435 2012. Volume 11

436 Rojas de Arias A, Abad-Franch F, Acosta N, López E, González N, Zerba, E,
437 Tarelli G, Masuh H (2012) Post-Control Surveillance of *Triatoma infestans* and
438 *Triatoma sordida* with Chemically-Baited Sticky Traps. PLoS NTD 6(9): e1822.
439 doi:10.1371/journal.pntd.0001822

440 Rolón M, Vega MC, Román F, Gómez A, Rojas de Arias A (2011) First report
441 of colonies of sylvatic *Triatoma infestans* (Hemiptera: Reduviidae) in the
442 Paraguayan Chaco, using a trained dog. PLoS NTD 5(5):e1026.
443 doi:10.1371/journal.pntd.0001026

444 Schofield CJ, Jannin J, Salvatella R (2006) The future of Chagas disease
445 control. Trends Parasitol 12:583–588.

446 Vazquez-Prokopec, G.M., Ceballos, L.A., Kitron, U. and Görtler, R.E. (2004).
447 Active dispersal of natural populations of *Triatoma infestans* (Hemiptera:
448 Reduviidae) in Rural Northwestern Argentina. Mem Inst Oswaldo Cruz 96: 385-
449 389

450 Wisnivesky-Colli C, Paulone I, Pérez A, Chuit R, Gualtieri J, Smith A, Segura
451 EL (1987) A new tool for continuous detection of the presence of triatomine
452 bugs, vectors of Chagas disease, in rural households. Med 47(1):45-50.

453 World Health Organization (2015) Chagas disease in Latin America: an
454 epidemiological update based on 2010 estimates. Weekly epidemiological
455 record. No. 6, 90, 33–44.

456 **Acknowledgement**

457 The authors thank Emma Bosco and Elisa Barbero for their valuable contribution
458 with the design and development of the adhesive yeast trap. We also thank Raul
459 Stariolo from the Centro de Referencia de Vectores from the Servicio Nacional
460 de Chagas (CeReVe-SNCh, Santa María de Punilla Córdoba, Argentina) for the
461 provision of the insects for experimentation. MC and DEG are supported by the
462 National Research Council of Argentina (CONICET).

463 **Funding**

464 This work was supported by a grant given by the National University of Córdoba
465 to LBC.

466 **Conflict of Interest**

467 The authors declare that they have no conflict of interest.