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Abstract. Stochastic effects in cell growth and division drive variabil-
ity in cellular volumes both at the single-cell level and at the level of
growing cell populations. Here we consider a simple and tractable model
in which cell volumes grow exponentially, cell division is symmetric, and
its rate is volume-dependent. Consistently with previous observations,
the model is shown to sustain oscillatory behaviour with alternating
phases of slow and fast growth. Exact simulation algorithms and large-
time asymptotics are developed and cross-validated for the single-cell and
whole-population formulations of the model. The two formulations are
shown to provide similar results during the phases of slow growth, but
differ during the fast-growth phases. Specifically, the single-cell formu-
lation systematically underestimates the proportion of small cells. More
generally, our results suggest that measurable characteristics of cells may
follow different distributions depending on whether a single-cell lineage
or an entire population is considered.

Keywords: Cell growth · Cell division · Cell size

1 Introduction

Each living cell is an individual entity occupying a given volume enclosed by
the cell membrane [1]. Homeostatis of cell volume is due to balance between
cell growth and division. Growth in cell volume is understood to occur continu-
ously in time and is often assumed to be exponential. Cell division is typically
represented as a discrete event at which the volume of a mother cell abruptly
changes into the volume of either daughter cell [19]. Specifically, symmetric divi-
sion means that each daughter obtains exactly one half of their mother’s volume.
The contents of a mother cell, including its transcriptome and proteome, are also
divided between its daughters. Fluctuations in cell volume due to cell growth and
division can therefore correlate with gene-expression noise [3].

There are (at least) two alternative approaches to the modelling of cell-growth
dynamics. In the first approach, one follows a single cell line, discarding the other
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daughter cell at each division. In the single-cell approach, the time-dependent
cell volume can be represented by a piecewise deterministic [6] or drift-jump
Markovian process [15]. One is interested in the probability distribution of the
random process, in particular at steady state. In the second approach, one fol-
lows both daughter cells, and is interested in the dynamics of the population size
as well as the distribution of cell volumes among the population, in particular in
the large-time limit. A question of interest is whether the probability distribution
obtained from the single-cell approach and the population distribution obtained
from the population approach are the same or different. The difference between
single-cell and population approaches can be relevant in a number of applica-
tions, e.g. in cancer biology, which allow for experimental setups in which the
reproductive history of a cell can be traced [10]. We will examine this problem
for a particular type of volume-growth model.

The maintenance of homeostasis requires that cells actively control their pro-
liferation [14, 16, 18]. The necessary feedback can be exerted through e.g. the
cell’s age [9], its current size [13], the size at its inception [2], or by a combi-
nation of these mechanisms [11, 17]. In this manuscript we specifically focus on
size-based regulation. Within the framework of a relatively simple model, we will
proceed towards the following goals: (i) develop exact and efficient stochastic al-
gorithms to simulate the volume growth process; (ii) characterise the large-time
asymptotic behaviour of the process by formulating and solving a master equa-
tion; and (iii) draw conclusions about the similarities and differences between
the single-cell and the whole-population approach to modelling cell growth.

The outline of the paper is as follows: in Section 2 we introduce and loga-
rithmically transform the model. In Section 3 we present an iterative algorithm
for simulating the single-cell version of the model and a recursive algorithm for
the simulation of the whole-population version. In Section 4 we introduce the
concept of periodicity in the context of the current model. In Sections 5 and 6
we formulate the master equation and provide tractable closed-form formulae
for large-time solutions in the single-cell and whole-population cases. In Section
7 we present the main implications of the current work on the dynamics of cell
growth and cell volume distributions. In Section 8 we extract conclusions from
the presented analysis.

2 Model fundamentals

Our model for cell-volume growth is based on the following fundamentals:

1. Cell volume grows exponentially in time. Specifically,

V (t) = V (0)2t, (1)

where t is the time since birth. Time is measured in units of the volume
doubling time.

2. A mother cell can divide into two daughter cells. Either daughter cells obtains
one half of the mother’s volume. From a single-cell viewpoint, at the time of
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Cell-volume distributions 3

division the volume changes abruptly according to the mapping

V → V

2
, (2)

where the volume on the left-hand side represents the volume of the mother
right before the division and a daughter’s volume is on the right-hand side.

3. Cells divide with a volume dependent stochastic rate γ(V ). We specifically
focus on the case of

γ(V ) =

{
0 if V < Vc,

α if V ≥ Vc,
(3)

where α is a constant rate and Vc is a critical volume threshold.

It turns out that it is much more convenient to use a logarithmic transfor-
mation of cell volume defined by

u = 1 + log2

V

Vc
. (4)

By (3), cells cannot divide before they reach the critical volume Vc. Hence the
cell volume is always greater than Vc

2 , and the log-volume, as defined by (4), is
always positive.

The model fundamentals (1)–(3), when expressed in the language of log-
volume, read as follows:

1. Dividing (1) by the critical volume Vc and taking the binary logarithm gives

u(t) = u(0) + t, (5)

i.e between divisions a cell’s log-volume grows linearly with unit rate.

2. Taking the binary logarithm of (2) divided by Vc gives

u→ u− 1, (6)

meaning that, upon division, a cell’s log-volume decreases by one.

3. Since requiring V ≥ Vc is equivalent to u ≥ 1, the dependence (3) of the
stochastic rate on volume translates into

γ(u) =

{
0 if u < 1,

α if u ≥ 1,
(7)

in terms of the log-volume.

Table 1 summarises the model fundamentals in the linear and logarithmic
volume scales.
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Volume V
Log-Volume
(U = 1 + log2

V
Vc

)

Growth V (t) = V (0)2t u(t) = u(0) + t

Division Map V → V
2

u→ u− 1

Division Rate γ(V ) =

{
0 if V < Vc,

α if V ≥ Vc,
γ(u) =

{
0 if u < 1,

α if u ≥ 1,

Table 1. Model formulation in terms of Volume V (left column) and Log-Volume
u = 1 + log2

V
Vc

(right column).

3 Stochastic simulation

In this section we present an algorithmic approach the model of cell-volume
growth based on the fundamentals presented in Section 2. Hereby we distinguish
two versions of the model.

Single-cell version Upon cell division, one of the daughter cells is followed,
the other discarded. We are interested in the probabilistic description of the
cell volume along an arbitrarily chosen lineage.

Population version Both daughter cells are followed upon cell division. We are
interested in the growth of the number of offspring and in the distribution
of volume across the population.

Throughout this section we will operate with log-volumes of cells rather than
their volumes (see Section 2 for explanation).

A common building block in both versions of the algorithm is to sample
the waiting time τ for division of a cell which currently has log-volume u. The
waiting time consists of two parts: the deterministic time required to reach the
critical log-volume of one; the stochastic time that it takes to divide once the
critical threshold has been passed. Since log-volume grows with unit rate, the
deterministic waiting time is 1 − u if u < 1 and zero if it is greater than one.
After crossing the threshold division has a constant propensity α to occur; it
follows that the stochastic waiting time will be exponentially distributed with
mean 1/α. Putting the deterministic and stochastic parts of the waiting time τ
together, we find that it can be sampled as

τ = max{1− u, 0} − lnθ

α
, (8)

where θ is drawn from the uniform distribution on the unit interval. We have
thereby used the well known fact that −lnθ is exponentially distributed with
unit mean.

We are now ready to go through the individual steps of the single-cell version
of the simulation algorithm (Algorithm 1). The algorithm requires the following
inputs: the model parameter α which gives the (post-threshold) division rate;
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Cell-volume distributions 5

Algorithm 1 Single-cell version

Require: Timepoints t0, . . . , tm; division rate α; initial log-volume u0

Ensure: Sampled values u1, . . . , um of log-volumes at the given timepoints

1: Initialise current time and log-volume: t← t0; u← u0

2: while t < tm do
3: Draw θ from the unit-interval uniform distribution
4: Set τ ← max{1− u, 0} − lnθ

α

5: for all i such that t ≤ ti < t+ τ do
6: Set ui ← u+ ti − t.
7: end for
8: Update time and log-volume: t← t+ τ ; u← u+ τ − 1
9: end while

the initial log-volume u0; the time points t0, t1, . . ., tm at which we wish the
log-volume to be recorded. We assume that these time points are ordered from
the lowest to the largest. Time t0 is understood to be the initial time at which
the log-volume is given by the intial value u0. The algorithm returns the sampled
value u1, . . ., um of log-volumes at the given time points.

The algorithm starts by initialising the current time t and log-volume u with
the initial values t0 and u0 (Line 1 in Algorithm 1). The next steps are repeated
while the current time t is less that the largest time point tm at which a recording
of the log-volume is sought (Lines 2–9): first, the waiting time until the next
division is sampled in Lines 3–4 using the formula (8); second, log-volumes are
recorded at all recording times ti which fall between the current time t and the
time t + τ of next division (Lines 5–7); third, the current time and log-volume
are updated to the post division values (Line 8).

We are now well positioned to proceed to the population version of the simu-
lation algorithm (Algorithm 2). The population version is only marginally more
elaborate than the single-cell version thanks to the use of recursion. Algorithm 2
requires the same input as Algorithm 1, but provides a different output, return-
ing for each given time point a list of log-volumes across the whole population.
By a list we understand a collection of elements (here log-volumes), some of
which may be present in the list multiple times. We may append a number to
a list; we may query how many times a given element is present in the list; we
may query the total number of elements in the list — here the population size.

The algorithm proceeds as follows. First, we make sure that the lists are
empty initially (Lines 1–3). Then we make a call to the procedure CELL (Line
15). The CELL procedure is defined recursively in Lines 4–14. The procedure
calculates the contribution made by a cell that is introduced into the population
at time t0 with log-volume u0, and by the entire offspring of that cell, to the
lists of log-volume recordings. The cell’s individual contribution is calculated in
Lines 5–9. Comparing Lines 5–9 in Algorithm 2 to the corresponding passage in
Algorithm 1 (Lines 3–7), we note that the two sections of code differ only in that
the cell’s log-volume is either stored as a single value (Algorithm 1, Line 6) or

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2019. ; https://doi.org/10.1101/673442doi: bioRxiv preprint 

https://doi.org/10.1101/673442
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 P. Bokes and A. Singh

Algorithm 2 Population version

Require: Timepoints t0, . . . , tm; division rate α; mother cell’s log-volume u0

Ensure: Lists U0, . . . ,Um of log-volumes at the given timepoints

1: for i = 1, . . .m do
2: Initialise Ui to an empty list
3: end for

4: procedure cell(t, u)
5: Draw θ from the unit-interval uniform distribution
6: Set τ ← max{1− u, 0} − lnθ

α

7: for all i such that t ≤ ti < t+ τ do
8: Append the value u+ ti − t to the list Ui
9: end for

10: if t+ τ < tm then
11: cell(t+ τ , u0 + τ − 1)
12: cell(t+ τ , u0 + τ − 1)
13: end if
14: end procedure

15: cell(t0, u0)

added to a list potentially containing multiple values (Algorithm 2, Line 8). The
contribution of the cell’s offspring to the log-volume recordings is calculated in
Lines 11–12 by making a recursive call to the CELL procedure for either of its
daughter cells. Cells that are born after the last recording time point tm cannot
make contribution to the log-volumes recordings. For this reason, the recursive
calls are made only if the mother cell divides before the time tm of last recording
(Line 10). In this manner, we make sure that the recursion does not continue ad
infinitum.

4 Periodicity

Regardless of the particulars of the growth-control mechanism, a minimalistic
model based on exponential growth and symmetric division, which we shall con-
sider here, exhibits a type of periodic behaviour [4, 5, 7]. Specifically, the volume,
measured in units of its doubling time, of a daughter cell at time t > 0 is equal
to the volume of the mother cell at time t = 0 multiplied by 2t−n, where n is the
daughter cell’s generation. A couple of important observation follow immediately
from this. First, possible cell volumes are restricted to a discrete set of values
at any given time. Second, cell-volume measurements taken at different times
cannot be equal unless the times of measurement differ by an integer multiple
of the volume doubling time. We will see in what follows that this periodicity
with respect to the volume doubling time has important consequences for the
cell growth process that persist even in the asymptotic limit of large times.
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Cell-volume distributions 7

Let t0 be the initial time and u0 be the log-volume of the mother cell at the
initial time. These two are input values in stochastic simulation. At time t > t0,
the log-volume u(t) of a daughter cell is constrained to the discrete set

u(t) ∈ {ϕ+ n, n ∈ Z}, (9)

where 0 ≤ ϕ < 1 is a phase defined by

ϕ = u0 + t− t0 − bu0 + t− t0c, (10)

where bac denotes the floor of a (the nearest integer lower than the real number
a). The choice of the value of n within the discrete set (9) depends inversely on
the number of divisions of the first mother cell up to the daughter.
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Fig. 1. Periodicity of the cell-volume process. At any given time, the log-volume be-
longs to a discrete constraint set (top panel). Which of the constraint sets applies is
determined by the phase ϕ, which is a one-periodic function of time t (bottom panel).

The constraint (9) holds regardless whether the single-cell or the popula-
tion approach to modelling cell-volume dynamics is taken. Additionally, it holds
regardless of the choice of the log-volume-dependent division rate γ(u). Specifi-
cally, for the threshold-like dependence (7) we know that the log-volume has to
be positive, implying that the n in the constraint (9) has to be non-negative.
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The presence of the constraint (9) is best explained graphically (Figure 1, top
panel). While the cell does not divide, its log-volume increases along a straight
line with unit slope. When it divides, the log-volume transfers to a parallel line
with intercept one unit lower. Regardless of the timing of cell divisions, the log-
volume trajectories are constrained to a discrete union of parallel lines whose
intercepts differ by an integer. The constraint (9) is obtained by taking a cross-
section at time t of these parallel lines.

The constraint sets (9) are parametrised by the phase ϕ, which is a one-
periodic function of time t (Figure 1, bottom panel). The log-volume u(t) visits
each constraint set periodically with unit period. Different phases give disjoint
constraint sets. The union of all constraint sets over phases 0 ≤ ϕ < 1 gives the
entire state space of real log-volumes.

Discrete Markov chains whose state space is partitioned into disjoint classes
which are periodically (with discrete period) visited by the chain are called peri-
odic Markov chains [12]. By analogy, we refer to the cell-volume process also as
periodic. Periodicity has consequences for the large-time behaviour of a process.
Large-time behaviour of aperiodic processes is typically given by a steady-state
distribution. Contrastingly, periodic processes retain the dependence of the phase
even in the large-time limit.

In the next two sections, we will characterise the large-time behaviour of the
periodic cell-volume process using first the single-cell and then the population
approach.

5 Large-time single-cell behaviour

In the previous section we showed that the log-volume u(t) of a cell at time t is
constrained to the set of values n+ϕ(t), where n is an integer the phase ϕ(t) is
a function of time t (and of initial data). The probabilities

pn(t) = Prob[u(t) = n+ ϕ(t) ] (11)

have a discontinuity at any time t for which at which ϕ(t) has a discontinuity
(cf. Figure 1, bottom panel). We then have a consistency condition

pn(t−) = Prob[u(t) = n+ 1 ] = pn+1(t+), whenever ϕ(t) = 0. (12)

Away from the discontinuities, the probabilities (11) satisfy a system of balance
equations

dpn(t)

dt
= γ(n+ 1 + ϕ(t))pn+1(t)− γ(n+ ϕ(t))pn(t), 0 < ϕ(t) < 1. (13)

Integrating the system (13) forward in time, one obtains the probabilities pn(t)
until a discontinuity in ϕ(t) is encountered. The consistency condition (12) needs
to be applied at times of discontinuity to calculate from the probabilities right
before the discontinuity their values right after the discontinuity. The integration
of the system (13) can then be restarted with the post-discontinuity values.
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The system (13) comprises an infinite number of coupled linear ordinary
differential equations with non-constant coefficients. In general, the system (13)
can be solved by truncating to a finite number of equations and using a numerical
solver. In the specific case of a threshold dependence (7) of the division rate on
the log-volume, we will be able to find an explicit large-time solution to (13)
subject to (12).

As time progresses, the log-volume distribution becomes independent of the
specifics of the initial condition and depend on time only via the phase ϕ. Let
us denote this distribution by πn(ϕ). It satisfies a system of balance equations

dπn(ϕ)

dϕ
= γ(n+ 1 + ϕ)πn+1(ϕ)− γ(n+ ϕ)πn(ϕ), (14)

which looks similar to (13), differing in that the independent variable is now the
phase ϕ, which is restricted to the range 0 ≤ ϕ ≤ 1. The consistency condition
(12) translates into

πn(1) = Prob[u(t) = n+ 1 ] = πn+1(0), (15)

which provide a set of boundary conditions for the system (14). For threshold-
type dependence (7) of division rate on log-volume, we have γ(n + φ) = α(1 −
δn,0), so that the system (14) simplifies to

dπ0(ϕ)

dϕ
= απ1(ϕ),

dπn(ϕ)

dϕ
= α(πn+1(ϕ)− πn(ϕ)), n = 1, 2 . . . (16)

We look for a solution to (16) subject to the boundary conditions (15) in the
form of an exponential

πn(ϕ) = cne−µϕ, n ≥ 1, (17)

where µ is an eigenvalue and cn are eigenvector components. Inserting the
ansatz (17) into (16) we find

−µcn = α(cn+1 − cn), n ≥ 1. (18)

Substituting the ansatz (17) into (15) we find that

cn+1 = cne−µ, n ≥ 1. (19)

Substituting (19) into (18) and simplifying yields the characteristic equation

µ = α(1− e−µ). (20)

Elementary analysis shows that the characteristic equation (20) has a positive
solution µ only if α > 1. Furthermore, it is a unique positive solution and lies
in the interval α − 1 < µ < α. From now on we require that α > 1 holds and
we take for µ the unique positive solution to the characteristic equation (20).
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The condition α > 1 guarantees the (post-threshold) dominance of division over
growth, which is critical for the maintenance of cell volume homeostasis.

The recursive relation (19) implies that cn = c0e−µn, which, if substituted
into (17), yields

πn(ϕ) = c0e−µ(n+ϕ), n ≥ 1. (21)

Positivity of µ guarantees that πn(ϕ) has a finite `1 norm and can be normalised
into a probability distribution. Integrating the first equation in (16) subject to
π0(0) = 0 leads to

π0(ϕ) = c0
αe−µ(1− e−µϕ)

µ
= c0

1− e−µϕ

eµ − 1
, (22)

in which the second equality is due to (20). The normalisation constant c0 can
be determined from the relation

1 =
∞∑
n=0

πn(ϕ) = c0

(
1− e−µϕ

eµ − 1
+
∞∑
n=1

e−µ(n+ϕ)

)

= c0

(
1− e−µϕ

eµ − 1
+

e−µϕe−µ

1− e−µ

)
=

c0
eµ − 1

,

from which
c0 = eµ − 1 (23)

follows. Inserting (23) into (21) and (22) finalises our analysis.
In summary, we approximate the probability pn(t) that the cell’s log-volume

is equal to n+ ϕ(t) in the large-time regime by a phase-dependent distribution

pn(t) ∼ πn(ϕ(t)), t� 1, (24)

where πn(ϕ) is given explicitly by

π0(ϕ) = 1− e−µϕ, πn(ϕ) = (eµ − 1)e−µ(n+ϕ), n = 1, 2, . . . , (25)

and µ is the unique positive solution to the transcendental characteristic equation
(20), which exists provided that a > 1.

6 Large-time population behaviour

Assume that at the initial time t0 the population consisted of a single mother
cell with log-volume u0. Algorithm 2 ensures that at t > t0 the log-volumes of
its progeny are contained in a list U(t). Lists differ from sets in that they can
contain the same element multiple times. Due to periodicity of the cell-volume
process, U(t) can only contain elements with values n + ϕ(t), where n is an
integer and ϕ(t) is the phase as defined by (10). Define by fn(t) the number of
times a particular value n+ϕ(t) is present in the list. The consistency condition

fn(t−) = fn+1(t+), whenever ϕ(t) = 0, (26)
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holds at times of discontinuity of ϕ(t). Provided that the numbers fn(t) are suffi-
ciently large, we can treat them as continuous quantities that satisfy a population
balance equation

dfn(t)

dt
= 2γ(n+ 1 + ϕ(t))fn+1(t)− γ(n+ ϕ(t))fn(t), 0 < ϕ(t) < 1, (27)

away from the times of discontinuity of ϕ(t). The population balance equa-
tion (27) differs from the probability balance equation (13) in the factor 2 mul-
tiplying the first term on the right-hand side of (27). It is easy to verify that
fn(t) = 2−npn(t), where pn(t) is a solution to the probability balance equa-
tion (13), is in fact a solution to the population balance equation (27). It does
not however satisfy the consistency condition (26). In order to satisfy the con-
sistency condition, we modify the solution to

fn(t) = c 2−n+t−ϕ(t)pn(t), (28)

where c is a tunable constant. Since t−ϕ(t) is constant in any interval in which
ϕ(t) is continuous, the function (28) is a constant multiple of 2−npn(t) in any such
interval, and as such satisfies the population balance equation (27). Further, it
is easy to verify that the consistency condition (26) is met by (28). In the regime
of large times, we can approximate pn(t) by πn(ϕ(t)) to obtain

fn(t) ∼ c 2−n+t−ϕ(t)πn(ϕ(t)), t� 1. (29)

The total number of progeny at time t is given by

f(t) =
∞∑
n=0

fn(t) ∼ c 2t−ϕ(t)

(
1− e−µϕ(t) +

∞∑
n=1

(eµ − 1)2−ne−µ(n+ϕ(t))

)

= c 2t−ϕ(t)
(

1− e−µϕ(t) + (eµ − 1)e−µϕ(t)
e−µ

2− e−µ

)
= c 2t−ϕ(t)

2− e−µ − e−µϕ(t)

2− e−µ
. (30)

Finally,

fn(t)

f(t)
∼ 2− e−µ

2− e−µ − e−µϕ(t)
2−nπn(ϕ(t)), t� 1, n = 0, 1, . . . , (31)

gives the proportion of cells which have log-volume n+ ϕ(t) at a large time t.

7 Results

In this Section we use the simulation and analytic methods presented in the
previous Sections to examine the dynamical behaviour of our model for cell-
volume growth.
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Fig. 2. Size of the cell population derived from an individual mother cell as function
of time measured in units of volume doubling time. Panels differ in the choice of the
division rate α that applies after the critical cell volume has been reached by a growing
cell. Results of stochastic simulation by Algorithm 2 (blue lines) cross-validate the
theoretical prediction (30) (orange lines). The log-volume of the mother cell at initial
time (here t0 = 0) is set to the critical value of u0 = 1 in all examples. The undetermined
constant c in the theoretical result (30) has been chosen so as to perfectly fit the
simulation result at the last timepoint (here tm = 12). The cell count was obtained by
counting the total number of elements in the lists Ui returned by Algorithm 2.
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Figure 2 shows the cell count, on a logarithmic scale, as function of time
measured in units of volume doubling time. Although the overall trend is char-
acterised by an exponential increase, the cell count is nevertheless subject to
periodically recurring cycles of fast growth alternating with slow growth. The
cyclic behaviour is sustained even at large times. The simulation-based cell count
(blue lines) exhibits low-copy-number noise at earlier times. The analysis-based
cell count (orange lines) faithfully reproduces the large-time cyclic behaviour
of the results of simulation. The four panels of Figure 2 differ in the choice
of volume-dependent division rate γ(V ). The value specified within the figure
panels gives the division rate α that applies once a volume threshold has been
crossed (cf. Equation (3)). For large values of the division rate α (bottom right
panel in particular), the control of cell volume becomes near deterministic: di-
vision initiates almost immediately (i.e. with a very high rate) after the critical
volume threshold is reached. We observe that in the near-deterministic regime
of cell-volume control, the growth dynamics assumes a step-like pattern. Away
from the deterministic regime, i.e. for lower values of the post-threshold division
rate, the cycles of fast and slow growth are less pronounced.

In the following computational experiment, we let a colony of cells, derived
from a single progenitor, grow until it counts in thousand individuals, and then
study in detail a single ensuing period of cyclic growth. The top panel in Figure
3 shows the dependence of the cell count on phase, which is consistent with the
time dependence of cell count reported in Figure 2. In the remaining panels of
Figure 3, blue-coloured bars represent the distributions of log-volume in the cell
population at different phases of the period. At any phase of the cycle, the log-
volume distribution is discrete (cf. Section 4). The support of the distribution,
which is indicated by vertical dotted lines in the panels of Figure 3, travels to the
right as phase increases. At the end of the period, the support of the distribution,
as well as the distribution itself, returns to where it started at the beginning of
the cycle. The theoretical proportions (31) (bars of lighter shade of blue) are in
a good agreement with the results of simulation by Algorithm 2 (bars of darker
shade of blue).

In order to compare the population and single-cell versions of the model, we
juxtapose the proportion of cell population with a particular log-volume (Figure
3, blue bars) to the probability of observing the log-volume within a single-
cell lineage (Figure 3, orange bars). The single-cell probabilities were estimated
from an ensemble of 4096 independent sample paths generated by Algorithm
1 (Figure 3, bars of darker shade of orange). In each single-cell simulation, we
used the same initial condition as in the population simulation; we also skipped
the same amount of time, before analysing a single period of cyclic behaviour,
as in the population simulation. The simulation-based estimates, both single-cell
and population-wide versions, are cross-validated with the theoretical probability
values (25) (Figure 3, bars of lighter shade of orange). Comparing the results
of the population and single-cell versions of the model, we observe that the
single-cell approach tends to underestimate the proportion of small cells and
overestimate the proportion of big cells in the phases of fast growth (Figure 3,
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Fig. 3. Discrete log-volume distributions at different phases of the growth cycle for
post-threshold division rate set to α = 3.
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Fig. 4. Discrete log-volume distributions at different phases of the growth cycle for
post-threshold division rate set to α = 10.
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phases 0.1 to 0.7, say). In the later phases of slow growth, the two approaches
lead to the same values of log-volume. These observations are yet more apparent
in Figure 4 in which the division rate is set to a higher value α = 10. The
differences in the two approaches are noticeable only at the early phases of very
fast growth (Figure 4, phases 0.1 to 0.3). In the later phases, the two approaches
give the same prediction.

8 Conclusions

We considered a model for the growth of cellular volume in which cells grow ex-
ponentially and divide with a volume-dependent rate, resulting in two daughter
cells each inheriting half of their mother’s volume. Two versions of the model
are systematically compared: in the first version, a single cell lineage is described
by a stochastic, Markovian, model; in the second, an exponentially growing cell
population is followed. We constructed simulation algorithms for both model ver-
sions which are exact in the sense that they require no numerical discretisation
technique to sample the underlying stochastic process [8].

The model, in either of the two formulations, is shown to sustain cyclic be-
haviour with alternating phases of slow and fast growth. The phases of fast
growth occur when most cells are large enough to divide, whereas the phases
of slow growth take place when most cells are too small to divide. The cyclic
behaviour, resulting from the periodicity of the stochastic process, is intriguing
as it suggests possible biases from specific experimental designs (e.g. choice of
measurement times). Notably, periodicity is a consequence of a fully symmet-
ric division, and even small amounts of asymmetry in a more general model
situations are expected to eventually break periodicity.

Our computational analysis suggests that the population-based approach
leads to greater proportions of small cells and smaller proportions/probabilities
of large cells in the fast-growth phases than the single-cell approach. This obser-
vation is consistent with the fact that the population approach includes twice as
many daughter cells than mother cells do in comparison with the single-cell ap-
proach. Additionally, our results provide a quantitative evaluation of this effect
and tractable analytic solutions valid in the large time asymptotic regime.

Thus, our results provide insights into the dynamics of the process of cell
growth and suggest commonalities as well as differences between single-cell
Markovian modelling and whole-population simulation. We expect that the meth-
ods explored in this paper can be applicable in related and more complex de-
scriptions of cell growth and division.
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