bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Rigbox: an Open-Source Toolbox for Probing Neurons
and Behavior

Jai Bhagat'*, Miles J. Wells"***, Andrew Peters?, Kenneth D Harris', Matteo Carandini?,
Christopher P Burgess*

'UCL Queen Square Institute of Neurology, University College London, London, UK
2UCL Institute of Ophthalmology, University College London, London, UK

*These authors contributed equally
‘Present address: DeepMind, London, UK.

Setting up an experiment in behavioral neuroscience is a complex process that is
often managed with ad hoc solutions. To streamline this process we developed
Righox, a high-performance, open-source software toolbox that facilitates a
modular approach to designing experiments (github.com/cortex-lab/Righox).
Rigbox simplifies hardware I/0, synchronizes data streams from multiple sources,

communicates with remote databases, and implements visual and auditory stimuli
presentation. Its main submodule, Signals, allows intuitive programming of
behavioral tasks. Here we illustrate its function with two interactive examples: a
human psychophysics experiment, and the game of Pong. We give an overview of
the other packages in Righox, provide benchmarks, and conclude with a discussion
on the extensibility of the software and comparisons with similar toolboxes. Righox
runs in MATLAB, with Java components to handle network communication, and a C
library to boost performance.

Introduction

In behavioral neuroscience, much time is spent setting up hardware and software and
ensuring compatibility between them. Experiments often require configuring disparate
software to interface with distinct hardware, and integrating these components is no
trivial task. Furthermore, there are often separate software components for designing a
behavioral task, running the task, and acquiring, processing, and logging the data. This
requires learning the fundamentals of different software packages and how to make

http://github.com/cortex-lab/Rigbox
https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

them communicate appropriately.

Consider a typical experiment focused on decision-making, in which a subject chooses a
stimulus amongst a set of possibilities and obtains a reward if the choice was correct
(Carandini and Churchland, 2013). The software set-up for this experiment may seem
simple: ostensibly, all that is required is software to run the behavioral task, and
software to handle the experimental data. However, when considering implementation
details for these two types of software, the set-up can grow quite complex. For example,
in a typical variant of the Burgess Steering Wheel Task, a mouse must move a steering
wheel left or right to choose between two different visual stimuli (Figure 1) (Burgess et
al., 2017; Steinmetz et al., 2018). For each trial, if the mouse chooses the correct stimulus,
it receives a water reward from a spout. During the experiment, the mouse’s actions are
recorded with a body camera and lick detector, and brain activity is recorded with
electrodes and manipulated with a laser. Running the task requires software for starting,
stopping, and transitioning between task states, presenting the stimuli, and triggering the
reward spout and laser. Handling experimental data requires software for acquiring,
processing, and logging stimulus history, response history (from the wheel and a lick
detector), and subject physiology (from the body camera and the electrodes), and
transferring data between servers and databases.

To address this variety of needs in a single software toolbox, we designed Righox
(github.com/cortex-lab/Righox). Righox is modular, high-performance, open-source

software for implementing behavioral neuroscience experiments and acquiring
experiment-related data. Rigbox facilitates recording, synchronizing, and managing data
from a variety of sources. Furthermore, Rigbox promotes bespoke behavioral task design
via a framework called Signals, which exploits both object-oriented and functional

Figure 1: In this experiment, in addition to the software that runs the behavioral task, software is also required to 1)
record time-series data from the electrodes, steering wheel, body camera, and lick detectors; 2) trigger outputs to the spout
and laser; and 3) transfer data between the rig computer, a remote server (for loading experiment parameters), and a
remote database (for saving experiment metadata). (Adapted with permission from Steinmetz et. al 2018)

http://github.com/cortex-lab/Rigbox
https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

reactive programming paradigms to allow an experimenter to intuitively define and
parameterize an experiment.

Methods and Results

We begin by giving a general overview of Righox. We go on to describe Signals, the core
package of Rigbox, and provide two interactive examples of its use: a simple experiment
in visual psychophysics, and the game of Pong. We then briefly describe the other
packages in Righox, and provide benchmarking results.

Overview

Rigbox is made up of a number of packages which run on two computers, referred to as
the “Master Computer” (MC) and “Stimulus/Slave Computer” (SC) (Figure 2). MC is
responsible for selecting, parameterizing, starting, and monitoring an experiment via a
MATLAB GUI. SC is responsible for running an experiment on a rig and interacting with
that rig’s hardware during runtime. MC can control multiple SCs simultaneously.

- hardware trigger +hw
au)(ll.lal‘y B S EEEEE— (Har‘dware)
services
A
start/stop stimulus)
aussillary & feedback input sensors
devices
hardware
start/stop parameters configuration
+eui +srv +exp signals
(Experiment UI) | L (Server) L (Experiment) <
T status status task design
& io map
query settings save data
and data files
g - process/plot
B =7 meta-data data
fndyx meta-data alyx-matlab [<7------------ Hat |l DT 3> Py
Database | | .. (Data management) (Psychometrics)

Figure 2: Schematic of Righox package interactions. The solid lines represent necessary communication between Righox
packages, and the dashed lines represent optional communication (for saving data to a remote Alyx database, and for
processing/plotting data). The +eui package runs a GUI on the master computer (MC), and the +srv package launches
stimulus presentation on the stimulus computer (SC). Though this figure shows only one direct MC-SC connection, MC can
control multiple SCs simultaneously.

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

MC and SC communicate during runtime via Java WebSockets using TCP/IP. Therefore, it
is necessary for both computers to be connected to high-speed internet. The precise
computer hardware requirements for SC depend on the complexity of the experiment,
and for MC depend on the number of experiments run concurrently (i.e. number of
active SCs controlled). For most experiments, typical modern desktop computers running
Windows will suffice. SC also requires input/output device(s) for polling hardware inputs
and triggering hardware outputs, and optionally requires graphics and sound cards,
depending on the complexity of the stimuli to be presented.

Instructions for installation and configuration can be found in the README file and the
docs/setup folder of the GitHub repository. This includes information on required
dependencies, setting data repository locations, configuring hardware, and setting up
communication between the MC and SC computers.

Signals

Signals was designed for building bespoke behavioral tasks. The framework is built
around the paradigm of functional reactive programming, which simplifies problems
that deal with change over time (Lew, 2017). Signals represents an experiment as a
reactive network whose nodes (“signals”) represent experimental parameters. These
signals can evolve over time through interactions with each other. The framework
provides a set of input signals which represent time, experiment epochs, and hardware
input devices, and a set of output signals which represent hardware output devices.
Thus, an entire experiment can simply be thought of as a network which maps hardware
inputs to hardware outputs via a set of experimenter-defined transformations (Figure 3).

The core goal of Signals is to represent the relationship between experimental
parameters with straightforward, self-documenting operations. For example, to define
the temporal frequency of a visual stimulus - for example, a drifting grating - an
experimenter could create a signal which changes the grating’s phase as a function of
time (Figure 4). This is shown in the code below:

theta = 2*pi; % angle of phase in radians
freq = 3; % frequency of phase in Hz
stimulus.phase = theta*freq*t; % phase that cycles at 3 Hz for given stimulus

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

experimenter-defined
transformations

~ hardware
outputs

hardware
inputs

experiment
epochs

Figure 3: A Signals representation of an experiment. There are three types of input signals in the network, representing
time, hardware inputs (such as an optical mouse, keyboard, rotary encoder, lever, etc.), and experiment epochs (such as
trial and experiment start and end conditions). The experimenter defines transformations that create new signals (not
shown) from these input signals, which ultimately drive hardware outputs (such as a reward valve, blow gun,
galvanometer, etc.).

2x*t*3
t 2z ™t (stimulus.phase)

Figure 4: Representation of the time-dependent phase of a visual stimulus in Signals. An unfilled circle represents a
constant value - it becomes a node in the network when combined with another signal in an operation (in this instance, via
multiplication).

The operations that can be performed on signals are not just limited to basic arithmetic.
A number of built-in MATLAB functions (including logical, trigonometric, casting, and
array operations) have been overloaded to work on signals as they would on basic
numeric or char types. Furthermore, a number of classical functional programming
functions (e.g. “map”, “scan”, etc.) can be used on signals. These endow signals with
memory, and allow them to gate, trigger, filter, and accumulate other signals (Figure 5).

With this powerful framework, an experimenter can easily define complex relationships
between input and output devices (or more abstractly, between stimuli, response and

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

X % X X
1 2
1
1 1
0.5 0
-1
0 0 -2 0
y = x.delay(1) dx = delta(x) y = x.skipRepeats() y = x.map(true)
0.2 2
1
: 0.1 1Q
0 0
-0.1 -1
0 -0.2 2 0
x.tofy) x.keepWhen(dx > 0) y.then(5) y.scan(@plus, 0)
1 6
1 5 3
0.5
0 0 0 0

Figure 5: The creation of new signals via example signals methods. Conceptually, a signal can be thought of as both a
continuous stream of discrete values, and as a discrete representation whose value changes over time. Each panel
represents a signal. The x-axis represents time, and the y-axis represents the signal’s value. Each column depicts a set of
related transformations. The second row depicts a signal which results from applying an operation on the signal in the
same column’s first row. The third row depicts a signal which results from applying an operation on the signals in the
same column’s first and second rows.

reward) in order to create a complete experiment protocol. This protocol takes the form
of a user-written MATLAB function, which we refer to as an “experiment definition”
(“exp def”). Signals runs an experiment by loading this exp def into a network and
posting values to the network’s input signals on every iteration of a while loop, which
triggers asynchronous propagation through the reactive network. The experiment ends
when the “experiment stop” signal is updated (e.g. when a number of correct trials is
reached or when the experimenter clicks the “end” button in the MC GUI).

The following is a brief overview of the structure of an exp def. An exp def takes up to
seven input arguments:

function expDef(t, events, params, visStim, inputs, outputs, audio)

In order, these are 1) the time signal; 2) an events structure containing signals which
define the experiment’s epochs, and a set of user-chosen signals to be logged from those
defined within the exp def; 3) a parameters structure to define session- or trial-specific

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

signals whose values can be changed directly from the MC GUI before starting an
experiment -- parameter defaults are set within the exp def and parameter sets can be
saved and loaded across subjects and experiments; 4) the visual stimuli handler which
contains as fields all signals which parametrize the display of visual stimuli -- any visual
stimulus signal can be assigned various elements (which the viewing model allows to be
defined in visual degrees) for being rendered to a screen, and a visual stimulus can be
loaded directly from a saved image file; 5) an inputs structure containing signals which
map to hardware inputs devices; 6) an outputs structure containing signals which map to
hardware output devices; 7) the audio stimuli handler which can contain as fields signals
which map to available audio devices.

Tutorials on creating an exp def, examples of working exp defs and standalone scripts
(including those mentioned in this paper), and an in-depth overview of Signals can be
found in the signals/docs folder within the Righox repository. Though running a
Signals experiment in Rigbox typically requires two computers, the following examples
can be run from a single Windows PC, as their only required hardware devices are an
optical mouse and keyboard. Readers are encouraged to run these examples upon
installing Rigbox and its necessary dependencies.

Example 1: A Psychophysics Experiment

Our first example of a human-interactive Signals experiment is a script that recreates a
psychophysics experiment to study the mechanisms that underlie the discrimination of a
visual stimulus (Ringach 1998). In this experiment, the observer looks at visual gratings
(Figure 6a) that change rapidly and randomly in orientation and phase. The gratings
change so rapidly that they summate in the visual system, and the observer tends to
perceive two or three of them as superimposed. The task of the observer is to hit the
“ctr]” key whenever the grating’s orientation is vertical. At key press, the probability of
detection is plotted as a function of stimulus orientation in the recent past. Typically, this
exposes a center-surround type of organization, with orientations near vertical eliciting
responses, but orientations further away suppressing responses (Figure 6b). The Signals
network representation of this experiment is shown in Figure 7.

To run this experiment, simply run the file signals/docs/examples/ringach98.m in the
Rigbox repository. Below is a breakdown of the thirty lines of code:

First, some constants are defined:

oris = 0:18:162; % set of orientations, deg
phases = 90:90:360; % set of phases, deg
presentationRate = 10; % Hz

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

winlen = 10; % length of histogram window, frames

Next, we create a figure and our Signals network:

figh = figure('Name', 'Press “ctrl” key on horizontal grating',...
'Position’, [680 250 560 700], 'NumberTitle', 'off');

vbox = uix.VBox('Parent', figh);

[t, setElemsFun] = sig.playgroundPTB([], vbox);

net t.Node.Net; % Handle to our network

axh axes('Parent', vbox, 'NextPlot', 'replacechildren', 'XTick', oris);

xlabel(axh, 'Orientation');

ylabel(axh, 'Time (frames)');

ylim([@ winlen] + ©.5);

Then, we wire our network:

% Create a signal from the keyboard presses

keyPresses = net.fromUIEvent(figh, 'WindowKeyPressFcn');

% Filter it, keeping only ‘ctrl’ key presses. Turn into logical signal

reports = strcmp(keyPresses.Key, 'ctrl');

% Sample the current time at presentationRate

sampler = skipRepeats(floor(presentationRate*t));

% Randomly sample orientations and phases

orildx = sampler.map(@(~)randi(numel(oris)));

phaseIldx = sampler.map(@(~)randi(numel(phases)));

currPhase = phaseIdx.map(@(idx)phases(idx));

currOri = orildx.map(@(idx)oris(idx));

% create a signal to indicate the current orientation (an indicator vector)

oriMask = oris' == currOri;

% Record the last few orientations presented (buffer last few oriMasks)

oriHistory = oriMask.buffer(winlen);

% After each keypress, add the oriHistory snapshot to an accumulating

% histogram

histogram = oriHistory.at(reports).scan(@plus, zeros(numel(oris), winlen));

% Plot histogram surface each time it changes

histogram.onValue(@(data)imagesc(oris, 1l:winlen, flipud(data'),...
"Parent’', axh));

Finally, we create the visual stimulus and send it to the renderer:
% Create a Gabor with changing orientations and phases

grating = vis.grating(t, 'sinusoid', 'gaussian');

grating.show = true;

grating.orientation = currOri;

grating.phase = currPhase;

grating.spatialFreq = 0.2; % cyc/deg

% Add the grating to the renderer
setElemsFun(struct('grating', grating));

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

1,000

ms)

—= 500

Time

0 45 90 135 180

Orientation (deg)

Figure 6: a) A sample grating for which the subject is required to respond to via a “ctrl” key press. b) A heatmap showing
the grating orientations for the ten frames immediately preceding a “ctrl” key press, summed over all “ctr]l” key presses for
the duration of the experiment. After a few minutes, the distribution of orientations over time at a “ctrl” key press
resembles a 2D Mexican Hat wavelet, centered on the orientation the subject was reporting at the subject’s average
reaction time. In this example, the subject was reporting a vertical grating orientation (90 degrees) with an average
reaction time of roughly 600ms.

orientation
set

stimulus

orientation

orientation:buffer(10)
t sampler

selection history

stremp

inputs keyboard

Figure 7: A simplified Signals network diagram of the Ringach experiment.

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Example 2: Pong

A second human-interactive Signals experiment contained in the Righox repository is an
exp def which runs the classic computer game, Pong (Figure 8). The signal which sets the
player’s paddle position is mapped to the optical mouse. The epoch structure is set so
that a trial ends on a score, and the experiment ends when either the player or cpu
reaches a target score. The code is divided into three sections: 1) initializing the game, 2)
updating the game, 3) creating visual elements and defining exp def parameters. To run
this exp def, follow the directions in the header of the
signals/docs/examples/signalsPong.m file in the Rigbox repository. Because the file
itself (including copious documentation) is over 300 lines, we will share only an
overview here; however, readers are encouraged to look through the full file at their
leisure.

function signalsPong(t, events, p, visStim, inputs, outputs, audio

In this first section, we define constants for the game, arena, ball, and paddles:
%% Initialize the game

% how often to update the game in secs

% initial scores and target score

52

4 size of arena, ball, and paddle: [w h] in visual degrees
% ball angle, and ball velocity in visual degrees per second

% cpu and player paddle X axis positions in visual degrees

The helper function, getYPos, returns the y-position of the cursor, which will be used to
set the player paddle:
function yPos = getYPos()

end

% get cursor's initial y-position
cursorInitialY = events.expStart.map(@(~) getYPos);

In the second section, we define how the ball and paddle interactions update the game:

10

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

%% Update game

% create a signal that will update the y-position of the player's paddle using

‘getYPos’

playerPaddleYUpdateVal = (cursor.map(@(~)getYPos)-cursorInitialY)*cursorGain

% make sure the y-value of the player's paddle is within the screen bounds,

playerPaddleBounds = cond(playerPaddleYUpdateVal > arenaSz(2)/2,
arenaSz(2)/2, playerPaddleYUpdateVal < -arenaSz(2)/2, -arenaSz(2)/2,
true,playerPaddleYUpdateVal);

% and only updates every 'tUpdate' secs

playerPaddleY = playerPaddleBounds.at(tUpdate);

% Create a struct, 'gameDataInit', holding the initial game state

gameDatalInit = struct;

% Create a subscriptable signal, 'gameData', whose fields represent the
% evolving game state, and which will be updated every ‘tUpdate’ secs

gameData = playerPaddleY.scan(@updateGame, gameDataInit).subscriptable;

The helper function, updateGame, updates gameData. Specifically, it updates the ball angle,
velocity, position, cpu paddle position, and player and cpu scores, based on the current
ball position:

function gameData = updateGame(gameData, playerPaddleY)

end
% define trial end (when a score occurs)
anyScored = playerScore | cpuScore;
events.endTrial = anyScored.then(true);
% define game end (when player or cpu score reaches target score)
endGame = (playerScore == targetScore) | (cpuScore == targetScore);

events.expStop = endGame.then(true);

In the final section, we create the visual elements representing the arena, ball, and
paddles, and define the exp def parameters:

%% Define the visual elements and the experiment parameters

% create the arena, ball, and paddles as ‘vis.patch' subscriptable signals

arena = vis.patch(t, 'rectangle');

ball = vis.patch(t, 'circle');

playerPaddle = vis.patch(t, 'rectangle');

cpuPaddle = vis.patch(t, 'rectangle');

% assign the arena, ball, and paddles to the 'visStim' subscriptable signal handler

11

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

visStim.arena = arena;

visStim.ball = ball;
visStim.playerPaddle = playerPaddle;
visStim.cpuPaddle = cpuPaddle;

try

p.ballColor = [111; 10 0; 00 1]°;
p.targetScore = 5;
catch

end

LRLIT in L

Figure 8: A screenshot of Pong run in Signals.

Benchmarking

Fast execution of experiment runtime code is crucial for performing and accurately
analyzing results from a behavioral experiment. Here we show benchmarking results for
the Signals framework. We include results for individual operations on a signal and for
operations which propagate through each signal in a network. Single built-in MATLAB
operations and Signals-specific methods are consistently executed in the microsecond
range (Figure 9). The network wused in the Burgess Steering Wheel Task
(signals/docs/examples/advancedChoiceWorld.m) contains 338 signals spread over 10
layers; a similar network of 350 signals spread over 20 layers can update all signals in
under 5 milliseconds, and a network of 120 signals spread over 20 layers can update all
signals with sub-millisecond precision (Figure 10). Lastly, we include results from

12

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

. Single Operations
5 —_

ﬁ

507 &

(B
[
B>
[
%
[
[Be-
[
(B>
e

40 A

Time (us)
(o8

[P

20

[

10

& P & a¥ o o &
& @bﬁ Fs g v e S FE &L

Figure 9: Benchmarking results for operations on a single signal. The black “x” shows the mean value per group.

3 Operations Propagated Throughout Network

[Depth = 2
[Depth=5
Depth = 10 |
30 | Depth = 20 4
&
25 T x
@ 20
E
& &
=
= 15
b4 ;
10 S
*
> &
X g
. A x
oL B & % x a
Nodes = 30 Nodes =120 Nodes = 350 Nodes = 1000

Figure 10: Benchmarking results for updating every signal in a network, for networks of various number of signals
(nodes) spread over various number of layers (depth). The black “x” shows the mean value per group.

13

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Burgess Steering Wheel Task Delay Times

o
|

301 1.25q

454
o, U = 1
£ & 21 2,155
o 7 145,628 ’ o8]
£ 254 15
(=S o 057 98
154
1 5 025 1 ‘
0.5
0 0 0
Wheel Delay Stim Window Delay Reward Delay

Figure 11: Delay times for specific updates when running the Steering Wheel Task. The number next to each violin plot
indicates the number of samples in the group. “Wheel Delay” is the time between polling consecutive position values from
the hardware wheel. “Stim Window Delay” is the time between triggering a display to be rendered, and it’s complete
render on a screen. “Reward Delay” is the time between triggering a reward to be delivered and its delivery. 99th
percentile outliers were not included in the plot for “Wheel Delay”: there were 98 instances in which the wheel delay took
between 200-600 ms, due to execution time of the NI-DAQmx MATLAB package when sending analog output (reward
delivery) via the USB-6211 DAQ.

running the Burgess Steering Wheel Task in Signals: updates of the wheel position
typically took less than 2 milliseconds, the time between rendering and displaying the
visual stimulus typically took less than 15 milliseconds, and the delay between triggering
and delivering a reward was typically under 0.2 milliseconds (Figure 11).

All results in the Benchmarking section were obtained from running MATLAB 2018b on a
Windows 10 64-bit OS with an Intel core i7 8700 processor and 16 GB DDR4 dual channel
RAM clocking at a double data rate of 2133 MHz. Because single executions of signals
operations were too quick for MATLAB to measure precisely, we repeated operations
1,000 times and divided MATLAB’s returned measured time by 1,000. MATLAB 2018b’s
Performance Testing Framework was wused to obtain these results.
signals/tests/Signals_perftest.m contains the code used to generate the results
shown in Figure 9. signals/tests/results/2019-06-14_Signals_perftest.mat contains
a table of the data used to generate these results.
signals/tests/results/2019-06-04 advancedChoiceWorld Block.mat contains the
data used to generate the results shown in Figure 10. National Instrument’s USB-6211
was used as the data acquisition device.

The Other Packages in Rigbox

Often experiments are iterative: task parameters are added or modified many times

14

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

over, and finding an ideal parameter set can be an arduous process. Rigbox allows the
experimenter to develop and test their experiment without having to worry about
boilerplate code and UI modifications, as these are handled by other packages in a
modular fashion. Much of the code is object-oriented with most aspects of the system
represented as configurable objects. Below is a short description of each package.

The hardware package +hw contains calibration functions and classes for interfacing
with various hardware. These include abstract classes such as Window and DatalLogger,
which define general methods for high-level interaction with an on-screen stimulus
display window and a hardware logging device, respectively. Window and DataLogger
have concrete implementations for specific systems: +ptb/Window subclasses Window to
represent a Psychophysics Toolbox stimulus window, and DaqRotaryEncoder subclasses
PositionSensor (which subclasses DatalLogger) to represent the Lego wheel used in the
Burgess Steering Wheel Task (Figure 12). For novel implementations, additional
subclasses can be created from these abstract classes to represent other specific
hardware.

The hardware package also contains a class called Timeline which manages the
acquisition and generation of experimental timing data using a National Instruments
Data Acquisition Device (NI-DAQ) (Figure 13). The main timing signal, chrono, is a digital
square wave that flips each time a new chunk of data is available from the NI-DAQ. A
callback function to this flip event collects the NI-DAQ timestamp of the scan where each
flip occured. The difference between this timestamp and the system time recorded when
the flip command was given is recorded as an offset time. This offset time can be used to
unify all timestamps across computers during an experiment. Thus, all event timestamps
across all computers for a given experiment are recorded in times relative to chrono. A
Timeline object can acquire any number of hardware events and record their values
with respect to this offset; for example, a Timeline object can record when a reward is
delivered, a laser is fired, a sensor is interacted with, a screen displaying visual stimuli is
updated, etc. In addition to chrono, a Timeline object can also output TTL and clock
pulses for triggering external devices (e.g. to acquire frames at a specific rate).

The data package +dat contains a number of simple functions for saving and locating
data. Data organization supports separation of data types between repositories, and
redundant local and remote storage. Because all code uses the same paths file, it is very
simple to change the location of data and configuration files. Furthermore, this system
can be easily used with one’s own code to generate read and write paths for arbitrary
datasets. The experiment package +exp contains all of the code pertaining to

15

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

experiment setup and configuration. Two key aspects of this are the Parameters class,
which sets, validates, and assorts experiment conditions for each experiment, and the
SignalsExp class, which runs an experiment after loading in the experimenter’s exp def
and appropriate parameters into a Signals network.

The server package +srv provides high level network communication between MC and
SC. In addition, this package provides functions for triggering remote recording software
via UDPs.

The experiment UI package +eui provides all the graphical user interface (GUI) code.
Principally, this is employed for the mc function, which launches the main GUI on MC.
The MC GUI is used to load and configure experiment parameters on MC, monitor
experiments through customizable plots, view experiment history, and log metadata.

The psychometrics package +psy contains simple functions for processing and plotting
psychometric data.

The alyx-matlab package serves as a MATLAB client for interfacing with an Alyx
database. This package allows experimenters to make queries and posts to an Alyx
database within MATLAB, and create notes during an experiment which are
automatically synced to the database. alyx-matlab uses the npy-matlab submodule to
provide support for saving data.

Alyx is a meta-database that allows experimenters to keep track of animal procedures,
such as breeding and implantation, and organize experimental sessions and their
associated files (Rossant et. al, 2018). The database is heavily used by the International
Brain Laboratory due to its lightweight nature, and can be easily installed on most web
servers (Abbott et al., 2017). More information on Alyx and alyx-matlab can be found in
alyx-matlab/docs within the Rigbox repository. The use of Alyx and alyx-matlab within
Rigbox is optional.

16

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

+hw.Datal ogging

+hw.Clock
- +Clock = hw ptb.Clock

#ReferenceTime: double =0 +SampleCount: integer = 0 {readOnly}
#absoluteTime(obj- {) #DataBuffer
+fromMatlab(obj, serialDateNum: t) FTimesBuffer
+fromPth(ohj, secs: t) +clearData(obj)
+toPtb(obj, secs: t) +hufferSize(obj: n)
+now(obj: t} _ +accommodateBuffers(obj, n)
+zero(obj: zeroTime) FlogSample(obj, value, time)

#logSamples(obj, values, times)

1 =

+hw.PositionSensor

+MillimetresFactor: double
+Clock +/Positions: integer
+/PositionTimes: double
+/LastPosition: integer
#7eraOffset: integer =0

+readAbsolutePosition{obj: x, time)
+get. Positions(obj: value)
+get.PositionTimes(obj: value)
+hw.pth.Clock +get.LastPosition(obj: value)
+zero(obj, log)

#absoluteTime(obyj: t) /7 +readPosition(obj: pos, time, changed)

hw.DagRotaryEncoder

+DagSession: dag.ni.Session
+Dagld: string = Devl
+DagqChannelld: string = ctr0
+DaqCounterPeriod: double = 232
#DagListener: event listener
#DaglnputChannelldx: integer +hw.CursorPosition
ﬁ{l_:ilitl[e)aq\falue: double +ProjectionDir: double =0
+/DagChannelldx: integer ;EQ&OJ;PE;?EOT%IEU ble 0

+readAbsolutePosition(ob]: x, time)

+get. DagChannelldx(obj: value)
+set.DagChannelldx(ch), value)
+createDagChannel{obj)
+hw.DagEdgeCounter +wiringlnfo(obj. msg)
+listenForAwvailableData(obj)
+decodeDag(obj, newValue: x)
+readAbsolutePosition(obj: x, time)
#dagListener(obj, src, event)

A

+createDagChannel(obj)
+wiringlnfo{ohj, msg)

Figure 12. A UML diagram depicting the class structure for data logging in Rigbox. Each box represents a class and
contained within it is the name, attributes and methods. The superclass is DataLogging, which contains the most general
attributes and methods. PositionSensor, it’s immediate subclass (indicated by the white arrow) provides general abstract
methods such as readAbsolutePosition for reading the raw position of some nondescript linear position sensor. The
implementation of this depends on the specific drivers and hardware of each device. Two such subclasses are shown: one
for interfacing with a rotary encoder via a NI-DAQ, and another for reading cursor position. The specific details of this
need only be known to each subclass, and therefore it is straightforward to swap in different devices without having to
modify other parts of the system. Also shown is the abstract Clock class and its concrete implementation using the
Psychophysics Toolbox. The clock object is used in numerous different hardware classes and ensure that all run via the
same clock.

11

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

inputs

arre () D@

__________ L. ¥ ¥ ¥ triggers
—

n__[};;r Timeline —p @
— O

Figure 13. Representation of a Timeline object. The top most signal is the main timing signal, “chrono”, which is used to
unify all timestamps across computers during an experiment. The “inputs” represent different hardware input signals
read by a NI-DAQ, and the “triggers” represent different hardware output signals, triggered by a NI-DAQ.

Discussion

In our laboratory, Rigbox is at the core of our operant, passive, and conditioning
experiments. The principal behavioral task we use is the Burgess Steering Wheel Task
(Burgess et al., 2017). Using Rigbox, we have been able to create multiple variants of this
task. These have included unforced choice, multisensory choice, behavior matching, and
bandit tasks, using wheels, levers, balls, and lick detectors. In addition, Righox has
allowed us to rapidly integrate these tasks with a variety of recording techniques,
including electrode recordings, 2-Photon imaging, and fiber photometry, and neural
perturbations, such as scanning laser inactivation and dopaminergic stimulation (Jun et
al., 2017; Jacobs et al., 2018; Lak et al., 2018; Steinmetz et al., 2018; Shimaoka et al., 2018;
Zatka-Haas et al., 2018).

Given the modular nature of Righox, new features and hardware support may be easily
added, provided there is driver support in MATLAB. For example, to add support for a
novel data acquisition device (such as an Arduino or other microcontroller), one can
simply create a subclass of the +hw/DagController class. Similarly, to add support for a
novel position sensor, a new +hw/PositionSensor subclass could be created. These
classes simply define what happens when, for example, the code triggers a hardware
output, or polls a hardware input. This principle also holds true for implementing
various visual stimulus viewing models, of which there is currently only one. A new

18

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

viewing model class could be implemented to allow for virtual reality experiments, for
example.

To the best of our knowledge, Rigbox is the most complete behavioral control software
toolbox currently available in the neuroscience community; however, a number of other
toolboxes implement similar features in different ways (Bcontrol 2014; Sanders 2019;
Akam 2019; Aronov and Tank, 2014) (Table 1). Some of these toolboxes also include some
features not currently available in Rigbox, for example microsecond precision triggering
of within-trial events and creating 3D virtual environments. Indeed, the features
employed by a particular toolbox have advantages (and disadvantages) depending on the
user’s desired experiment.

BControl | Bpod pyControl | VirMEn Righox
Behavioral task Procedural | Procedural | Procedural | Object- Functional
design paradigm Oriented Reactive
Implements no no no yes, yes yes, no
viewing model? 3D
viewing model?
Interfaces with yes yes yes yes yes
hardware?
Synchronizes yes yes yes no yes
multiple
datastreams?
Communicates yes yes no no yes
with a remote
database?

Table 1: Comparison of major features across behavioral control system toolboxes. The top row contains the toolbox
names, and the first column contains information on a feature’s implementation. Note: the toolboxes and features
mentioned in this table are not exhaustive.

There are pros and cons to following different programming paradigms for software
developers who decide how a user will programmatically design a behavioral task.
Generally, three main paradigms exist: procedural, object-oriented, and functional
reactive. Here, in the context of programmatic task design, we briefly discuss the
differences between these paradigms and in which scenarios one may be favored over
the others. Note: here we only discuss the aspect of a toolbox that deals with behavioral
task design, not the overall structure of a toolbox (e.g. Rigbox is built on an

19

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

object-oriented paradigm, but Signals provides a functional reactive paradigm in which
to implement a behavioral task).

A procedural approach to task design is probably the most familiar to behavioral
neuroscientists. This approach focuses on “how to execute” a task by explicitly defining a
control flow that moves a task from one state to the next. The Bcontrol, Bpod, and
pyControl toolboxes follow this paradigm by using a real-time finite state machine
(RTFSM) which controls a task’s state (e.g. initial state, reward, punishment, etc.) during
each trial. Some advantages of this approach are that it’s simple and intuitive, and
guarantees event timing precision down to the minimum cycle of the state machine (e.g.
Bcontrol RTFSMs run at a minimum cycle of 6 KHz). Some disadvantages of this
approach are that the memory for task parameters are limited by the RTFSM’s number of
states, and that the discrete implementation of states isn’t amenable to experiments
which seek to control parameters continuously (e.g. a task which uses continuous
hardware input signals).

Like the procedural approach to task design, an object-oriented approach also tends to be
intuitive: objects can neatly represent an experiment’s state via datafields. Objects
representing experimental parameters can easily pass information to each other, and
trigger experimental states via event callbacks. The VirMEn toolbox implements this
approach by treating everything in the virtual environment as an object, and having a
runtime function update the environment by performing method calls on the objects
based on input sensor signals from a subject performing a task. Some disadvantages of
this approach are that the speed of experimental parameter updates are limited by the
speed at which the programming language performs dynamic binding (which is often
much slower than the RTFSM approach discussed above), and that operation “side
effects” (which can alter an experiment’s state in unintended ways) are more likely to
occur due to the emphasis on mutability, when compared to a pure procedural or
functional reactive approach.

By contrast, Signals follows a functional reactive approach to task design. As we have
seen, some advantages of this approach include simplifying the process of updating
experimental parameters over time, endowing parameters with memory, and facilitating
discrete and continuous event updates with equal ease. In general, a task specification in
this paradigm is declarative, which can often make it clearer and more concise than in
other paradigms, where control flow and event handling code can obscure the semantics
of the task. Some disadvantages are that it suffers from similar speed limitations as in an
object-oriented approach, and programmatically designing a task in a functional reactive

20

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

paradigm is probably unfamiliar to most behavioral neuroscientists. When considering
the entire set of behavioral tasks, no single programming paradigm is perfect, and it is
therefore important for an experimenter to consider the goals for their task’s
implementation accordingly.

Rigbox is currently under active, test-driven development. All our code is open source,
distributed under the Apache 2.0 license, and we encourage users to contribute. Please
see the contributing guidelines in the repository for contributing code and reporting
issues.

Acknowledgments

We thank Nick Steinmetz, Max Hunter, Peter Zatka-Haas, Kevin Miller, Hamish Forrest,
and other members of the lab for troubleshooting, feedback, inspiration, and code
contribution. This work was funded by the Medical Research Council (Doctoral Training
Award to CPB), the Royal Society (Newton International Fellowship to AJP), EMBO
(fellowship to AJP), the Human Frontier Science Program (fellowship to AJP), and by the
Wellcome Trust (grant 205093 to MC and KDH). MC holds the GlaxoSmithKline / Fight for
Sight Chair in Visual Neuroscience.

References

Abbott, L. F., Angelaki, D. E., Carandini, M., Churchland, A. K., Dan, Y., Dayan, P., ...
Zador, A. M. (2017). An International Laboratory for Systems and Computational
Neuroscience. Neuron, 96(6), 1213-1218.

Akam, T. pyControl. (2019). Retrieved June 7, 2019, from
https://pycontrol.readthedocs.io/en/latest/

Aronov, D. and Tank, D. W. (2014) Engagement of Neural Circuits Underlying 2D Spatial
Navigation in a Rodent Virtual Reality System. Neuron 84(2): 442-56.

Bcontrol. (2014). Retrieved May 11, 2019, from
https://brodywiki.princeton.edu/bcontrol/index.php?title=Main Page

Burgess, C. P, Lak, A., Steinmetz, N., Zatka-Haas, P., Bai Reddy, C., Jacobs, E. A. K,, ...
Carandini, M. (2017). High-yield methods for accurate two-alternative visual
psychophysics in head-fixed mice. Cell Reports, 20(10), 2513-2524.

Carandini, M., and Churchland, A.K. (2013). Probing perceptual decisions in rodents. Nat
Neurosci 16, 824-831.

21

https://pycontrol.readthedocs.io/en/latest/
https://pycontrol.readthedocs.io/en/latest/
https://brodywiki.princeton.edu/bcontrol/index.php?title=Main_Page
https://brodywiki.princeton.edu/bcontrol/index.php?title=Main_Page
https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672204; this version posted October 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Jacobs, E. A. K., Steinmetz, N. A., Carandini, M., & Harris, K. D. (2018). Cortical state
fluctuations during sensory decision making. BioRxiv, 348193.

Jun, J. J., Steinmetz, N. A,, Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., ... Harris, T.
D. (2017). Fully integrated silicon probes for high-density recording of neural activity.
Nature, 551(7679), 232-236.

Lak, A., Okun, M., Moss, M., Gurnani, H., Wells, M. J., Reddy, C. B., ... Carandini, M. (2018).
Dopaminergic and frontal signals for decisions guided by sensory evidence and reward
value. BioRxiv, 411413.

Lew, D. An Introduction to Functional Reactive Programming. (2017). Retrieved May 23,
2019, from Dan Lew Codes website:
https://blog.danlew.net/2017/07/27/an-introduction-to-functional-reactive-programming/

Lee D., Conroy M.L., McGreevy B.P., Barraclough D.]. (2004) Reinforcement learning and
decision making in monkeys during a competitive game. Cog Brain Res 22(1)

Ringach, D.L. (1998). Tuning of orientation detectors in human vision. Vision Res 38,
963-972.

Rossant, C., Hunter, M., Winter, O., Burgess, C., Harris, K. Alyx (2018). Retrieved May 23,
2019, from https://alyx.readthedocs.io/en/latest/

Sanders, J. Bpod Wiki. (2019). Retrieved May 11, 2019, from
https://sites.google.com/site/bpoddocumentation/home

Shimaoka, D., Steinmetz, N. A., Harris, K. D., & Carandini, M. (2018). The impact of
bilateral ongoing activity on evoked responses in mouse cortex. BioRxiv, 476333.

Steinmetz, N. A., Zatka-Haas, P., Carandini, M., & Harris, K. D. (2018). Distributed
correlates of visually-guided behavior across the mouse brain. BioRxiv, 474437.

Zatka-Haas, P., Steinmetz, N. A., Carandini, M. Harris, K.D. (2018). Distinct contributions
of mouse cortical areas to visual discrimination. BioRxiv, 501627

22

https://doi.org/10.1101/411413
https://blog.danlew.net/2017/07/27/an-introduction-to-functional-reactive-programming/
https://blog.danlew.net/2017/07/27/an-introduction-to-functional-reactive-programming/
https://doi.org/10.1101/411413
https://alyx.readthedocs.io/en/latest/
https://alyx.readthedocs.io/en/latest/
https://sites.google.com/site/bpoddocumentation/home
https://sites.google.com/site/bpoddocumentation/home
https://doi.org/10.1101/476333
https://doi.org/10.1101/476333
https://doi.org/10.1101/474437
https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

