

Pathognomonic and epistatic genetic alterations in B-cell non-Hodgkin lymphoma

Man Chun John Ma^{1*}, Saber Tadros^{1*}, Alyssa Bouska², Tayla B. Heavican², Haopeng Yang¹,
Qing Deng¹, Dalia Moore³, Ariz Akhter⁴, Keenan Hartert³, Neeraj Jain¹, Jordan Showell¹,
Sreejoyee Ghosh¹, Lesley Street⁵, Marta Davidson⁵, Christopher Carey⁶, Joshua Tobin⁷,
Deepak Perumal⁸, Julie M. Vose⁹, Matthew A. Lunning⁹, Aliyah R. Sohani¹⁰, Benjamin J.
Chen¹¹, Shannon Buckley¹², Loretta J. Nastoupil¹, R. Eric Davis¹, Jason R. Westin¹, Nathan H.
Fowler¹, Samir Parekh⁸, Maher K. Gandhi⁷, Sattva S. Neelapu¹, Douglas Stewart⁵, Javeed
Iqbal², Timothy Greiner², Scott J. Rodig¹³, Adnan Mansoor⁵, Michael R. Green^{1,14,15*}

¹Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; ³Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; ⁴Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada; ⁵Section of Hematology, Department of Medicine, University of Calgary, Calgary, AB, Canada; ⁶Northern Institute for Research, Newcastle University, Newcastle upon Tyne, England; ⁷Mater Research, University of Queensland, QLD, Australia; ⁸Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ⁹Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE, USA; ¹⁰Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; ¹¹Department of Pathology, University of Massachusetts Medical School, UMass Memorial Medical Center, Worcester, MA, USA; ¹²Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; ¹³Department of Pathology, Brigham and Womens Hospital, Boston, MA, USA; ¹⁴Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¹⁵Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.

*Equally contributed

*Corresponding Author

Michael R. Green, Ph.D.

Departments of Lymphoma/Myeloma and Genomic Medicine,

University of Texas MD Anderson Cancer Center,

1515 Holcombe Blvd, Unit 903,

Houston, TX 77030, USA

Ph.: +1-713-745-4244

Email: mgreen5@mdanderson.org

36

37

38

39 **KEY POINTS**

40 1. Genetic perturbation of the ubiquitin proteasome system is an emerging hallmark of B-
41 cell non-Hodgkin lymphoma (B-NHL).

42 2. Co-occurring sets of genetic alterations define B-NHL subtypes and likely represent
43 epistatic interactions.

44

45 **ABSTRACT**

46 B-cell non-Hodgkin lymphoma (B-NHL) encompasses multiple clinically and phenotypically
47 distinct subtypes of malignancy with unique molecular etiologies. Common subtypes of B-NHL
48 such as diffuse large B-cell lymphoma (DLBCL) have been comprehensively interrogated at the
49 genomic level, but other less common subtypes such as mantle cell lymphoma (MCL) remain
50 sparsely characterized. Furthermore, multiple B-NHL subtypes have thus far not been
51 comprehensively compared to identify conserved or subtype-specific patterns of genomic
52 alterations. Here, we employed a large targeted hybrid-capture sequencing approach
53 encompassing 380 genes to interrogate the genomic landscapes of 755 B-NHL tumors at high
54 depth; primarily including DLBCL, MCL, follicular lymphoma (FL), and Burkitt lymphoma (BL).
55 We identified conserved hallmarks of B-NHL that were deregulated across major subtypes, such
56 as the frequent genetic deregulation of the ubiquitin proteasome system (UPS). In addition, we
57 identified subtype-specific patterns of genetic alterations, including clusters of co-occurring
58 mutations that are pathognomonic. The cumulative burden of mutations within a single cluster
59 were more significantly discriminatory of B-NHL subtypes than individual mutations, implicating
60 likely patterns of genetic epistasis that contribute to disease etiology. We therefore provide a
61 framework of co-occurring mutations that deregulate genetic hallmarks and likely cooperate in
62 lymphomagenesis of B-NHL subtypes.

63 **INTRODUCTION**

64 Non-Hodgkin lymphomas (NHL) are a heterogeneous group of lymphoid malignancies that
65 predominantly arise from mature B-cells (B-NHL). Although mature B-cell neoplasms
66 encompass 38 unique diagnostic subtypes, over 85% of cases fall within only 7 subtypes^{1,2}.
67 Recent next generation sequencing (NGS) studies have shed light onto the key driver mutations
68 in many of these NHL subtypes; for example, large studies of diffuse large B-cell lymphoma
69 (DLBCL) have led to proposed genomic subtypes that have unique etiologies³⁻⁵. However, many
70 less-common NHL subtypes such as mantle cell lymphoma (MCL) have not been as extensively
71 characterized^{6,7}. Furthermore, until recently^{3,4} genetic alterations have been considered in a
72 binary fashion as either driver events, which directly promote disease genesis or progression, or
73 passenger events, which have little or no impact on disease biology. In contrast to this principle,
74 most B-NHLs do not result from a single dominant driver but instead result from the serial
75 acquisition of genetic alterations that cooperate in lymphomagenesis. The genetic context of
76 each mutation therefore likely determines its oncogenic potential, and groups of mutations
77 should therefore be considered collectively rather than as singular events. For example, the 'C5'
78 and 'MCD' clusters identified in DLBCL by Chapuy *et al.* and Schmitz *et al.*, respectively, are
79 characterized by the co-occurrence of *CD79B* and *MYD88* mutations^{3,4}. In animal models, the
80 *Myd88* L265P mutation was found to promote down-regulation of surface IgM and a phenotype
81 resembling B-cell anergy⁸. However, this effect could be rescued by *Cd79b* mutation, showing
82 that these co-occurring mutations are epistatic⁸. The characterization of other significantly co-
83 occurring genetic alterations are therefore likely to reveal additional important epistatic
84 relationships.

85

86 We approached this challenge by performing genomic profiling of 755 B-NHLs across different
87 subtypes. Through this cross-sectional analysis we characterized genomic hallmarks of B-NHL

88 and identified pathognomonic genetic alterations, including disease-specific mechanisms for
89 deregulating hallmark processes and protein complexes, and sets of significantly co-associated
90 events that represent subtype-specific epistatic genetic alterations. This study therefore
91 provides new insight into how cooperating genetic alterations may contribute to molecularly and
92 phenotypically distinct subtypes of B-NHL.

93

94 **METHODS**

95 An overview of our approach is shown in Figure S1. For detailed methods, please refer to
96 supplementary information.

97

98 Tumor DNA samples

99 We collected DNA for 755 B-NHL tumors, including 199 follicular lymphoma (FL), 196 mantle
100 cell lymphoma (MCL), 148 diffuse large B-cell lymphoma (DLBCL), 108 Burkitt's lymphoma
101 (BL), 45 chronic lymphocytic leukemia / small lymphocytic lymphoma (CLL/SLL), 24 marginal
102 zone lymphoma (MZL), 21 high-grade B-cell lymphoma not otherwise specified (HGBL-NOS),
103 and 14 high-grade B-cell lymphoma with MYC, BCL2 and/or BCL6 rearrangement (DHL) (Table
104 S1). A total of 502 samples were obtained from the University of Nebraska Medical Center, and
105 were prioritized for inclusion in this study if they had fresh/frozen tissue available (n=577) and
106 been previously interrogated by Affymetrix U133 Plus 2.0 gene expression microarrays
107 (n=290)⁹⁻¹¹. An additional series of 178 formalin-fixed paraffin-embedded (FFPE) tumors were
108 collected from other centers. Samples were de-identified but accompanied by their diagnosis
109 from medical records, plus overall survival time and status (alive, dead) when available. Medical
110 record diagnosis was used in all cases except for those with fluorescence *in situ* hybridization
111 showing translocations in MYC and BCL2 and/or BCL6, which were amended to DHL.

112 Sequencing results for a subset of 52 BL tumors was described previously¹². All MCL samples
113 were either positive for CCND1 translocation by FISH or positive for CCND1 protein expression
114 by IHC, depending on the diagnostic practices of the contributing institution.

115

116 Next generation sequencing

117 A total of 100-1000ng of gDNA was sonicated using a Covaris S2 Ultrasonicator, and libraries
118 prepared using KAPA Hyper Prep Kits (Roche) with TruSeq Adapters (Bioo Scientific) and a
119 maximum of 8 cycles of PCR (average of 6 cycles). Libraries were qualified by TapeStation
120 4200, quantified by Qubit and 10- to 12-plexed for hybrid capture. Each multiplexed library was
121 enriched using our custom LymphoSeq panel encompassing the full coding sequences of 380
122 genes that have previously been reported to be somatically mutated in B-cell lymphoma^{6,7,13-32}
123 (Table S2, Supplementary Methods), as well as tiling recurrent translocation breakpoints.
124 Enrichments were amplified with 4-8 cycles of PCR and sequenced on a single lane of an
125 Illumina HiSeq 4000 with 100PE reads in high-output mode at the Hudson Alpha Institute for
126 Biotechnology or the MD Anderson Sequencing and Microarray Facility. Variants were called
127 using our previously validated ensemble approach^{12,21}, copy number alterations identified using
128 off-target reads with the CopyWriteR tool³³, and translocation called using FACTERA³⁴.
129 Germline polymorphisms were filtered using dbSNP annotation and the EXAC dataset
130 containing 60,706 healthy individuals³⁵. Significantly mutated genes were defined by
131 MutSig2CV³⁶, significant DNA copy number alterations by GISTIC2³⁷, and the clonal
132 representation of mutations by ABSOLUTE³⁸. Mutation and CNA data are publicly viewable
133 through cBioPortal: https://www.cbiportal.org/study/summary?id=mbn_mdacc_2013. For
134 further details, refer to supplementary methods.

135

136 **RESULTS**

137 Recurrently mutated genes highlight conserved functional hallmarks of B-NHL

138 We used a 380 gene custom targeted sequencing approach to interrogate the genomes of 755
139 mature B-NHLs, sequencing to an average depth of 599X (Min, 101X; Max, 1785X; Table S1)
140 for a total yield of 2.06 Tbp. Somatic nucleotide variants (SNVs) and small insertions/deletions
141 (InDels) were identified using an ensemble approach that we have previously validated²¹ (Table
142 S3) and significantly mutated genes were identified using MutSig2CV (Table S4). Genes that
143 were significantly mutated in the full cohort or in any one of the 4 subtypes with >100 tumors
144 (BL, DLBCL, FL, MCL), as well as frequently mutated genes that are targets of AID (Table S5,
145 **Figure 1**), were included in downstream analyses. Mutation distributions were classified using a
146 novel metric that classifies them into hotspot, clustered or diffuse (Figure S2). The residue of
147 mutational hotspots and conserved domains targeted by clustered mutations are shown on
148 figure 1. As a proof of principle, genes such as *EZH2* and *MYD88* with known mutational
149 hotspots were classified as ‘hotspot’, and genes such as *CREBBP* and *TCF3* that accumulate
150 mutations within a single domain were classified as ‘clustered’. The mutational burden
151 calculated from our targeted region significantly correlated with that from the whole exome
152 (Figure S3A) and was significantly higher in DLBCL and other high-grade tumors compared to
153 FL and MCL (**Figure 1**; Figure S3B). The mutational signatures were also different between
154 malignancies, but were predominated by mutations attributable to failure of double-strand break
155 repair by homologous recombination³⁹ (Signature 3; Table S6).

156

157 To identify key hallmarks that are deregulated by somatic mutations, we grouped genes using
158 DAVID functional annotation clustering⁴⁰. BCL6 function is not annotated in gene sets within
159 public databases, but was an obvious feature of the recurrently mutated genes, so this hallmark

160 was assigned according to literature support. The most frequently perturbed processes were
161 chromatin modification and cell signaling, with most of the genes in these categories having
162 been well described in prior reports. Chromatin modifying genes were mutated in 68% of BL,
163 66% of DLBCL, 91% of FL and 45% of MCL, and included those that encode proteins that
164 catalyze post-translational modifications of histones (*KMT2D*, *CREBBP*, *EZH2*, *EP300*,
165 *WHSC1*, *ASHL1L* and *KMT2A*), components of the SWI/SNF chromatin remodeling complex
166 (*ARID1A*, *SMARCA4*, *BCL7A*), linker histones (*HIST1H1E*, *HIST1H1C*, *HIST1H1B*), and the
167 *TET2* gene. Genes with a role in signaling included those involved in B-cell receptor (*CD79B*,
168 *ID3*, *TCF3*, *RFTN1*), toll-like receptor (*MYD88*), NF κ B (*TNFAIP3*, *CARD11*, *NFKBIE*), Notch
169 (*NOTCH1*, *NOTCH2*), JAK/STAT (*SOCS1*, *STAT6*), PI3K/mTOR (*FOXO1*, *ATP6V1B2*,
170 *APT6AP1*) and G-protein (*GNA13*, *GNAI2*) signaling. The *CD79A* and *BCL10* genes were also
171 mutated at a lower frequency that was not significant by MutSig (Figure S4A-B). Among these,
172 the *RFTN1* gene (Figure S4C) is a novel recurrently mutated gene that was mutated in 7.4% of
173 DLBCL and encodes a lipid raft protein that is critical for B-cell receptor signaling⁴¹.

174

175 Other processes that are not as well described as genetic hallmarks of B-NHL included BCL6
176 function and the ubiquitin proteasome system (UPS). Genes associated with BCL6 function
177 encompassed BCL6 itself and its interacting proteins (*BCL6*, *TBL1XR1*, *BCOR*, *SPEN*),
178 regulators of BCL6 activity or expression (*MEF2B*, *IRF8*, *IRF4*), and a critical BCL6 target gene
179 (*PRDM1*). Recurrent mutations of the *NCOR1* and *NCOR2* genes that encode BCL6 co-
180 repressor proteins were also observed (Figure S4D-E), but were not significant by MutSig2CV.
181 Multiple recurrently mutated chromatin modifying genes have also been implicated in BCL6
182 function and therefore also contribute to this hallmark, including *CREBBP* and *EZH2*^{42,43}. The
183 recurrently mutated UPS genes included the *CDC27* gene, which encodes an E3 ligase for
184 *CCND1*⁴⁴ that is mutated in 14% of MCL and has not been previously described in the literature.

185 The *TMEM51* gene was also identified as a novel recurrently mutated gene in 9% of BL, though
186 the function of this gene is poorly defined. The cross-sectional analysis of multiple lymphoma
187 subtypes therefore identified conserved hallmarks that are recurrently targeted by somatic
188 mutations in B-NHL.

189

190 Enrichment of functional hallmarks by structural alterations

191 The hybrid capture probes utilized in our design also targeted recurrent breakpoint regions in
192 the immunoglobulin heavy- and light-chain loci, as well as the regions of recurrent breakpoints
193 in or near the *BCL2*, *MYC* and *BCL6* genes. Translocations were called using a method that
194 detects discordantly mapped reads³⁴ and our prior validation of this approach in cases with
195 matched fluorescence in situ hybridization (FISH) data for *MYC* showed that it is 100% specific,
196 but only ~40% sensitive for translocation detection¹². In addition, we failed to detect *CCND1*
197 translocations using this approach. However, we did observe a significantly higher fraction of
198 *BCL6* translocations (57% [27/47]) partnered to non-immunoglobulin loci (eg. *CIITA*, *RHOH*,
199 *EIF4A2*, *ST6GAL1*; Table S7) compared to *BCL2* (1% [1/114]) and *MYC* (5% [2/38])
200 translocations (**Figure 2A**; Fisher P-value <0.001). These were more frequent in FL (88%
201 [15/17] of *BCL6* translocations) as compared to DLBCL (39% [9/23] of *BCL6* translocations),
202 presumably because the two immunoglobulin loci in FL are either translocated with the *BCL2*
203 gene or functioning in immunoglobulin expression⁴⁵. We also employed off-target reads to
204 detect DNA copy number alterations (CNAs) in a manner akin to low-pass whole genome
205 sequencing, identified significant peaks of copy gain and losses using GISTIC2³⁷ (**Figure 2A**;
206 Figure S5; Table S8-9), and defined the likely targets of these CNAs by integrative analysis of
207 matched gene expression profiling (GEP) data from 290 tumors (**Figure 2B-C**, Figure S5, Table
208 S10-11). This identified known CNA targets (**Figure 2D**), including but not limited to deletion of
209 *TNFAIP3* (6q24.2)⁴⁶, *ATM* (11q22.3)⁴⁷, *B2M* (15q15.5)⁴⁸ and *PTEN* (10q23.21)⁴⁹, and copy gain

210 of *REL* and *BCL11A* (2p15), and *TCF4* (18q23)⁵⁰. In addition, we identified novel targets such
211 as deletion of *IBTK* (6q14.1), *UBE3A* (11q22.1) and *FBXO25* (8p23.3), and copy gain of *ATF7*
212 (12q13.13), *UCHL5* (1q31.3), and *KMT2A* (11q23.3). Several CNA peaks, defined as the
213 smallest and most statistically significant region, included genes that were significantly mutated
214 (**Figure 2E**) as well as other genes for which we detected mutations at lower frequencies that
215 were not significant by MutSig (*POU2AF1*, *TP53BP1*, *FAS*, *PTEN*). Furthermore, for several of
216 these genes (*ATM*, *B2M*, *BIRC3* and *TNFRSF14*), deletions were significantly co-associated
217 with mutations, suggesting that deletion and mutation are complementary mechanisms
218 contributing to biallelic inactivation.

219

220 Analyzing targets of translocations and CNAs added to enrichment of functional categories that
221 we observed within recurrently mutated genes, including chromatin modification (*BCL11A*) and
222 signaling (*TCF4*, *PTEN*). This was most prominently observed for genes with a role in apoptosis
223 and the cell cycle (*CDKN2A*, *CDKN2B*, *FAS*, *RPL5*, *DFFB*, *MDM2*, *CDK6*) and the UPS
224 (*CUL4A*, *FBXO25*, *IBTK*, *RNF38*, *UBAP1*, *UBE3A*, *UBQLN1*, *UCHL5*). Recurrently altered UPS
225 genes collectively promote or suppress the abundance or activity of proteins with roles in other
226 hallmark characteristics (**Figure 3A**). For example; *SOCS1*⁵¹, *BIRC3*⁵², *DTX1*^{53,54}, *IBTK*⁵⁵,
227 *TRIM13*⁵⁶, *TNFAIP3*⁵³ and *UBE3A*⁵³ all inhibit the function of proteins with a role in important B-
228 cell signaling pathways (**Figure 3B**), thereby establishing a functional link between genetic
229 alteration of the UPS and deregulation of signaling and adding an additional layer to the
230 mechanisms by which B-cell receptor signaling is perturbed in B-NHL. The combined analysis of
231 mutations and structural alterations therefore identified large sets of genes that are targeted by
232 genetic alterations and collectively contribute to hallmark features that are commonly
233 deregulated across multiple B-NHL subtypes.

234

235

236 Disease-specific patterns of genetic alterations

237 Some interesting patterns of disease-specificity were obvious for both mutations and structural
238 alterations. We therefore formally tested the over- or under-representation of these events in
239 each of the 4 subtypes with >100 tumors (BL, DLBCL, FL, MCL), compared to all other tumors
240 in the study (**Figure 4**; Table S12). Using matched GEP data for a subset of cases (Table S1),
241 we also tested the association between genetic alterations and molecularly-defined Burkitt's
242 lymphoma subtypes (n=154; Figure S6-7, Table S13), as well as DLBCL cell of origin subtypes
243 (n=98; Figure S7, Table S14). These analyses showed that the genetic alterations associated
244 with clinically-defined BL were also associated with molecularly-defined BL. Moreover, genetic
245 alterations that we and others have characterized as being over-represented in ABC-like DLBCL
246 such as *CD79B* mutation⁵⁷, *MYD88* mutation⁵⁸ and *TCF4* copy gain⁵⁰ were significantly over-
247 represented in this analysis also.

248

249 We observed some interesting patterns within hallmark characteristics that differ between
250 subtypes. For example, linker histone mutations were present in germinal center B (GCB)-cell
251 derived malignancies (BL, DLBCL, FL) at variable frequencies, but were largely absent from
252 MCL (Figure S8). In contrast, mutations of genes encoding the H3K36 methyltransferases,
253 *WHSC1* (aka *MMSET/NSD2*) and *ASH1L*, were frequent in MCL and largely absent from GCB-
254 derived malignancies. We also noted that the SWI/SNF complex was perturbed in different ways
255 in different diseases (**Figure 5**). Specifically, mutations of the *SMARCA4* (aka. *BRG1*)
256 component of the ATPase module were significantly enriched in BL (24%) compared to other
257 subtypes (4%, Q-value<0.001), while mutations of the *BCL7A* component of the ATPase
258 module were significantly enriched in FL (11%) compared to other subtypes (4%, Q-

259 value=0.007). In contrast, mutations of *ARID1A* were frequent in both BL (19%) and FL (15%),
260 and DNA copy number gains of *BCL11A* were frequent in both DLBCL (28%) and FL (22%).
261 The SWI/SNF complex is therefore a target of recurrent genetic alterations, as previously
262 suggested⁵⁹, but the manner in which this complex is perturbed varies between B-NHL subtypes
263 (**Figure 5**). Similar disease-specific patterns were also observed for signaling genes; for
264 example, *TCF3* and *ID3* have important functions in normal germinal center B-cells⁶⁰, but
265 mutations of these genes are specifically enriched within BL and are rarely found in the other
266 GCB-derived malignancies, DLBCL and FL. Similarly, the *ATP6AP1* and *ATP6V1B2* genes that
267 function in mTOR signaling^{61,62} are specifically mutated in FL, and the *DUSP2* gene which
268 inactivates ERK1/2⁶³ and STAT3⁶⁴ is specifically mutated in DLBCL. The disease-specific
269 patterns of genetic alterations therefore reveal subtle but important differences in how each
270 subtype of B-NHL perturbs hallmark features.

271

272 Pathognomonic sets of co-associated genomic alterations in B-NHL subtypes

273 We next defined how each genetic alteration co-associated with or mutually-excluded other
274 genetic alterations by pairwise assessments using false-discovery rate (FDR)-corrected Fisher's
275 tests (Table S15). A matrix of the transformed FDR Q-values (-logQ) was used for unsupervised
276 hierarchical clustering to identify clusters of co-associated genetic alterations. Together with
277 patterns of disease-specificity, unsupervised clustering revealed clear groupings of co-
278 associated events for BL, DLBCL, FL and MCL (**Figure 4**). We identified a single cluster that
279 was specifically enriched in DLBCL, included co-associated genetic alterations that were over-
280 represented in the ABC-like, and overlapped with the previously described C5/MCD clusters^{3,4}.
281 We also identified a cluster consisting of TP53 mutations and multiple CNAs similar to the C2
282 subtype reported in DLBCL, but which was enriched in both FL and DLBCL. A cluster with
283 features similar to the C3/EZB DLBCL clusters was also observed, but was specifically enriched

284 in FL. The remaining two previously reported DLBCL clusters (C1/N2 and C4) were not
285 observed in this analysis, which may be a result of the different clustering strategies used and/or
286 the lower number of DLBCL tumors in this study compared to other prior DLBCL-focused
287 efforts^{3,4}. We therefore focused our subsequent description on BL, FL and MCL.

288

289 The core set of co-associated genetic alterations in BL were *MYC* translocation and mutation,
290 and mutations of *SMARCA4*, *CCND3* and *ID3*. Mutations of *GNAI2*, *GNA13*, *FOXO1*, *TCF3*,
291 *ARID1A* and *TMEM51* were also clustered with this core set, but were present at lower
292 frequencies. Mutations of *TP53* and copy gain of 1q were frequent in BL, but did not cluster
293 together with other BL-associated genetic alterations. The core set of genetic alterations in FL
294 were *BCL2* translocations and mutations, and mutations of *KMT2D*, *CREBBP* and *EZH2*, in line
295 with prior observations^{16,21}. Copy loss of 10q23.31 encompassing the *FAS* and *PTEN* genes,
296 and mutations *EEF1A1*, *TNFRSF14*, *IRF8*, *BCL7A*, *ATP6V1B2* and *ATP6AP1* were present at
297 lower frequencies and clustered with this core set. The MCL cluster included mutations and
298 deletions of *ATM* and *BIRC3*, as well as frequent deletions of 9p21.32 (*CDKN2A* and *CDKN2B*),
299 9q21.3 (*UBQLN1*), 13q14.2 (miR-15a/16 and *TRIM13*), 13q34 (*CUL4A* and *ING1*), and 1p21
300 (*RPL5*). Mutation of *BCOR*, *UBR5*, *SP140*, *CCND1* and *WHSC1* were also significantly over-
301 represented in MCL compared to other subtypes, and were associated with this cluster. These
302 data show that different subtypes of B-NHL are defined by characteristic sets of co-associated
303 genetic alterations that affect multiple hallmarks.

304

305 Combinations of clonal genetic alterations define B-NHL subtypes

306 Our data have revealed statistical enrichment of individual genetic alterations in subtypes of B-
307 NHL, and pairwise relationships between different genetic alterations that define clusters of

308 subtype-specific events. However, individual genetic alterations from disease-specific clusters
309 are also observed at variable frequencies in other B-NHL subtypes (**Figure 6A**). We therefore
310 investigated whether the combination of multiple genetic alterations from each cluster, rather
311 than the presence or absence of a single alteration, were pathognomonic. By enumerating the
312 number of genetic alterations from each disease-specific cluster in each tumor, we found that
313 this was indeed the case. Specifically over half of all BL, FL and MCL tumors possessed ≥ 3
314 genetic alterations defined by their respective subtype-specific clusters (**Figure 6**). These rates
315 were significantly higher than those observed in other diseases (Fisher P <0.001 for all
316 comparisons). For example, DLBCL and FL share many of the same recurrently mutated genes,
317 particularly when considering the C3/EZB subtype of DLBCL^{3,4}. Thus, one or more FL cluster
318 alterations are found in 93% of FL tumors, but also in 54% of DLBCL tumors. However, FL
319 tumors have a significantly higher rate of accumulation of these mutations, with 68% of FL
320 tumors bearing ≥ 3 of the FL cluster alterations but only 18% of DLBCL tumors bearing ≥ 3 of
321 these genetic alterations (Fisher P < 0.001). This pattern is also conserved for the BL and MCL
322 clusters, for which the rate of acquiring ≥ 3 of the cluster alterations was significantly higher in BL
323 or MCL compared to other subtypes of B-NHL, respectively. Thus, B-NHL subtypes are defined
324 by the acquisition of multiple genetic alterations from subtype-associated clusters.

325

326 The co-association of multiple mutations may be suggestive of a clonal structure in which early
327 driver mutations are clonal and later driver mutations are present in sub-clones. We therefore
328 utilized ABSOLUTE (Table S16-18) to determine whether co-associated genetic alterations are
329 present at different clonal fractions, and could therefore be phased to create clonal hierarchies.
330 This analysis failed for a small subset of cases and could not be performed for X-linked genes
331 or translocations. However, it clearly revealed the majority of co-associated genetic alterations
332 were present at cancer cell fractions (CCF) >0.9 , which is indicative that each mutation is

333 clonally represented in every cancer cell at the time of sampling. These data suggest that
334 combinations of mutations may therefore be required for effective expansion of lymphoma cells,
335 such that common precursor cells (CPCs) are not detectable within the clonal structure of the
336 clinically-detected tumor. These data therefore support the premise of epistatic interactions
337 between co-occurring genetic alterations in B-NHL.

338

339 **DISCUSSION**

340 By performing cross-sectional genomic profiling of a large cohort of tumors, we have defined
341 genes and functional hallmarks that are recurrently targeted by genetic alterations and showed
342 that combinations of genetic alterations are disease-defining features of B-NHL subtypes. Some
343 of the functional hallmarks that we identified have been previously appreciated in other
344 diseases, with a few exceptions. For example, the mutation of genes with roles in chromatin
345 modification are known to be a hallmark of FL⁶⁵ and we observed that over 90% of FLs
346 possessed mutations in one or more of the genes in this category. However, these mutations
347 were also observed in two thirds of BL and DLBCL tumors and nearly half of MCLs. There are
348 subtype-specific patterns of chromatin modifying gene alterations, such as those that we
349 described for H3K36 methylation in MCL and the unique patterns of SWI/SNF mutations across
350 GCB-derived B-NHLs. But we suggest that the genetic deregulation of chromatin modification
351 should be considered a general hallmark of B-NHL. In addition, we suggest that the
352 deregulation of BCL6 function and perturbation of the ubiquitin proteasome system are
353 hallmarks of B-NHL that require further investigation. We have highlighted some of the known
354 substrates of recurrently altered UPS genes from the literature, which shows the potential for
355 these genetic alterations to contribute to aberrant B-cell receptor signaling and proliferation.
356 However, many of the genes within these categories have not been functionally studied in the

357 context of B-cell lymphoma, which represents a significant gap in our understanding of disease
358 etiology.

359

360 The role of epistatic interactions between co-occurring genetic alterations is also an emerging
361 field that requires further investigation. These interactions are not uncommon in cancer⁶⁶, but
362 our data show that they are pervasive and disease-defining features of the B-NHL genetic
363 landscape. Epistasis between co-associated genetic alterations identified in this study requires
364 formal validation in cell line and/or animal models. However, there are many instances in which
365 co-occurring genetic alterations that we observed have already been shown to cooperate in
366 lymphomagenesis. In addition to the aforementioned example of *MYD88* and *CD79B* mutations,
367 transgenic mouse models of *Ezh2* activating mutations or conditional deletion of *Crebbp* or
368 *Kmt2d* have shown that these events are not alone sufficient for lymphomagenesis^{42,67-71}. We
369 and others have observed a co-association between the mutation of these genes and *BCL2*
370 translocations^{16,21}, and the addition of a *Bcl2* transgene to these murine models indeed
371 promoted lymphoma at a significantly higher rate than that observed with the *Bcl2* transgene
372 alone^{42,67-71}. These genetic alterations are therefore significantly more lymphomagenic in
373 combination than they are alone, which provides proof of principal that an epistatic relationship
374 exists between these co-occurring genetic alterations. Future studies focusing on other co-
375 occurring mutations, such as *MYC* translocation and *SMARCA4* mutation in BL, *CREBBP* and
376 *KMT2D* mutation in FL, *TCF4* copy gain and *MYD88* mutation in DLBCL, and *ATM* mutation and
377 *RPL5* deletion in MCL, should therefore be performed to further explore these concepts and
378 define their underlying functional relationship. We suggest that combinations of genetic
379 alterations are likely to more accurately recapitulate the biology of B-NHL than single gene
380 models, and may reveal contextually different functional roles of genetic alterations depending
381 on the co-occurring events.

382

383 In conclusion, we have provided a framework of functional hallmarks and co-occurring genetic
384 alterations that are enriched within B-NHL subtypes. These genetic alterations likely represent
385 epistatic interactions that underpin the biology of these tumors, and represent an opportunity for
386 better understanding lymphoma etiology so that we can identify novel rational approaches for
387 therapeutic targeting of the underlying biology.

388

389 **ACKNOWLEDGEMENTS**

390 This research was supported by NCI R01CA201380 (MRG), the Nebraska Department of
391 Health and Human Services (LB506 2016-17; MRG), the Jaime Erin Follicular Lymphoma
392 Research Consortium (MRG and SSN), the Futcher Foundation (LN and MRG), the Schweitzer
393 Family Fund (JRW, RED, MRG), a Leukemia and Lymphoma Society Fellow Award (HY), and
394 NCI cancer center support grants to the University of Texas MD Anderson Cancer Center (P30
395 CA016672) and the Fred & Pamela Buffet Cancer Center (P30 CA036727).

396

397 **AUTHOR CONTRIBUTIONS**

398 MCJM and ST performed experiments, analyzed data and wrote the manuscript. AB analyzed
399 data. AB, TBH, HY, QD, DM, KH, NJ, JS, and SG performed experiments. AA, LS, MD, CC, JT,
400 DP, KMV, MAL, ARS, BJC, RB, SSN, LN, RED, JW, SP, MKG, DS, JI, TG, SR, and AM
401 provided samples and/or clinical data. MRG conceived and supervised the study, performed
402 experiments, analyzed the data and wrote the manuscript. All authors reviewed and approved
403 the manuscript.

404

405 **DISCLOSURES OF CONFLICTS OF INTEREST**

406 The authors have no conflicts of interest related to this work.

407

408

409 **REFERENCES**

- 410 1 Swerdlow, S. H. *et al.* The 2016 revision of the World Health Organization classification
411 of lymphoid neoplasms. *Blood* **127**, 2375-2390, doi:10.1182/blood-2016-01-643569
412 (2016).
- 413 2 Armitage, J. O., Gascoyne, R. D., Lunning, M. A. & Cavalli, F. Non-Hodgkin lymphoma. *Lancet* **390**, 298-310, doi:10.1016/S0140-6736(16)32407-2 (2017).
- 414 3 Chapuy, B. *et al.* Molecular subtypes of diffuse large B cell lymphoma are associated
415 with distinct pathogenic mechanisms and outcomes. *Nature medicine* **24**, 679-690,
416 doi:10.1038/s41591-018-0016-8 (2018).
- 417 4 Schmitz, R. *et al.* Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. *The
418 New England journal of medicine* **378**, 1396-1407, doi:10.1056/NEJMoa1801445 (2018).
- 419 5 Reddy, A. *et al.* Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. *Cell*
420 **171**, 481-494 e415, doi:10.1016/j.cell.2017.09.027 (2017).
- 421 6 Bea, S. *et al.* Landscape of somatic mutations and clonal evolution in mantle cell
422 lymphoma. *Proceedings of the National Academy of Sciences of the United States of
423 America* **110**, 18250-18255, doi:10.1073/pnas.1314608110 (2013).
- 424 7 Zhang, J. *et al.* The genomic landscape of mantle cell lymphoma is related to the
425 epigenetically determined chromatin state of normal B cells. *Blood* **123**, 2988-2996,
426 doi:10.1182/blood-2013-07-517177 (2014).
- 427 8 Wang, J. Q. *et al.* Synergistic cooperation and crosstalk between MYD88L265P and
428 mutations that dysregulate CD79B and surface IgM. *The Journal of experimental
429 medicine* **214**, 2759-2776, doi:10.1084/jem.20161454 (2017).
- 430 9 Lenz, G. *et al.* Stromal gene signatures in large-B-cell lymphomas. *The New England
431 journal of medicine* **359**, 2313-2323, doi:10.1056/NEJMoa0802885 (2008).
- 432 10 Dave, S. S. *et al.* Molecular diagnosis of Burkitt's lymphoma. *The New England journal
433 of medicine* **354**, 2431-2442, doi:10.1056/NEJMoa055759 (2006).
- 434 11 Iqbal, J. *et al.* Genome-wide miRNA profiling of mantle cell lymphoma reveals a distinct
435 subgroup with poor prognosis. *Blood* **119**, 4939-4948, doi:10.1182/blood-2011-07-
436 370122 (2012).
- 437 12 Bouska, A. *et al.* Adult High Grade B-cell Lymphoma with Burkitt Lymphoma Signature:
438 Genomic features and Potential Therapeutic Targets. *Blood*, doi:10.1182/blood-2017-02-
439 767335 (2017).
- 440 13 Khodadoust, M. S. *et al.* Antigen presentation profiling reveals recognition of lymphoma
441 immunoglobulin neoantigens. *Nature* **543**, 723-727, doi:10.1038/nature21433 (2017).
- 442 14 Schmitz, R. *et al.* Burkitt lymphoma pathogenesis and therapeutic targets from structural
443 and functional genomics. *Nature* **490**, 116-120, doi:10.1038/nature11378 (2012).
- 444 15 Love, C. *et al.* The genetic landscape of mutations in Burkitt lymphoma. *Nature genetics*
445 **44**, 1321-1325, doi:10.1038/ng.2468 (2012).
- 446

447 16 Morin, R. D. *et al.* Frequent mutation of histone-modifying genes in non-Hodgkin
448 lymphoma. *Nature* **476**, 298-303, doi:10.1038/nature10351 (2011).

449 17 Morin, R. D. *et al.* Mutational and structural analysis of diffuse large B-cell lymphoma
450 using whole-genome sequencing. *Blood* **122**, 1256-1265, doi:10.1182/blood-2013-02-
451 483727 (2013).

452 18 Pasqualucci, L. *et al.* Analysis of the coding genome of diffuse large B-cell lymphoma.
453 *Nature genetics* **43**, 830-837, doi:10.1038/ng.892 (2011).

454 19 Lohr, J. G. *et al.* Discovery and prioritization of somatic mutations in diffuse large B-cell
455 lymphoma (DLBCL) by whole-exome sequencing. *Proceedings of the National Academy
456 of Sciences of the United States of America* **109**, 3879-3884,
457 doi:10.1073/pnas.1121343109 (2012).

458 20 Green, M. R. *et al.* Hierarchy in somatic mutations arising during genomic evolution and
459 progression of follicular lymphoma. *Blood* **121**, 1604-1611, doi:10.1182/blood-2012-09-
460 457283 (2013).

461 21 Green, M. R. *et al.* Mutations in early follicular lymphoma progenitors are associated with
462 suppressed antigen presentation. *Proceedings of the National Academy of Sciences of
463 the United States of America* **112**, E1116-1125, doi:10.1073/pnas.1501199112 (2015).

464 22 Okosun, J. *et al.* Integrated genomic analysis identifies recurrent mutations and
465 evolution patterns driving the initiation and progression of follicular lymphoma. *Nature
466 genetics* **46**, 176-181, doi:10.1038/ng.2856 (2014).

467 23 Pasqualucci, L. *et al.* Genetics of follicular lymphoma transformation. *Cell reports* **6**, 130-
468 140, doi:10.1016/j.celrep.2013.12.027 (2014).

469 24 Landau, D. A. *et al.* Evolution and impact of subclonal mutations in chronic lymphocytic
470 leukemia. *Cell* **152**, 714-726, doi:10.1016/j.cell.2013.01.019 (2013).

471 25 Puente, X. S. *et al.* Whole-genome sequencing identifies recurrent mutations in chronic
472 lymphocytic leukaemia. *Nature* **475**, 101-105, doi:10.1038/nature10113 (2011).

473 26 Wang, L. *et al.* SF3B1 and other novel cancer genes in chronic lymphocytic leukemia.
474 *The New England journal of medicine* **365**, 2497-2506, doi:10.1056/NEJMoa1109016
475 (2011).

476 27 Kiel, M. J. *et al.* Whole-genome sequencing identifies recurrent somatic NOTCH2
477 mutations in splenic marginal zone lymphoma. *The Journal of experimental medicine*
478 **209**, 1553-1565, doi:10.1084/jem.20120910 (2012).

479 28 Rossi, D. *et al.* The coding genome of splenic marginal zone lymphoma: activation of
480 NOTCH2 and other pathways regulating marginal zone development. *The Journal of
481 experimental medicine* **209**, 1537-1551, doi:10.1084/jem.20120904 (2012).

482 29 Chapman, M. A. *et al.* Initial genome sequencing and analysis of multiple myeloma.
483 *Nature* **471**, 467-472, doi:10.1038/nature09837 (2011).

484 30 Treon, S. P. *et al.* MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia.
485 *The New England journal of medicine* **367**, 826-833, doi:10.1056/NEJMoa1200710
486 (2012).

487 31 Gunawardana, J. *et al.* Recurrent somatic mutations of PTPN1 in primary mediastinal B
488 cell lymphoma and Hodgkin lymphoma. *Nature genetics* **46**, 329-335,
489 doi:10.1038/ng.2900 (2014).

490 32 Vater, I. *et al.* The mutational pattern of primary lymphoma of the central nervous system
491 determined by whole-exome sequencing. *Leukemia* **29**, 677-685,
492 doi:10.1038/leu.2014.264 (2015).

493 33 Kuilman, T. *et al.* CopywriteR: DNA copy number detection from off-target sequence
494 data. *Genome biology* **16**, 49, doi:10.1186/s13059-015-0617-1 (2015).

495 34 Newman, A. M. *et al.* FACTERA: a practical method for the discovery of genomic
496 rearrangements at breakpoint resolution. *Bioinformatics* **30**, 3390-3393,
497 doi:10.1093/bioinformatics/btu549 (2014).

498 35 Lek, M. *et al.* Analysis of protein-coding genetic variation in 60,706 humans. *Nature* **536**,
499 285-291, doi:10.1038/nature19057 (2016).

500 36 Lawrence, M. S. *et al.* Mutational heterogeneity in cancer and the search for new
501 cancer-associated genes. *Nature* **499**, 214-218, doi:10.1038/nature12213 (2013).

502 37 Mermel, C. H. *et al.* GISTIC2.0 facilitates sensitive and confident localization of the
503 targets of focal somatic copy-number alteration in human cancers. *Genome biology* **12**,
504 R41, doi:10.1186/gb-2011-12-4-r41 (2011).

505 38 Carter, S. L. *et al.* Absolute quantification of somatic DNA alterations in human cancer.
506 *Nature biotechnology* **30**, 413-421, doi:10.1038/nbt.2203 (2012).

507 39 Alexandrov, L. B. *et al.* Signatures of mutational processes in human cancer. *Nature*
508 **500**, 415-421, doi:10.1038/nature12477 (2013).

509 40 Huang, D. W. *et al.* DAVID Bioinformatics Resources: expanded annotation database
510 and novel algorithms to better extract biology from large gene lists. *Nucleic acids*
511 *research* **35**, W169-175, doi:10.1093/nar/gkm415 (2007).

512 41 Saeki, K., Miura, Y., Aki, D., Kuroaki, T. & Yoshimura, A. The B cell-specific major raft
513 protein, Raftlin, is necessary for the integrity of lipid raft and BCR signal transduction.
514 *EMBO J* **22**, 3015-3026, doi:10.1093/emboj/cdg293 (2003).

515 42 Jiang, Y. *et al.* CREBBP Inactivation Promotes the Development of HDAC3-Dependent
516 Lymphomas. *Cancer discovery* **7**, 38-53, doi:10.1158/2159-8290.CD-16-0975 (2017).

517 43 Beguelin, W. *et al.* EZH2 and BCL6 Cooperate to Assemble CBX8-BCOR Complex to
518 Repress Bivalent Promoters, Mediate Germinal Center Formation and
519 Lymphomagenesis. *Cancer cell* **30**, 197-213, doi:10.1016/j.ccr.2016.07.006 (2016).

520 44 Pawar, S. A. *et al.* C/EBP $\{\delta\}$ targets cyclin D1 for proteasome-mediated degradation
521 via induction of CDC27/APC3 expression. *Proceedings of the National Academy of*
522 *Sciences of the United States of America* **107**, 9210-9215,
523 doi:10.1073/pnas.0913813107 (2010).

524 45 Akasaka, T., Lossos, I. S. & Levy, R. BCL6 gene translocation in follicular lymphoma: a
525 harbinger of eventual transformation to diffuse aggressive lymphoma. *Blood* **102**, 1443-
526 1448, doi:10.1182/blood-2002-08-2482 (2003).

527 46 Kato, M. *et al.* Frequent inactivation of A20 in B-cell lymphomas. *Nature* **459**, 712-716,
528 doi:10.1038/nature07969 (2009).

529 47 Greiner, T. C. *et al.* Mutation and genomic deletion status of ataxia telangiectasia
530 mutated (ATM) and p53 confer specific gene expression profiles in mantle cell
531 lymphoma. *Proceedings of the National Academy of Sciences of the United States of*
532 *America* **103**, 2352-2357, doi:10.1073/pnas.0510441103 (2006).

533 48 Challal-Malladi, M. *et al.* Combined genetic inactivation of beta2-Microglobulin and CD58
534 reveals frequent escape from immune recognition in diffuse large B cell lymphoma.
535 *Cancer cell* **20**, 728-740, doi:10.1016/j.ccr.2011.11.006 (2011).

536 49 Pfeifer, M. *et al.* PTEN loss defines a PI3K/AKT pathway-dependent germinal center
537 subtype of diffuse large B-cell lymphoma. *Proceedings of the National Academy of*
538 *Sciences of the United States of America* **110**, 12420-12425,
539 doi:10.1073/pnas.1305656110 (2013).

540 50 Jain N, H. K., Tadros S, Fiskus W, Havranek O, Ma M, Bouska A, Heavican T, Kumar D,
541 Deng Q, Moore D, Pak C, Liu C, Gentles A, Hartmann E, Kridel R, Ekstrom-Smedby K,
542 Juliusson G, Rosenquist R, Gascoyne R, Rosenwald A, Giancotti F, Neelapu S, Westin
543 J, Vose J, Lunning M, Greiner T, Rodig S, Iqbal J, Alizadeh A, Davis RE, Bhalla K,
544 Green M. Targetable genetic alterations of TCF4 (E2-2) drive immunoglobulin
545 expression in the activated B-cell subtype of diffuse large B-cell lymphoma. *Sci. Transl.
546 Med. In Press* (2019).

547 51 Ingley, E. *et al.* Csk-binding protein mediates sequential enzymatic down-regulation and
548 degradation of Lyn in erythropoietin-stimulated cells. *The Journal of biological chemistry*
549 **281**, 31920-31929, doi:10.1074/jbc.M602637200 (2006).

550 52 Hu, S., Alcivar, A., Qu, L., Tang, J. & Yang, X. CIAP2 inhibits antigen receptor signaling
551 by targeting Bcl10 for degradation. *Cell cycle* **5**, 1438-1442, doi:10.4161/cc.5.13.2866
552 (2006).

553 53 Compagno, M. *et al.* Mutations of multiple genes cause deregulation of NF-kappaB in
554 diffuse large B-cell lymphoma. *Nature* **459**, 717-721, doi:10.1038/nature07968 (2009).

555 54 Liu, W. H. & Lai, M. Z. Deltex regulates T-cell activation by targeted degradation of
556 active MEKK1. *Molecular and cellular biology* **25**, 1367-1378,
557 doi:10.1128/MCB.25.4.1367-1378.2005 (2005).

558 55 Liu, W. *et al.* Direct inhibition of Bruton's tyrosine kinase by IBtk, a Btk-binding protein.
559 *Nature immunology* **2**, 939-946, doi:10.1038/ni1001-939 (2001).

560 56 Joo, H. M. *et al.* Ret finger protein 2 enhances ionizing radiation-induced apoptosis via
561 degradation of AKT and MDM2. *Eur J Cell Biol* **90**, 420-431,
562 doi:10.1016/j.ejcb.2010.12.001 (2011).

563 57 Davis, R. E. *et al.* Chronic active B-cell-receptor signalling in diffuse large B-cell
564 lymphoma. *Nature* **463**, 88-92, doi:10.1038/nature08638 (2010).

565 58 Ngo, V. N. *et al.* Oncogenically active MYD88 mutations in human lymphoma. *Nature*
566 **470**, 115-119, doi:10.1038/nature09671 (2011).

567 59 Krysiak, K. *et al.* Recurrent somatic mutations affecting B-cell receptor signaling pathway
568 genes in follicular lymphoma. *Blood* **129**, 473-483, doi:10.1182/blood-2016-07-729954
569 (2017).

570 60 Gloury, R. *et al.* Dynamic changes in Id3 and E-protein activity orchestrate germinal
571 center and plasma cell development. *The Journal of experimental medicine* **213**, 1095-
572 1111, doi:10.1084/jem.20152003 (2016).

573 61 Okosun, J. *et al.* Recurrent mTORC1-activating RRAGC mutations in follicular
574 lymphoma. *Nature genetics* **48**, 183-188, doi:10.1038/ng.3473 (2016).

575 62 Wang, F. *et al.* Follicular lymphoma-associated mutations in vacuolar ATPase
576 ATP6V1B2 activate autophagic flux and mTOR. *The Journal of clinical investigation* **130**,
577 1626-1640, doi:10.1172/JCI98288 (2019).

578 63 Hu, J. *et al.* MiR-361-3p regulates ERK1/2-induced EMT via DUSP2 mRNA degradation
579 in pancreatic ductal adenocarcinoma. *Cell Death Dis* **9**, 807, doi:10.1038/s41419-018-
580 0839-8 (2018).

581 64 Lu, D. *et al.* The phosphatase DUSP2 controls the activity of the transcription activator
582 STAT3 and regulates TH17 differentiation. *Nature immunology* **16**, 1263-1273,
583 doi:10.1038/ni.3278 (2015).

584 65 Green, M. R. Chromatin modifying gene mutations in follicular lymphoma. *Blood* **131**,
585 595-604, doi:10.1182/blood-2017-08-737361 (2018).

586 66 Ashworth, A., Lord, C. J. & Reis-Filho, J. S. Genetic interactions in cancer progression
587 and treatment. *Cell* **145**, 30-38, doi:10.1016/j.cell.2011.03.020 (2011).

588 67 Beguelin, W. *et al.* EZH2 is required for germinal center formation and somatic EZH2
589 mutations promote lymphoid transformation. *Cancer cell* **23**, 677-692,
590 doi:10.1016/j.ccr.2013.04.011 (2013).

591 68 Garcia-Ramirez, I. *et al.* Crebbp loss cooperates with Bcl2 over-expression to promote
592 lymphoma in mice. *Blood* **129**, 2645-2656, doi:10.1182/blood-2016-08-733469 (2017).

593 69 Zhang, J. *et al.* The Crebbp Acetyltransferase is a Haploinsufficient Tumor Suppressor in
594 B Cell Lymphoma. *Cancer discovery*, doi:10.1158/2159-8290.CD-16-1417 (2017).

595 70 Zhang, J. *et al.* Disruption of KMT2D perturbs germinal center B cell development and
596 promotes lymphomagenesis. *Nature medicine* **21**, 1190-1198, doi:10.1038/nm.3940
597 (2015).

598 71 Ortega-Molina, A. *et al.* The histone lysine methyltransferase KMT2D sustains a gene
599 expression program that represses B cell lymphoma development. *Nature medicine* **21**,
600 1199-1208, doi:10.1038/nm.3943 (2015).

601

602

603

604

605 **FIGURE LEGENDS**

606 **Figure 1: Recurrently mutated genes in B-NHL subtypes.** An oncoplot shows significantly
607 mutated genes across our cohort of 755 B-NHL tumors, arranged according to functional
608 category and frequency. The mutational burden and distribution of mutation types for each case
609 are shown at the top. Amino acid residues for mutational hotspots and/or domains targeted by
610 clustered mutations are shown on the right.

611

612 **Figure 2: Structural alterations in B-NHL subtypes. A)** A circos plot shows translocations of
613 the MYC (purple), BCL2 (orange) and BCL6 (green) genes, and GISTIC tracks of DNA copy
614 number gains (red) and losses (blue). **B-C)** Volcano plots of integrative analysis results showing
615 the changes in gene expression of genes within peaks of DNA copy number gain (B) or loss (C).
616 The shaded region in B marks genes with significantly increased expression in tumors with
617 increased copy number compared to those without; the converse is true for the shaded region in
618 C. **D)** An oncoplot with DNA copy number losses and gains ranked according to their frequency
619 shows the distribution of structural alterations across tumors. **E)** Oncoplot shows the overlap of
620 structural alterations and mutations that target the same genes. P-values are derived from a
621 Fisher's exact test (ns, not significant).

622

623

624

625

626

627 **Figure 3: Genetic alterations of the ubiquitin proteasome system (UPS) and potential**
628 **interplay with BCR signaling. A)** A graphical illustration of UPS gene genetic alterations
629 (mutations, teal; deletions, blue; copy gain, red) and literature supported targets of the UPS
630 genes. The function of UPS gene targets is categorized according to the hallmarks shown in
631 figure 1. **B)** A schematic of the different layers of genetic alterations (mutations, teal; deletions,
632 blue; copy gain, red) affecting signaling pathways in B-NHL. UPS genes are highlighted with a
633 yellow halo.

634

635 **Figure 4: Subtype-specific clusters of co-occurring genetic alterations.** The frequency (bar
636 graph) and over/under-representation (blue to yellow scale) of mutations and structural
637 alterations is shown on the left for BL, DLBCL, FL and MCL. Over/under-representation in
638 molecular Burkitt and cell of origin molecular subtypes is shown for each alteration at the
639 bottom. The correlation matrix of co-associated (green) and mutually-exclusive (purple)
640 relationships was clustered and identified groups of co-occurring genetic alterations that were
641 predominantly over-represented in a single B-NHL subtype.

642

643

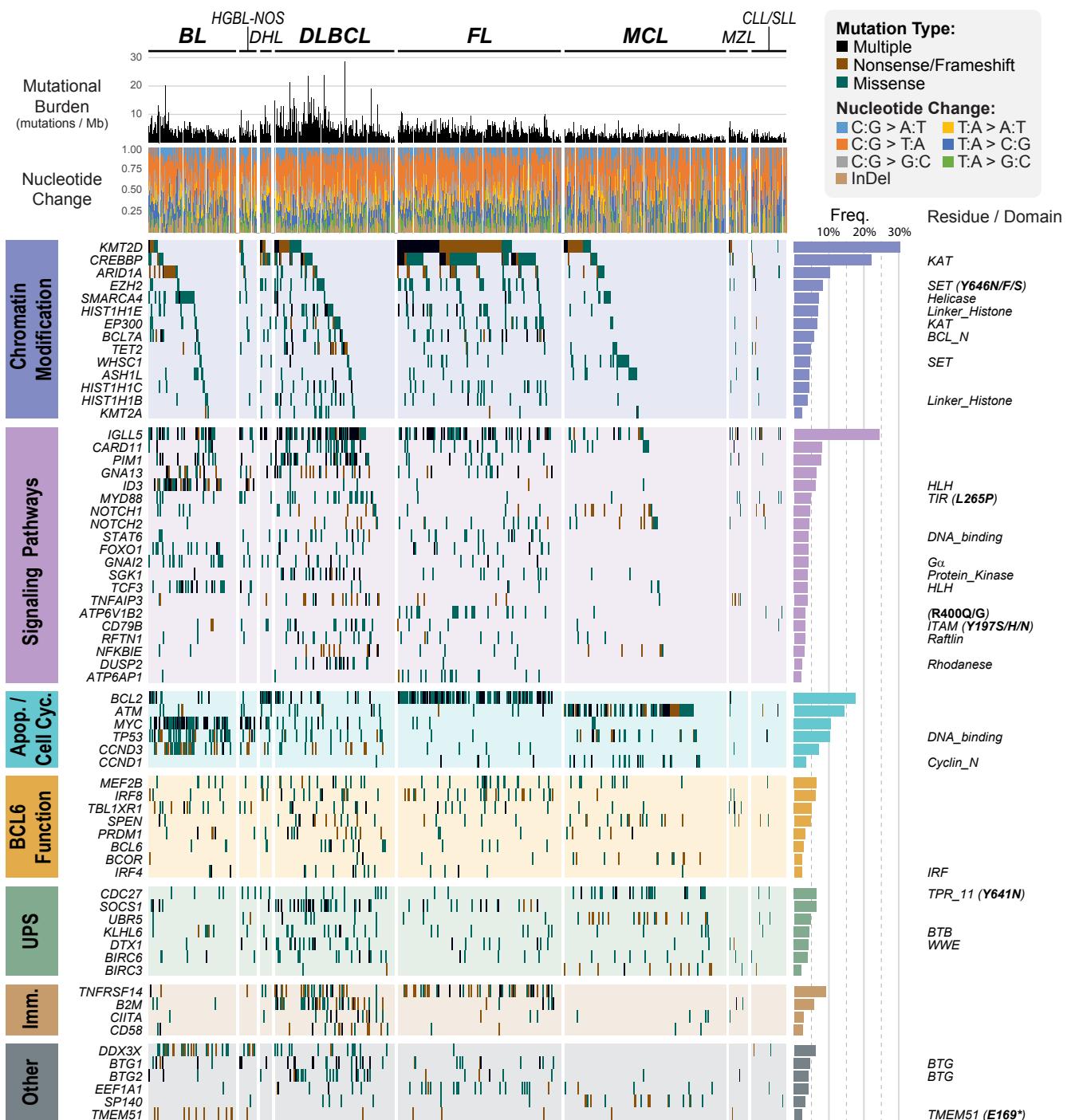
644

645

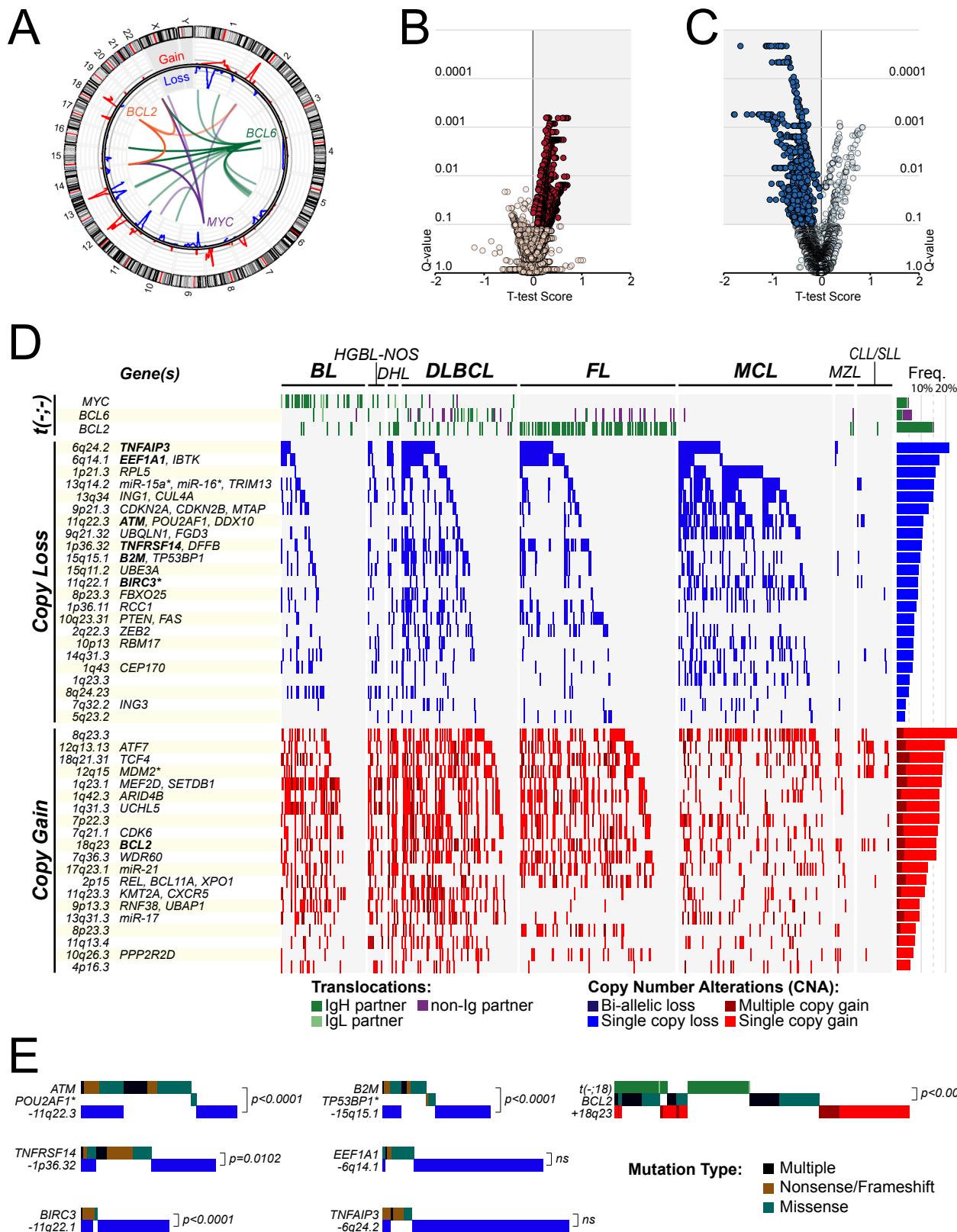
646

647

648

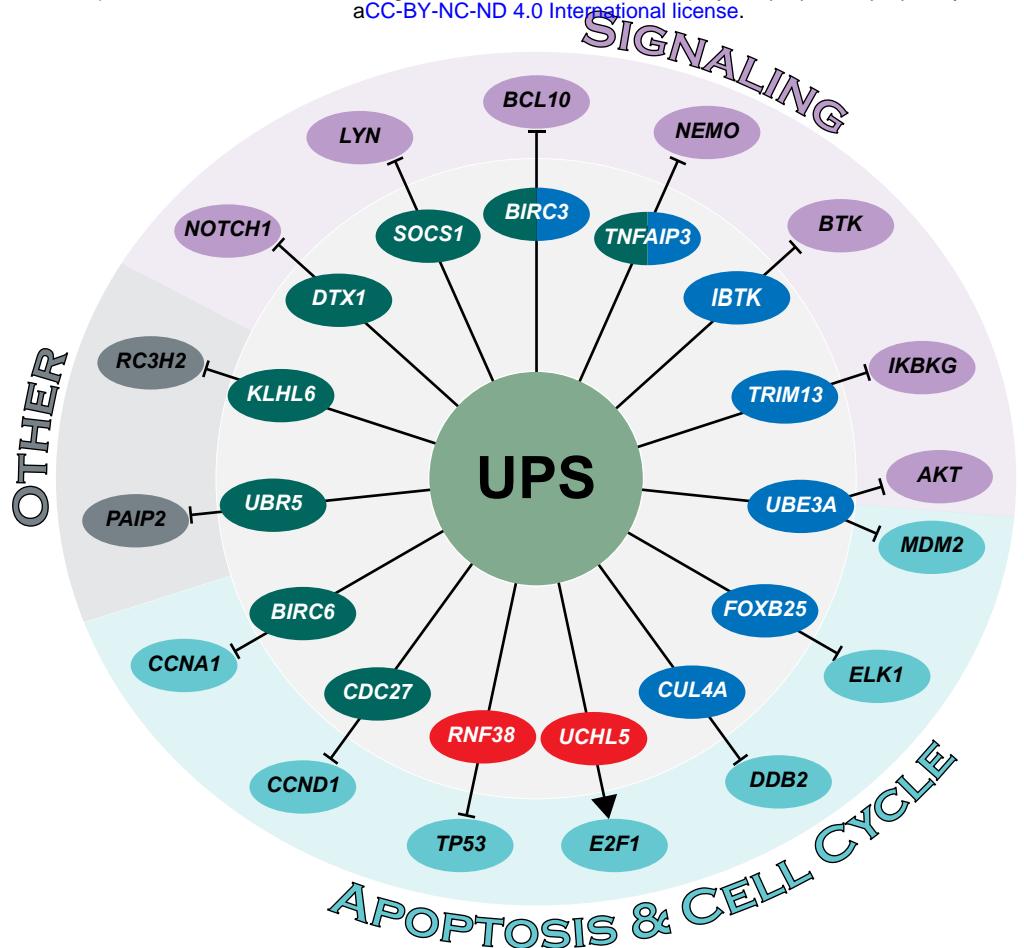

649 **Figure 5: Subtype-specific patterns of SWI/SNF complex mutations.** **A)** An oncoplot shows
650 the frequency of genetic alterations in genes that encode components of the SWI/SNF complex.
651 **B)** A schematic of the SWI/SNF complex shows recurrently mutated genes, *ARID1A*,
652 *SMARCA4* and *BCL7A*, and the *BCL11A* gene that is targeted by 2p15 DNA copy number
653 gains. **C-E)** Lollipop plots show the distribution of mutations in the SWI/SNF components
654 *ARID1A* (C), *SMARCA4* (D), and *BCL7A* (E). **F)** A heatmap shows the location of chromosome
655 2p DNA copy number gains (red) in all tumors (rows) with 2p15 copy gain (n=92, copy number >
656 2.2) ordered from highest DNA copy number (top) to lowest (bottom). The *BCL11A* gene is in
657 the peak focal copy gain.

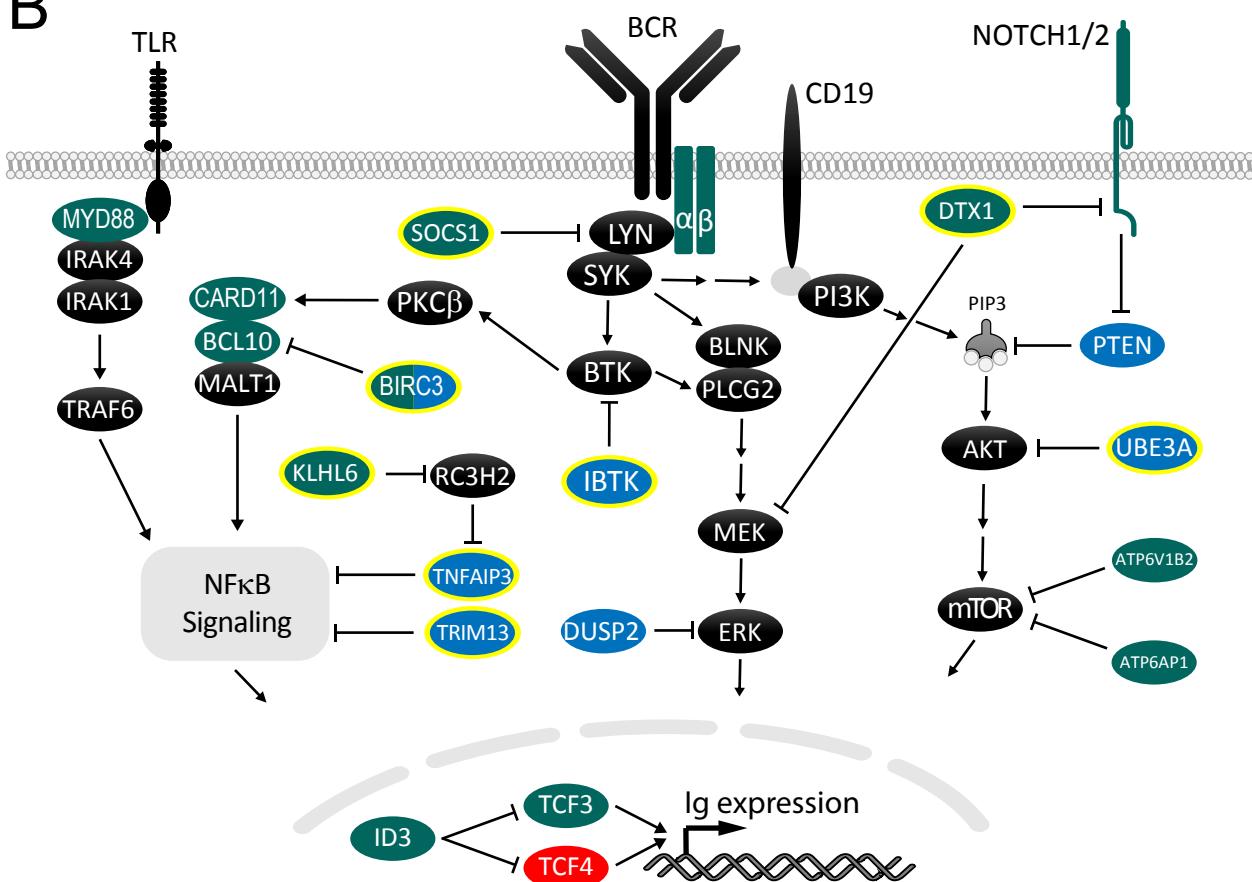
658


659 **Figure 6: Cumulative burden of clonal co-occurring mutations.** **A)** A bar plot shows the
660 frequency of tumors with genetic alterations from each subtype-defining cluster, grouped by the
661 number of co-occurring alterations observed per tumor. The frequency of tumors with 3 or more
662 genetic alterations per tumor is significantly higher in the subtype for which each cluster is
663 named (**Fisher P-value < 0.001). **B-D)** An oncoplot, colored by cancer cell fraction (CCF) from
664 ABSOLUTE, shows the representation and clonality of BL cluster (B), FL cluster (C) and MCL
665 cluster (D) mutations across the dataset. The rate of co-occurrence of multiple genetic
666 alterations in a single tumor (columns) is observably higher in the subtypes for which the

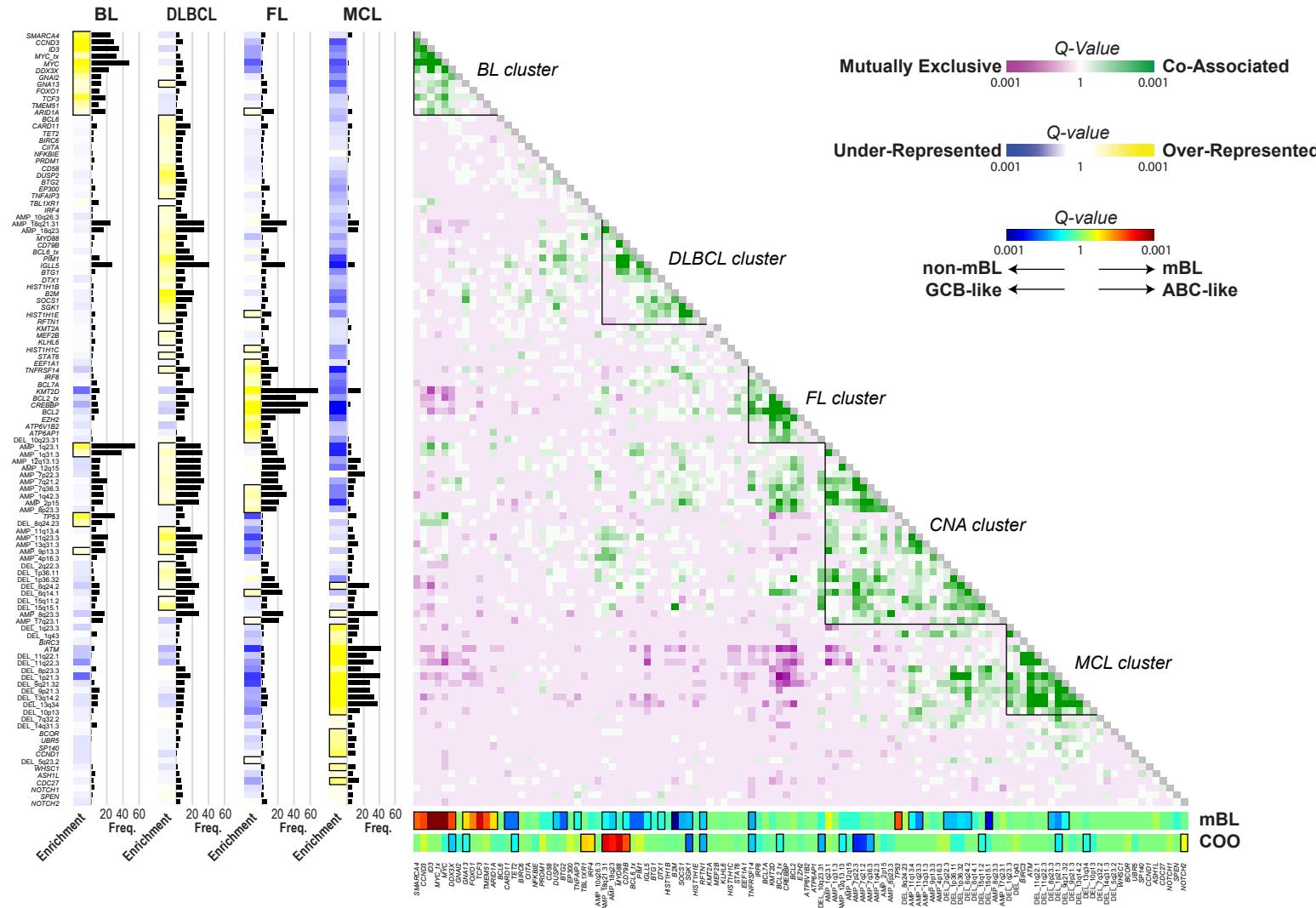
667 clusters are named, and the co-occurring genetics are most often clonal (CCF > 0.9). BL, Burkitt
668 Lymphoma. HG, other high-grade lymphoma (DHL/THL, HGBL-NOS). DLBCL, diffuse large B-
669 cell lymphoma. FL, follicular lymphoma. MCL, mantle cell lymphoma. LG, other low-grade
670 lymphoma (CLL/SLL, MZL).

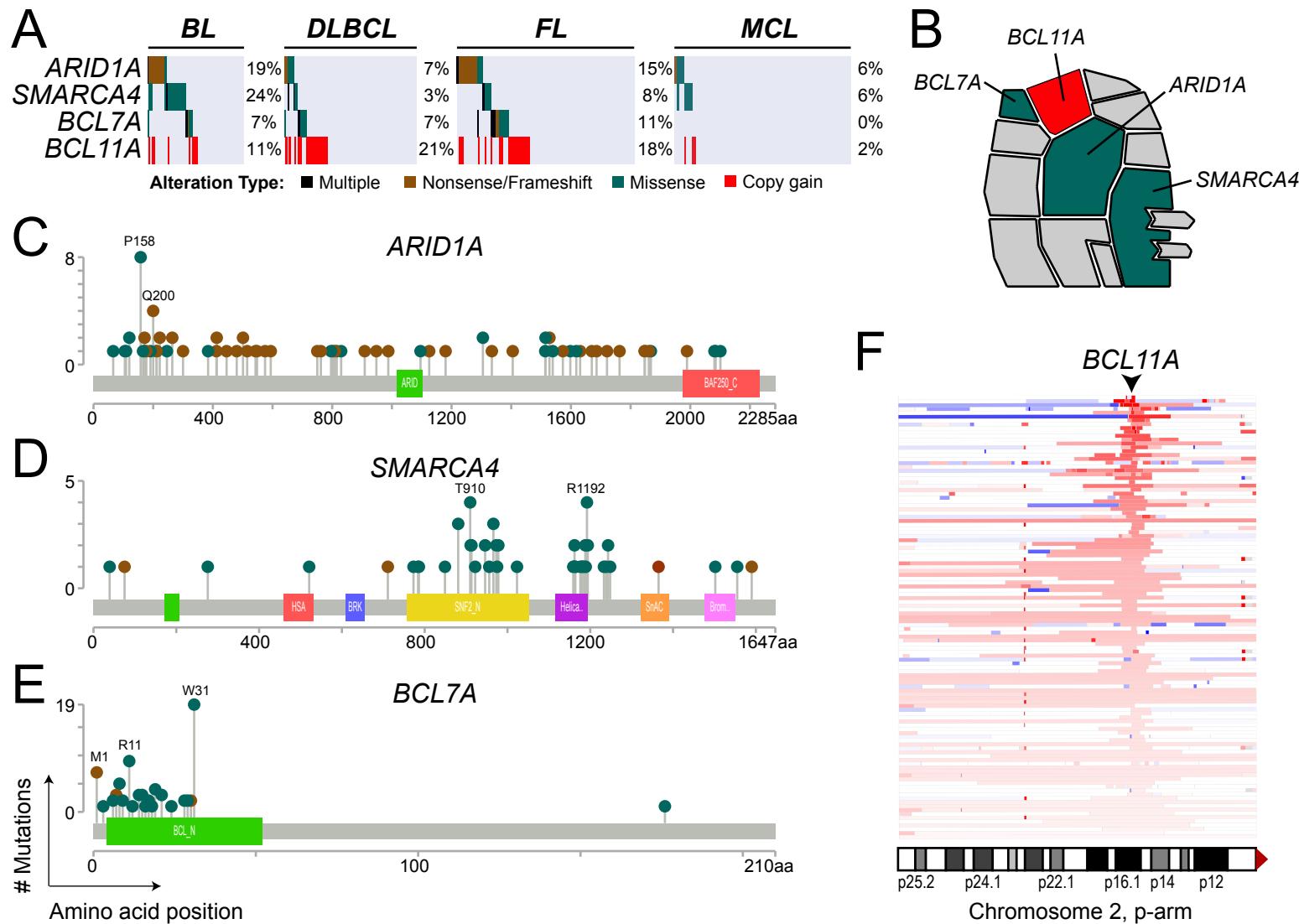
Figure 1


Figure 2


Figure 3

bioRxiv preprint doi: <https://doi.org/10.1101/674259>; this version posted June 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


A


B

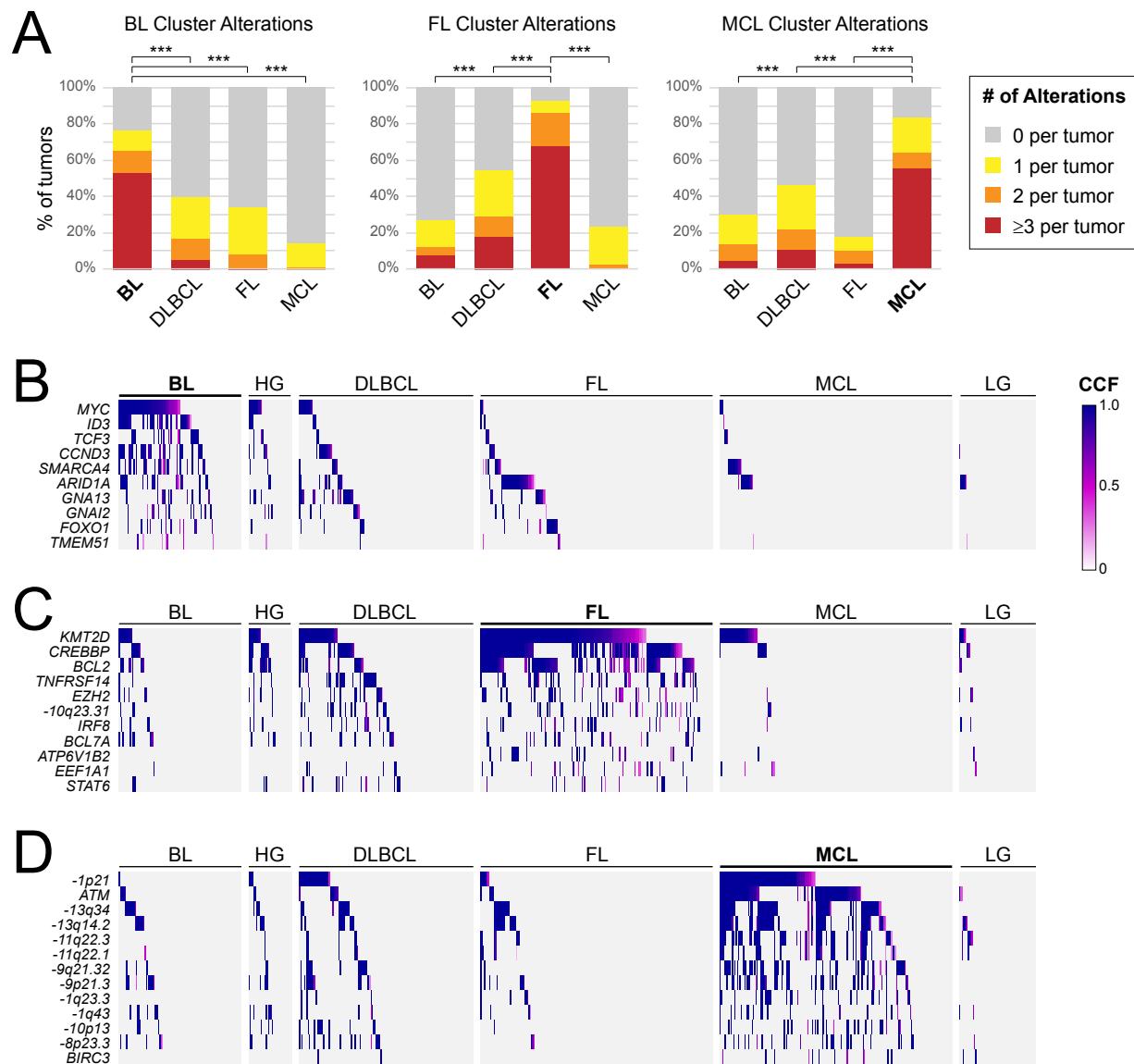

Figure 4

Figure 5

Figure 6

