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Abstract  26 

Existing methods to detect domestic triatomines have low sensitivity. As early 27 

house infestation detection is epidemiologically important, the exploration of 28 

better methods is required. Hence, we measured the attractiveness of a yeast-29 

baited trap to adults and nymphs of Triatoma infestans, under laboratory 30 

conditions. 31 

The assays were conducted in an experimental arena, with an experimental and 32 

a control traps placed at opposite sides and one refuge in the center area. 33 

Insects where released and the number of triatomines in the yeast and control 34 

traps were counted, after 3, 6 and 24 hours of the beginning of the experiment. 35 

We use generalized linear models within a multimodel inference approach to 36 

model the number of insects in the trap, using insect age classes, time after 37 

assay initiation and date of the experiment as predictors.  38 

Our results show that the attraction to CO2 depends upon the life stage of the 39 

insects. During the 24 hours of experiment a constant number of adults were 40 

attracted to the yeast trap, while nymphs show attraction only up to the first 41 

three hours after the initiation of CO2 liberation. Undoubtedly, the orientation 42 

response to chemical cues deserves further studies to be fully understood. 43 

Key words: Triatominae, Chagas Disease, yeasts, carbon dioxide 44 
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Introduction 51 

Chagas disease is considered one of the most important endemic diseases in 52 

Latin America, affecting approximately 5–6 million individuals. The disease is 53 

caused by Trypanosoma cruzi (Trypanosomatidae), which not only infects 54 

humans but also more than 100 species of domestic and sylvatic mammals and 55 

can be transmitted by over 150 species of triatomines (Triatominae, Reduviidae) 56 

(WHO 2015). 57 

Triatoma infestans, characterized by its high adaptive capacity to domestic 58 

environments, is the vector with the greatest epidemiological importance in the 59 

Southern Cone countries of South America (Rabinovich 1972; Lent and 60 

Wygodzinsky 1979). 61 

The maximum geographical expansion of T. infestans distribution occurred 62 

between 1970 and 1980 with an estimated occupation area of 6.28 million km2, 63 

including Argentina, Bolivia, Brazil, Chile, Paraguay, Peru and Uruguay. The 64 

Southern Cone Initiative, coordinated by the Pan American Health Organization 65 

to control the transmission of Chagas disease in Latin America from 1991 66 

interrupted the vector transmission of T. cruzi in Chile, Uruguay and Brazil 67 

through insecticide-based vector control, health education and house 68 

improvement programs (Dias et al. 2002). The Initiative produced a significant 69 

reduction of the distribution area of T. infestans to less than 1 million km2 70 

(Schofield et al. 2006). Nevertheless, in arid Gran Chaco areas of Argentina, 71 

Paraguay, and Bolivia, reinfestations of human dwellings continue to occur in 72 

several provinces or departments (Ceballos et al. 2011; Bustamante-Gómez et 73 

al. 2016). 74 
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Although this species has long been found almost exclusively in domiciliary and 75 

peridomestic environments, a significant increase in the number of wild 76 

population found in sylvatic environments was reported, mainly in the Inter-77 

Andean Valleys of Bolivia, in the Gran Chaco of Argentina, Bolivia and 78 

Paraguay (Noireau et al.1997; Rolón et al. 2011) and in a Metropolitan region 79 

from Chile (Bacigalupo et al. 2010). Recent studies also evidenced the 80 

presence of gene flow between sylvatic and intra-peridomestic T. infestans 81 

populations in Argentina (Piccinali et al. 2011), suggesting that sylvatic 82 

populations may be involved in the reinfestation observed in some places. 83 

The prevention of Chagas disease depends on the elimination of the domestic 84 

colonies of triatomines. Insecticide residual spraying is very effective, but re-85 

infestation of treated dwellings is frequent. Early detection and elimination of 86 

triatomine reinfestation is critical for long-term control; however, current 87 

methods used for vector-detection have low sensitivity. A number of alternatives 88 

have been evaluated (Abad-Franch et al. 2011), either for the detection of 89 

domestic triatomine species (like T. infestans), or other secondary vector 90 

species that frequently invade domestic and peridomestic structures (Cavallo et 91 

al. 2016; Cecere et al. 2016; Giraldez et al. 2016). A number of methods for 92 

triatomine detection have been tested in different ecotopes (sylvatic, domestic 93 

and peridomestic environments). Current method for routine entomological 94 

surveillance used by vector control programs in Latin America is the fixed effort 95 

active search, sometimes using a flushing out agent. Although widely adopted, it 96 

depends heavily on operator experience and has low sensitivity when vector 97 

abundance is low (Gürtler et al.1999). 98 
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Passive bio-sensors such as the Gómez-Nuñez box or Maria sensors (Gómez-99 

Nuñez 1965; Wisnivesky-Colli et al. 1987) were tested with poor results 100 

because of methodological and operational limitations and low sensitivity to 101 

detect colonization (Pinto Dias et al. 2005). The dissection of microhabitats in 102 

which triatomines feed and shelter, such as tree holes, palm crowns, 103 

bromeliads, rock piles, burrows and bird nests, has been effective to capture 104 

sylvatic specimens, but it requires important sampling efforts, human resources 105 

and sometimes generates negative impact on the environment. Light traps have 106 

the disadvantage of attracting only hungry adults, although it has been possible 107 

to capture some species that are otherwise difficult to collect (Noireau and 108 

Dujardin 2001; Vazquez-Prokopec et al. 2004). Traps with animal bait, such as 109 

the Noireau adhesive trap, which uses a mouse as bait, were successfully used 110 

in sylvatic ecotopes (Abad-Franch et al. 2000; Gürgel-Gonçalves et al. 2003; 111 

Noireau et al. 1999). However, it is expensive due to host maintenance and 112 

some authors reported that its efficiency depends upon the triatomine species 113 

studied and the biotic region of study (Reyes-Novelo et al. 2012). As none of the 114 

explored methods show reasonable sensitivity, there is a need to develop a 115 

sensitive detection method for entomological vigilance. 116 

Two types of non-live baited traps were also evaluated based on 117 

semiochemicals (Rojas de Arias et al. 2012) and yeast. The host orientation 118 

behavior of triatomines is controlled by physical and chemical signals, including 119 

olfactory clues such as carbon dioxide. The carbon dioxide released by the 120 

Saccharomyces cerevisiae cultures, is a chemical signal indicative of a food 121 

source for hematophagous insects and therefore it can evoke both behavioral 122 
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responses: activation and attraction of the triatomines to the source (Lazzari et 123 

al. 2013; Guerenstein and Lazzari 2009). 124 

Several authors have demonstrated the effectiveness of yeast traps to attract 125 

and capture T. infestans under both laboratory (Guerenstein et al. 1995; 126 

Barrozo and Lazzari 2004, 2006) and natural conditions (Lorenzo et al. 1998, 127 

1999; Bacigalupo et al. 2006). Other studies have also demonstrated that yeast 128 

traps are a useful tool for the detection of potential new sylvatic habitats of T. 129 

infestans as well as other triatomine species and they can be a suitable 130 

alternative for their control (Bacigalupo et al. 2006; Botto-Mahan et al. 2002).  131 

Previous studies using yeast traps for triatomine detection evaluated the device 132 

during a fixed time, and generally using nymph triatomines. 133 

Within the exploration efforts to find a method that improves the detection 134 

sensitivity of triatomines, we report a study that measured the temporal variation 135 

in attractiveness of an adhesive yeast trap for adults and nymphs of T. infestans 136 

under laboratory conditions.  137 

Materials and methods 138 

Experimental setting 139 

The study was designed as an experiment involving the release of insects in an 140 

arena containing a baited trap (with yeast) and a non-baited trap (without yeast, 141 

control trap). 142 

The experimental arena measured 100 x 80 x 80 cm, with kraft paper ground 143 

and non-climbable walls. Control and yeast traps were placed at opposite sides 144 

of the arena and folded paper as an artificial shelter (15 x 10 cm) was placed in 145 

the center. 146 
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During the assay, 8 insects were released in the area center and only after the 147 

insects had hidden in the folded shelter the traps were placed in the arena. After 148 

3, 6 and 24 hours of the beginning of the experiment, the number of triatomines 149 

captured in the yeast trap, those adhered to the control, the loose ones in the 150 

arena and those that remained hidden in the refuge were counted. Each time 151 

the number of bugs was recorded in the traps, the replacement of the attached 152 

bugs was made, making sure that there were always 8 individuals in the 153 

experimental box. 154 

Some tested insects were used up to 2 times with a difference of at least ten 155 

days between tests to ensure independence. 156 

We performed seventeen series of assays for adults of T. infestans and thirteen 157 

series of assays for 4th and 5th nymph instars. During the test, the triatomines 158 

were able to move freely throughout the experimental arena. Assays were 159 

conducted at room temperature (approximately 25°C ± 2°C), in darkness 160 

starting at 10.00 am and finishing 24 hours later. The position of the control and 161 

the experimental traps was changed randomly in the successive trials, to 162 

compensate for possible external asymmetries. 163 

Traps 164 

The experimental adhesive yeast traps (Figure 1) consisted of a plastic 165 

container of 500 cm3, with a perforated cover containing a solution of 5 g of dry 166 

yeast LEVEX® + 10 g of sucrose + 100 ml of water. For the purpose of this 167 

work, we used the same concentration employed by Bacigalupo et al. (2006), 168 

as this concentration proved to be effective for the capture of wild T. infestans 169 

colonies in field studies.  170 
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The control trap had the same design of the yeast trap although it only 171 

contained a solution of sucrose (10 g of sucrose + 100 ml of water). The plastic 172 

container of both the yeast trap and the control trap was surrounded by a 173 

rectangle of corrugated plastic, covered with adhesive paper tape Doble A®. The 174 

corrugated plastic increases the adhesive surface and offers a refuge site. This 175 

yeast trap design is simple and cheap, easy to transport due to its low weight 176 

and volume and it can be used either horizontally or vertically so that it can be 177 

put in a great variety of sylvatic and peridomestic ecotopes. 178 

 179 

Fig 1 Front and side view of the yeast trap prototype used to test the 180 

attractiveness of the yeast culture for Triatoma infestans  181 

 Insects 182 

The triatomines used in the assays were 180 adults and 103 nymphs (83 fifth 183 

nymphal instar and 20 fourth nymphal instar) of T. infestans. The insects came 184 

from colonies reared during many generations (>25) in the Centro de 185 

Referencia de Vectores from the Servicio Nacional de Chagas (CeReVe-SNCh), 186 

located in Santa María de Punilla (Córdoba, Argentina). 187 
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All the triatomines were fed on chicken and kept under a natural illumination 188 

cycle under room temperature conditions (26ºC ± 5ºC and at 40 ± 60% relative 189 

humidity). The insects were starved for approximately 15 to 30 days before the 190 

experiments. 191 

Data analysis 192 

 Although the results of this type of experiment has been analyzed comparing 193 

proportions of trapped insects through ANOVA tests to detect contrast 194 

signification (e.g. Guerenstein et al. 1995), we adopted the effect estimation 195 

approach (Cumming 2012) instead of significance test. To evaluate the 196 

attractiveness of the yeast solution we used generalized linear models (GLMs) 197 

with Poisson error distribution. We consider alternative hypothesis that would 198 

explain the variation in the number of bugs captured in the yeast trap (response 199 

variable) as a function of predictor variables including the insect stages (adults 200 

or nymphs), the time intervals at which the response variable was recorded (3, 201 

6 and 24 hours after the beginning of the assay) and the date of the experiment. 202 

The latter was considered as a temporal control to detect possible asymmetries 203 

between the assays. The candidate models considered the individual effects of 204 

each predictor on the response variable as well as joint models evaluating the 205 

additive effects and the interactions of the possible combinations. The GLMs 206 

where fitted through maximum likelihood and their relative performance were 207 

measured with Akaike’s information criterion (AICc), using the function aictab of 208 

the package AICmodavg (Mazerolle 2017) in the R software version 3.4.3 (R 209 

Core Team 2017). We assessed the significance of the effects by comparing 210 

size, unconditional standard error and 95% confidence interval. The effect-size 211 

estimates for each factor were averaged, using the modavg function from the 212 
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package AICmodavg in the R software version 3.4.3 (Mazerolle 2017), for all 213 

coefficients included in models that showed a difference in AIC values ≤ 3 with 214 

the model that showed the lowest AIC. 215 

Results 216 

In every replicate an average of 7.58 (95% CI [7.43;7.73]) insects, either nymph 217 

instar or adults, moved out of the central refuge. On average, 3.53 (95% CI 218 

[2.97;4.09]) adults and 2.71 (95% CI [1.97;3.46]) nymph instar that moved out of 219 

the refuge where attracted by the yeast trap, and only 5% of adults and 7% of 220 

nymph instars remained in the refuge after 24 hs. 221 

Considering that the 8 insects released in each assay were able to choose 222 

among 4 sites (yeast trap, control trap, refuge and out of refuge), 2 is the 223 

expected number of insects to be counted at each time interval in any of these 224 

sites under the hypothesis of random selection. The median number of adults 225 

captured in the yeast trap was always ˃ 2 (Fig. 2A), whereas in the nymph 226 

group, the median number of captured insects in the yeast trap was 2 after the 227 

first 3 hours (Fig. 2B). 228 
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 229 

Fig 2 Number of T. infestans adults (A) and nymph instars (B) captured in the 230 

adhesive yeast trap 3, 6 and 24 hours after the beginning of the assay. The 231 

dotted line indicates the expected number of insects under the hypothesis of 232 

random selection of sites by the triatomines. 233 

 234 

From the nine candidate models of the multimodel inference approach, three of 235 

them described equally well the results (ΔAICc ≤ 3.0) (Table 1). Two of the 236 

models included the interaction between life stage factor and the time as 237 

predictors. The presence of interaction indicates that the time effect depends on 238 

the life stage of the triatomine, meaning that attraction to the carbon dioxide 239 
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source at 3, 6 and 24 hours after the beginning of the assay, differ between 240 

adults and nymphs of T. infestans. 241 

 242 

Table 1 Model set. Exhaustive list of all GLMs considered in this study to 243 

explain variation of the number of insects recorded in the yeast trap (Y). 244 

Model structure ΔAICc 

Y (life stage + time + life stage * time) 0.000 

Y (life stage + time + life stage * time + date) 1.377 

Y (life stage) 2.715 

Y (life stage + date)  4.495 

Y (life stage + time)  4.620 

Y (life stage + time + date) 6.365 

Y (date) 6.825 

Y (time) 6.903 

Y (time + date)  8.767 

ΔAICc, represents the difference in the value of the Akaike´s information 245 

criterion (AIC) with respect to the AIC value of the best candidate model 246 

+, additive effect of the factor 247 

*, interaction effect of the factors 248 

After detecting the life stage x time interaction, the response variable was 249 

modelled for nymph instars and adults separately using GLMs with Poisson link, 250 

considering the effects of date, time and their additive effects. Models for the 251 

nymph stage showed no effect of date (coefficient estimate = 0.01, 95%CI 252 

[0;0.01]), but a negative effect of time (coefficient estimate= -0.04, 95%CI [-253 

0.07; -0.01]). Models for the adult stage showed no effect of date or time, and 254 
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an interception estimate of 1.17 (95%CI [0.93;1.41]), meaning that number of 255 

adults remained constant during the experimental periods between 2.5 and 4.1. 256 

Discussion 257 

Our results confirm the effectiveness of CO2 liberated by a small yeast culture to 258 

attract T. infestans. The detection of natural host odour blends or a single 259 

constituent (CO2) tends to increase the triatomine locomotor activity and trigger 260 

both behavioral responses of activation and attraction (Guerenstein and Lazzari 261 

2009). For the first time we report the comparative attraction during 24 hours of 262 

T. infestans nymph instars and adults to the CO2 liberated by a small yeast 263 

culture. Our study shows that T. infestans adults and nymphs had higher 264 

locomotion activity after the experiment started than insects in similar 265 

experiments performed using other triatomine species (T. dimidiata, T. 266 

pallidipennis T. brasiliensis, T. sordida, T. pseudomaculata), where more than 267 

50% of the nymphs remained in the central refuge (Pires et al. 2000; Pimenta et 268 

al. 2007), compared to 5% of adults and 7% of nymphs in the present study. 269 

The proportion of nymphs captured in the yeast trap (34%, out of the total used 270 

in the assays) was similar to that obtained for T. infestans in a previous study 271 

(44%, Guerenstein et al. 1995). 272 

Our study shows that the attractiveness to the CO2 liberated by a small yeast 273 

culture depends upon the age classes of the insects. On average, adults were 274 

more attracted to the yeast trap than nymphs. During the 24 hours of 275 

experimental period, a constant number of adults (2.5 - 4.1) was attracted and 276 

captured in the yeast trap. However, our results showed a different behavior of 277 

nymphs, that presented attraction to CO2 only the first three hours of the assay, 278 

and then declining significantly over time.  279 
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Even though it has been demonstrated that the attractiveness and orientation 280 

towards CO2 by T. infestans is limited to a temporal window at the beginning of 281 

the night (Barrozo and Lazzari 2004), we observed that if a source of CO2 is 282 

offered, starved adults of T. infestans can respond to the chemical stimulus long 283 

before the beginning of the scotophase, under laboratory conditions. This 284 

behavior might be based on the possibility that the sensitivity to one specific 285 

odour is not ‘‘switched-off’ outside the temporal window associated with the 286 

search of food, as Bodin et al. (2008) suggested.  287 

The results presented in this work add new questions about the mechanisms 288 

that modulate the CO2 attraction and the possible influence of vital stage of T. 289 

infestans. 290 

Several studies evidence that the orientation response to stimuli is more 291 

complex than believed. This process is influenced mainly by internal factors, 292 

such as circadian clocks (Barrozo and Lazzari 2004), as well as the triatomine`s 293 

physiological state concerning its nutritional status, the proximity to oviposition 294 

and the moult cycle (Bodin et al. 2008,2009). Undoubtedly, the orientation 295 

response to stimuli and chemosensitivity deserves further studies to be fully 296 

understood. Not only to comprehend the biological basis but also because it is 297 

fundamental for the improvement of detection techniques or development of 298 

new detection tools.  299 

The interpretation of the results of this study should take into account that the 300 

nymph`s age and the reproductive status of females were not measured. 301 

Further laboratory studies should be carried out to confirm and understand the 302 

mechanisms determining the relationship between attraction to CO2 and the life 303 

stage. The adhesive yeast-baited trap used in this work should be tested under 304 
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field conditions to determine its sensitivity and easy-of-use before it could be 305 

recommended for the use of routine activities of triatomine surveillance.  306 
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