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Abstract

Objective: Brain atrophy is an established biomarker for dementia, yet spinal cord involvement has
not been investigated to date. As the spinal cord is relaying sensorimotor control signals from the
cortex to the peripheral nervous system and viceversa, it is indeed a very interesting question to
assess whether it is affected by atrophy in a disease that is known for its involvement of cognitive
domains first and foremost, with motor symptoms being clinically assessed too. We therefore
hypothesize that Alzheimer Disease severe atrophy can affect the spinal cord too and that spinal
cord atrophy is indeed an important in vivo imaging biomarker contributing to understanding
neurodegeneration associated with dementia.

Methods: 3DT1 images of 31 Alzheimer’s disease (AD) and 35 healthy control (HC) subjects were
processed to calculate volumes of brain structures and cross-sectional area (CSA) and volume
(CSV) of the cervical cord (per vertebra as well as the C2-C3 pair (CSA23 and CSV23)). Correlated
features (p>0.7) were removed, and best subset identified for patients’ classification with the
Random Forest algorithm. General linear model regression was used to find significant differences
between groups (p<=0.05). Linear regression was implemented to assess the explained variance of
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the Mini Mental State Examination (MMSE) score as dependent variable with best features as
predictors.

Results: Spinal cord features were significantly reduced in AD, independently of brain volumes.
Patients classification reached 76% accuracy when including CSA23 together with volumes of
hippocampi, left amygdala, white and grey matter, with 74% sensitivity and 78% specificity.
CSAZ23 alone explained 13% of MMSE variance.

Discussion: Our findings reveal that C2-C3 spinal cord atrophy contributes to discriminate AD
from HC, together with more established features. Results show that CSA23, calculated form the
same 3DT1 scan as all other brain volumes (including right and left hippocampi), has a
considerable weight in classification tasks warranting further investigations. Together with recent
studies revealing that AD atrophy is spread beyond the temporal lobes, our result adds the spinal
cord to a number of unsuspected regions involved in the disease. Interestingly, spinal cord atrophy
explains also cognitive scores, which could significantly impact how we model sensorimotor
control in degenerative diseases with a primary cognitive domain involvement. Prospective studies
should be purposely designed to understand the mechanisms of atrophy and the role of the spinal
cord in AD.
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1 Introduction

Dementia is one of the most debilitating cognitive neurodegenerative disorders affecting the central
nervous system in elderly people and having a significant impact on daily life activities. With an
ageing population the incidence of dementia is growing and the consequences on society are huge.
Clinically, several forms of dementia-like diseases that differently impair multiple cognitive and
behavioral domains are defined. Alzheimer’s disease (AD) is the most common cause of dementia
and it is responsible for 60% to 80 % of cases worldwide®. What is the effect of neurodegeneration
on sensorimotor control is an interesting question because it is believed to be highly relevant also
for understanding cognitive functions. As the spinal cord is relaying sensorimotor control signals
from the cortex to the peripheral nervous system and viceversa, it is indeed important to assess
whether it is affected by atrophy in a disease that is known for its involvement of cognitive
domains. Recent indications suggest that there is definitely a sensorimotor network rewiring and
that the motor system may even be affected before cognitive functions in AD?®. Clinical symptoms
of early AD include amongst others fine motor impairment, with for example worsening of writing
abilities. Therefore, it is important to understand first of all whether the spinal cord plays a part in
this disease and to understand how significant is its involvement.

AD is associated with an extracellular deposit of B-amyloid plaques in the brain and cerebral
vessels, but also to the presence of intracellular neurofibrillary tangles, which appear like paired
helical filaments with hyperphosphorylated tau proteins. Tau tangles have been identified as the
cause of cortical neurons’ degeneration while B-amyloid oligomers have an important role in
synaptic impairment, hence -amyloid plaques deposition is suggested to raise later during the AD
progression”®. This neuronal degeneration explained by pathophysiology leads to macroscopic
atrophy of specific brain structures, such as the hippocampi and the medial temporal lobes °, which
can be detected using Magnetic Resonance Imaging (MRI) techniques. Indeed, several MRI studies
have demonstrated significant atrophy of white matter, gray matter and specific brain structures
such as the hippocampi, thalami and amygdalae in AD patients suggesting that these structures are
informative in identifying dementia disorders'®!!, The hippocampi have been proposed as in vivo
non-invasive imaging biomarkers of AD while other structures may be useful in distinguishing
between different subtypes of demential2. Only far and few old studies have looked at the spinal
cord in AD, from a postmortem histochemical analysis and with reference to the autonomic system,
but results were never reproduced or follow through as they focused on tau pathology, which was
only sporadically reported®.

Recently, numerous MRI investigations have tried to identify new in vivo biomarkers for dementia
to understand mechanisms of AD, to have better tools for assessing new therapies and predicting
the clinical evolution of prodromic stages of dementia. Optical Coherence Tomography studies, for
example, have been used to demonstrate that retinal ganglion cell degeneration can be associated to
early stages of AD. Also, structures like the cerebellum, not classically associated with AD, have
been found to be altered in imaging studies of dementia?, with atrophy of the anterior cerebellum -
known for its motor control - being present even in the prodromic stages of mild cognitive
impairment (MCI1)*. A recent work has also looked at graph theory metrics to distinguish patterns
of AD, identifying potentially different subtypes®®, although focusing on cortical and deep grey
matter areas, without including the cerebellum and the spinal cord. Studies of other diseases
associated with neurodegeneration, such as multiple sclerosis'®, amyotrophic lateral sclerosis'’, and
spinal cord injury®, have revealed that atrophy of the spinal cord is indicative of widespread
alterations of the central nervous system and might be considered as a relevant imaging biomarker
in a wider range of neurodegenerative diseases. Nevertheless, this kind of alteration has never been
investigated and reported in dementia patients. Hence, the main aim of the present work was in the
first instance to assess whether spinal cord volume is reduced in AD patients compared to healthy
controls (HC), hypothesizing that the neurodegeneration typical of AD spreads to all components of
the central nervous system; we achieved this by comparing a number of spinal cord features
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between AD and HC. This information is very important for our understanding of how a
neurodegenerative disease like AD has implications beyond the known brain atrophy: this could
also have significant impact on future modeling of brain networks. Furthermore, in case of a
positive outcome, it is important to quantify the role of spinal cord features in distinguishing
between AD and HC to drive the design of future studies; for this we implemented a machine
learning approach for features selection, that is increasingly applied to improve diagnostic accuracy
by quantitative imaging*®?°. Finally, we quantified the contribution of spinal cord atrophy to
explain variance of clinical scores for determining its clinical relevance.

2 Materials and Methods

2.1  Subjects

A total of 66 subjects including 31 AD patients (age (73 £ 7) years, 12 females (F), MMSE = 16 +
6) and 35 HC (age (69 * 10) years, 17 F, MMSE = 28 £ 1), as a reference group, were analyzed. 7
subjects (4 HC and 3 AD) were excluded from the study due to post-processing issues, hence the
final dataset comprised 32 HC and 28 AD.

Inclusion criteria for patients were: clinical diagnosis of dementia on the basis of the Diagnostic and
Statistical Manual of Mental Disorders (DSM-5) criteria?l, Mini-Mental State Examination
(MMSE) score??> below 24 and age above 60 years. Exclusion criteria comprised the presence of at
least one of the following: epilepsy or isolated seizures, major psychiatric disorders over the
previous 12 months, pharmacologically treated delirium or hallucinations, ongoing alcoholic abuse,
acute ischemic or hemorrhagic stroke, known intracranial lesions, and systemic causes of subacute
cognitive impairment?®, Diagnosis of AD was made according to the criteria of the National
Institute of Neurological and Communicative Disorders and Stroke and Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA) workgroup?*. HC were enrolled on a voluntary
basis among subjects with MMSE score above 27 and attending a local third age university
(University of Pavia, Information Technology course) or included in a program on healthy ageing
(Fondazione Golgi, Abbiategrasso, Italy).

The study was accomplished in accordance with the Declaration of Helsinki and with the
approbation of the local ethic committee of the IRCCS Mondino Foundation, upon signature of the
written informed consent by the subjects.

2.2  MRI Acquisition

High resolution 3D T1-weighted(3DT1-w) MR images were acquired using a Siemens
MAGNETOM  Skyra3T(Siemens AG, Erlangen, Germany) with software version
NUMARIS/4(syngo MR D13C version) and a receiving head-coil with 32 channels.

Scan parameters were'2: TR=2300ms, TE=2.95ms, T1=900 ms, flip angle=9degrees, field of view
(FOV)=269x252mm, acquisition matrix=256x240, in-plane resolution=1.05x1.05mm, slice
thickness=1.2 mm, and 176 sagittal slices. The FOV, in feet-to-head direction, was set to cover the
entire brain and cervical cord up to the C5 vertebra in all subjects.

2.3 Spinal Cord analysis

For each subject, the 3DT1-w volume (the same used normally for brain atrophy measurements -
see below) was resized removing the brain and centering the FOV on the spine. Once a single
volume of interest (VOI) comprising the same spinal cord regions for each 3DT1-w was defined
(matrix=176x240x96 voxels), the process was automatized for the whole dataset. The resized
3DT1-w volumes were analyzed with the Spinal Cord Toolbox (http://sourceforge.net
Iprojects/spinalcordtoolbox), an open source software specifically developed to elaborate spinal
cord images, to extract features of the C1-C5 vertebrae.

The spinal cord was segmented with the propseg algorithm?® and manually labelled? to identify all
vertebrae separately?’(Figure 1). Mean cross-sectional area (CSA) and volume (CSV) were
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calculated for each vertebra and for the C2-C3 pair?®?(CSA23 and CSV23), given the known
sensitivity of this combined level to disease severity*°. CSA is computed by counting pixels in each
slice and then geometrically adjusting it multiplying by the angle (in degrees) between the spinal
cord centerline and the inferior-superior direction. CSV, indeed, is computed by counting pixels and
multiplying by slice thickness.

2.4  Brain atrophy analysis

The 3DT1-w images were also segmented into white matter (WM), gray matter (GM) and
cerebrospinal fluid (CSF) using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12 )3,
while left (L) and right (R) hippocampi (LHip and RHip), thalami (LThal and RThal) and
amygdalae (LAmy and RAmMy) were segmented using FIRST (FSL,
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST)%? (Figure 2).

WM, GM and all other brain structures volumes were calculated in mm?. Total intracranial volume,
as the sum of WM, GM and CSF, was also calculated to account for different brain sizes.

2.5  Classification of AD and feature selection analysis
Classification between AD and HC was performed using a machine learning approach implemented
in Orange (https://orange.biolab.si/).

A total of 22 features were extracted from the above MRI morphometric analysis. Given the large
number of parameters extracted compared to the sample size of our AD and HC groups, a feature
reduction approach was adopted in order to control for overfitting issues. The Spearman correlation
coefficient®® was obtained in Matlab between pairs of all calculated metrics. When pairs of metrics
had a correlation coefficient greater than 0.7, one metric was kept while the other was eliminated.

Ranking was implemented with the ReliefF algorithm3®* on the uncorrelated features to identified
the best subset able to classify AD from HC, and particularly to investigate the contribution of
spinal cord metrics to the task. In order to identify a unique subset of features, 30% of instances was
employed for ranking. Data were normalized by span to avoid a polarization of the results due to the
different scale of features, as for WM compared to CSA. The remaining 70% of instances was
further divided into 70% for the Random Forest algorithm application and 30% to test its
classification accuracy (CA=(True Positive + True Negative)/( True Positive + True Negative +
False Positive + False Negative)), sensitivity (Sens= True Positive/(True Positive + False negative))
and specificity (Spec= True Negative/(True Negative + False Positive)) , using the previously-
identified best features.

Among several machine learning algorithms, RF was selected for its robustness against a reduced
number of input features and the capacity to weight features runtime, providing features relevance
in a classification task®%, The Receiving Operating Characteristics (ROC) curve was then obtained
to visually discriminate between AD and HC and the Area Under the Curve was also calculated to
quantify the overall ability of RF to discriminate between AD and HC.

2.6  Statistical analysis

Statistical tests were performed using the Statistical Package For Social Sciences (SPSS) software,
version 21 (IBM, Armonk, New York). All continuous data were tested for normality using a
Shapiro-Wilk test¥’. Age and MMSE were compared between AD and HC using a two-tailed
Kruskal-Wallis test® while gender was compared using a chi-squared test®®. A multivariate
regression model with gender, age and total intracranial volume as covariates was used to compare
all morphometric metrics between AD and HC. Two-sided p<0.05 was considered statistically
significant.

Furthermore, to assess the power of the best features in explaining the variance of the MMSE, a
linear regression model was implemented using the MMSE score as the dependent variable and the


https://orange.biolab.si/
https://orange.biolab.si/
https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/

212
213
214
215

216
217
218
219
220
221

222
223
224
225
226
227

228

229
230

231
232
233
234
235
236
237
238
239

240

241
242
243
244
245
246
247
248
249

250
251
252
253
254
255
256
257
258
259
260

bioRxiv preprint doi: https://doi.org/10.1101/673350; this version posted September 4, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Spinal cord atrophy contribution to AD

best features as predictors. These independent features were used in two ways: i) each predictor was
used alone to determine its specific contribution to MMSE; ii) all features were used in a backward
approach to identify which of them explained the greatest percentage of MMSE variance. A
threshold of p<0.01(two-tailed) was considered statistically significant.

3 Results

3.1  Subjects
Population demographics and neuropsychological scores are reported in Table 1. Significant
differences were found in MMSE between HC and AD patients.

3.2  Morphometric changes in AD patients

All results are reported in Table 2 and Table 3. AD patients compared to HC showed atrophy in all
brain structures. Moreover, all patients for all investigated spinal cord segments showed reduced
CSA at all vertebral levels, while CSV was significantly reduced only in correspondence of
vertebrae C1 and C2.

3.3  AD classification based on morphometric data

Results of the correlation analysis are reported in Figure 3, and show that brain volumes are not
significantly correlated with spinal cord metrics.

Features that were considered independent from each other and that were entered in the feature
selection analysis are reported in Table 4. The best features selected by the RF algorithm for the AD
versus HC classification task are reported in Table 5 and include: RHip, WM, LAmy, LHip,
CSA23, GM. Interestingly, CSA23 was identified as one of the most informative features to
distinguish AD patients from HC. RF outcomes are reported in Table 6 and showed that the
classification accuracy of AD patients is 76%, sensitivity 74% and specificity 78%. The Area Under
Curve (AUC) percentage reached 86%, showing a remarkable classification performance of the RF
algorithm to distinguish AD from HC subjects. Moreover, it is noticeable that the hippocampi have
dominant weight, but that there is a relevant contribution to the classification from CSA23.

3.4  MMSE and morphometric data relationship

The combination of the six best features, including WM, RHip, LHip, LAmy, CSA23 and GM,
explained 44% of the overall variance of the MMSE. The function equation describing the linear
model obtained by the regression analysis included the following terms with their weights:
0.329*LHip-0.145*RHip+0.145*LAmy+0.064*CSA23-0.227*GM+0.557*WM. The MMSE
explained variance was progressively reduced by simplifying the model, i.e. removing one or more
predictors, as shown in Table 7. Each separate feature significantly (p<0.005) explained a
percentage of MMSE variance ranging between 13% to 36%. The feature that most explains MMSE
variance was the WM volume (36%), with CSA explaining 13%.

4 Discussions

The present work is pioneering the investigation of spinal cord alterations in patients with dementia,
and in particular with AD, a major neurodegenerative disease known for its profound effect on
cognitive functions. The motor/sensorimotor system has already been shown to be affected in AD at
various levels in the brain, but nobody has yet investigated the spinal cord to date>®. Here we have
shown that the spinal cord is very atrophic indeed, at least in established AD patients. This is an
important finding, as it demonstrates that atrophy and neurodegeneration is widespread beyond
areas with excellent standards such as the hippocampi and temporal lobes. Our results are, indeed,
consistent with the fact that patients present significantly different brain volumes with respect to
HC, and all segmented brain structures, except for the right amygdala, are statistically significantly
atrophic in AD. In this context, our work goes further and demonstrates that volumes of all cervical
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vertebral segments are reduced in AD, with the CSV of the first and second vertebrae being
significantly atrophic with respect to HC. These results are coherent with results obtained for
cerebral structures and suggest the existence of a remarkable reduction (of the order of 10%) in the
volume of the spinal cord in dementia. This hypothesis is further supported by significant CSA
reduction for all vertebrae in patients, with CSA being calculated considering the curvature of the
spinal cord?®. Previous studies have reported spinal cord atrophy in patients with neurological
diseases***, such as multiple sclerosis with focal lesions in the brain and spinal cord, but to date no
studies have explored the existence of a volumetric loss of spinal cord tissue in dementia. This
finding has implications for how we think about the relationship between the cognitive and
sensorimotor systems, which we have shown to be conjointly affected in established AD. Not to
forget that the spinal cord is also the relay of the autonomic system that has been reported as
dysfunctional in AD*44,

Post mortem studies of AD patients will be needed to confirm the biophysical source of spinal cord
atrophy, although at first one could imagine that any change in CSA and CSV could be the result of
retrograde Wallerian degeneration from the cerebral cortex*®. Given that we have also demonstrated
that spinal cord features are independent of brain volumes, it cannot be excluded that alterations in
spinal cord morphometric measurements (CSA and CSV) in AD are the result of primary
retrogenesis linked to myelin and axonal pathology. It is indeed very significant that a recent study
of the 5XFAD animal model of AD shows amyloid plaques accumulation in the spinal cord tissue,
with a particular concentration at cervical level and a time dependent accumulation that starts 11
weeks from onset; interestingly, the same study found independent and extensive myelinopathy,
while the motoneurons count at 6 months was not altered compared to the wild type*®. While we
cannot be conclusive on the mechanisms of spinal cord atrophy in AD, our results are intriguing and
calling for larger studies of prodromic subjects to be followed over time; such studies would also
confirm whether the suggestion that the motor system (neocortex, cerebellum and spinal cord) is
affected even before the cognitive one can be substantiated®>4

A further result of our work is that of all spinal cord features analysed here, the area of vertebra C2-
C3 (CSA23) significantly contributes to discriminate between HC and AD patients. Usually, only
atrophy of brain regions is investigated in dementia*’*8. Indeed, spinal cord morphometric measures
(CSA and CSV) alone cannot directly discriminate between AD and HC, but CSA23 was identified
as one of the six best features useful to distinguish between these groups of subjects. Classifier
accuracy was good and reached its best performance, around 76%, when both volume of brain
structures, such as LHip and RHip (considered biomarkers of AD progression®®), WM and GM, as
well as spinal cord CSA23 were included in the classification procedure. In addition, the ROC
curve between AD and HC (shown in Figure 4) reported high performance with AUC of 86%. The
sensitivity and specificity of the RF algorithm, reaching 74% and 78% respectively, showed a
remarkable ability in correctly identify healthy and pathological cases. Examining the RF feature
weighting (reported in Table 6) it is also noticeable that CSA23 had weight higher than GM,
highlighting that it should be considered as an additional biomarker together with the more
conventional volumes of subcortical regions®. These results indicate the yet unexplored potential
influence that spinal cord features can play in the classification of dementia in line with recent
publications, which have recognized that other brain structures play a key role in identifying AD
patients and in distinguishing between different subtypes of demential??°,

Regarding the fact that CSA23 emerged as being particularly sensitive to pathological changes in
AD is in accordance with other studies in neurodegenerative diseases such as amyotrophic lateral
sclerosis'’ and could be seen as a corroborating evidence of a correlation between spinal cord
atrophy and neurodegeneration. In light of the only animal model study reported to date*®, which
shows that C2-C3 is selectively affected by greater morphological biophysical alterations, our
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results become of remarkable value. Moreover, upper limb sensorimotor impairment is known to be
clinically relevant in early AD, which is substantiating the relevance of our finding and calls for
future investigations involving correlations with sensorimotor scores and purposely designed
prospective studies to answer mechanistic questions.

Finally, our data show that also clinical aspects of AD are partially explained by spinal cord
atrophy. Given the exploratory nature of the present study, we assessed whether spinal cord atrophy
could be correlated with the variance of the MMSE, which is a global test, clinically used to assess
AD severity. We found that 43% of the MMSE variance was explained with a multiple regression
model implemented with all the best features included as independent variables, whereas CSA23
alone explained 13% of the MMSE variance, which is a considerable contribution indeed.

From a methodological point of view, we know that evaluating spinal cord alterations in humans in
vivo is challenging due to technical and anatomical constrains, including subject positioning inside
the scanner, individual subject’s neck curvature or subject’s motion. Furthermore, the spinal cord is
a small structure and optimized sequences with reduced FOV and appropriate alignment should be
used to obtain reproducible results®. Dedicated acquisition protocols would also allow one to
analyse specific alterations of spinal cord GM and WM, that were not available with the present
data that used 3DT1-w scans, used for whole-brain or regional brain volume calculations, to extract
spinal cord features®*2, Regarding feature selection and classification, we know that recent studies
have combined several MRI findings with machine learning approaches to attempt the classification
of dementia subtypes and prediction of disease progression. Accuracy of about 80%°°* was
achieved when AD and HC were classified while more fluctuating results were reported when more
subtypes of dementia were considered. In the present study a RF algorithm with the “leave-one-out”
approach was chosen to discriminate between AD and HC because RF is robust with small numbers
of subjects and performs features weighting runtime with good sensitivity and specificity.

Given the nature of this prospective study, it was not possible to investigate the involvement of the
spinal cord at different stages of AD or in different types of dementia to explore its full clinical
potentials. Therefore, a comprehensive battery of sensorimotor and cognitive tests should be
performed to understand how the clinical and MRI pictures are evolving during the disease
progression and to establish when spinal cord atrophy occurs and its clinical weight. It is also
essential to promote multi-modal studies that can disentangle the contribution of myelin, amyloid
accumulation, axonal swelling and axonal loss to brain and spinal cord alterations in
neurodegenerative diseases to understand local and global mechanisms of damage.

In conclusion, the present work can be considered a milestone because for the first time it
demonstrates in a cohort of AD and HC subjects the contribution of spinal cord atrophy to explain
clinical indicators of dementia and to improve disease classification, opening also mechanistic
questions for future studies. It is indeed important that we rethink in particular of how the
sensorimotor and cognitive systems are affected by AD, integrating spinal cord with brain
information, including the temporal lobes with the hippocampi, the motor and sensorimotor
cortices, the limbic system with the amygdala and the cerebellum, which we now know are all
implicated in AD.
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5 Tables

Table 1: Subjects’ demographic and neuropsychological data

HC (n=32) AD (n=28) p-value
mean (SD) mean (SD)

Age [yrs] 69.4 (9.6) 73.0 (6.4) 0.138
Gender (Male [%]) 51.4 56.2 0.800
MMSE 28.5(0.2) 16.0 (1.2) <0.001*

Gender is expressed in Male % and compared with a Chi-square test. Age and MMSE are expressed as mean (SD) and
compared with a Kruskall-Wallis test. Significance was set to p=0.05. * refers to statistically significant comparisons.
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357
358  Table 2: Brain morphometric changes in AD patients
HC (n=32) AD (n=28) p-value
mean (SD) mean (SD)
ICV 1573086 (144439) 1511611 (139532) 0.04*
< WM 612335 (11230) 540237 (12064) <0.001*
E GM 427508 (6492) 399274 (6975) 0.006*
2 RHip 3602 (106) 2932 (114) <0.001*
g LHip 3501 (99) 2822 (107) <0.001*
2 LThal 7013 (109) 6433 (118) 0.001*
2 RThal 6808 (109) 6371 (117) 0.011*
'g LAmy 1256 (41) 1054 (44) 0.002*
RAMy 1323 (63) 1120 (66) 0.035*
359

360  Volumes of different brain structures expressed in mmd. Values are expressed as mean (SD). Significance was set at p =
361  0.050. * refers to statistically significant values.
362
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363  Table 3: Spinal cord morphometric changes in AD patients

Vertebra HC (n=32) AD (n=28) p-value
mean (SD) mean (SD)
c1 69.8 (1.6) 63.1 (1.8) 0.009*
T c2 65.7 (1.3) 60.2 (1.4) 0.008*
E C3 62.5(1.4) 56.9 (1.6) 0.013*
S C4 62.5 (1.6) 57.2 (1.7) 0.031*
< C5 58.9 (1.6) 52.8 (1.7) 0.019*
C2-C3 65.1 (1.6) 58.3 (1.7) 0.007*
_a 883.4 (27.3) 800.4 (29.3) 0.050*
T C2 979.8 (28.4) 857.1 (30.6) 0.006*
% C3 932.3 (29) 886.9 (31.2) 0.308
E C4 882.3 (35.1) 807.9 (37.7) 0.168
S G5 667 (34.5) 609.1 (37.1) 0.275
C2-C3 1860.5 (66.8) 1729.9 (71.7) 0.204

364
365 Cross sectional area (in mm?) and volumes (in mm?3) of spinal cord vertebrae. Values are expressed as mean (SD).
366  Significance was set at p = 0.050. * refers to statistically significant values.

367
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Table 4: Cerebral and spinal cord morphometric metrics

Set of all calculated Metrics

Set of uncorrelated metrics

Brain Spine Personal Brain Spine Personal
WM CSA1 CSvi Age WM - - Age
GM  CSA2 CSV2  Gender GM - - Gender
RHip CSA3 CSvVv3 LHip - CSVv3
LHip CSA4 CSV4 RHip - -

RThal CSA5 CSV5 - - CSV5
LThal CSA23 CSV23 - CSAZ23 -

RAmMy -

LAmy LAmy

Left column: initial dataset of morphometric metrics. Right column: subset of uncorrelated morphometric metrics.
WM=white matter, GM=gray matter, RHip=right hippocampus, LHip=left hippocampus, RThal=right thalamus,
LThal=left thalamus, RAmy=right amygdala, LAmy=left amygdala, CSA=cross sectional area, CSV=cross sectional

volume
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375 Table 5: Features ranking

Features Weight

RHip 0.1125
WM 0.0630
LAmy 0.0629
LHip 0.0615
CSA23 0.0317
GM -0.0041

376

377 9 HC and 9 AD patients were used in the ranking procedure. Ranking Algorithm: ReliefF applied on a dedicated subset
378  (30% of instances, number of neighbors = 10).

379
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Table 6: Random Forest classification

Performance

Accuracy 76 %
Sensitivity 74%
Specificity 78%
Area Under Curve 86%
Feature RF weight
LHip 9.039
RHip 2.734
LAmy 2.263
CSA23 1.828
WM 0.323
GM 0.060

23 HC and 19 AD were used to test classifier performance. A leave-one-out procedure was used to test the performance
of Random Forest (RF) with the best feature subset reported in table 5. RF features weight are also reported.
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387
388 Table 7: MMSE outcomes
389
Explained Influence
Multiple Linear Model Variance Significance
MMSE = BoxLHip+B2xRHip+Bz*LAmMy+B4*CSA23+p5+GM+s+WM 44% <0.001
MMSE = Be+xLHip+B2*RHip+Bs*LAMY +p4x*GM+p5+WM 43% <0.001
MMSE = Bi*LHip+B2xLAmMy+3+*GM+B4xWM 43% <0.001
MMSE = B1*LHip+B2xGM+B3*WM 42% <0.001
MMSE = B1*LHip+B2xWM 40% <0.001
Explained  Influence
Linear Model Variance Significance
MMSE = *WM 36% <0.001
MMSE = B*LHip 30% <0.001
MMSE = B*RHip 22% <0.001
MMSE = *GM 17% 0.001
MMSE = B+LAmy 16% 0.001
290 MMSE = B*CSA23 13% 0.005

391 MMSE Linear Regression Models. The model-explained variance is calculated with the R? index. Significance was set
392  to p=0.05; all described model showed statistically significant influence (ANOVA).

393
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6 Figures Legend

Figure 1. Labelled vertebrae in two randomly chosen subjects: a HC subject on the left and an AD
patient on the right (slice n=96, sagittal plane). Each color represents a different vertebra from C1
(yellow) to C5 (fuchsia).

Figure 2. Cerebral tissue segmentation in two randomly chosen subjects: a HC subject on the left
and an AD patient on the right. Top row: WM (yellow) and GM (blue) segmentation (slice n = 126,
transverse plane). Middle row: hippocampi (yellow) and amygdalae (light blue) segmentation (slice
n = 123, transverse plane). Bottom row: thalami (green) segmentation (slice n = 132, transverse
plane).

Figure 3. Correlation matrix between pairs of variables, tested with the Spearman’s correlation
coefficient. All correlations for p<0.5 are set to white, correlations for p>0.5 are red to yellow, with
yellow (p=1) being the strongest correlation. No spinal crod metrics are correlating with brain
metrics with p>0.7, which is the threshold we used for extracting the set of uncorrelated features
(Table 1)

Figure 4. ROC curves for AD-HC classification using Random Forest feature selection.
Pathological class (AD = 1) was considered as the target class. The curve shows higher
performance (bold red line) than the majority algorithm (diagonal). TN rate is the rate of true
negative and FP rate is the rate of false positives.


https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/

414
415
416
417
418
419
420
421
422
423
424

425

426
427
428
429
430
431

432

433
434
435

bioRxiv preprint doi: https://doi.org/10.1101/673350; this version posted September 4, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Spinal cord atrophy contribution to AD

7 Acknowledgements

We thank University of Pavia and Mondino Foundation (Pavia, Italy) for funding; The UK Multiple
Sclerosis Society and UCL-UCLH Biomedical Research Centre for ongoing support of the Queen
Square MS Centre. CGWK receives funding from ISRT, Wings for Life and the Craig H. Neilsen
Foundation(the INSPIRED study), from the MS Society(#77), Wings for Life(#169111),
Horizon2020(CDS-QUAMRI, #634541). This research has received funding from the European
Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific
Grant Agreement No.785907(Human Brain Project SGA2) for the work of FP and ED. ECTRIMS
and the Multiple Sclerosis International Federation(MSIF) supported the work of GC with funding
(ECTRIMS Postdoctoral Research Fellowship Program, MSIF Du Pré grant).

8 Authorship

CGWK, ED, FP and RL conceptualized the study. FP and RL designed and performed the analyses
with support from GC. PV and NA acquired all MRI data. ES and SB acquired all
neuropsychological data helping for data interpretation. AC, ES and GM enrolled all patients and
performed all clinical evaluations. CGWK and ED provided support and guidance with data
interpretation with clinical contribution of all physicians. CGWK, FP and RL wrote the manuscript,
with comments from all other authors.

9 Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial
relationship that could be construed as a potential conflict of interest.


https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/

436

437
438
439

440
441
442

443
444

445
446

447
448

449
450
451

452
453

454
455
456

457
458
459

460
461
462

463
464
465

466
467

468
469

470
471

472
473
474

475
476
477

478
479
480

bioRxiv preprint doi: https://doi.org/10.1101/673350; this version posted September 4, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

10

10.

11.

12.

13.

14.

15.

16.

17.

available under aCC-BY-ND 4.0 International license.

Spinal cord atrophy contribution to AD

References

Kumar A, Singh A, Ekavali. A review on Alzheimer’s disease pathophysiology and its
management: An update [Internet]. Pharmacol. Reports 2015;67(2):195-203.Available from:
http://dx.doi.org/10.1016/j.pharep.2014.09.004

Castellazzi G, Palesi F, Casali S, et al. A comprehensive assessment of resting state
networks: Bidirectional modification of functional integrity in cerebro-cerebellar networks in
dementia. Front. Neurosci. 2014;8(8 JUL):1-18.

Albers MW, Gilmore GC, Kaye J, et al. At the interface of sensory and motor dysfunctions
and Alzheimer’s disease. Alzheimer’s Dement. 2015;11(1):70-98.

Fu L, Liu L, Zhang J, et al. Brain Network Alterations in Alzheimer’s Disease ldentified by
Early-Phase PIB-PET. Contrast Media Mol. Imaging 2018;2018:6830105.

Agosta F, Rocca MA, Pagani E, et al. Sensorimotor network rewiring in mild cognitive
impairment and Alzheimer’s disease. Hum. Brain Mapp. 2010;31(4):515-525.

Salustri C, Tecchio F, Zappasodi F, et al. Sensorimotor Cortex Reorganization in
Alzheimer’s Disease and Metal Dysfunction: A MEG Study. Int. J. Alzheimers. Dis.
2013;2013:638312.

Song H-L, Shim S, Kim D-H, et al. beta-Amyloid is transmitted via neuronal connections
along axonal membranes. Ann. Neurol. 2014;75(1):88-97.

Simi¢ G, Babi¢ Leko M, Wray S, et al. Tau protein hyperphosphorylation and aggregation in
alzheimer’s disease and other tauopathies, and possible neuroprotective strategies.
Biomolecules 2016;6(1):2-28.

Scher Al, Xu Y, Korf ESC, et al. Hippocampal morphometry in population-based incident
Alzheimer’s disease and vascular dementia: The HAAS. J. Neurol. Neurosurg. Psychiatry
2011;82(4):373-376.

Stonnington CM, Chu C, Kloppel S, et al. Predicting clinical scores from magnetic resonance
scans in Alzheimer’s disease [Internet]. Neuroimage 2010;51(4):1405-1413.Available from:
http://dx.doi.org/10.1016/j.neuroimage.2010.03.051

Pini L, Pievani M, Bocchetta M, et al. Brain atrophy in Alzheimer’s Disease and aging
[Internet]. Ageing Res. Rev. 2016;30:25-48.Available from:
http://dx.doi.org/10.1016/j.arr.2016.01.002

Palesi F, De Rinaldis A, Vitali P, et al. Specific patterns of white matter alterations help
distinguishing Alzheimer’s and vascular dementia. Front. Neurosci. 2018;12(APR)

Engelhardt E, Laks J. Alzheimer disease neuropathology:understanding autonomic
dysfunction. Dement. Neuropsychol. 2016;2(3):183-191.

Toniolo S, Serra L, Olivito G, et al. Patterns of Cerebellar Gray Matter Atrophy Across
Alzheimer’s Disease Progression. Front. Cell. Neurosci. 2018;12:430.

Ferreira D, Pereira JB, Volpe G, Westman E. Subtypes of Alzheimer’s Disease Display
Distinct Network Abnormalities Extending Beyond Their Pattern of Brain Atrophy. Front.
Neurol. 2019;10:524.

Liu Z, Yaldizli O, Pardini M, et al. Cervical cord area measurement using volumetric brain
magnetic resonance imaging in multiple sclerosis [Internet]. Mult Scler Relat Disord
2015;4(1):52-57.Available from: http://dx.doi.org/10.1016/j.msard.2014.11.004

Antonescu F, Adam M, Popa C, Tutda S. A review of cervical spine MRI in ALS patients.
[Internet]. J. Med. Life 2018;11(2):123-127.Available from:
http://www.ncbi.nlm.nih.gov/pubmed/30140318%0Ahttp://www.pubmedcentral.nih.gov/arti


https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/

481

482
483

484
485
486

487
488

489
490

491
492
493
494

495
496

497
498

499
500
501
502

503
504
505

506
507
508
509

510
511

512
513
514

515
516

517
518
519
520

521
522
523

524
525

bioRxiv preprint doi: https://doi.org/10.1101/673350; this version posted September 4, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

18.

19.

20.

21.

22,

23.

24,

25.

26.

27,

28.

29.

30.

31.

32.

33.

available under aCC-BY-ND 4.0 International license.

Spinal cord atrophy contribution to AD

clerender.fcgi?artid=PMC6101680

Grussu F, Schneider T, Tur C, et al. Neurite dispersion: a new marker of multiple sclerosis
spinal cord pathology? Ann Clin Transl Neurol 2017;4(9):663-679.

Dauwan M, van der Zande JJ, van Dellen E, et al. Random forest to differentiate dementia

with Lewy bodies from Alzheimer’s disease. Alzheimer’s Dement. (Amsterdam,
Netherlands) 2016;4:99-106.

Mirzaei G, Adeli A, Adeli H. Imaging and machine learning techniques for diagnosis of
Alzheimer’s disease. Rev. Neurosci. 2016;27(8):857-870.

Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®). American
Psychiatric Pub; 2013.

Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: A practical method for grading
the cognitive state of patients for the clinician [Internet]. J. Psychiatr. Res. 1975;12(3):189-
198.[cited 2019 Jan 15 ] Available from:
https://www.sciencedirect.com/science/article/pii/0022395675900266?via%3Dihub

Geschwind MD, Shu H, Haman A, Sejvar JJ. NIH Public Access. Ann Neurol.
2009;64(1):97-108.

McKhann GM, Knopman DS, Chertkow H, et al. NIH Public Access. Alzheimers Dement
2011;7(3):263-2609.

Yiannakas MC, Mustafa AM, De Leener B, et al. Fully automated segmentation of the
cervical cord from T1-weighted MRI using PropSeg: Application to multiple sclerosis
[Internet]. Neuroimage 2016;10:71-77.Available from:
http://dx.doi.org/10.1016/j.nicl.2015.11.001

Ullmann E, Pelletier Paquette JF, Thong WE, Cohen-Adad J. Automatic Labeling of
Vertebral Levels Using a Robust Template-Based Approach. Int. J. Biomed. Imaging
2014;2014

Dupont SM, De Leener B, Taso M, et al. Fully-integrated framework for the segmentation
and registration of the spinal cord white and gray matter [Internet]. Neuroimage
2017;150(August 2016):358-372.Available from:
http://dx.doi.org/10.1016/j.neuroimage.2016.09.026

De Leener B, Mangeat G, Dupont S, et al. Topologically preserving straightening of spinal
cord MRI. J. Magn. Reson. Imaging 2017;46(4):1209-1219.

Coulon O, Hickman SJ, Parker GJ, et al. Quantification of spinal cord atrophy from magnetic
resonance images via a B-spline active surface model. Magn. Reson. Med. 2002;47(6):1176—
1185.

D’Angelo E, Mazzarello P. MRI observation of hippocampal degeneration in Alzheimer’s
disease: a forgotten case. Funct Neurol 2013;28(3):245-246.

Penny W, Flandin G, Trujillo-Barreto N. CHAPTER 25 - Spatio-temporal models for fMRI
[Internet]. In: FRISTON K, ASHBURNER J, KIEBEL S, et al., editors. Statistical
Parametric Mapping. London: Academic Press; 2007 p. 313-322.Available from:
http://www.sciencedirect.com/science/article/pii/B9780123725608500255

Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and
appearance for subcortical brain segmentation [Internet]. Neuroimage 2011;56(3):907—
922.Available from: http://dx.doi.org/10.1016/j.neuroimage.2011.02.046

Spearman C. The proof and measurement of association between two things. Am. J. Psychol.
1904;15(1):72-101.


https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/

526
527

528
529

530
531

532
533
534

535
536
537

538
539
540
541

542
543

544
545
546

547
548
549

550

551
552

553
554
555

556
557

558
559
560
561
562

563
564
565

566
567
568

569
570

bioRxiv preprint doi: https://doi.org/10.1101/673350; this version posted September 4, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44,

45.

46.

47.

48.

49.

50.

available under aCC-BY-ND 4.0 International license.

Spinal cord atrophy contribution to AD

Urbanowicz RJ, Meeker M, La Cava W, et al. Relief-based feature selection: Introduction
and review. J. Biomed. Inform. 2018;85:189-203.

Goel E, Abhilasha E. Random Forest: A Review. Int. J. Adv. Res. Comput. Sci. Softw. Eng.
2017;7(1):251-257.

Breiman L. Random Forests [Internet]. Mach. Learn. 2001;45(1):5-32.Available from:
https://doi.org/10.1023/A:1010933404324

Shapiro SS, Wilk MB. An Analysis of Variance Test for Normality (Complete Samples)
[Internet]. Biometrika 1965;52(3/4):591-611.Available from:
http://www.jstor.org/stable/2333709

Kruskal WH, Wallis WA. Use of Ranks in One-Criterion Variance Analysis [Internet]. J.
Am. Stat. Assoc. 1952;47(260):583-621.Available from:
http://www.jstor.org/stable/2280779

Pearson K. X. On the criterion that a given system of deviations from the probable in the case
of a correlated system of variables is such that it can be reasonably supposed to have arisen
from random sampling [Internet]. London, Edinburgh, Dublin Philos. Mag. J. Sci.
1900;50(302):157-175.Available from: https://doi.org/10.1080/14786440009463897

Okuda DT, Melmed K, Matsuwaki T, et al. Central neuropathic pain in MS is due to distinct
thoracic spinal cord lesions. Ann. Clin. Transl. Neurol. 2014;1(8):554-561.

Azodi S, Nair G, Enose-Akahata Y, et al. Imaging spinal cord atrophy in progressive
myelopathies: HTLV-I-associated neurological disease (HAM/TSP) and multiple sclerosis
(MS). Ann. Neurol. 2017;82(5):719-728.

Allan LM. Diagnosis and Management of Autonomic Dysfunction in Dementia Syndromes
[Internet]. Curr.  Treat. Options Neurol. 2019;21(8):38.Available  from:
http://link.springer.com/10.1007/s11940-019-0581-2

Allan LM, Ballard CG, Allen J, et al. Autonomic dysfunction in dementia. 2007;671-677.

Algotsson A, Viitanen M, Winblad B, Solders G. Autonomic dysfunction in Alzheimer’s
disease. Acta Neurol. Scand. 1995;91(1):14-18.

Alves GS, Oertel Knochel V, Knochel C, et al. Integrating retrogenesis theory to Alzheimer’s
disease pathology: insight from DTI-TBSS investigation of the white matter microstructural
integrity. Biomed Res. Int. 2015;2015:291658.

Chu T-H, Cummins K, Sparling JS, et al. Axonal and myelinic pathology in 5xFAD
Alzheimer’s mouse spinal cord. PLoS One 2017;12(11):e0188218.

Stepan-Buksakowska 1, Szabd N, Horinek D, et al. Cortical and Subcortical Atrophy in
Alzheimer Disease: Parallel Atrophy of Thalamus and Hippocampus [Internet]. Alzheimer
Dis. Assoc. Disord. 2014;28(1)Available from:
https://journals.lww.com/alzheimerjournal/Fulltext/2014/01000/Cortical_and_Subcortical At
rophy_in_Alzheimer.10.aspx

Tardif CL, Devenyi GA, Amaral RSC, et al. Regionally specific changes in the hippocampal
circuitry accompany progression of cerebrospinal fluid biomarkers in preclinical Alzheimer’s
disease. Hum. Brain Mapp. 2018;39(2):971-984.

O’Callaghan C, Shine JM, Hodges JR, et al. Hippocampal atrophy and intrinsic brain
network dysfunction relate to alterations in mind wandering in neurodegeneration. Proc.
Natl. Acad. Sci. U. S. A. 2019;

De Leener B, Lévy S, Dupont SM, et al. SCT: Spinal Cord Toolbox, an open-source software
for processing spinal cord MRI data [Internet]. Neuroimage 2017;145(October 2016):24—


https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/

571

572
573
574

575
576

577
578
579

580
581

582

bioRxiv preprint doi: https://doi.org/10.1101/673350; this version posted September 4, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

51.

52,

53.

54,

available under aCC-BY-ND 4.0 International license.

Spinal cord atrophy contribution to AD

43.Available from: http://dx.doi.org/10.1016/j.neuroimage.2016.10.009

Fonov VS, Le Troter A, Taso M, et al. Framework for integrated MRI average of the spinal
cord white and gray matter: the MNI-Poly-AMU template. Neuroimage 2014;102 Pt 2:817—
827.

Levy S, Benhamou M, Naaman C, et al. White matter atlas of the human spinal cord with
estimation of partial volume effect. Neuroimage 2015;119:262-271.

Waser M, Benke T, Dal-Bianco P, et al. Neuroimaging markers of global cognition in early
Alzheimer’s disease: A magnetic resonance imaging-electroencephalography study. Brain
Behav. 2019;9(1):e01197.

Amoroso N, La Rocca M, Bruno S, et al. Multiplex Networks for Early Diagnosis of
Alzheimer’s Disease. Front. Aging Neurosci. 2018;10:365.


https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/



https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/



https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/

RHip

ip

RThal

Lamy

v

v

csvs

Sex

e

ICV WM GM RHip LHip LThal RThal LAmy RAmy CSV23 CSVI CSV2 CSV3 CSVA CSVS CSA23 CSAL CSA2 CSA3 CSA4 CSAS

P
i

07
os


https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/

" Ep Rate (1~ Specificity)


https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/

