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Abstract 30 

 31 

Objective: Brain atrophy is an established biomarker for dementia, yet spinal cord involvement has 32 

not been investigated to date. As the spinal cord is relaying sensorimotor control signals from the 33 

cortex to the peripheral nervous system and viceversa, it is indeed a very interesting question to 34 

assess whether it is affected by atrophy in a disease that is known for its involvement of cognitive 35 

domains first and foremost, with motor symptoms being clinically assessed too.  We therefore 36 

hypothesize that Alzheimer Disease severe atrophy can affect the spinal cord too and that spinal 37 

cord atrophy is indeed an important in vivo imaging biomarker contributing to understanding 38 

neurodegeneration associated with dementia. 39 

Methods: 3DT1 images of 31 Alzheimer’s disease (AD) and 35 healthy control (HC) subjects were 40 

processed to calculate volumes of brain structures and cross-sectional area (CSA) and volume 41 

(CSV) of the cervical cord (per vertebra as well as the C2-C3 pair (CSA23 and CSV23)). Correlated 42 

features (ρ>0.7) were removed, and best subset identified for patients’ classification with the 43 

Random Forest algorithm. General linear model regression was used to find significant differences 44 

between groups (p<=0.05). Linear regression was implemented to assess the explained variance of 45 
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the Mini Mental State Examination (MMSE) score as dependent variable with best features as 46 

predictors. 47 

Results: Spinal cord features were significantly reduced in AD, independently of brain volumes. 48 

Patients classification reached 76% accuracy when including CSA23 together with volumes of 49 

hippocampi, left amygdala, white and grey matter, with 74% sensitivity and 78% specificity. 50 

CSA23 alone explained 13% of MMSE variance. 51 

Discussion: Our findings reveal that C2-C3 spinal cord atrophy contributes to discriminate AD 52 

from HC, together with more established features. Results show that CSA23, calculated form the 53 

same 3DT1 scan as all other brain volumes (including right and left hippocampi), has a 54 

considerable weight in classification tasks warranting further investigations. Together with recent 55 

studies revealing that AD atrophy is spread beyond the temporal lobes, our result adds the spinal 56 

cord to a number of unsuspected regions involved in the disease. Interestingly, spinal cord atrophy 57 

explains also cognitive scores, which could significantly impact how we model sensorimotor 58 

control in degenerative diseases with a primary cognitive domain involvement. Prospective studies 59 

should be purposely designed to understand the mechanisms of atrophy and the role of the spinal 60 

cord in AD.  61 
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1 Introduction 62 

 63 

Dementia is one of the most debilitating cognitive neurodegenerative disorders affecting the central 64 

nervous system in elderly people and having a significant impact on daily life activities. With an 65 

ageing population the incidence of dementia is growing and the consequences on society are huge. 66 

Clinically, several forms of dementia-like diseases that differently impair multiple cognitive and 67 

behavioral domains are defined. Alzheimer’s disease (AD) is the most common cause of dementia 68 

and it is responsible for 60% to 80 % of cases worldwide1. What is the effect of neurodegeneration 69 

on sensorimotor control is an interesting question because it is believed to be highly relevant also 70 

for understanding cognitive functions. As the spinal cord is relaying sensorimotor control signals 71 

from the cortex to the peripheral nervous system and viceversa, it is indeed important to assess 72 

whether it is affected by atrophy in a disease that is known for its involvement of cognitive 73 

domains. Recent indications suggest that there is definitely a sensorimotor network rewiring and 74 

that the motor system may even be affected before cognitive functions in AD2–6. Clinical symptoms 75 

of early AD include amongst others fine motor impairment, with for example worsening of writing 76 

abilities. Therefore, it is important to understand first of all whether the spinal cord plays a part in 77 

this disease and to understand how significant is its involvement.  78 

AD is associated with an extracellular deposit of β-amyloid plaques in the brain and cerebral 79 

vessels, but also to the presence of intracellular neurofibrillary tangles, which appear like paired 80 

helical filaments with hyperphosphorylated tau proteins. Tau tangles have been identified as the 81 

cause of cortical neurons’ degeneration while β-amyloid oligomers have an important role in 82 

synaptic impairment, hence β-amyloid plaques deposition is suggested to raise later during the AD 83 

progression7,8. This neuronal degeneration explained by pathophysiology leads to macroscopic 84 

atrophy of specific brain structures, such as the hippocampi and the medial temporal lobes 9, which 85 

can be detected using Magnetic Resonance Imaging (MRI) techniques. Indeed, several MRI studies 86 

have demonstrated significant atrophy of white matter, gray matter and specific brain structures 87 

such as the hippocampi, thalami and amygdalae in AD patients suggesting that these structures are 88 

informative in identifying dementia disorders10,11. The hippocampi have been proposed as in vivo 89 

non-invasive imaging biomarkers of AD while other structures may be useful in distinguishing 90 

between different subtypes of dementia12. Only far and few old studies have looked at the spinal 91 

cord in AD, from a postmortem histochemical analysis and with reference to the autonomic system, 92 

but results were never reproduced or follow through as they focused on tau pathology, which was 93 

only sporadically reported13.  94 

Recently, numerous MRI investigations have tried to identify new in vivo biomarkers for dementia 95 

to understand mechanisms of AD, to have better tools for assessing new therapies and predicting 96 

the clinical evolution of prodromic stages of dementia. Optical Coherence Tomography studies, for 97 

example, have been used to demonstrate that retinal ganglion cell degeneration can be associated to 98 

early stages of AD. Also, structures like the cerebellum, not classically associated with AD, have 99 

been found to be altered in imaging studies of dementia2, with atrophy of the anterior cerebellum - 100 

known for its motor control - being present even in the prodromic stages of mild cognitive 101 

impairment (MCI)14. A recent work has also looked at graph theory metrics to distinguish patterns 102 

of AD, identifying potentially different subtypes15, although focusing on cortical and deep grey 103 

matter areas, without including the cerebellum and the spinal cord. Studies of other diseases 104 

associated with neurodegeneration, such as multiple sclerosis16, amyotrophic lateral sclerosis17, and 105 

spinal cord injury18, have revealed that atrophy of the spinal cord is indicative of widespread 106 

alterations of the central nervous system and might be considered as a relevant imaging biomarker 107 

in a wider range of neurodegenerative diseases. Nevertheless, this kind of alteration has never been 108 

investigated and reported in dementia patients. Hence, the main aim of the present work was in the 109 

first instance to assess whether spinal cord volume is reduced in AD patients compared to healthy 110 

controls (HC), hypothesizing that the neurodegeneration typical of AD spreads to all components of 111 

the central nervous system; we achieved this by comparing a number of spinal cord features 112 
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between AD and HC. This information is very important for our understanding of how a 113 

neurodegenerative disease like AD has implications beyond the known brain atrophy: this could 114 

also have significant impact on future modeling of brain networks.  Furthermore, in case of a 115 

positive outcome, it is important to quantify the role of spinal cord features in distinguishing 116 

between AD and HC to drive the design of future studies; for this we implemented a machine 117 

learning approach for features selection, that is increasingly applied to improve diagnostic accuracy 118 

by quantitative imaging19,20. Finally, we quantified the contribution of spinal cord atrophy to 119 

explain variance of clinical scores for determining its clinical relevance. 120 

2 Materials and Methods 121 

 122 

2.1 Subjects  123 

A total of 66 subjects including 31 AD patients (age (73 ± 7) years, 12 females (F), MMSE = 16 ± 124 

6) and 35 HC (age (69 ± 10) years, 17 F, MMSE = 28 ± 1), as a reference group, were analyzed.  7 125 

subjects (4 HC and 3 AD) were excluded from the study due to post-processing issues, hence the 126 

final dataset comprised 32 HC and 28 AD. 127 

Inclusion criteria for patients were: clinical diagnosis of dementia on the basis of the Diagnostic and 128 

Statistical Manual of Mental Disorders (DSM-5) criteria21, Mini-Mental State Examination 129 

(MMSE) score22  below 24 and age above 60 years. Exclusion criteria comprised the presence of at 130 

least one of the following: epilepsy or isolated seizures, major psychiatric disorders over the 131 

previous 12 months, pharmacologically treated delirium or hallucinations, ongoing alcoholic abuse, 132 

acute ischemic or hemorrhagic stroke, known intracranial lesions, and systemic causes of subacute 133 

cognitive impairment23. Diagnosis of AD was made according to the criteria of the National 134 

Institute of Neurological and Communicative Disorders and Stroke and Alzheimer’s Disease and 135 

Related Disorders Association (NINCDS-ADRDA) workgroup24. HC were enrolled on a voluntary 136 

basis among subjects with MMSE score above 27 and attending a local third age university 137 

(University of Pavia, Information Technology course) or included in a program on healthy ageing 138 

(Fondazione Golgi, Abbiategrasso, Italy).  139 

The study was accomplished in accordance with the Declaration of Helsinki and with the 140 

approbation of the local ethic committee of the IRCCS Mondino Foundation, upon signature of the 141 

written informed consent by the subjects.  142 

 143 

2.2 MRI Acquisition 144 

High resolution 3D T1-weighted(3DT1-w) MR images were acquired using a Siemens 145 

MAGNETOM Skyra3T(Siemens AG, Erlangen, Germany) with software version 146 

NUMARIS/4(syngo MR D13C version) and a receiving head-coil with 32 channels.  147 

Scan parameters were12: TR=2300ms, TE=2.95ms, TI=900 ms, flip angle=9degrees, field of view 148 

(FOV)=269x252mm, acquisition matrix=256x240, in-plane resolution=1.05x1.05mm, slice 149 

thickness=1.2 mm, and 176 sagittal slices. The FOV, in feet-to-head direction, was set to cover the 150 

entire brain and cervical cord up to the C5 vertebra in all subjects. 151 

 152 

2.3 Spinal Cord analysis 153 

For each subject, the 3DT1-w volume (the same used normally for brain atrophy measurements - 154 

see below) was resized removing the brain and centering the FOV on the spine. Once a single 155 

volume of interest (VOI) comprising the same spinal cord regions for each 3DT1-w was defined 156 

(matrix=176x240x96 voxels), the process was automatized for the whole dataset. The resized 157 

3DT1-w volumes were analyzed with the Spinal Cord Toolbox (http://sourceforge.net 158 

/projects/spinalcordtoolbox), an open source software specifically developed to elaborate spinal 159 

cord images, to extract features of the C1-C5 vertebrae. 160 

The spinal cord was segmented with the propseg algorithm25 and  manually labelled26 to identify all 161 

vertebrae separately27(Figure 1). Mean cross-sectional area (CSA) and volume (CSV) were 162 
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calculated for each vertebra and for the C2-C3 pair28,29(CSA23 and CSV23), given the known 163 

sensitivity of this combined level to disease severity30. CSA is computed by counting pixels in each 164 

slice and then geometrically adjusting it multiplying by the angle (in degrees) between the spinal 165 

cord centerline and the inferior-superior direction. CSV, indeed, is computed by counting pixels and 166 

multiplying by slice thickness. 167 

 168 

2.4 Brain atrophy analysis 169 

The 3DT1-w images were also segmented into white matter (WM), gray matter (GM) and 170 

cerebrospinal fluid (CSF) using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12 )31, 171 

while left (L) and right (R) hippocampi (LHip and RHip), thalami (LThal and RThal) and 172 

amygdalae (LAmy and RAmy) were segmented using FIRST (FSL, 173 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST)32 (Figure 2).   174 

WM, GM and all other brain structures volumes were calculated in mm3. Total intracranial volume, 175 

as the sum of WM, GM and CSF, was also calculated to account for different brain sizes. 176 

 177 

2.5 Classification of AD and feature selection analysis 178 

Classification between AD and HC was performed using a machine learning approach implemented 179 

in Orange (https://orange.biolab.si/). 180 

A total of 22 features were extracted from the above MRI morphometric analysis. Given the large 181 

number of parameters extracted compared to the sample size of our AD and HC groups, a feature 182 

reduction approach was adopted in order to control for overfitting issues. The Spearman correlation 183 

coefficient33 was obtained in Matlab between pairs of all calculated metrics. When pairs of metrics 184 

had a correlation coefficient greater than 0.7, one metric was kept while the other was eliminated. 185 

Ranking was implemented with the ReliefF algorithm34 on the uncorrelated features to identified 186 

the best subset able to classify AD from HC, and particularly to investigate the contribution of 187 

spinal cord metrics to the task. In order to identify a unique subset of features, 30% of instances was 188 

employed for ranking. Data were normalized by span to avoid a polarization of the results due to the 189 

different scale of features, as for WM compared to CSA. The remaining 70% of instances was 190 

further divided into 70% for the Random Forest algorithm application and 30% to test its 191 

classification accuracy (CA=(True Positive + True Negative)/( True Positive + True Negative + 192 

False Positive + False Negative)), sensitivity (Sens= True Positive/(True Positive + False negative)) 193 

and specificity (Spec= True Negative/(True Negative + False Positive)) , using the previously-194 

identified best features. 195 

Among several machine learning algorithms, RF was selected for its robustness against a reduced 196 

number of input features and the capacity to weight features runtime, providing features relevance 197 

in a classification task35,36. The Receiving Operating Characteristics (ROC) curve was then obtained 198 

to visually discriminate between AD and HC and the Area Under the Curve was also calculated to 199 

quantify the overall ability of RF to discriminate between AD and HC.  200 

 201 

2.6 Statistical analysis  202 

Statistical tests were performed using the Statistical Package For Social Sciences (SPSS) software, 203 

version 21 (IBM, Armonk, New York). All continuous data were tested for normality using a 204 

Shapiro-Wilk test37. Age and MMSE were compared between AD and HC using a two-tailed 205 

Kruskal-Wallis test38 while gender was compared using a chi-squared test39. A multivariate 206 

regression model with gender, age and total intracranial volume as covariates was used to compare 207 

all morphometric metrics between AD and HC. Two-sided p<0.05 was considered statistically 208 

significant. 209 

Furthermore, to assess the power of the best features in explaining the variance of the MMSE, a 210 

linear regression model was implemented using the MMSE score as the dependent variable and the 211 
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best features as predictors. These independent features were used in two ways: i) each predictor was 212 

used alone to determine its specific contribution to MMSE; ii) all features were used in a backward 213 

approach to identify which of them explained the greatest percentage of MMSE variance. A 214 

threshold of  p<0.01(two-tailed) was considered statistically significant. 215 

3 Results 216 

 217 

3.1 Subjects 218 

Population demographics and neuropsychological scores are reported in Table 1. Significant 219 

differences were found in MMSE between HC and AD patients. 220 

 221 

3.2 Morphometric changes in AD patients 222 

All results are reported in Table 2 and Table 3. AD patients compared to HC showed atrophy in all 223 

brain structures. Moreover, all patients for all investigated spinal cord segments showed reduced 224 

CSA at all vertebral levels, while CSV was significantly reduced only in correspondence of 225 

vertebrae C1 and C2.  226 

 227 

3.3 AD classification based on morphometric data 228 

Results of the correlation analysis are reported in Figure 3, and show that brain volumes are not 229 

significantly correlated with spinal cord metrics. 230 

Features that were considered independent from each other and that were entered in the feature 231 

selection analysis are reported in Table 4. The best features selected by the RF algorithm for the AD 232 

versus HC classification task are reported in Table 5 and include: RHip, WM, LAmy, LHip, 233 

CSA23, GM. Interestingly, CSA23 was identified as one of the most informative features to 234 

distinguish AD patients from HC. RF outcomes are reported in Table 6 and showed that the 235 

classification accuracy of AD patients is 76%, sensitivity 74% and specificity 78%. The Area Under 236 

Curve (AUC) percentage reached 86%, showing a remarkable classification performance of the RF 237 

algorithm to distinguish AD from HC subjects. Moreover, it is noticeable that the hippocampi have 238 

dominant weight, but that there is a relevant contribution to the classification from CSA23. 239 

  240 

3.4 MMSE and morphometric data relationship 241 

The combination of the six best features, including WM, RHip, LHip, LAmy, CSA23 and GM, 242 

explained 44% of the overall variance of the MMSE. The function equation describing the linear 243 

model obtained by the regression analysis included the following terms with their weights: 244 

0.329*LHip-0.145*RHip+0.145*LAmy+0.064*CSA23-0.227*GM+0.557*WM. The MMSE 245 

explained variance was progressively reduced by simplifying the model, i.e. removing one or more 246 

predictors, as shown in Table 7. Each separate feature significantly (p<0.005) explained a 247 

percentage of MMSE variance ranging between 13% to 36%. The feature that most explains MMSE 248 

variance was the WM volume (36%), with CSA explaining 13%. 249 

4 Discussions 250 

The present work is pioneering the investigation of spinal cord alterations in patients with dementia, 251 

and in particular with AD, a major neurodegenerative disease known for its profound effect on 252 

cognitive functions. The motor/sensorimotor system has already been shown to be affected in AD at 253 

various levels in the brain, but nobody has yet investigated the spinal cord to date2–6. Here we have 254 

shown that the spinal cord is very atrophic indeed, at least in established AD patients. This is an 255 

important finding, as it demonstrates that atrophy and neurodegeneration is widespread beyond 256 

areas with excellent standards such as the hippocampi and temporal lobes. Our results are, indeed, 257 

consistent with the fact that patients present significantly different brain volumes with respect to 258 

HC, and all segmented brain structures, except for the right amygdala, are statistically significantly 259 

atrophic in AD. In this context, our work goes further and demonstrates that volumes of all cervical 260 
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vertebral segments are reduced in AD, with the CSV of the first and second vertebrae being 261 

significantly atrophic with respect to HC. These results are coherent with results obtained for 262 

cerebral structures and suggest the existence of a remarkable reduction (of the order of 10%) in the 263 

volume of the spinal cord in dementia. This hypothesis is further supported by significant CSA 264 

reduction for all vertebrae in patients, with CSA being calculated considering the curvature of the 265 

spinal cord28. Previous studies have reported spinal cord atrophy in patients with neurological 266 

diseases40,41, such as multiple sclerosis with focal lesions in the brain and spinal cord, but to date no 267 

studies have explored the existence of a volumetric loss of spinal cord tissue in dementia. This 268 

finding has implications for how we think about the relationship between the cognitive and 269 

sensorimotor systems, which we have shown to be conjointly affected in established AD. Not to 270 

forget that the spinal cord is also the relay of the autonomic system that has been reported as 271 

dysfunctional in AD42–44. 272 

Post mortem studies of AD patients will be needed to confirm the biophysical source of spinal cord 273 

atrophy, although at first one could imagine that any change in CSA and CSV could be the result of 274 

retrograde Wallerian degeneration from the cerebral cortex45. Given that we have also demonstrated 275 

that spinal cord features are independent of brain volumes, it cannot be excluded that alterations in 276 

spinal cord morphometric measurements (CSA and CSV) in AD are the result of primary 277 

retrogenesis linked to myelin and axonal pathology. It is indeed very significant that a recent study 278 

of the 5xFAD animal model of AD shows amyloid plaques accumulation in the spinal cord tissue, 279 

with a particular concentration at cervical level and a time dependent accumulation that starts 11 280 

weeks from onset; interestingly, the same study found independent and extensive myelinopathy, 281 

while the motoneurons count at 6 months was not altered compared to the wild type46. While we 282 

cannot be conclusive on the mechanisms of spinal cord atrophy in AD, our results are intriguing and 283 

calling for larger studies of prodromic subjects to be followed over time; such studies would also 284 

confirm whether the suggestion that the motor system (neocortex, cerebellum and spinal cord) is 285 

affected even before the cognitive one can be substantiated3,5,14  286 

A further result of our work is that of all spinal cord features analysed here, the area of vertebra C2-287 

C3 (CSA23) significantly contributes to discriminate between HC and AD patients. Usually, only 288 

atrophy of brain regions is investigated in dementia47,48. Indeed, spinal cord morphometric measures 289 

(CSA and CSV) alone cannot directly discriminate between AD and HC, but CSA23 was identified 290 

as one of the six best features useful to distinguish between these groups of subjects. Classifier 291 

accuracy was good and reached its best performance, around 76%, when both volume of brain 292 

structures, such as LHip and RHip (considered biomarkers of AD progression49), WM and GM, as 293 

well as spinal cord CSA23 were included in the classification procedure.  In addition, the ROC 294 

curve between AD and HC (shown in Figure 4) reported high performance with AUC of 86%. The  295 

sensitivity and specificity of the RF algorithm, reaching 74% and 78% respectively, showed a 296 

remarkable ability in correctly identify healthy and pathological cases. Examining the RF feature 297 

weighting (reported in Table 6) it is also noticeable that CSA23 had weight higher than GM, 298 

highlighting that it should be considered as an additional biomarker together with the more 299 

conventional volumes of subcortical regions39. These results indicate the yet unexplored potential 300 

influence that spinal cord features can play in the classification of dementia in line with recent 301 

publications, which have recognized that other brain structures play a key role in identifying AD 302 

patients and in distinguishing between different subtypes of dementia12,15.  303 

Regarding the fact that CSA23 emerged as being particularly sensitive to pathological changes in 304 

AD is in accordance with other studies in neurodegenerative diseases such as amyotrophic lateral 305 

sclerosis17 and could be seen as a corroborating evidence of a correlation between spinal cord 306 

atrophy and neurodegeneration. In light of the only animal model study reported to date46, which 307 

shows that C2-C3 is selectively affected by greater morphological biophysical alterations, our 308 
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results become of remarkable value. Moreover, upper limb sensorimotor impairment is known to be 309 

clinically relevant in early AD, which is substantiating the relevance of our finding and calls for 310 

future investigations involving correlations with sensorimotor scores and purposely designed 311 

prospective studies to answer mechanistic questions.  312 

Finally, our data show that also clinical aspects of AD are partially explained by spinal cord 313 

atrophy. Given the exploratory nature of the present study, we assessed whether spinal cord atrophy 314 

could be correlated with the variance of the MMSE, which is a global test, clinically used to assess 315 

AD severity. We found that 43% of the MMSE variance was explained with a multiple regression 316 

model implemented with all the best features included as independent variables, whereas CSA23 317 

alone explained 13% of the MMSE variance, which is a considerable contribution indeed.  318 

From a methodological point of view, we know that evaluating spinal cord alterations in humans in 319 

vivo is challenging due to technical and anatomical constrains, including subject positioning inside 320 

the scanner, individual subject’s neck curvature or subject’s motion. Furthermore, the spinal cord is 321 

a small structure and optimized sequences with reduced FOV and appropriate alignment should be 322 

used to obtain reproducible results50. Dedicated acquisition protocols would also allow one to 323 

analyse specific alterations of spinal cord GM and WM, that were not available with the present 324 

data that used 3DT1-w scans, used for whole-brain or regional brain volume calculations, to extract 325 

spinal cord features51,52.  Regarding feature selection and classification, we know that recent studies 326 

have combined several MRI findings with machine learning approaches to attempt the classification 327 

of dementia subtypes and prediction of disease progression. Accuracy of about  80%53,54 was 328 

achieved when AD and HC were classified while more fluctuating results were reported when more 329 

subtypes of dementia were considered. In the present study a RF algorithm with the “leave-one-out” 330 

approach was chosen to discriminate between AD and HC because RF is robust with small numbers 331 

of subjects and performs features weighting runtime with good sensitivity and specificity.  332 

Given the nature of this prospective study, it was not possible to investigate the involvement of the 333 

spinal cord at different stages of AD or in different types of dementia to explore its full clinical 334 

potentials. Therefore, a comprehensive battery of sensorimotor and cognitive tests should be 335 

performed to understand how the clinical and MRI pictures are evolving during the disease 336 

progression and to establish when spinal cord atrophy occurs and its clinical weight.  It is also 337 

essential to promote multi-modal studies that can disentangle the contribution of myelin, amyloid 338 

accumulation, axonal swelling and axonal loss to brain and spinal cord alterations in 339 

neurodegenerative diseases to understand local and global mechanisms of damage. 340 

In conclusion, the present work can be considered a milestone because for the first time it 341 

demonstrates in a cohort of AD and HC subjects the contribution of spinal cord atrophy to explain 342 

clinical indicators of dementia and to improve disease classification, opening also mechanistic 343 

questions for future studies. It is indeed important that we rethink in particular of how the 344 

sensorimotor and cognitive systems are affected by AD, integrating spinal cord with brain 345 

information, including the temporal lobes with the hippocampi, the motor and sensorimotor 346 

cortices, the limbic system with the amygdala and the cerebellum, which we now know are all 347 

implicated in AD. 348 

  349 
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5 Tables 350 

 351 

Table 1: Subjects’ demographic and neuropsychological data 352 

 HC (n=32) AD (n=28) p-value 

 mean (SD) mean (SD)  

Age [yrs] 69.4 (9.6) 73.0 (6.4) 0.138 

Gender (Male [%]) 51.4 56.2 0.800 

MMSE 28.5 (0.2) 16.0 (1.1) < 0.001* 

 353 
Gender is expressed in Male % and compared with a Chi-square test. Age and MMSE are expressed as mean (SD) and 354 
compared with a Kruskall-Wallis test. Significance was set to p=0.05. * refers to statistically significant comparisons. 355 
  356 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2019. ; https://doi.org/10.1101/673350doi: bioRxiv preprint 

https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/


Spinal cord atrophy contribution to AD 

 

 357 

Table 2: Brain morphometric changes in AD patients  358 

 359 
Volumes of different brain structures expressed in mm3. Values are expressed as mean (SD). Significance was set at p = 360 
0.050. * refers to statistically significant values. 361 
  362 

  HC (n=32)   AD (n=28) p-value 

 

 mean (SD) mean (SD)  

  
  
B

ra
in

 S
tr

u
ct

u
re

s 
(m

m
2
) 

ICV 1573086 (144439) 1511611 (139532) 0.04* 

WM 612335 (11230) 540237 (12064) <0.001* 

GM 427508 (6492) 399274 (6975) 0.006* 

RHip 3602 (106) 2932 (114) <0.001* 

LHip 3591 (99) 2822 (107) <0.001* 

LThal 7013 (109) 6433 (118) 0.001* 

RThal 6808 (109) 6371 (117) 0.011* 

LAmy 1256 (41) 1054 (44) 0.002* 

RAmy 1323 (63) 1120 (66) 0.035* 
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Table 3: Spinal cord morphometric changes in AD patients  363 

 364 
Cross sectional area (in mm2) and volumes (in mm3) of spinal cord vertebrae. Values are expressed as mean (SD).  365 
Significance was set at p = 0.050. * refers to statistically significant values. 366 
  367 

 Vertebra HC (n=32)   AD (n=28) p-value 

  mean (SD) mean (SD)  

A
re

a
 (

m
m

2
) 

C1 69.8 (1.6) 63.1 (1.8) 0.009* 

C2 65.7 (1.3) 60.2 (1.4) 0.008* 

C3 62.5(1.4) 56.9 (1.6) 0.013* 

C4 62.5 (1.6) 57.2 (1.7) 0.031* 

C5 58.9 (1.6) 52.8 (1.7) 0.019* 

C2-C3 65.1 (1.6) 58.3 (1.7) 0.007* 

V
o
lu

m
e 

(m
m

3
) C1 883.4 (27.3) 800.4 (29.3) 0.050* 

C2 979.8 (28.4) 857.1 (30.6) 0.006* 

C3 932.3 (29) 886.9 (31.2) 0.308 

C4 882.3 (35.1) 807.9 (37.7) 0.168 

C5 667 (34.5) 609.1 (37.1) 0.275 

C2-C3 1860.5 (66.8) 1729.9 (71.7) 0.204 
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Table 4: Cerebral and spinal cord morphometric metrics 368 

Set of all calculated Metrics  Set of uncorrelated metrics 

Brain Spine Personal  Brain Spine Personal 

WM CSA1 CSV1 Age  WM - - Age 

GM CSA2 CSV2 Gender  GM - - Gender 

RHip CSA3 CSV3   LHip - CSV3  

LHip CSA4 CSV4   RHip - -  

RThal CSA5 CSV5   - - CSV5  

LThal CSA23 CSV23   - CSA23 -  

RAmy     -    

LAmy     LAmy    
 369 
Left column: initial dataset of morphometric metrics. Right column: subset of uncorrelated morphometric metrics.  370 
WM=white matter, GM=gray matter, RHip=right hippocampus, LHip=left hippocampus, RThal=right thalamus, 371 
LThal=left thalamus, RAmy=right amygdala, LAmy=left amygdala, CSA=cross sectional area, CSV=cross sectional 372 
volume 373 
  374 
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Table 5: Features ranking 375 

Features Weight 

RHip 0.1125 

WM 0.0630 

LAmy 0.0629 

LHip 0.0615 

CSA23 0.0317 

GM -0.0041 
 376 
9 HC and 9 AD patients were used in the ranking procedure. Ranking Algorithm: ReliefF applied on a dedicated subset 377 
(30% of instances, number of neighbors = 10).  378 
  379 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2019. ; https://doi.org/10.1101/673350doi: bioRxiv preprint 

https://doi.org/10.1101/673350
http://creativecommons.org/licenses/by-nd/4.0/


Spinal cord atrophy contribution to AD 

 

 380 

Table 6: Random Forest classification 381 

 382 

Performance  

Accuracy 76 % 

Sensitivity 74% 

Specificity 78% 

Area Under Curve 86% 

Feature RF weight 

LHip 9.039 

RHip 2.734 

LAmy 2.263 

CSA23 1.828 

WM 0.323 

GM 0.060 
 383 
23 HC and 19 AD were used to test classifier performance. A leave-one-out procedure was used to test the performance 384 
of Random Forest (RF) with the best feature subset reported in table 5. RF features weight are also reported. 385 
  386 
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 387 

Table 7: MMSE outcomes 388 

 389 

Multiple Linear Model 

Explained 

Variance 

Influence 

Significance 

MMSE = 1LHip+2RHip+3LAmy+4CSA23+5GM+6WM 44% <0.001 

MMSE = 1LHip+2RHip+3LAmy +4GM+5WM 43% <0.001 

MMSE = 1LHip+2LAmy+3GM+4WM 43% <0.001 

MMSE = 1LHip+2GM+3WM 42% <0.001 

MMSE = 1LHip+2WM 40% <0.001 

   

Linear Model 

Explained 

Variance 

Influence 

Significance 

MMSE = WM 36% <0.001 

MMSE = LHip 30% <0.001 

MMSE = RHip 22% <0.001 

MMSE = GM 17% 0.001 

MMSE = LAmy 16% 0.001 

MMSE = CSA23 13% 0.005 
 390 
MMSE Linear Regression Models. The model-explained variance is calculated with the R2 index. Significance was set 391 
to p=0.05; all described model showed statistically significant influence (ANOVA). 392 
  393 
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6 Figures Legend 394 

 395 

Figure 1. Labelled vertebrae in two randomly chosen subjects: a HC subject on the left and an AD 396 

patient on the right (slice n=96, sagittal plane). Each color represents a different vertebra from C1 397 

(yellow) to C5 (fuchsia).  398 

Figure 2. Cerebral tissue segmentation in two randomly chosen subjects: a HC subject on the left 399 

and an AD patient on the right. Top row: WM (yellow) and GM (blue) segmentation (slice n = 126, 400 

transverse plane). Middle row: hippocampi (yellow) and amygdalae (light blue) segmentation (slice 401 

n = 123, transverse plane). Bottom row: thalami (green) segmentation (slice n = 132, transverse 402 

plane).   403 

Figure 3. Correlation matrix between pairs of variables, tested with the Spearman’s correlation 404 

coefficient. All correlations for p<0.5 are set to white, correlations for p>0.5 are red to yellow, with 405 

yellow (p=1) being the strongest correlation. No spinal crod metrics are correlating with brain 406 

metrics with p>0.7, which is the threshold we used for extracting the set of uncorrelated features 407 

(Table 1)  408 

Figure 4. ROC curves for AD-HC classification using Random Forest feature selection. 409 

Pathological class (AD = 1) was considered as the target class. The curve shows higher 410 

performance (bold red line) than the majority algorithm (diagonal). TN rate is the rate of true 411 

negative and FP rate is the rate of false positives. 412 

  413 
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