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26 Abstract

27  Existing methods to detect domestic triatomines have low sensitivity. As early
28 house infestation detection is epidemiologically important, the exploration of
29  better methods is required. Hence, we measured the attractiveness of a yeast-
30 baited trap to adults and nymphs of Triatoma infestans, under laboratory
31 conditions.

32 The assays were conducted in an experimental arena, with an experimental and
33 a control traps placed at opposite sides and one refuge in the center area.
34 Insects where released and the number of triatomines in the yeast and control
35 traps were counted, after 3, 6 and 24 hours of the beginning of the experiment.
36 We use generalized linear models within a multimodel inference approach to
37 model the number of insects in the trap, using insect age classes, time after
38 assay initiation and date of the experiment as predictors.

39  Our results show that the attraction to CO2 depends upon the life stage of the
40 insects. During the 24 hours of experiment a constant number of adults were
41 attracted to the yeast trap, while nymphs show attraction only up to the first
42  three hours after the initiation of COz: liberation. Undoubtedly, the orientation
43  response to chemical cues deserves further studies to be fully understood.

44  Key words: Triatominae, Chagas Disease, yeasts, carbon dioxide
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51 Introduction

52 Chagas disease is considered one of the most important endemic diseases in
53 Latin America, affecting approximately 5—-6 million individuals. The disease is
54 caused by Trypanosoma cruzi (Trypanosomatidae), which not only infects
55 humans but also more than 100 species of domestic and sylvatic mammals and
56  can be transmitted by over 150 species of triatomines (Triatominae, Reduviidae)
57  (WHO 2015).

58 Triatoma infestans, characterized by its high adaptive capacity to domestic
59 environments, is the vector with the greatest epidemiological importance in the
60 Southern Cone countries of South America (Rabinovich 1972; Lent and
61  Wygodzinsky 1979).

62 The maximum geographical expansion of T. infestans distribution occurred
63 between 1970 and 1980 with an estimated occupation area of 6.28 million km?,
64 including Argentina, Bolivia, Brazil, Chile, Paraguay, Peru and Uruguay. The
65 Southern Cone Initiative, coordinated by the Pan American Health Organization
66 to control the transmission of Chagas disease in Latin America from 1991
67 interrupted the vector transmission of T. cruzi in Chile, Uruguay and Brazil
68 through insecticide-based vector control, health education and house
69 improvement programs (Dias et al. 2002). The Initiative produced a significant
70 reduction of the distribution area of T. infestans to less than 1 million km?
71 (Schofield et al. 2006). Nevertheless, in arid Gran Chaco areas of Argentina,
72 Paraguay, and Bolivia, reinfestations of human dwellings continue to occur in
73 several provinces or departments (Ceballos et al. 2011; Bustamante-Gomez et

74 al. 2016).
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75  Although this species has long been found almost exclusively in domiciliary and
76  peridomestic environments, a significant increase in the number of wild
77  population found in sylvatic environments was reported, mainly in the Inter-
78 Andean Valleys of Bolivia, in the Gran Chaco of Argentina, Bolivia and
79  Paraguay (Noireau et al.1997; Roldn et al. 2011) and in a Metropolitan region
80 from Chile (Bacigalupo et al. 2010). Recent studies also evidenced the
81 presence of gene flow between sylvatic and intra-peridomestic T. infestans
82 populations in Argentina (Piccinali et al. 2011), suggesting that sylvatic
83  populations may be involved in the reinfestation observed in some places.

84  The prevention of Chagas disease depends on the elimination of the domestic
85 colonies of triatomines. Insecticide residual spraying is very effective, but re-
86 infestation of treated dwellings is frequent. Early detection and elimination of
87 triatomine reinfestation is critical for long-term control; however, current
88 methods used for vector-detection have low sensitivity. A number of alternatives
89 have been evaluated (Abad-Franch et al. 2011), either for the detection of
90 domestic triatomine species (like T. infestans), or other secondary vector
91 species that frequently invade domestic and peridomestic structures (Cavallo et
92 al. 2016; Cecere et al. 2016; Giraldez et al. 2016). A number of methods for
93 triatomine detection have been tested in different ecotopes (sylvatic, domestic
94 and peridomestic environments). Current method for routine entomological
95 surveillance used by vector control programs in Latin America is the fixed effort
96 active search, sometimes using a flushing out agent. Although widely adopted, it
97 depends heavily on operator experience and has low sensitivity when vector

98 abundance is low (Gurtler et al.1999).
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99 Passive bio-sensors such as the Gomez-Nufiez box or Maria sensors (GoOmez-
100 Nufez 1965; Wisnivesky-Colli et al. 1987) were tested with poor results
101  because of methodological and operational limitations and low sensitivity to
102  detect colonization (Pinto Dias et al. 2005). The dissection of microhabitats in
103  which triatomines feed and shelter, such as tree holes, palm crowns,
104  bromeliads, rock piles, burrows and bird nests, has been effective to capture
105  sylvatic specimens, but it requires important sampling efforts, human resources
106 and sometimes generates negative impact on the environment. Light traps have
107  the disadvantage of attracting only hungry adults, although it has been possible
108 to capture some species that are otherwise difficult to collect (Noireau and
109  Dujardin 2001; Vazquez-Prokopec et al. 2004). Traps with animal bait, such as
110 the Noireau adhesive trap, which uses a mouse as bait, were successfully used
111  in sylvatic ecotopes (Abad-Franch et al. 2000; Gurgel-Goncalves et al. 2003;
112  Noireau et al. 1999). However, it is expensive due to host maintenance and
113  some authors reported that its efficiency depends upon the triatomine species
114  studied and the biotic region of study (Reyes-Novelo et al. 2012). As none of the
115  explored methods show reasonable sensitivity, there is a need to develop a
116  sensitive detection method for entomological vigilance.

117 Two types of non-live baited traps were also evaluated based on
118 semiochemicals (Rojas de Arias et al. 2012) and yeast. The host orientation
119  behavior of triatomines is controlled by physical and chemical signals, including
120  olfactory clues such as carbon dioxide. The carbon dioxide released by the
121 Saccharomyces cerevisiae cultures, is a chemical signal indicative of a food

122 source for hematophagous insects and therefore it can evoke both behavioral
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123  responses: activation and attraction of the triatomines to the source (Lazzari et
124  al. 2013; Guerenstein and Lazzari 2009).

125  Several authors have demonstrated the effectiveness of yeast traps to attract
126 and capture T. infestans under both laboratory (Guerenstein et al. 1995;
127 Barrozo and Lazzari 2004, 2006) and natural conditions (Lorenzo et al. 1998,
128  1999; Bacigalupo et al. 2006). Other studies have also demonstrated that yeast
129 traps are a useful tool for the detection of potential new sylvatic habitats of T.
130 infestans as well as other triatomine species and they can be a suitable
131  alternative for their control (Bacigalupo et al. 2006; Botto-Mahan et al. 2002).
132 Previous studies using yeast traps for triatomine detection evaluated the device
133  during a fixed time, and generally using nymph triatomines.

134  Within the exploration efforts to find a method that improves the detection
135  sensitivity of triatomines, we report a study that measured the temporal variation
136 in attractiveness of an adhesive yeast trap for adults and nymphs of T. infestans
137  under laboratory conditions.

138  Materials and methods

139  Experimental setting

140  The study was designed as an experiment involving the release of insects in an
141  arena containing a baited trap (with yeast) and a non-baited trap (without yeast,
142 control trap).

143  The experimental arena measured 100 x 80 x 80 cm, with kraft paper ground
144  and non-climbable walls. Control and yeast traps were placed at opposite sides
145  of the arena and folded paper as an artificial shelter (15 x 10 cm) was placed in

146  the center.
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147  During the assay, 8 insects were released in the area center and only after the
148 insects had hidden in the folded shelter the traps were placed in the arena. After
149 3, 6 and 24 hours of the beginning of the experiment, the number of triatomines
150 captured in the yeast trap, those adhered to the control, the loose ones in the
151 arena and those that remained hidden in the refuge were counted. Each time
152  the number of bugs was recorded in the traps, the replacement of the attached
153 bugs was made, making sure that there were always 8 individuals in the
154  experimental box.

155 Some tested insects were used up to 2 times with a difference of at least ten
156  days between tests to ensure independence.

157  We performed seventeen series of assays for adults of T. infestans and thirteen
158  series of assays for 4™ and 5" nymph instars. During the test, the triatomines
159 were able to move freely throughout the experimental arena. Assays were
160 conducted at room temperature (approximately 25°C + 2°C), in darkness
161  starting at 10.00 am and finishing 24 hours later. The position of the control and
162  the experimental traps was changed randomly in the successive trials, to
163  compensate for possible external asymmetries.

164  Traps

165 The experimental adhesive yeast traps (Figure 1) consisted of a plastic
166  container of 500 cm?, with a perforated cover containing a solution of 5 g of dry
167 yeast LEVEX® + 10 g of sucrose + 100 ml of water. For the purpose of this
168  work, we used the same concentration employed by Bacigalupo et al. (2006),
169  as this concentration proved to be effective for the capture of wild T. infestans

170  colonies in field studies.
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171  The control trap had the same design of the yeast trap although it only
172  contained a solution of sucrose (10 g of sucrose + 100 ml of water). The plastic
173  container of both the yeast trap and the control trap was surrounded by a
174  rectangle of corrugated plastic, covered with adhesive paper tape Doble A®. The
175  corrugated plastic increases the adhesive surface and offers a refuge site. This
176  yeast trap design is simple and cheap, easy to transport due to its low weight
177 and volume and it can be used either horizontally or vertically so that it can be

178  putin a great variety of sylvatic and peridomestic ecotopes.

perforated cover

yeast culture

adhesive
Scm paper tape

179

180 Fig 1 Front and side view of the yeast trap prototype used to test the
181  attractiveness of the yeast culture for Triatoma infestans

182  Insects

183  The triatomines used in the assays were 180 adults and 103 nymphs (83 fifth
184  nymphal instar and 20 fourth nymphal instar) of T. infestans. The insects came
185 from colonies reared during many generations (>25) in the Centro de
186  Referencia de Vectores from the Servicio Nacional de Chagas (CeReVe-SNCh),

187 located in Santa Maria de Punilla (Cordoba, Argentina).
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188  All the triatomines were fed on chicken and kept under a natural illumination
189  cycle under room temperature conditions (26°C + 5°C and at 40 + 60% relative
190  humidity). The insects were starved for approximately 15 to 30 days before the
191  experiments.

192  Data analysis

193  Although the results of this type of experiment has been analyzed comparing
194  proportions of trapped insects through ANOVA tests to detect contrast
195  signification (e.g. Guerenstein et al. 1995), we adopted the effect estimation
196 approach (Cumming 2012) instead of significance test. To evaluate the
197  attractiveness of the yeast solution we used generalized linear models (GLMSs)
198  with Poisson error distribution. We consider alternative hypothesis that would
199  explain the variation in the number of bugs captured in the yeast trap (response
200 variable) as a function of predictor variables including the insect stages (adults
201 or nymphs), the time intervals at which the response variable was recorded (3,
202 6 and 24 hours after the beginning of the assay) and the date of the experiment.
203 The latter was considered as a temporal control to detect possible asymmetries
204 between the assays. The candidate models considered the individual effects of
205 each predictor on the response variable as well as joint models evaluating the
206 additive effects and the interactions of the possible combinations. The GLMs
207  where fitted through maximum likelihood and their relative performance were
208 measured with Akaike’s information criterion (AICc), using the function aictab of
209 the package AlCmodavg (Mazerolle 2017) in the R software version 3.4.3 (R
210 Core Team 2017). We assessed the significance of the effects by comparing
211  size, unconditional standard error and 95% confidence interval. The effect-size
212 estimates for each factor were averaged, using the modavg function from the

9
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213  package AlICmodavg in the R software version 3.4.3 (Mazerolle 2017), for all
214  coefficients included in models that showed a difference in AIC values < 3 with
215  the model that showed the lowest AIC.

216  Results

217  In every replicate an average of 7.58 (95% CI [7.43;7.73]) insects, either nymph
218 instar or adults, moved out of the central refuge. On average, 3.53 (95% CI
219  [2.97;4.09]) adults and 2.71 (95% CI [1.97;3.46]) nymph instar that moved out of
220 the refuge where attracted by the yeast trap, and only 5% of adults and 7% of
221  nymph instars remained in the refuge after 24 hs.

222  Considering that the 8 insects released in each assay were able to choose
223 among 4 sites (yeast trap, control trap, refuge and out of refuge), 2 is the
224  expected number of insects to be counted at each time interval in any of these
225 sites under the hypothesis of random selection. The median number of adults
226 captured in the yeast trap was always > 2 (Fig. 2A), whereas in the nymph
227  group, the median number of captured insects in the yeast trap was 2 after the

228  first 3 hours (Fig. 2B).

10
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230 Fig 2 Number of T. infestans adults (A) and nymph instars (B) captured in the
231 adhesive yeast trap 3, 6 and 24 hours after the beginning of the assay. The
232 dotted line indicates the expected number of insects under the hypothesis of
233 random selection of sites by the triatomines.

234

235  From the nine candidate models of the multimodel inference approach, three of
236 them described equally well the results (AAICc < 3.0) (Table 1). Two of the
237 models included the interaction between life stage factor and the time as
238  predictors. The presence of interaction indicates that the time effect depends on

239 the life stage of the triatomine, meaning that attraction to the carbon dioxide

11
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240 source at 3, 6 and 24 hours after the beginning of the assay, differ between
241  adults and nymphs of T. infestans.

242

243 Table 1 Model set. Exhaustive list of all GLMs considered in this study to

244  explain variation of the number of insects recorded in the yeast trap (Y).

Model structure AAICc
Y (life stage + time + life stage * time) 0.000
Y (life stage + time + life stage * time + date) 1.377
Y (life stage) 2.715
Y (life stage + date) 4.495
Y (life stage + time) 4.620
Y (life stage + time + date) 6.365
Y (date) 6.825
Y (time) 6.903
Y (time + date) 8.767

245  AAICc, represents the difference in the value of the Akaike’s information
246  criterion (AIC) with respect to the AIC value of the best candidate model

247  +, additive effect of the factor

248  *, interaction effect of the factors

249  After detecting the life stage x time interaction, the response variable was
250 modelled for nymph instars and adults separately using GLMs with Poisson link,
251  considering the effects of date, time and their additive effects. Models for the
252  nymph stage showed no effect of date (coefficient estimate = 0.01, 95%ClI
253  [0;0.01]), but a negative effect of time (coefficient estimate= -0.04, 95%CI [-

254  0.07; -0.01]). Models for the adult stage showed no effect of date or time, and
12
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255 an interception estimate of 1.17 (95%CI [0.93;1.41]), meaning that number of
256  adults remained constant during the experimental periods between 2.5 and 4.1.

257 Discussion

258  Our results confirm the effectiveness of CO:2 liberated by a small yeast culture to
259 attract T. infestans. The detection of natural host odour blends or a single
260 constituent (CO2) tends to increase the triatomine locomotor activity and trigger
261  both behavioral responses of activation and attraction (Guerenstein and Lazzari
262  2009). For the first time we report the comparative attraction during 24 hours of
263 T. infestans nymph instars and adults to the CO: liberated by a small yeast
264  culture. Our study shows that T. infestans adults and nymphs had higher
265 locomotion activity after the experiment started than insects in similar
266  experiments performed using other triatomine species (T. dimidiata, T.
267  pallidipennis T. brasiliensis, T. sordida, T. pseudomaculata), where more than
268  50% of the nymphs remained in the central refuge (Pires et al. 2000; Pimenta et
269 al. 2007), compared to 5% of adults and 7% of nymphs in the present study.
270  The proportion of nymphs captured in the yeast trap (34%, out of the total used
271 in the assays) was similar to that obtained for T. infestans in a previous study
272 (44%, Guerenstein et al. 1995).

273 Our study shows that the attractiveness to the COzq liberated by a small yeast
274  culture depends upon the age classes of the insects. On average, adults were
275 more attracted to the yeast trap than nymphs. During the 24 hours of
276  experimental period, a constant number of adults (2.5 - 4.1) was attracted and
277  captured in the yeast trap. However, our results showed a different behavior of
278 nymphs, that presented attraction to CO:z only the first three hours of the assay,
279  and then declining significantly over time.

13
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280 Even though it has been demonstrated that the attractiveness and orientation
281 towards COz by T. infestans is limited to a temporal window at the beginning of
282 the night (Barrozo and Lazzari 2004), we observed that if a source of COz2 is
283  offered, starved adults of T. infestans can respond to the chemical stimulus long
284 before the beginning of the scotophase, under laboratory conditions. This
285 behavior might be based on the possibility that the sensitivity to one specific
286 odour is not “switched-off’ outside the temporal window associated with the
287  search of food, as Bodin et al. (2008) suggested.

288  The results presented in this work add new questions about the mechanisms
289 that modulate the CO: attraction and the possible influence of vital stage of T.
290 infestans.

291  Several studies evidence that the orientation response to stimuli is more
292 complex than believed. This process is influenced mainly by internal factors,
293  such as circadian clocks (Barrozo and Lazzari 2004), as well as the triatomine’s
294  physiological state concerning its nutritional status, the proximity to oviposition
295 and the moult cycle (Bodin et al. 2008,2009). Undoubtedly, the orientation
296 response to stimuli and chemosensitivity deserves further studies to be fully
297 understood. Not only to comprehend the biological basis but also because it is
298 fundamental for the improvement of detection techniques or development of
299 new detection tools.

300 The interpretation of the results of this study should take into account that the
301 nymph's age and the reproductive status of females were not measured.
302  Further laboratory studies should be carried out to confirm and understand the
303 mechanisms determining the relationship between attraction to CO2 and the life
304 stage. The adhesive yeast-baited trap used in this work should be tested under

14
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305 field conditions to determine its sensitivity and easy-of-use before it could be
306 recommended for the use of routine activities of triatomine surveillance.
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