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Abstract

Genetic predisposition for complex traits is often manifested through multiple tissues of interest at di↵erent

time points during their development. For example, the genetic predisposition for obesity could be manifested

either through inherited variants that control metabolism through regulation of genes expressed in the brain,

or through the control of fat storage by dysregulation of genes expressed in adipose tissue, or both. Here

we describe a statistical approach that leverages tissue-specific expression quantitative trait loci (eQTLs) to

prioritize the tissue of interest underlying the genetic predisposition of a given individual for a complex trait.

Unlike existing approaches that prioritize tissues of interest for the trait in the population, our approach

probabilistically quantifies the tissue-specific genetic contribution to the trait for a given individual. Through

simulations using the UK Biobank genotype data, we show that our approach can predict the relevant tissue

of interest accurately and can cluster individuals according to their tissue-specific genetic architecture. We

analyze body mass index (BMI) and waist to hip ratio adjusted for BMI (WHRadjBMI) in the UK Biobank

to identify individuals who have their genetic predisposition manifested through their brain versus adipose

tissue, and adipose versus muscle tissue, respectively. Notably, we find that the individuals with a particular

tissue of interest have specific phenotypic features beyond BMI and WHRadjBMI that distinguish them

from random individuals in the data, demonstrating the role of tissue-specific genetic predisposition for

these traits.
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Introduction

Multiple clinical, pathologic, and molecular evidence suggest that many phenotypes and diseases show het-

erogeneity and can be viewed as a collection of multiple traits (i.e. subtypes) in the population [1–5].

Traditional subtype identification has relied on detecting biomarkers or subphenotypes that distinguish sub-

sets of individuals in a biologically meaningful way. For example, individuals with Type 1 diabetes (T1D)

can be sub-grouped by auto-antibody positivity [6]; breast cancer has two well-known subtypes, estrogen

receptor positive and negative, [7–9]; and psychiatric disorder patients can have di↵erent severities [10]. With

the advent of large scale genome-wide association studies (GWAS) that have robustly identified thousands

of risk variants for complex traits, multiple approaches have investigated the use of genetic risk variants to

define classes of individuals that show genetic heterogeneity across subtypes [11–16]. For example, autism

can be subtyped by grouping together individuals with recurrent mutations in the same autism-associated

gene [11,13]; Type 2 diabetes (T2D) can be subtyped using clusters of genetic variants previously associated

with the disease [14]. Other examples include adiposity traits such as body mass index (BMI), waist-to-hip

ratio (WHR), and WHR adjusted for BMI (WHRadjBMI), that can be subtyped based on genetic variants

with distinct patterns of fat depots and metabolisms [15].

Genetic sub-typing o↵ers an advantage over phenotypic sub-typing in that germline genetic characteristics

are more stable than phenotypic characteristics of an individual [13, 14], but comes with a drawback that

genetic e↵ect sizes are typically very small, thus requiring large sample sizes for prediction from genetics to be

meaningful. A significant component of genetic susceptibility of complex traits is mediated through genetic

control of gene expression in one or multiple tissues [17,18], with several studies highlighting the relevance of

tissue-specific biological mechanisms underlying the pathogenesis of complex traits [19–22]. Such studies rely

on integration of expression quantitative loci (eQTLs) with GWAS in a tissue or cell-type specific manner to

prioritize tissues and cell-types that are relevant for a given complex trait, and have often identified multiple

tissues relevant to any given trait (e.g., brain and adipose for BMI [20, 22]; muscle skeletal connective and

adipose for WHRadjBMI [22]; liver, pancreas and thyroid tissues for total cholesterol [21], etc.). While these

studies focused on prioritizing tissues or cell-types associated with a complex trait in the population, it

remains an open question whether we can predict the tissue of interest for each individual in the population

for a trait with multiple tissues of interest.

In this work, we present an approach that integrates tissue-specific eQTL with genetic association data

for a complex trait to probabilistically assign a tissue of interest to the phenotype of each individual in the
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study. We focus on traits where multiple tissues have been implicated (e.g., brain and adipose for BMI)

and hypothesize that individuals have their genetic susceptibility mediated in a tissue specific manner (i.e.

one group of individuals have their genetic predisposition through regulation in brain and another group

of individuals through adipose). We propose eGST (eQTL-based Genetic Sub-Typer), an approach that

estimates the posterior probability that an individual’s phenotype can be assigned to a tissue based on

individual-level genotype data of tissue-specific eQTLs and marginal phenotype data. eGST implements

a Bayesian framework of mixture model by employing a computationally e�cient maximum a posteriori

(MAP) expectation-maximization (EM) algorithm to estimate the tissue-specific posterior probabilities per

individual.

We perform extensive simulations using real genotypes from the UK Biobank and show that eGST ac-

curately infers the simulated tissue of interest for each individual. We also show that a Bayesian framework

of the mixture model performs better than the corresponding frequentist framework. By integrating expres-

sion data from the GTEx consortium [17, 18], we apply eGST to two obesity related measures (BMI and

WHRadjBMI) in the UK Biobank [23,24]. We consider brain and adipose tissues for BMI to identify 25,192

individuals with tissue-specific genetic predisposition, and muscle and adipose tissues for WHRadjBMI to

identify 19,041 individuals with tissue-specific predisposition. Interestingly, the groups of individuals classi-

fied into each tissue show distinct genetic and phenotypic characteristics. 85 out of 106 phenotypes tested in

the UK Biobank were di↵erentially distributed between the BMI-adipose (or BMI-brain) group of individuals

and the remaining population, with 72 out of 85 remaining significant after adjusting for BMI. For example,

diabetes proportion, various mental health phenotypes, alcohol intake frequency, and smoking status were

di↵erentially distributed between one or both of the tissue-specific subtype groups of BMI and the remaining

population. Overall, our results suggest that tissue-specific eQTLs can be successfully utilized to prioritize

the tissue of interest at an individual level in the study.

Methods

We start by depicting the main intuition underlying our hypothesis and model (Figure 1). For simplicity,

consider two tissues of interest and assume that gene A is only expressed in tissue 1 whereas gene B is

only expressed in tissue 2. The main hypothesis underlying our model is that the genetic susceptibility of

a complex trait for a given individual is mediated through regulation of either gene A or gene B, but not

through both. Having gene expression measurements in every individual at both genes in both tissues can
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be used to test this hypothesis. Unfortunately, gene expression measurements in large sample sizes such as

the UK biobank are not typically available. To circumvent this, we use top eQTLs for each gene as a proxy

for the measured expression. eGST takes as input the phenotype values and the genotype values at a set of

variants known to be eQTLs for tissue-specific genes (Figure 1).

Model

For simplicity, we describe the model assuming two (K = 2) tissues of interest. Suppose, for n unrelated

individuals, we have phenotype data Y = (y1, . . . , yn) and expression data for two sets of tissue-specific

expressed genes E(1)
, E

(2) characterizing the two tissues. We define an indicator variable C such that for an

individual, C = k i↵ the genetic susceptibility of the phenotype of the individual is mediated through tissue

k, k = 1, 2 (Figure 1). We model the phenotype of individual i based on the tissue-specific expression of the

two sets of tissue-specific genes as:

yi = a1 + e(1)
0

1i b1 + e(1)
0

2i d1 + "1i if Ci = 1

= a2 + e(2)
0

1i d2 + e(2)
0

2i b2 + "2i if Ci = 2
(1)

Here, a1 and a2 represent the baseline tissue-specific trait means. e(1)1i and e(1)2i denote the vector of

expression values of the first and second tissue-specific set of genes for individual i in the first tissue, respec-

tively; e(2)1i and e(2)2i denote the vector of expression values of the first and second tissue-specific set of genes

for individual i in the second tissue. Under Ci = 1, b1 and d1 denote the e↵ects of expression of the first

and second tissue-specific set of genes in the first tissue on the trait, respectively. Similarly, when Ci = 2,

b2 and d2 denote the e↵ects of expression of the two gene sets in the second tissue on the trait. If Ci = 1,

we assume that the expression of second tissue-specific genes (much low expressed in first tissue) in the first

tissue have no e↵ect (d1 = 0) on the phenotype of the individual. Similarly, when Ci = 2, we assume that

the expression of first tissue-specific genes (much low expressed in second tissue) in the second tissue have

no e↵ect (d2 = 0) on the phenotype. Thus, we obtain the following model under these assumptions:

yi = a1 + e(1)
0

1i b1 + "1i if Ci = 1

= a2 + e(2)
0

2i b2 + "2i if Ci = 2
(2)

Since expression datasets in general have limited sample size and are not available in large GWAS cohorts,
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we use genotypes of tissue-specific eQTLs as a proxy for the expressions of the corresponding tissue-specific

genes. Suppose, in a GWAS cohort, we have phenotype data, and genotype data for the two sets of tissue-

specific eQTL SNPs corresponding to the two sets of tissue-specific expressed genes, one comprising m1

SNPs and the other comprising m2 SNPs. Then, we model the phenotype of individual i as:

yi = ↵1 + x
0

1i�1 + ✏1i if Ci = 1

= ↵2 + x
0

2i�2 + ✏2i if Ci = 2
(3)

So, the phenotype of individual i under the tissue of interest k is modeled as yi = ↵k+x
0

ki�k+ ✏ki, where

↵k is the baseline tissue-specific trait mean, xki is the vector of normalized genotype values of individual i

at the eQTL SNPs specific to tissue k, �k = (�k1,�k2 . . . ,�kmk) are their e↵ects on the trait under Ci = k,

and ✏ki is a noise term, i = 1, . . . , n and k = 1, 2. The random errors are distributed as: ✏1i ⇠ N(0,�2
✏1) and

✏2i ⇠ N(0,�2
✏2). We note that the mixture model in our context is identifiable because the mean term is a

function of the genotype vector of the set of tissue-specific eQTLs, which is distinct across tissues.

Prior distributions

P(Ci = k) = wk is the prior proportion of individuals for whom the phenotype has kth tissue-specific genetic

e↵ect. We assume that the eQTL SNP sets across k tissues are non-overlapping and that each element in �k,

the genetic e↵ect of kth tissue-specific eQTLs on the trait, is independently drawn from N(0,�2
xk
). If �2

yk
is

the variance of the trait under Ci = k, then �
2
xk

=
h2
k�

2
yk

mk
, where h2

k is the heritability of the trait under Ci = k

due to k
th tissue-specific mk eQTLs, and is termed as kth tissue-specific subtype heritability. We also assume

that ↵1 ⇠ N(0,�2
↵) and ↵2 ⇠ N(0,�2

↵), with fixed �
2
↵ = 1. ForK = 2, we assume that (w1, w2) ⇠ Beta(s1, s2)

which will be a Dirichlet distribution for more than two tissues. We consider fixed values of s1 = s2 = 1.

Next, we assume: �2
x1

and �
2
x2

⇠ Inverse-Gamma(ax, bx); �2
✏1 and �

2
✏2 ⇠ Inverse-Gamma(a✏, b✏). We choose

fixed values of ax, bx, a✏, b✏ such that in the prior expectation, 5% of the total variance of each tissue-specific

subtype (under Ci = 1 or 2) of the trait is explained by the corresponding set of tissue-specific eQTL SNPs

and 95% of the variance remains unexplained.

Inference procedure

Under this Bayesian framework, we implemented the maximum a posteriori (MAP) expectation-maximization

(EM) algorithm (Algorithm 1) to estimate the posterior probability that the phenotype of individual i is
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mediated through the genetic e↵ects of eQTLs specific to tissue k (P(Ci = k|X,Y )). We note that it is

also possible to consider a frequentist framework of the mixture model, i.e., instead of having a distribution,

(w1, w2), (↵1,↵2), (�1,�2), (�2
✏1 ,�

2
✏2) can be assumed to have a fixed unknown true value. We implemented

an EM algorithm to estimate the tissue-specific posterior probability across individuals under the frequen-

tist framework. Next, for a general K (� 2) number of tissues, we outline the MAP-EM algorithm that

implements the Bayesian framework, and the EM algorithm that implements the frequentist framework of

the mixture model [29, 30].

For individual i and tissue k, i = 1, . . . , n and k = 1, . . . ,K, P (Ci = k) = wk;
P

k wk = 1. Denote k
th

tissue-specific set of parameters by ✓k = (wk,↵k,�k,�
2
xk
,�

2
✏k) and full set of parameters by ⇥ = (✓1, . . . , ✓K).

Under the mixture model, the likelihood of individual i takes the following form:

f(yi|⇥) =
KX

k=1

wk�(yi|µ = µik,�
2 = �

2
✏k); with µik = ↵k + x

0

ki�k, (4)

where �(.|.) denotes the normal density. Thus, the full data log-likelihood conditioned on ⇥ is given by:

log f(Y |⇥) =
Pn

i=1 log f(yi|⇥). The prior log-likelihood of (C1, . . . , Cn) is given by
Pn

i=1 log f(Ci), where

f(Ci) is: P (Ci = k) = wk; (w1, . . . , wK) ⇠ Dirichlet(s1, . . . , sK). The prior of kth tissue-specific parameters

✓k has the following hierarchical structure: �k|�2
xk

⇠ Nmk(0,�
2
xk
Imk), �

2
xk

⇠ Inverse-Gamma(ak, bk), �2
✏k ⇠

Inverse-Gamma(a✏, b✏), ↵k ⇠ N(0,�2
↵). In the prior, ✓1, . . . , ✓K are independently distributed. Define the

posterior probability that the phenotype of individual i be assigned tissue k as:

�ik = P (Ci = k|yi,⇥) =
wk�(yi|µik,�

2
✏k)PK

t=1 wt�(yi|µit,�
2
✏t)

;
KX

k=1

�ik = 1 (5)

Thus, the choice of the tissue of interest across individuals is quantified by � = {�ik; i = 1, . . . , n; k =

1, . . . ,K}. Next, we define the total membership weight of k
th tissue-specific subtype: nk =

Pn
i=1 �ik,

P
k nk = n. In the expectation-maximization algorithm, the main component which we maximize is given by:

Q(⇥|⇥(r)) =
Pn

i=1 Qi(⇥|⇥(r)), where the conditional expectation Qi(⇥|⇥(r)) = ECi|yi,⇥(r){logf(yi, Ci|⇥)}

=
PK

k=1 �ik[log wk+log �(yi|µik,�
2
✏k)]. To obtain ⇥(r+1), we maximize {Q(⇥|⇥(r))+log f(⇥)} in the MAP-

EM algorithm implementing the Bayesian framework, and maximize only Q(⇥|⇥(r)) in the EM algorithm

implementing the frequentist framework [29,30]. The steps of the MAP-EM and EM algorithm are provided

in Algorithm 1 and 2 in the Appendix, respectively.
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Simulation study

We performed simulations to assess the performance of eGST with respect to the accuracy of classifying

the tissue of interest across individuals under various scenarios. We simulated phenotypes using the real

genotype data from the UK Biobank, in which two tissue-specific eQTL e↵ects generate the phenotype.

Design and choice of parameters

Consider n individuals and two non-overlapping sets of m1 SNPs and m2 SNPs representing eQTL SNP sets

specific to two tissues. We chose the SNPs on chromosome 8� 17 from the array SNPs in the UK Biobank

(UKB). We LD-pruned the SNPs such that two consecutive SNPs (on a chromosome) included in a SNP

set had r
2
< 0.25 (based on UKB in-sample LD). Each SNP had MAF > 1% and satisfied Hardy Weinberg

Equilibrium (HWE). We collected genotype data at both sets of SNPs for n individuals that were randomly

selected from 337,205 white-British individuals in the UKB.

Let w = (w1, w2) denote the proportions of individuals in the sample assigned to the two tissues where

(100⇥w1)% individuals are assigned the first tissue-specific subtype and (100⇥w2)% individuals are assigned

the second tissue-specific subtype. We assume that mk SNPs explain (100 ⇥ h
2
k)% of the total variance of

k
th tissue-specific subtype, k = 1, 2. So h

2
k is the heritability of kth tissue-specific subtype of the trait due

to mk SNPs representing k
th tissue-specific eQTLs, k = 1, 2. Thus, if first subtype of Y has a total variance

�
2
y1
, we draw each element of �1 as: �1j ⇠ N(0,

h2
1�

2
y1

m1
), j = 1, . . . ,m1. Similarly we simulate �2, the genetic

e↵ect of second set of m2 SNPs on the second subtype of Y . For simplicity, we assume �
2
y1

= �
2
y2

= �
2
y, but

the performance of eGST remains similar for other choices of this parameter. If the genetic susceptibility of

an individual’s phenotype is mediated through first tissue, we simulate the phenotype as: y = ↵1+x
0

1�1+✏1,

where x1 is the normalized genotype values of the individual at the first set of SNPs in the UKB. While

simulating the phenotype, we normalized the genotypes at each of first tissue-specific m1 SNPs only based

on the individuals assigned to the first tissue-specific subtype. However, when applying eGST on a simulated

dataset, we normalized the genotypes at each SNP based on all n individuals in the sample, because the tissue

of interest across individuals are unknown. We simulate the random error components from the following

distributions: ✏1 ⇠ N(0, (1� h
2
1)�

2
y1
) and ✏2 ⇠ N(0, (1� h

2
2)�

2
y2
).

We varied the choice of parameters to evaluate eGST in various simulation scenarios. We initially

assumed ↵1 = ↵2 = 0 and simulated �1,�2 from zero-mean normal distributions. We considered all possible

combinations of (w1, w2) where w1 2 ( 12 ,
1
3 ) and w2 2 ( 12 ,

1
3 ), and all possible combinations of (h2

1, h
2
2),
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where h2
1 and h

2
2 2 (10%, 20%, 30%, 40%, 50%). We also considered two unrealistic scenarios of null and high

subtype heritability: h
2
1 = h

2
2 = 0% and h

2
1 = h

2
2 = 90% to evaluate if eGST is performing as expected in

these extreme scenarios. We chose (m1,m2) with m1 = 1000, 1500 and m2 = 1000, 1500. We initially chose

n = 40, 000, and later n = 100, 000 to explore the e↵ects of an increased sample size. For each choice of the

complete set of simulation parameters, we summarized the results of eGST across 50 simulated datasets. We

also performed simulations for ↵1 6= ↵2 and di↵erent non-zero mean of �1,�2 distributions.

Results

We evaluated the classification accuracy of eGST with respect to the variance explained in the trait specific to

the two tissues by the two sets of tissue-specific SNPs’ e↵ects. As expected, the average area under the curve

(AUC) increases with the tissue-specific subtype heritability, ranging from AUC of 50% when h
2
1 = h

2
2 = 0%

to 95% when h
2
1 = h

2
2 = 90% (Figure 2). This is likely due to larger tissue-specific subtype heritabilities

inducing better di↵erentiation between the tissue-specific genetic e↵ects. Next, we assessed the performance

of eGST compared to a variation of our approach that assumes the parameters of the model to be known (the

performance obtained by this gold-standard strategy can be viewed as the maximum achievable under our

proposed framework). We find that eGST loses 1.4%�3.9% AUC on average compared to this strategy across

all simulation scenarios considered (Figure 2, Figure S2, S3). We also considered a thresholding scheme on

the tissue-specific posterior probabilities to balance total discoveries versus accuracy. As expected, the true

discovery rate of classifying the tissue of interest increases with the posterior probability threshold but the

proportion of discovery decreases (Figure S1).

We then explored the e↵ect of other parameters on the classification accuracy. First, we found that

increasing sample size n from 40, 000 to 100, 000 marginally increases the AUC by an average of 1% across

di↵erent simulation scenarios (Table S2), which indicates that increasing sample size improves the overall

classification accuracy. Second, we observed that as the number of causal SNPs explaining a fixed heritability

of each subtype increases, the average AUCmarginally decreases. For example, for a fixed subtype heritability

explained, the average AUC for 2000 causal SNPs (1000 per tissue) is 1% higher than that for 3000 causal

SNPs (1500 per tissue) across di↵erent choices of other simulation parameters (Table S3). Third, as the

di↵erence between the baseline tissue-specific mean of the trait across tissues increases, the classification

accuracy also increases. For example, we find that the AUC increased from 60% (for no di↵erence in tissue-

specific phenotype means, ↵1 = ↵2 = 0) to 63% when ↵1 = 0,↵2 = 1 (Table S4). We also explored the

impact of the di↵erence between the mean of tissue-specific genetic e↵ect size distributions and observed
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that the classification accuracy improves compared to zero mean of both causal e↵ects. For example, the

AUC increases from 60% to 63% if we consider E(�1j) = �0.02 and E(�2j) = 0.02, j = 1, . . . , 1000, instead

of zero means of �1,�2 (Table S5).

Finally, we explored the comparative performance of the MAP-EM algorithm under Bayesian framework

and the EM algorithm under frequentist framework. Although both approaches yield similar AUC, MAP-EM

performed better than EM with respect to the true discovery rate (TDR) at di↵erent posterior probability

thresholds in nearly all of the simulation scenarios (Figure 3, S4, S5). MAP-EM o↵ered an average of

0.05%� 20% higher TDR than EM across various posterior probability thresholds (Figure 3, S4, S5).

Inferring individual-level tissue of interest for BMI and WHRad-

jBMI

Having established in simulations that our approach is e↵ective in correctly classifying the individual-level

tissue of interest, we next analyzed two obesity related measures, BMI and WHRadjBMI, that are known to

have multiple tissues of interest mediating their genetic susceptibility [20,22]. We integrated expression data

from the Genotype-Tissue Expression (GTEx) project [17, 18] with the genetic association data in the UK

Biobank [23,24]. We focused on the adipose and brain tissue for BMI, and the adipose and muscle tissue for

WHRadjBMI [20,22].

Tissue-specific genes and eQTLs

Sets of tissue-specific expressed genes were obtained from Finucane et al. [22] who considered a gene to be

specifically expressed in a tissue of interest if the gene’s mean expression in the tissue is substantially higher

than its mean expression in other tissues combined, and calculated a t-statistic to rank the genes with respect

to higher expression in a specific tissue. Following their work [22] we considered the top 10% of all genes in a

tissue, ranked according to descending value of the t-statistic, as the set of genes specifically expressed in the

tissue. For BMI, we took the union of the sets of genes specifically expressed in adipose subcutaneous and

adipose visceral tissues, and considered it as the adipose-specific gene set. Similarly, we took the union of

sets of genes specifically expressed in the brain cerebellum and brain cortex regions (these two had maximum

sample size among di↵erent brain regions) to create a brain-specific set of genes. We excluded the genes

overlapping between these two sets to consider non-overlapping sets of adipose and brain specific genes. For

WHRadjBMI, we considered adipose subcutaneous and muscle skeletal connective tissue, and excluded the
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genes overlapping between the two sets of top 10% expressed genes in the tissues. We considered genes on

the autosomal chromosomes 1-22. In BMI analysis, the main reason behind merging two type of adipose (or

brain) tissues together to represent adipose (or brain) was to increase the number of tissue-specific eGenes

per tissue. For WHRadjBMI analysis, we considered the adipose subcutaneous and muscle skeletal tissues

to find di↵erent possible patterns in the performance of eGST that might be missed in BMI analysis due to

merging tissues.

The subsets of primary sets of tissue-specific genes that were found to be eGenes in GTEx were included in

the subsequent analyses. For WHRadjBMI analysis, among the initially selected 2228 adipose subcutaneous

tissue-specific genes, 1152 genes were found to be eGenes for which at least one bi-allelic SNP was reported

to be an eQTL in the GTEx summary-level data (version v7). Similarly, we had 1272 eGenes for muscle

skeletal tissue. In BMI analysis, we had 1887 eGenes for adipose and 1653 eGenes for brain. For each

eGene in a tissue, we took the top bi-allelic eQTL SNP (smallest SNP-expression association p-value) with

MAF > 1%. In BMI analysis, while creating an adipose-specific set of eQTLs, if a gene was both adipose

subcutaneous and visceral tissue-specific gene, we included the top eQTL of the gene in both tissues, one in

subcutaneous and one in visceral. We implemented the same strategy for brain tissue, as well.

Genotype data for tissue-specific eQTLs

From each set of tissue-specific eQTL SNPs (obtained from GTEx), we obtained the subset of SNPs which

were genotyped or imputed in UKB (imputation accuracy score > 0.9). The SNPs were also screened for

HWE (p-value > 10�6) in UKB. We LD-pruned each set of tissue-specific eQTL SNPs based on r
2 threshold

0.25 using UKB in-sample LD. In a tissue-specific set, if two eQTL SNPs had r
2
> 0.25, we excluded the

one for which the minimum of SNP-expression association p-value (in GTEx) across the genes (for which it

was found to be the top eQTL) was larger. Finally, after LD pruning, we had 1705 eQTL SNPs specific to

adipose and 1478 eQTL SNPs specific to brain for BMI analysis. We obtained 953 eQTL SNPs specific to

adipose subcutaneous (abbreviated and referred as AS in the following) tissue and 1052 eQTL SNPs specific

to muscle skeletal (abbreviated as MS) tissue for WHRadjBMI analysis. We used individual-level genotype

data for the tissue-specific SNP sets in UKB to infer tissue of interest across individuals. Before running

eGST, we normalized genotypes at each SNP based on the whole sample of individuals.
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Phenotype data

We considered the BMI of 337,205 unrelated white-British individuals in the UK Biobank (full release)

and excluded individuals for whom BMI or relevant covariates (age, sex, etc.) were missing. We then

adjusted BMI for age, sex, and the top 20 principal components (PCs) of genetic ancestry by linear regression

and obtained the BMI residuals for 336, 106 individuals. We initially developed eGST assuming that each

tissue-specific subtype of the trait follows a normal distribution. Since the BMI residuals obtained after

the adjustment of covariates deviated substantially from the normal distribution (p-value of Kolmogorov

Smirnov (KS) test for deviation from normal distribution < 2.2⇥ 10�16), we applied the rank-based inverse

normal transformation on the BMI residuals, and implemented eGST for the transformed phenotype data.

We adjusted WHR for BMI to obtain WHRadjBMI. We then adjusted WHRadjBMI for age, sex, and top

20 PCs of genetic ancestry for 336, 018 individuals. Since the WHRadjBMI residuals significantly deviated

from the normal distribution, we applied the inverse normal transformation on the residuals.

Results

In BMI analysis, 7.5% of the individuals where assigned a tissue based on 65% threshold of tissue-specific

subtype posterior probability; eGST classified the genetic susceptibility on the BMI of 11, 838 individuals

through adipose eQTLs and for 13, 354 individuals through brain eQTLs (Table S1). Individuals classified

to each of the tissues are distributed across di↵erent bins of BMI (Table S6). While the individuals classified

into adipose have a higher mean of BMI (30.4) than the population, the mean for brain-specific individuals

(27.6) is very close to the population mean (27.4) (Table S8). Similarly to the BMI analysis, the tissue of

interest for WHRadjBMI of a small percentage (5.7%) of individuals were classified (Table S1). One of the

possible reasons behind this is that we only considered the top eQTL for each tissue-specific gene in our

analysis. Individuals assigned to the two tissues are both spread across di↵erent bins of WHRadjBMI (Table

S7). The individuals classified into MS have a higher mean of WHRadjBMI and WHR (0.03 and 0.91) than

the population, and the mean for AS-specific individuals (�0.04 and 0.85) is lower than the population mean

(0 and 0.87) (Table S9).

We permuted the phenotype data across individuals while keeping the eQTL assignment to tissues fixed

as it is in the original data (see Appendix). For BMI, the average number of individuals classified as a tissue-

specific subtype (based on 65% threshold of subtype posterior probability) across 500 random permutations

of the phenotype was 7404 (s.d. 700) compared to 25,192 individuals classified as real adipose or brain
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specific subtype of BMI in the original data. For WHRadjBMI, the average number of individuals classified

as a tissue-specific subtype across 500 random permutations of the phenotype was 3433 (s.d. 517) compared

to 19,041 individuals classified as real AS and MS specific subtypes of WHRadjBMI.

Genetic basis of individuals with a prioritized tissue

To confirm that eGST identified groups of individuals with di↵erent genetic basis, we contrasted the SNP

e↵ects of the adipose and brain-specific eQTLs on the BMI of those individuals assigned to the adipose or the

brain specific subtype (see Appendix for more details). As expected, we find that in the individuals classified

as having the brain-specific subtype in their genetic contribution to BMI, the magnitude of the e↵ect size of a

brain eQTL SNP is larger than the corresponding e↵ect size magnitude of an adipose eQTL SNP (Wilcoxon

rank sum (WRS) right tail test p-value < 2.2 ⇥ 10�16 (Table 1)). The opposite is true for the individuals

classified as having the adipose-specific subtype of BMI. We also find that the magnitude of e↵ect size of

the adipose eQTLs are larger in the adipose-specific individuals than that in the brain-specific individuals,

and we find statistical evidence supporting the analogous hypothesis about the brain eQTLs, brain-specific,

and adipose-specific individuals of BMI (Table 1). We observe the same pattern in our analogous analysis

for WHRadjBMI (Table 1).

Phenotypic characteristics of individuals with a prioritized tissue

Next, we explored the phenotypic characteristics of the individuals assigned with a prioritized tissue. We

considered 106 phenotypes in the UK Biobank and tested each one for being di↵erentially distributed (hetero-

geneous) between the individuals of each tissue-specific subtype and the remaining population (see Appendix

for the testing procedures). In aggregate for BMI, 45 quantitative traits and 40 qualitative traits (total 85

among 106) were significantly heterogeneous between at least one of the BMI-adipose or BMI-brain specific

groups versus the remaining population (Table S8, S10, Table 2). None of these 106 traits was found to be

di↵erentially distributed between a random set of individuals from the population (with the same size as a

tissue-specific subtype group) and the remaining population (see Appendix for more details). 33 quantitative

and 34 categorical traits showed heterogeneity in both the adipose group versus the population, and the brain

group versus population. We found 6 quantitative and 3 categorical traits heterogeneous for individuals in

the adipose group but not the brain group, and found 6 quantitative and 3 categorical traits heterogeneous

for individuals in the brain group but not the adipose group (Table S8, S10, Table 2).

For example, hemoglobin concentration and snoring were heterogeneous for both the adipose and brain
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groups, lymphocyte count and alcohol intake versus 10 years previously were heterogeneous only for the

adipose group, and birth weight, nervous feelings only for the brain group (Table S8, S10, Table 2). We

observe that hemoglobin concentration was lower in individuals from both groups when compared to the

population, whereas reticulocyte percentage was relatively higher in individuals of the adipose but lower in

those with the brain tissue compared to the population (Figure 4, Table S8). Among binary traits, snoring

was more prevalent in those from the adipose group and less prevalent in brain group compared to the

population (Figure 5). We observe that for most of the case-control traits, both the tissue-specific groups of

individuals had a higher risk of developing the disease compared to the population (Figure 5). Of note, when

the tissue-specific relative change of the traits (see Appendix for the definition) were in the same direction

across tissues, they were of di↵erent magnitude for a majority of the traits (Figure 4, 5). For example, the

relative change were 15% and 8% for neutrophil count (Table S13). Similar to BMI, we observed phenotypic

heterogeneity across individuals with AS (MS) as the prioritized tissue for WHRadjBMI (Figure S6, S7,

Table S9, S11, S12, Supplementary Note).

Since BMI itself was di↵erentially distributed between the individuals of the adipose subtype as well

as brain subtype compared to the remaining population, we investigated whether the heterogeneity of 84

non-BMI traits (Table S8 and S10, Table 2) were induced due to BMI heterogeneity (see Appendix). After

BMI adjustment, 72 (out of 85) traits remained heterogeneous (41 quantitative traits (Figure 4, Table S13)

and 31 qualitative traits (Figure 5, Table 2)) consistent with unique phenotypic characteristics of these

individuals beyond the main phenotype e↵ect. All the quantitative traits which remained heterogeneous

after BMI adjustment have the same direction in BMI-adjusted tissue-specific relative change (see Appendix

for the definition) in both adipose and brain compared to the population (Figure 4, Table S13). Since we

used linear regression while evaluating BMI-adjusted tissue-specific relative change of heterogeneous non-

BMI quantitative traits, we also investigated a model-free BMI random matching strategy. We assessed

the magnitude of relative change of a trait between individuals of the brain (or adipose) subtype and a

group of BMI-matched random individuals drawn from the population (see Appendix). For example, the

magnitude of primary brain-specific relative change (prior to BMI matching) for hemoglobin concentration

(mean reticulocyte volume) decreased from 20% (5%) to 4% (2%) after BMI matching (Table S15). Of note,

it is very di�cult to exactly match BMI between a tissue-specific subtype group and the corresponding

random group of individuals, because bins of BMI in the tail of its distribution contain very few individuals

(Table S6), the majority of whom were assigned to a tissue-specific subtype. We observed the same pattern

in the results from analogous analyses for WHRadjBMI (Table S14, S16, Supplementary Note).
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To better understand the phenotypic characteristics of the individuals classified to a specific tissue, we

performed the following two experiments. First, we shu✏ed the tissue-specific eQTL SNPs between tissues to

create an artificial tissue-specific eQTL set and implemented eGST to identify groups of individuals having

subtype specific to the artificial tissues (see Appendix). We found that the mean of artificial tissue-specific

means of a quantitative trait (found primarily heterogeneous between adipose and/or brain specific group

versus the remaining population [Table S8]) across eQTL shu✏es was significantly further from the original

corresponding tissue-specific trait mean (Table S17 for BMI and Table S18 for WHRadjBMI). For example,

for waist circumference, the mean of pseudo tissue-specific means over the random eQTL shu✏es is 93.25

for adipose and 91.36 for brain, which are significantly di↵erent from the original adipose-specific mean 95.5

(P < 10�100) and brain-specific mean 89.2 (P < 10�100), respectively (Table S17). The same pattern was

observed for the primary phenotypes BMI (Table S17) and WHRadjBMI (S18) themselves. Second, we

permuted the phenotype data across individuals while keeping the eQTL assignment to tissues fixed as it

is in the original data (see Appendix). As before, we also observed that the mean of tissue-specific means

of a quantitative trait (found primarily heterogeneous between a tissue specific group versus the remaining

population [Table S8]) across random phenotype permutations was significantly further from the original

corresponding tissue-specific trait mean (Table S19 for BMI and Table S20 for WHRadjBMI).

Computational e�ciency

The MAP-EM algorithm underlying eGST is computationally e�cient. 70 MAP-EM iterations in the BMI

analysis (336K individuals with 1705 adipose-specific eQTLs and 1478 brain-specific eQTLs) took a runtime

of 1.75 hours and yielded a log likelihood improvement of 2 ⇥ 10�8 in the final iteration. Though we ran

eGST for a pair of tissues only considering the top eQTL per gene, it is computationally feasible to analyze

larger datasets considering more eQTLs and multiple tissues simultaneously.

Discussion

We proposed a new method to prioritize tissue of interest for a complex trait for every individual in the study,

integrating genotype and phenotype data and an external expression panel data. We applied our approach to

infer individual-level tissue of interest for BMI and WHRadjBMI in the UK Biobank, integrating expression

data in brain, adipose, and muscle tissues from the GTEx consortium, previously shown to be enriched in

heritability for these phenotypes [20,22]. Interestingly, multiple metabolic traits, neuropsychiatric traits, and
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other traits attained significant di↵erences between the tissue-specific groups of individuals and the remaining

population, suggesting a biologically meaningful interpretation for these groups of individuals. Even after

adjusting these traits for the primary phenotype, the majority of the traits that were initially heterogeneous

remained di↵erentially distributed between a tissue-specific group and the remaining population.

Although in this work we demonstrated the utility of eGST for a pair of tissues for BMI and WHRadjBMI,

the MAP-EM algorithm underlying eGST is general and can be applied to any number of tissues. We note

that our model can alternatively be viewed as an approach to assign individuals’ phenotypes to a collection

of tissues that are biologically important for the trait based on tissue-specific polygenic risk score [25].

We conclude with several caveats and limitations of our work and opportunities for future improvement.

First, we investigated the utility of eGST using adipose and brain specific eQTLs for BMI [20, 22], and

using adipose and muscle specific eQTLs for WHRadjBMI [22]. However, the true tissues of interest could

be di↵erent. Second, it is challenging to identify a set of SNPs that adequately represent a tissue-specific

genetic architecture. Other types of tissue-specific QTLs (e.g., methylation QTLs, histone QTLs, splicing

QTLs, etc. [26]) could be combined with eQTLs to create a set of SNPs that better represent a tissue-specific

genetic architecture. In this case, the accuracy of inference will depend on how e�ciently we can create the

set of tissue-specific expressed genes and corresponding set of tissue-specific QTLs. Third, we developed the

model for continuous traits, meaning that to extend the method for case-control data, we would need to use

a logistic regression likelihood. Another future methodological investigation is to extend the model under

penalized regression framework; if the number of SNPs characterizing the genetic architecture of a tissue

becomes large and the ratio between the number of individuals and number of SNPs in the data decreases,

model fitting issues can arise. Finally, Figure 1b motivates that if gene expression data across tissues are

available, it is possible to use the expression data itself to identify expression subtypes of the trait. However,

since expression data is not available in most GWAS cohorts, an alternative avenue will be to impute the

genetically regulated component of gene expression, e.g., using PrediXcan [27], EpiXcan [28] and identify

tissue of interest based on imputed gene expression. A possible advantage of such approach will be that

all cis eQTLs can be unified to impute tissue-specific expression (instead of top few eQTLs only). Another

limitation of our analysis was that we focused on the GTEx data which does not have a large sample size

across tissues.
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URLs

eGST R-package: https://cran.r-project.org/web/packages/eGST/index.html

Tissue-specific expressed genes: https://data.broadinstitute.org/alkesgroup/LDSCORE/LDSC_SEG_ldscores/

GTEx portal: https://gtexportal.org/home/

UK Biobank: https://www.ukbiobank.ac.uk

PLINK: https://www.cog-genomics.org/plink2
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Appendix

Algorithm 1 Maximum a posteriori (MAP) expectation maximization (EM) algorithm under Bayesian
framework of the mixture model

1: Initialization: For k = 1, . . . ,K, choose �
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4: Convergence check: Compute the new log-likelihood:

logL(r+1) =
1

n
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k �(yi|µ(r+1)
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✏k )
⌘

Return to step 2, if |logL(r+1) � logL(r)| > �, for a pre-fixed threshold � (e.g. 10�5).
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Algorithm 2 Expectation Maximization (EM) algorithm under frequentist framework of the mixture model

1: Initialization: For k = 1, . . . ,K, choose �
2(0)
✏k = 0.95 ⇥ var(Y ), �

2(0)
xk

= 0.05⇥var(Y )
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, ↵
(0)
k = 0,
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4: Convergence check: Compute the new log-likelihood:
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Return to step 2, if |logL(r+1) � logL(r)| > �, for a pre-fixed threshold �.
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BMI and WHRadjBMI analysis in the UK Biobank integrating GTEx data

Genetic basis

We contrasted the genetic basis of the groups of individuals assigned to the adipose and brain-specific

subtypes of BMI. Let �1 denote the joint SNP-e↵ects of the adipose-specific eQTLs on the BMI of the

individuals classified as the adipose-specific subtype for whom adipose-specific posterior probability are

> 50%. We chose a relaxed threshold of posterior probability because we used multiple linear regression

(MLR) to estimate the joint SNP e↵ects of a set of tissue-specific eQTLs on the BMI of a tissue-specific

group of individuals, and MLR requires su�ciently large number of individuals (assigned to the corresponding

tissue-specific subtype) in the sample for e�cient estimation of the model parameters. Let �1 be the joint

SNP e↵ects of the brain eQTLs on BMI of individuals assigned to the adipose subtype. Since the BMI of

individuals assigned to the adipose subtype should have larger e↵ects from adipose-specific eQTLs than from

brain-specific eQTLs, we should expect that the magnitude of a general element in �1 would be larger than

the magnitude of a general element in �1. Based on the individuals assigned to the adipose subtype, we

estimated �1 and �1 using multiple linear regression of BMI residual on the genotypes of adipose eQTLs and

brain eQTLs in UKB, respectively. Based on the estimated �1 and �1 vectors, we performed the Wilcoxon

rank sum (WRS) test to evaluate H0 : |�1| = |�1| versus H1 : |�1| > |�1|, where �1 and �1 represent a

general element in �1 and �1 vectors, respectively. Similarly, we tested if the magnitude of the e↵ect of

a brain eQTL SNP on the BMI of individuals assigned to brain-specific subtype (�2) was larger than the

corresponding e↵ect magnitude of an adipose eQTL SNP (�2). We also tested whether the adipose eQTLs

had a larger SNP e↵ect on the adipose subtype of BMI than on the brain subtype, and whether brain eQTLs

had a larger e↵ect on the brain subtype than on the adipose subtype. We performed analogous experiments

for the groups of individuals assigned to AS and MS tissue-specific subtype of WHRadjBMI.

Phenotypic characteristics

We explored if the group of individuals whose BMI were classified as a tissue-specific genetic subtype is

phenotypically distinct from the rest of the population. We considered 106 phenotypes collected in the UK

Biobank and individually tested each trait for being di↵erentially distributed between the individuals of

each tissue-specific subtype and the remaining population (for BMI, 11,838 individuals assigned to adipose

subtype and 13,354 individuals assigned to brain subtype based on 65% threshold of subtype posterior

probability [Table S1]). We performed the Wilcoxon rank sum test for a quantitative trait and �
2 test
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based on contingency table for a qualitative/categorical trait. We corrected the p-values for multiple testing

across traits using the Bonferroni correction procedure. The same approach was adopted to find the traits

di↵erentially distributed between the individuals classified as a tissue-specific subtype of WHRadjBMI and

the remaining population (11,803 individuals with AS subtype and 7,238 individuals of MS subtype [Table

S1]). For a case-control trait, we term the percentage of individuals (among those assigned to the tissue)

who had the disorder as tissue-specific risk of the disease.

A random group of individuals is phenotypically homogeneous with the remaining population

For BMI, we randomly selected two groups of individuals from the population with the same size as the

groups of tissue-specific BMI subtype (11,838 and 13,354) and evaluated phenotypic heterogeneity across

106 traits between each of the two random groups and the remaining population using WRS test for a

continuous trait and contingency table �
2 test for a qualitative trait. We repeated the random selection of

individuals from the population to replicate the experiment. We did the same experiment for WHRadjBMI.

BMI- (or WHRadjBMI-) adjusted phenotypic heterogeneity

BMI itself was found to be di↵erentially distributed between the individuals with the adipose (as well

as brain) specific subtype and the remaining population. Therefore, we further investigated whether the

heterogeneity of non-BMI traits between a tissue-specific subtype group and the remaining population were

induced due to BMI heterogeneity. For each quantitative trait initially found to be heterogeneous between

individuals assigned to one of the subtype groups and the remaining population (Table S8), we first adjusted

the trait for BMI in the whole population and obtained the trait residuals. We then tested for heterogeneity

between the trait residual in the adipose (or the brain) subtype group and the remaining population using

WRS test. Similarly, for categorical traits that were initially heterogeneous (Fig. 5, Table 2, Table S10), we

performed a binomial or multinomial (depending on the number of categories of the trait) logistic regression

adjusting for BMI in the population. We adopted the same strategy for WHRadjBMI (which itself was found

to be di↵erentially distributed between AS as well as MS group and the remaining population) to find which

among the non-WHR traits remain heterogeneous after WHRadjBMI adjustment.

Primary and BMI- (or WHRadjBMI-) adjusted tissue-specific relative change

For each quantitative trait that was di↵erentially distributed between the individuals of a tissue-specific sub-

type and the remaining population, we measured the relative change (or di↵erence) of the trait between the

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/674226doi: bioRxiv preprint 

https://doi.org/10.1101/674226
http://creativecommons.org/licenses/by-nc-nd/4.0/


tissue-specific subtype group and remaining population as: tissue specific mean � remaining population mean
population s.d. ⇥ 100,

where the tissue-specific mean of the trait is calculated only in the individuals classified as the corresponding

tissue-specific subtype of BMI (or WHRadjBMI). To quantify BMI-adjusted tissue-specific relative change of

a primarily heterogeneous quantitative trait, we computed the same measure for BMI-adjusted trait residual

(instead of the trait itself). To evaluate the tissue-specific relative change in the risk of a binary/case-control

trait, we calculated tissue specific prevalence � population prevalence
population s.d. ⇥ 100, where the tissue-specific prevalence of a

disease is computed only in the individuals assigned to the corresponding tissue-specific subtype.

BMI- (or WHRadjBMI-) matched tissue-specific relative change

In order to further investigate the role of tissue-specific genetics (uncoupled from the role of BMI hetero-

geneity) underlying the phenotypic characteristics of the individuals assigned to a tissue-specific subtype

of BMI, we performed the following experiment. We split the range of BMI of the individuals assigned

to the adipose subtype (11,838 individuals [Table S1]) into 30 consecutive non-overlapping bins. In each

BMI bin, we counted the number of individuals assigned to the adipose subtype, and randomly sampled

the same number of individuals from all of the individuals (in the population) contained in the bin. In this

way, we randomly selected a pool of individuals (with the same size as the adipose-specific group) from the

population, who are matched with the BMI of the adipose subtype individuals. Next, for each non-BMI

quantitative trait which was found to be heterogeneous between the adipose group and the remaining popu-

lation after BMI adjustment (Table S13), we computed: | adipose specific mean�BMI matched random mean
population s.d. | ⇥100,

where the adipose specific mean of the trait is calculated only in the individuals of the adipose subtype and

the BMI-matched random mean is the trait mean calculated only in the BMI-matched (with adipose group)

random pool of individuals. This measure quantifies the relative change/di↵erence of the trait between the

individuals assigned to the adipose subtype and the corresponding BMI-matched random individuals drawn

from the population. This should provide insights into the phenotypic characteristics of the individuals

with the adipose subtype, which is solely mediated through adipose-specific genetics (uncoupled from the

corresponding e↵ect of BMI heterogeneity between the adipose group and the remaining population). We

repeated the random selection of BMI-matched individuals 500 times and computed the mean and s.d. of

the above measure of BMI-matched tissue-specific relative change of a quantitative trait across random se-

lections. We replicated the same experiment for individuals with brain subtype of BMI. For WHRadjBMI,

we performed the same experiment to characterize the phenotypic characteristics of AS (or MS) subtype

group induced due to AS- (or MS-) specific genetics only.
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Tissue-specificity of phenotypic characteristics

To investigate tissue-specificity of the phenotypic characteristics of the individuals assigned to adipose and

brain specific subtype of BMI, we randomly shu✏ed/exchanged 739 (half of the minimum of number of

adipose and brain specific eQTLs = 1478
2 ) eQTLs between the set of adipose and brain specific eQTLs to

create artificial tissue-specific eQTL sets. We considered 500 such random shu✏es. Keeping the phenotype

data fixed, for the genotype data at each set of artificial tissue-specific eQTLs, we ran eGST to identify the

groups of individuals with the BMI subtype specific to the artificial adipose and brain tissues (based on the

posterior probability threshold of 65%). Next, for each quantitative trait that was found to be primarily

heterogeneous between the individuals assigned to the original adipose (or brain) subtype of BMI and the

remaining population (Table S8), we computed the artificial adipose and brain tissue-specific trait mean only

in the individuals classified into the corresponding artificial tissue-specific subtype of BMI. Then for each

trait, we computed central tendency measures of the artificial tissue-specific trait means across 500 sets of

artificial tissue-specific eQTLs. For each trait, we also tested whether the overall mean of the artificial tissue-

specific trait means is significantly di↵erent from the corresponding original (adipose or brain) tissue-specific

trait mean. We performed the same experiment for WHRadjBMI.

Permuting phenotype data across individuals

Next, we performed a similar experiment for permuted phenotype (BMI or WHRadjBMI) data while keeping

the eQTL assignment to tissues fixed as it is in the original data. We consider 500 random permutations of

BMI across individuals. Keeping the genotype data fixed, we ran eGST for each permuted phenotype data

and classified the tissue of interest across individuals based on 65% threshold of subtype posterior probability.

As before, in each of these 500 pairs of tissue-specific subtype groups of individuals thus obtained, tissue-

specific means were computed for each quantitative trait that was found to be primarily heterogeneous

between the individuals of the original adipose (or brain) subtype of BMI and the remaining population

(Table S8). For each trait, we then computed central tendency measures of the tissue-specific means across

500 random BMI permutations. For each trait, we tested whether the overall mean of the tissue-specific

trait means obtained across random permutations was significantly di↵erent from the corresponding original

(adipose or brain) tissue-specific trait means. We conducted the same experiment for WHRadjBMI.
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Figure 1: The top diagram (a) explains our main hypothesis and the bottom diagram (b) explains our model.
Consider two tissues of interest for a phenotype, tissue 1 and tissue 2, where gene A has higher expression
but gene B has much lower expression in tissue 1, and gene B has higher expression but gene A has much
lower expression in tissue 2. The key hypothesis is that the susceptibility of the phenotype for the first two
individuals is mediated through the e↵ect of gene A in tissue 1, in which case we can assign tissue 1 as the
tissue of interest for these individuals (similarly tissue 2 for last two individuals). We refer to the phenotype of
the first two individuals as tissue 1 specific subtype. We use genotypes at the tissue-specific eQTLs as a proxy
for the expressions of the corresponding tissue-specific genes (b). We consider a finite mixture model with
each of its components being a linear model regressing the trait on the genotypes at each set of tissue-specific
eQTLs. Our method takes as input the individual-level measurements of the phenotype and genotypes at the
sets of tissue-specific eQTLs and provides per-individual tissue-specific posterior probabilities as the main
output.
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Figure 2: In the first diagram (a), we present the receiver operating characteristic (ROC) curve evaluating
the classification accuracy of eGST for a single dataset simulated under the following scenarios: h

2
1 =

h
2
2 = 0%, 10%, 20%, 30%, 40%, 50%, 90%, w1 = w2 = 1

2 , m1 = m2 = 1000, n = 40000. The mean (across
50 simulated datasets) area under the curve (AUC) obtained by eGST under the same scenarios are also
provided. Here h

2
1 and h

2
2 are the heritability of tissue-specific subtypes of the trait due to m1 and m2

SNPs representing two sets of tissue-specific eQTL SNPs, w1 and w2 are the proportions of individuals in
the sample assigned to the two tissues, n is the total number of individuals. In the second diagram (b),
box plots of AUCs obtained by eGST and the gold-standard strategy implementing our model in which true
model parameters were assumed to be known while estimating the tissue-specific posterior probabilities are
presented across the same simulation scenarios.
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Figure 3: Comparison between the true discovery rate (TDR) of classifying tissue-specific subtypes by the
MAP-EM algorithm (under the Bayesian framework of the mixture model which eGST employs) versus
the EM algorithm (under the frequentist framework of the mixture model) based on the threshold of tissue-
specific subtype posterior probability as 65%, 70%, 75%, 80%, 85%, 90%, 95%, respectively. Box plots of TDR
across 50 datasets simulated under h

2
1 = h

2
2 = 10%, w1 = w2 = 1

2 , m1 = m2 = 1000, n = 40, 000 are
presented. Here h

2
1 and h

2
2 are the heritability of tissue-specific subtypes of the trait due to m1 and m2

SNPs representing two sets of tissue-specific eQTL SNPs, w1 and w2 are the proportions of individuals in
the sample assigned to the two tissues, n is the total number of individuals.
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Figure 4: Percentage of tissue-specific relative change of the quantitative traits that were di↵erentially dis-

tributed between the individuals assigned to a tissue-specific subtype of BMI and the remaining population.

Traits in the left panels are primarily heterogeneous for both tissue-specific groups and traits in the right pan-

els are heterogenous for one tissue-specific group. We measure the tissue-specific relative change of a trait by:
tissue specific mean - remaining population mean

population s.d. ⇥ 100, where the tissue-specific mean is computed only in the in-

dividuals with the corresponding tissue-specific subtype. The same measure is calculated for a trait residual obtained

after adjusting for BMI to quantify the tissue-specific relative change of the trait after BMI adjustment. The faded

green (or blue) bar presents primary adipose (or brain) tissue-specific relative change of a trait compared to the

remaining population. The dark green (or blue) bar presents the BMI-adjusted adipose (or brain) specific relative

change of a trait. Each trait listed here was found to be di↵erentially distributed between at least one of the adipose or

brain specific groups and the remaining population after BMI adjustment. For each trait, the asterisk mark attached

to the bars indicates which tissue-specific group remains significantly heterogeneous after BMI adjustment.
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Nervous feelings*
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Seen a psychiatrist for nerves anxiety tension or depression*
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Figure 5: Percentage of tissue-specific relative change in the risk of case-control traits between the individuals
assigned to a tissue-specific subtype of BMI and the population. The tissue-specific relative change of a dis-

ease risk is measured by: tissue specific prevalence - population prevalence
population s.d. ⇥100. Tissue-specific prevalence

of the disorder was computed only in the individuals classified as the corresponding tissue-specific subtype of
BMI. The asterisk mark attached to the traits indicate which trait remains di↵erentially distributed between
at least one of the adipose and brain tissue-specific groups of individuals and the remaining population after
BMI adjustment. For each trait the asterisk mark attached to the bars indicate which tissue-specific group
of individuals remains significantly heterogeneous for the trait after BMI adjustment.
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BMI analysis

Mean magnitude of eQTLs’ e↵ects
BMI subtype Adipose Brain P-values

Adipose 0.045 (|�1|) 0.028 (|�1|) <2.2E-16 (|�1| > |�1|) <2.2E-16 (|�2| > |�1|)
Brain 0.034 (|�2|) 0.054 (|�2|) <2.2E-16 (|�1| > |�2|) <2.2E-16 (|�2| > |�2|)

WHRadjBMI analysis

Mean magnitude of eQTLs’ e↵ects
WHRadjBMI subtype AS MS P-values

AS 0.0007 (|�1|) 0.0004 (|�1|) <2.2E-16 (|�1| > |�1|) <2.2E-16 (|�2| > |�1|)
MS 0.0005 (|�2|) 0.0007 (|�2|) E-9 (|�1| > |�2|) 9.1E-16 (|�2| > |�2|)

Table 1: Genetic heterogeneity between groups of individuals assigned to tissue-specific subtypes of BMI
(or WHRadjBMI). In the BMI analysis, �1 denotes the SNP-e↵ect of an adipose eQTL on BMI in those
individuals assigned to the adipose-specific subtype of BMI, �2 is the SNP-e↵ect of a brain eQTL on the
brain-specific subtype of BMI, �1 is the SNP-e↵ect of a brain eQTL on the adipose subtype and �2 is the
e↵ect of an adipose eQTL on the brain subtype. We provide the mean magnitude of the e↵ect sizes of a
tissue-specific eQTLs on the BMI of the corresponding tissue-specific group of individuals (e.g., joint SNP-
e↵ect of the adipose eQTLs on the BMI of individuals with adipose subtype), and the p-values obtained
from the Wilcoxon rank sum (WRS) right tail tests of e↵ect heterogeneity. For each test, the alternative
hypotheses are listed in parentheses, while the null hypothesis is the equality between the corresponding pair
of parameters. These parameters are defined in the same way for the adipose subcutaneous (AS) and muscle
skeletal (MS) tissue-specific subtype of WHRadjBMI and the same analyses are performed.
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P adipose P brain signif tissue
Trait primary BMIadj primary BMIadj primary BMIadj #categ

⇤Overall health rating 4.98E-239 1.83E-15 6.96E-87 1.59E-19 both both 4
⇤Alcohol intake frequency 8.05E-133 1.51E-06 7.47E-73 3.09E-11 both both 6
⇤Frequency of tiredness lethargy in last weeks 4.04E-91 0.63 4.03E-38 9.44E-06 both brain 4
⇤Frequency of depressed mood in last 2 weeks 5.00E-50 2.41E-05 3.09E-27 5.23E-07 both both 4
⇤Frequency of unenthusiasm 3.41E-47 5.74E-05 3.26E-22 0.005 both adipose 4
disinterest in last 2 weeks
⇤Falls in the last year 5.19E-45 6.42E-05 3.72E-15 0.0002 both both 3
Illness injury bereavement stress in last 2 years 6.49E-44 0.5 1.11E-10 0.93 both none 7
⇤Alcohol drinker status 2.50E-35 7.56E-18 1.66E-29 2.17E-24 both both 3
Getting up in morning 1.05E-28 0.14 2.20E-23 0.003 both none 4
⇤Weight change compared with 1 year ago 6.15E-21 3.81E-13 9.43E-23 3.18E-20 both both 3
⇤Smoking status 3.14E-06 1.31E-08 7.62E-24 3.06E-11 both both 3
⇤Sleeplessness insomnia 7.15E-24 5.09E-05 2.88E-10 0.0001 both both 3
Frequency of tenseness restlessness in last 2 weeks 5.08E-19 0.26 5.24E-20 0.004 both none 4
Daytime dozing sleeping narcolepsy 1.51E-17 0.84 0.0002 0.4 both none 4
Blood clot DVT bronchitis emphysema asthma 5.76E-19 0.05 1.36E-08 0.24 both none 6
rhinitis eczema allergy diagnosed by doctor
⇤Current tobacco smoking 5.16E-07 1.51E-08 4.88E-19 2.71E-11 both both 3
⇤Past tobacco smoking 2.63E-06 3.81E-12 1.86E-15 2.47E-09 both both 4
Qualifications 1.31E-08 0.30 1.62E-06 0.1 both none 7
Alcohol intake versus 10 years previously 4.16E-21 0.11 0.005 0.36 adipose none 3
Nap during day 1.30E-14 0.08 0.06 0.02 adipose none 3
Morning evening person chronotype 2.88E-07 0.43 0.0007 0.72 adipose none 4

Table 2: Qualitative/categorical traits with three or more categories that are di↵erentially distributed be-
tween at least one of the adipose and brain-specific subtype groups of individuals for BMI and the remaining
population. For each trait, we provide the p-values of testing heterogeneity between each tissue-specific
subtype group of individuals and the remaining population before (primary) and after BMI adjustment
(BMIadj). For each trait, tissue-specific groups which appear to be significantly heterogeneous (signif tissue)
before (primary) and after BMI adjustment (BMIadj) are also provided. The asterisk mark attached to the
traits indicate which trait remains di↵erentially distributed between at least one of the tissue-specific groups
and the remaining population after BMI adjustment. The number of categories for each trait (#categ) are
also listed.
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