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Setting up an experiment in behavioral neuroscience is a complex process that is                         

often managed with ad hoc solutions. To streamline this process we developed                       

Rigbox, a high-performance, ​open-source software toolbox that facilitates a                 

modular approach to designing experiments ​(​github.com/cortex-lab/Rigbox ​).           

Rigbox simplifies hardware I/O, synchronizes data streams from multiple sources,                   

communicates with remote databases, and implements visual and auditory stimuli                   

presentation. Its main submodule, Signals, allows intuitive programming of                 

behavioral tasks. Here we illustrate its function with two interactive examples: a                       

human psychophysics experiment, and the game of Pong. We give an overview of                         

the other packages in Rigbox, provide benchmarks, and conclude with a discussion                       

on the extensibility of the software and comparisons with similar toolboxes. ​Rigbox                       

runs in MATLAB, with Java components to handle network communication, and a C                         

library to boost performance. 

Introduction 

In behavioral neuroscience, much time is spent setting up hardware and software and                         

ensuring compatibility between them. Experiments often require configuring disparate                 

software to interface with distinct hardware, and integrating these components is no                       

trivial task. Furthermore, there are often separate software components for designing a                       

behavioral task, running the task, and acquiring, processing, and logging the data. This                         

requires learning the fundamentals of different software packages and how to make                       
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them communicate appropriately. 

Consider a typical experiment focused on decision-making, in which a subject chooses a                         

stimulus amongst a set of possibilities and obtains a reward if the choice was correct                             

(Carandini and Churchland, 2013). The software set-up for this experiment may seem                       

simple: ostensibly, all that is required is software to run the behavioral task, and                           

software to handle the experimental data. However, when considering implementation                   

details for these two types of software, the set-up can grow quite complex. For example,                             

in a typical variant of the Burgess Steering Wheel Task, a mouse must move a steering                               

wheel left or right to choose between two different visual stimuli (Figure 1) (Burgess et                             

al., 2017; Steinmetz et al., 2018). For each trial, if the mouse chooses the correct stimulus,                               

it receives a water reward from a spout. During the experiment, the mouse’s actions are                             

recorded with a body camera and lick detector, and brain activity is recorded with                           

electrodes and manipulated with a laser. Running the task requires software for starting,                         

stopping, and transitioning between task states, presenting the stimuli, and triggering the                       

reward spout and laser. Handling experimental data requires software for acquiring,                     

processing, and logging stimulus history, response history (from the wheel and a lick                         

detector), and subject physiology (from the body camera and the electrodes), and                       

transferring data between servers and databases.  

To address this variety of needs in a single software toolbox, we designed Rigbox                           

( ​github.com/cortex-lab/Rigbox​). Rigbox is modular, high-performance, open-source           

software for implementing behavioral neuroscience experiments and acquiring               

experiment-related data. Rigbox facilitates recording, synchronizing, and managing data                 

from a variety of sources. ​Furthermore, Rigbox promotes bespoke behavioral task design                       

via a framework called Signals, which exploits both object-oriented and functional  

 

Figure 1​: In this experiment, in addition to the software that runs the behavioral task, software is also required to 1)                                         

record time-series data from the electrodes, steering wheel, body camera, and lick detectors; 2) trigger outputs to the spout                                     

and laser; and 3) transfer data between the rig computer, a remote server (for loading experiment parameters), and a                                     

remote database (for saving experiment metadata). (Adapted with permission from Steinmetz et. al 2018) 

2 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint 

http://github.com/cortex-lab/Rigbox
https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/


 

reactive programming paradigms to allow an experimenter to intuitively define and                     

parameterize an experiment.  

Methods and Results 

We begin by giving a general overview of Rigbox. We go on to describe Signals, the core                                 

package of Rigbox, and provide two interactive examples of its use: a simple experiment                           

in visual psychophysics, and the game of Pong. We then briefly describe the other                           

packages in Rigbox, and provide benchmarking results. 

Overview 

Rigbox is made up of a number of packages which run on two computers, referred to as                                 

the “Master Computer” (MC) and “Stimulus/Slave Computer” (SC) (Figure 2). MC is                       

responsible for selecting, parameterizing, starting, and monitoring an experiment via a                     

MATLAB GUI. SC is responsible for running an experiment on a rig and interacting with                             

that rig’s hardware during runtime. MC can control multiple SCs simultaneously. 

 

Figure 2​: Schematic of Rigbox package interactions. The solid lines represent necessary communication between Rigbox                             

packages, and the dashed lines represent optional communication (for saving data to a remote Alyx database, and for                                   

processing/plotting data). The ​+eui package runs a GUI on the master computer (MC), and the ​+srv package launches                                   

stimulus presentation on the stimulus computer (SC). Though this figure shows only one direct MC-SC connection, MC can                                   

control multiple SCs simultaneously.   
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MC and SC communicate during runtime via Java WebSockets using TCP/IP. Therefore, it                         

is necessary for both computers to be connected to high-speed internet. The precise                         

computer hardware requirements for SC depend on the complexity of the experiment,                       

and for MC depend on the number of experiments run concurrently (i.e. number of                           

active SCs controlled). For most experiments, typical modern desktop computers running                     

Windows will suffice. SC also requires input/output device(s) for polling hardware inputs                       

and triggering hardware outputs, and optionally requires graphics and sound cards,                     

depending on the complexity of the stimuli to be presented. 

Instructions for installation and configuration can be found in the README ​file and the                         

docs/setup folder of the GitHub repository. This includes information on required                     

dependencies, setting data repository locations, configuring hardware, and setting up                   

communication between the MC and SC computers.  

Signals 

Signals was designed for building bespoke behavioral tasks. The framework is built                       

around the paradigm of functional reactive programming, which simplifies problems                   

that deal with change over time (Lew, 2017). Signals ​represents an experiment as a                           

reactive network whose nodes (“signals”) represent experimental parameters. These                 

signals can evolve over time through interactions with each other ​. The framework                       

provides a set of input signals which represent time, experiment epochs, and hardware                         

input devices, and a set of output signals which represent hardware output devices.                         

Thus, an entire experiment can simply be thought of as a network which maps hardware                             

inputs to hardware outputs via a set of experimenter-defined transformations (Figure 3). 

The core goal of Signals is to represent the relationship between experimental                       

parameters with straightforward, self-documenting operations. For example, to define                 

the temporal frequency of a visual stimulus - for example, a drifting grating - an                             

experimenter could create a signal which changes the grating’s phase as a function of                           

time (Figure 4). This is shown in the code below: 

theta = 2*pi; ​% angle of phase in radians 
freq = 3; ​% frequency of phase in Hz 
stimulus.phase = theta*freq*t; ​% phase that cycles at 3 Hz for given stimulus 
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Figure 3: A Signals representation of an experiment. There are three types of input signals in the network, representing                                     

time, hardware inputs (such as an optical mouse, keyboard, rotary encoder, lever, etc.), and experiment epochs (such as                                   

trial and experiment start and end conditions). The experimenter defines transformations that create new signals (not                               

shown) from these input signals, which ultimately drive hardware outputs (such as a reward valve, blow gun,                                 

galvanometer, etc.). 

 

Figure 4: Representation of the time-dependent phase of a visual stimulus in Signals. An unfilled circle represents a                                   

constant value - it becomes a node in the network when combined with another signal in an operation (in this instance, via                                           

multiplication).   

The operations that can be performed on signals are not just limited to basic arithmetic.                             

A number of built-in MATLAB functions (including logical, trigonometric, casting, and                     

array operations) have been overloaded to work on signals as they would on basic                           

numeric or char types. Furthermore, a number of classical functional programming                     

functions (e.g. “map”, “scan”, etc.) can be used on signals. These endow signals with                           

memory, and allow them to gate, trigger, filter, and accumulate other signals (Figure 5).  

With this powerful framework, an experimenter can easily define complex relationships                     

between input and output devices (or more abstractly, between stimuli, response and  
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Figure 5: The creation of new signals via example signals methods. ​Conceptually, a signal can be thought of as both a                                         

continuous stream of discrete values, and as a discrete representation whose value changes over time. ​Each panel                                 

represents a signal. The x-axis represents time, and the y-axis represents the signal’s value. Each column depicts a set of                                       

related transformations. The second row depicts a signal which results from applying an operation on the signal in the                                     

same column’s first row. The third row depicts a signal which results from applying an operation on the signals in the                                         

same column’s first and second rows.  

reward) in order to create a complete experiment protocol. This protocol takes the form                           

of a user-written MATLAB function, which we refer to as an “experiment definition”                         

(“exp def”). Signals runs an experiment by loading this exp def into a network and                             

posting values to the network’s input signals on every iteration of a while loop, which                             

triggers asynchronous propagation through the reactive network. The experiment ends                   

when the “experiment stop” signal is updated (e.g. when a number of correct trials is                             

reached or when the experimenter clicks the “end” button in the MC GUI). 

The following is a brief overview of the structure of an exp def. An exp def takes up to                                     

seven input arguments:  

function​ ​expDef(t, events, params, visStim, inputs, outputs, audio) 

In order, these are 1) the time signal; 2) an events structure containing signals which                             

define the experiment’s epochs, and a set of user-chosen signals to be logged from those                             

defined within the exp def; 3) a parameters structure to define session- or trial-specific                           
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signals whose values can be changed directly from the MC GUI before starting an                           

experiment -- parameter defaults are set within the exp def and parameter sets can be                             

saved and loaded across subjects and experiments; 4) the visual stimuli handler which                         

contains as fields all signals which parametrize the display of visual stimuli -- any visual                             

stimulus signal can be assigned various elements (which the viewing model allows to be                           

defined in visual degrees) for being rendered to a screen, and a visual stimulus can be                               

loaded directly from a saved image file; 5) an inputs structure containing signals which                           

map to hardware inputs devices; 6) an outputs structure containing signals which map to                           

hardware output devices; 7) the audio stimuli handler which can contain as fields signals                           

which map to available audio devices. 

Tutorials on creating an exp def, examples of working exp defs and standalone scripts                           

(including those mentioned in this paper), and an in-depth overview of Signals can be                           

found in the ​signals/docs ​folder within the Rigbox repository. ​Though running a                      

Signals experiment in Rigbox typically requires two computers, the following examples                     

can be run from a single Windows PC, as their only required hardware devices are an                               

optical mouse and keyboard. Readers are encouraged to run these examples upon                       

installing Rigbox and its necessary dependencies.  

Example 1: A Psychophysics Experiment 

Our first example of a human-interactive Signals experiment is a script that recreates a                           

psychophysics experiment to study the mechanisms that underlie the discrimination of a                       

visual stimulus (Ringach 1998). In this experiment, the observer looks at visual gratings                         

(Figure 6a) that change rapidly and randomly in orientation and phase. The gratings                         

change so rapidly that they summate in the visual system, and the observer tends to                             

perceive two or three of them as superimposed. The task of the observer is to hit the                                 

“ctrl” key whenever the grating’s orientation is vertical. At key press, the probability of                           

detection is plotted as a function of stimulus orientation in the recent past. Typically, this                             

exposes a center-surround type of organization, with orientations near vertical eliciting                     

responses, but orientations further away suppressing responses (Figure 6b). The Signals                     

network representation of this experiment is shown in Figure 7.   

To run this experiment, simply run the file ​signals/docs/examples/ringach98.m in the                     

Rigbox repository. Below is a breakdown of the thirty lines of code: 

First, some constants are defined: 

oris = 0:18:162; ​% set of orientations, deg 
phases = 90:90:360; ​% set of phases, deg 
presentationRate = 10; ​% Hz 
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winlen = 10; ​% length of histogram window, frames 
 

Next, we create a figure and our Signals network: 
figh = figure('Name', 'Press “ctrl” key on horizontal grating',... 

  'Position', [680 250 560 700], 'NumberTitle', 'off'); 

vbox = uix.VBox('Parent', figh); 

[t, setElemsFun] = sig.playgroundPTB([], vbox); 

net = t.Node.Net; ​% Handle to our network 
axh = axes('Parent', vbox, 'NextPlot', 'replacechildren', 'XTick', oris); 

xlabel(axh, 'Orientation'); 

ylabel(axh, 'Time (frames)'); 

ylim([0 winlen] + 0.5); 

 
Then, we wire our network: 
% Create a signal from the keyboard presses  

keyPresses = net.fromUIEvent(figh, 'WindowKeyPressFcn'); 

% Filter it, keeping only ‘ctrl’ key presses. Turn into logical signal 

reports = strcmp(keyPresses.Key, 'ctrl'); 

% Sample the current time at presentationRate 

sampler = skipRepeats(floor(presentationRate*t)); 

% Randomly sample orientations and phases  

oriIdx = sampler.map(@(~)randi(numel(oris))); 

phaseIdx = sampler.map(@(~)randi(numel(phases))); 

currPhase = phaseIdx.map(@(idx)phases(idx)); 

currOri = oriIdx.map(@(idx)oris(idx)); 

% create a signal to indicate the current orientation (an indicator vector) 

oriMask = oris' == currOri;  

% Record the last few orientations presented (buffer last few oriMasks) 

oriHistory = oriMask.buffer(winlen);  

% After each keypress, add the oriHistory snapshot to an accumulating  

% histogram 

histogram = oriHistory.at(reports).scan(@plus, zeros(numel(oris), winlen)); 

% Plot histogram surface each time it changes 

histogram.onValue(@(data)imagesc(oris, 1:winlen, flipud(data'),...  

  'Parent', axh)); 

 

Finally, we create the visual stimulus and send it to the renderer: 
% Create a Gabor with changing orientations and phases 

grating = vis.grating(t, 'sinusoid', 'gaussian'); 

grating.show = true; 

grating.orientation = currOri; 

grating.phase = currPhase; 

grating.spatialFreq = 0.2; ​% cyc/deg 
% Add the grating to the renderer 

setElemsFun(struct('grating', grating)); 
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Figure 6: a) ​A sample grating for which the subject is required to respond to via a “ctrl” key press. ​b) A heatmap showing                                               

the grating orientations for the ten frames immediately preceding a “ctrl” key press, summed over all “ctrl” key presses for                                       

the duration of the experiment. After a few minutes, the distribution of orientations over time at a “ctrl” key press                                       

resembles a 2D Mexican Hat wavelet, centered on the orientation the subject was reporting at the subject’s average                                   

reaction time. In this example, the subject was reporting a vertical grating orientation (90 degrees) with an average                                   

reaction time of roughly 600ms. 

 

Figure 7: ​ A simplified Signals network diagram of the Ringach experiment. 
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Example 2: Pong  

A second human-interactive Signals experiment contained in the Rigbox repository is an                       

exp def which runs the classic computer game, Pong (Figure 8). The signal which sets the                               

player’s paddle position is mapped to the optical mouse. The epoch structure is set so                             

that a trial ends on a score, and the experiment ends when either the player or cpu                                 

reaches a target score. The code is divided into three sections: 1) initializing the game, 2)                               

updating the game, 3) creating visual elements and defining exp def parameters. To run                           

this exp def, follow the directions in the header of the                     

signals/docs/examples/signalsPong.m ​file in the Rigbox repository. Because the file                

itself (including copious documentation) is over 300 lines, we will share only an                         

overview here; however, readers are encouraged to look through the full file at their                           

leisure. 
 

function​ signalsPong(t, events, p, visStim, inputs, outputs, audio 
 

In this first section, we define constants for the game, arena, ball, and paddles:   

%% Initialize the game 

% how often to update the game in secs  

... 

% initial scores and target score 

... 

% size of arena, ball, and paddle: [w h] in visual degrees 

... 

% ball angle, and ball velocity in visual degrees per second  

... 

% cpu and player paddle X axis positions in visual degrees 

... 

 

The helper function, ​getYPos​, returns the y-position of the cursor, which will be used to                             

set the player paddle: 

  ​function​ yPos = getYPos() 
    ... 

  ​end 
% get cursor's initial y-position 

cursorInitialY = events.expStart.map(@(~) getYPos); 

 

In the second section, we define how the ball and paddle interactions update the game: 
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%% Update game 

% create a signal that will update the y-position of the player's paddle using              

‘getYPos’ 

playerPaddleYUpdateVal = ​(cursor.map(@(~)getYPos)-cursorInitialY)*cursorGain  
% make sure the y-value of the player's paddle is within the screen bounds, 

playerPaddleBounds = cond(playerPaddleYUpdateVal > arenaSz(2)/2, ... 

  arenaSz(2)/2, playerPaddleYUpdateVal < -arenaSz(2)/2, -arenaSz(2)/2, ... 

  true,playerPaddleYUpdateVal); 

% and only updates every 'tUpdate' secs 

playerPaddleY = playerPaddleBounds.at(tUpdate); 

% Create a struct, 'gameDataInit', holding the initial game state 

gameDataInit = struct; 

… 

% Create a subscriptable signal, 'gameData', whose fields represent the  

% evolving game state, and which will be updated every ‘tUpdate’ secs 

gameData = playerPaddleY.scan(@updateGame, gameDataInit).subscriptable; 

 

The helper function, ​updateGame​, updates ​gameData​. Specifically, it updates the ball angle,                       

velocity, position, cpu paddle position, and player and cpu scores, based on the current                           

ball position: 

  ​function​ gameData = updateGame(gameData, playerPaddleY) 
    ... 

  end 

% define trial end (when a score occurs) 

anyScored = playerScore | cpuScore; 

events.endTrial = anyScored.then(true); 

% define game end (when player or cpu score reaches target score) 

endGame = (playerScore == targetScore) | (cpuScore == targetScore); 

events.expStop = endGame.then(true); 

... 

 

In the final section, we create the visual elements representing the arena, ball, and                           

paddles, and define the exp def parameters: 

%% Define the visual elements and the experiment parameters 

% create the arena, ball, and paddles as ‘vis.patch' subscriptable signals 

arena = vis.patch(t, 'rectangle'); 

ball = vis.patch(t, 'circle'); 

playerPaddle = vis.patch(t, 'rectangle'); 

cpuPaddle = vis.patch(t, 'rectangle'); 

% assign the arena, ball, and paddles to the 'visStim' subscriptable signal handler 
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visStim.arena = arena; 

visStim.ball = ball; 

visStim.playerPaddle = playerPaddle; 

visStim.cpuPaddle = cpuPaddle; 

% define parameters that will be displayed in the GUI 

try 

  ​% ‘ballColor’ as conditional parameter: on any given trial, the ball color will be 
  chosen at random among three colors: white, red, blue 

  p.ballColor = [1 1 1; 1 0 0; 0 0 1]’; ​% RGB color vector array 
  p.targetScore = 5; 

catch 

end 

 
Figure 8: ​A screenshot of Pong run in Signals. 

 

Benchmarking 

Fast execution of experiment runtime code is crucial for performing and accurately                       

analyzing results from a behavioral experiment. Here we show benchmarking results for                       

the Signals framework. We include results for individual operations on a signal and for                           

operations which propagate through each signal in a network. Single built-in MATLAB                       

operations and Signals-specific methods are consistently executed in the microsecond                   

range (Figure 9). The network used in the Burgess Steering Wheel Task                       

( ​signals/docs/examples/advancedChoiceWorld.m) ​contains 338 signals spread over 10            

layers; a similar network of 350 signals spread over 20 layers can update all signals in                               

under 5 milliseconds, and a network of 120 signals spread over 20 layers can update all                               

signals with sub-millisecond precision (Figure 10). Lastly, we include results from  
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Figure 9 ​: Benchmarking results for operations on a single signal. The black “x” shows the mean value per group. 

 

Figure 10​: Benchmarking results for updating every signal in a network, for networks of various number of signals                                   

(nodes) spread over various number of layers (depth). The black “x” shows the mean value per group. 
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Figure 11​: Delay times for specific updates when running the Steering Wheel Task. The number next to each violin plot                                       

indicates the number of samples in the group. “Wheel Delay” is the time between polling consecutive position values from                                     

the hardware wheel. “Stim Window Delay” is the time between triggering a display to be rendered, and it’s complete                                     

render on a screen. “Reward Delay” is the time between triggering a reward to be delivered and its delivery. 99th                                       

percentile outliers were not included in the plot for “Wheel Delay”: there were 98 instances in which the wheel delay took                                         

between 200-600 ms, due to execution time of the NI-DAQmx MATLAB package when sending analog output (reward                                 

delivery) via the USB-6211 DAQ. 

running the Burgess Steering Wheel Task in Signals: updates of the wheel position                         

typically took less than 2 milliseconds, the time between rendering and displaying the                         

visual stimulus typically took less than 15 milliseconds, and the delay between triggering                         

and delivering a reward was typically under 0.2 milliseconds (Figure 11).  

All results in the Benchmarking section were obtained from running MATLAB 2018b on a                           

Windows 10 64-bit OS with an Intel core i7 8700 processor and 16 GB DDR4 dual channel                                 

RAM clocking at a double data rate of 2133 MHz. Because single executions of signals                             

operations were too quick for MATLAB to measure precisely, we repeated operations                       

1,000 times and divided MATLAB’s returned measured time by 1,000. MATLAB 2018b’s                       

Performance Testing Framework was used to obtain these results.                 

signals/tests/Signals_perftest.m contains the code used to generate the results                 

shown in Figure 9. ​signals/tests/results/2019-06-14_Signals_perftest.mat contains           

a table of the data used to generate these results.                   

signals/tests/results/2019-06-04_advancedChoiceWorld_Block.mat ​contains the    

data used to generate the results shown in Figure 10. National Instrument’s USB-6211                         

was used as the data acquisition device. 

The Other Packages in Rigbox 

Often experiments are iterative: task parameters are added or modified many times                       
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over, and finding an ideal parameter set can be an arduous process. Rigbox allows the                             

experimenter to develop and test their experiment without having to worry about                       

boilerplate code and UI modifications, as these are handled by other packages in a                           

modular fashion. Much of the code is object-oriented with most aspects of the system                           

represented as configurable objects. Below is a short description of each package. 

The ​hardware package ​+hw ​contains calibration functions and classes for interfacing                     

with various hardware. These include abstract classes such as ​Window and ​DataLogger,                       

which define general methods for high-level interaction with an on-screen stimulus                     

display window and a hardware logging device, respectively. ​Window and ​DataLogger                     

have concrete implementations for specific systems: ​+ptb/Window subclasses ​Window ​to                  

represent a Psychophysics Toolbox stimulus window, and ​DaqRotaryEncoder ​subclasses                

PositionSensor (which subclasses ​DataLogger​) to represent the Lego wheel used in the                       

Burgess Steering Wheel Task (Figure 12). For novel implementations, additional                   

subclasses can be created from these abstract classes to represent other specific                       

hardware.  

The hardware package also contains a class called ​Timeline ​which manages the                      

acquisition and generation of experimental timing data using a National Instruments                     

Data Acquisition Device (NI-DAQ) (Figure 13). The main timing signal, chrono, is a digital                           

square wave that flips each time a new chunk of data is available from the NI-DAQ. A                                 

callback function to this flip event collects the NI-DAQ timestamp of the scan where each                             

flip occured. The difference between this timestamp and the system time recorded when                         

the flip command was given is recorded as an offset time. This offset time can be used to                                   

unify all timestamps across computers during an experiment. Thus, all event timestamps                       

across all computers for a given experiment are recorded in times relative to chrono. A                             

Timeline object can acquire any number of hardware events and record their values                         

with respect to this offset; for example, a ​Timeline object can record when a reward is                               

delivered, a laser is fired, a sensor is interacted with, a screen displaying visual stimuli is                               

updated, etc. In addition to chrono, a ​Timeline object can also output TTL and clock                             

pulses for triggering external devices (e.g. to acquire frames at a specific rate). 

The data package ​+dat contains a number of simple functions for saving and locating                             

data. Data organization supports separation of data types between repositories, and                     

redundant local and remote storage. Because all code uses the same paths file, it is very                               

simple to change the location of data and configuration files. Furthermore, this system                         

can be easily used with one’s own code to generate read and write paths for arbitrary                               

datasets. The ​experiment package ​+exp ​contains all of the code pertaining to                       
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experiment setup and configuration. Two key aspects of this are the ​Parameters class,                         

which sets, validates, and assorts experiment conditions for each experiment, and the                       

SignalsExp class, which runs an experiment after loading in the experimenter’s exp def                         

and appropriate parameters into a Signals network. 

The ​server package ​+srv ​provides high level network communication between MC and                       

SC. In addition, this package provides functions for triggering remote recording software                       

via UDPs.   

The ​experiment UI package ​+eui provides all the graphical user interface (GUI) code.                         

Principally, this is employed for the ​mc function, which launches the main GUI on MC.                             

The MC GUI is used to load and configure experiment parameters on MC, monitor                           

experiments through customizable plots, view experiment history, and log metadata. 

The psychometrics package ​+psy contains simple functions for processing and plotting                     

psychometric data. 

The ​alyx-matlab package serves as a MATLAB client for interfacing with an Alyx                         

database. This package allows experimenters to make queries and posts to an Alyx                         

database within MATLAB, and create notes during an experiment which are                     

automatically synced to the database. alyx-matlab uses the npy-matlab submodule to                     

provide support for saving data.  

Alyx is a meta-database that allows experimenters to keep track of animal procedures,                         

such as breeding and implantation, and organize experimental sessions and their                     

associated files (Rossant et. al, 2018). The database is heavily used by the International                           

Brain Laboratory due to its lightweight nature, and can be easily installed on most web                             

servers (Abbott et al., 2017). More information on Alyx and alyx-matlab can be found in                             

alyx-matlab/docs ​within the Rigbox repository. The use of Alyx and alyx-matlab within                      

Rigbox is optional.  
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Figure 12. A UML diagram depicting the class structure for data logging in Rigbox. Each box represents a class and                                       

contained within it is the name, attributes and methods. The superclass is ​DataLogging​, which contains the most general                                   

attributes and methods. ​PositionSensor​, it’s immediate subclass (indicated by the white arrow) provides general abstract                             

methods such as ​readAbsolutePosition for reading the raw position of some nondescript linear position sensor. The                               

implementation of this depends on the specific drivers and hardware of each device. Two such subclasses are shown: one                                     

for interfacing with a rotary encoder via a NI-DAQ, and another for reading cursor position. The specific details of this                                       

need only be known to each subclass, and therefore it is straightforward to swap in different devices without having to                                       

modify other parts of the system. Also shown is the abstract ​Clock class and its concrete implementation using the                                     

Psychophysics Toolbox. The clock object is used in numerous different hardware classes and ensure that all run via the                                     

same clock. 
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Figure 13​. Representation of a Timeline object. The top most signal is the main timing signal, “chrono”, which is used to                                         

unify all timestamps across computers during an experiment. The “inputs” represent different hardware input signals                             

read by a NI-DAQ, and the “triggers” represent different hardware output signals, triggered by a NI-DAQ. 

Discussion 

In our laboratory, Rigbox is at the core of our operant, passive, and conditioning                           

experiments. The principal behavioral task we use is the Burgess Steering Wheel Task                         

(Burgess et al., 2017). Using Rigbox, we have been able to create multiple variants of this                               

task. These have included unforced choice, multisensory choice, behavior matching, and                     

bandit tasks, using wheels, levers, balls, and lick detectors. ​In addition, Rigbox has                         

allowed us to rapidly integrate these tasks with a variety of recording techniques,                         

including electrode recordings, 2-Photon imaging, and fiber photometry, and neural                   

perturbations, such as scanning laser inactivation and dopaminergic stimulation (Jun et                     

al., 2017; Jacobs et al., 2018; Lak et al., 2018; Steinmetz et al., 2018; Shimaoka et al., 2018;                                   

Zatka-Haas et al., 2018). 

Given the modular nature of Rigbox, new features and hardware support may be easily                           

added, provided there is driver support in MATLAB. For example, to add support for a                             

novel data acquisition device (such as an Arduino or other microcontroller), one can                         

simply create a subclass of the ​+hw/DaqController ​class. Similarly, to add support for a                          

novel position sensor, a new ​+hw/PositionSensor subclass could be created. These                     

classes simply define what happens when, for example, the code triggers a hardware                         

output, or polls a hardware input. This principle also holds true for implementing                         

various visual stimulus viewing models, of which there is currently only one. A new                           
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viewing model class could be implemented to allow for virtual reality experiments, for                         

example. 

To the best of our knowledge, Rigbox is the most complete behavioral control software                           

toolbox currently available in the neuroscience community; however, a number of other                       

toolboxes implement similar features in different ways (Bcontrol 2014; Sanders 2019;                     

Akam 2019; Aronov and Tank, 2014) (Table 1). Some of these toolboxes also include some                             

features not currently available in Rigbox, for example microsecond precision triggering                     

of within-trial events and creating 3D virtual environments. Indeed, the features                     

employed by a particular toolbox have advantages (and disadvantages) depending on the                       

user’s desired experiment. 

 

  BControl  Bpod  pyControl  VirMEn  Rigbox 

Behavioral task 
design paradigm 

Procedural   Procedural  Procedural  Object- 
Oriented 

Functional 
Reactive 

Implements 
viewing model? 3D 
viewing model? 

no  no  no  yes, yes  yes, no 

Interfaces with 
hardware? 

yes  yes  yes  yes  yes 

Synchronizes 
multiple 
datastreams? 

yes  yes  yes  no  yes 

Communicates 
with a remote 
database? 

yes  yes  no  no  yes 

Table 1: Comparison of major features across behavioral control system toolboxes. The top row contains the toolbox                                 

names, and the first column contains information on a feature’s implementation. Note: the toolboxes and features                               

mentioned in this table are not exhaustive. 

There are pros and cons to following different programming paradigms for software                       

developers who decide how a user will programmatically design a behavioral task.                       

Generally, three main paradigms exist: procedural, object-oriented, and functional                 

reactive. Here, in the context of programmatic task design, we briefly discuss the                         

differences between these paradigms and in which scenarios one may be favored over                         

the others. Note: here we only discuss the aspect of a toolbox that deals with behavioral                               

task design, not the overall structure of a toolbox (e.g. Rigbox is built on an                             
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object-oriented paradigm, but Signals provides a functional reactive paradigm in which                     

to implement a behavioral task). 

A procedural approach to task design is probably the most familiar to behavioral                         

neuroscientists. This approach focuses on “how to execute” a task by explicitly defining a                           

control flow that moves a task from one state to the next. The Bcontrol, Bpod, and                               

pyControl toolboxes follow this paradigm by using a real-time finite state machine                       

(RTFSM) which controls a task’s state (e.g. initial state, reward, punishment, etc.) during                         

each trial. Some advantages of this approach are that it’s simple and intuitive, and                           

guarantees event timing precision down to the minimum cycle of the state machine (e.g.                           

Bcontrol RTFSMs run at a minimum cycle of 6 KHz). Some disadvantages of this                           

approach are that the memory for task parameters are limited by the RTFSM’s number of                             

states, and that the discrete implementation of states isn’t amenable to experiments                       

which seek to control parameters continuously (e.g. a task which uses continuous                       

hardware input signals). 

Like the procedural approach to task design, an object-oriented approach also tends to be                           

intuitive: objects can neatly represent an experiment’s state via datafields. Objects                     

representing experimental parameters can easily pass information to each other, and                     

trigger experimental states via event callbacks. The VirMEn toolbox implements this                     

approach by treating everything in the virtual environment as an object, and having a                           

runtime function update the environment by performing method calls on the objects                       

based on input sensor signals from a subject performing a task. Some disadvantages of                           

this approach are that the speed of experimental parameter updates are limited by the                           

speed at which the programming language performs dynamic binding (which is often                       

much slower than the RTFSM approach discussed above), and that operation “side                       

effects” (which can alter an experiment’s state in unintended ways) are more likely to                           

occur due to the emphasis on mutability, when compared to a pure procedural or                           

functional reactive approach.  

By contrast, Signals follows a functional reactive approach to task design. As we have                           

seen, some advantages of this approach include simplifying the process of updating                       

experimental parameters over time, endowing parameters with memory, and facilitating                   

discrete and continuous event updates with equal ease. In general, a task specification in                           

this paradigm is declarative, which can often make it clearer and more concise than in                             

other paradigms, where control flow and event handling code can obscure the semantics                         

of the task. Some disadvantages are that it suffers from similar speed limitations as in an                               

object-oriented approach, and programmatically designing a task in a functional reactive                     
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paradigm is probably unfamiliar to most behavioral neuroscientists. When considering                   

the entire set of behavioral tasks, no single programming paradigm is perfect, and it is                             

therefore important for an experimenter to consider the goals for their task’s                       

implementation accordingly.  

Rigbox is currently under active, test-driven development. All our code is open source,                         

distributed under the Apache 2.0 license, and we encourage users to contribute. Please                         

see the contributing guidelines in the repository for contributing code and reporting                       

issues. 
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