

Rigbox: an Open-Source Toolbox for Probing Neurons
and Behavior
Jai Bhagat​1​*, Miles J. Wells ​1,2​*, Andrew Peters ​2​, Kenneth D Harris ​1​, Matteo Carandini​2​,

Christopher P Burgess ​2+

1​UCL Queen Square Institute of Neurology, University College London, London, UK
2​UCL Institute of Ophthalmology, University College London, London, UK

*These authors contributed equally

+​Present address: DeepMind, London, UK.

Setting up an experiment in behavioral neuroscience is a complex process that is

often managed with ad hoc solutions. To streamline this process we developed

Rigbox, a high-performance, ​open-source software toolbox that facilitates a

modular approach to designing experiments ​(​github.com/cortex-lab/Rigbox ​).

Rigbox simplifies hardware I/O, synchronizes data streams from multiple sources,

communicates with remote databases, and implements visual and auditory stimuli

presentation. Its main submodule, Signals, allows intuitive programming of

behavioral tasks. Here we illustrate its function with two interactive examples: a

human psychophysics experiment, and the game of Pong. We give an overview of

the other packages in Rigbox, provide benchmarks, and conclude with a discussion

on the extensibility of the software and comparisons with similar toolboxes. ​Rigbox

runs in MATLAB, with Java components to handle network communication, and a C

library to boost performance.

Introduction

In behavioral neuroscience, much time is spent setting up hardware and software and

ensuring compatibility between them. Experiments often require configuring disparate

software to interface with distinct hardware, and integrating these components is no

trivial task. Furthermore, there are often separate software components for designing a

behavioral task, running the task, and acquiring, processing, and logging the data. This

requires learning the fundamentals of different software packages and how to make

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

http://github.com/cortex-lab/Rigbox
https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

them communicate appropriately.

Consider a typical experiment focused on decision-making, in which a subject chooses a

stimulus amongst a set of possibilities and obtains a reward if the choice was correct

(Carandini and Churchland, 2013). The software set-up for this experiment may seem

simple: ostensibly, all that is required is software to run the behavioral task, and

software to handle the experimental data. However, when considering implementation

details for these two types of software, the set-up can grow quite complex. For example,

in a typical variant of the Burgess Steering Wheel Task, a mouse must move a steering

wheel left or right to choose between two different visual stimuli (Figure 1) (Burgess et

al., 2017; Steinmetz et al., 2018). For each trial, if the mouse chooses the correct stimulus,

it receives a water reward from a spout. During the experiment, the mouse’s actions are

recorded with a body camera and lick detector, and brain activity is recorded with

electrodes and manipulated with a laser. Running the task requires software for starting,

stopping, and transitioning between task states, presenting the stimuli, and triggering the

reward spout and laser. Handling experimental data requires software for acquiring,

processing, and logging stimulus history, response history (from the wheel and a lick

detector), and subject physiology (from the body camera and the electrodes), and

transferring data between servers and databases.

To address this variety of needs in a single software toolbox, we designed Rigbox

(​github.com/cortex-lab/Rigbox​). Rigbox is modular, high-performance, open-source

software for implementing behavioral neuroscience experiments and acquiring

experiment-related data. Rigbox facilitates recording, synchronizing, and managing data

from a variety of sources. ​Furthermore, Rigbox promotes bespoke behavioral task design

via a framework called Signals, which exploits both object-oriented and functional

Figure 1​: In this experiment, in addition to the software that runs the behavioral task, software is also required to 1)

record time-series data from the electrodes, steering wheel, body camera, and lick detectors; 2) trigger outputs to the spout

and laser; and 3) transfer data between the rig computer, a remote server (for loading experiment parameters), and a

remote database (for saving experiment metadata). (Adapted with permission from Steinmetz et. al 2018)

2

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

http://github.com/cortex-lab/Rigbox
https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

reactive programming paradigms to allow an experimenter to intuitively define and

parameterize an experiment.

Methods and Results

We begin by giving a general overview of Rigbox. We go on to describe Signals, the core

package of Rigbox, and provide two interactive examples of its use: a simple experiment

in visual psychophysics, and the game of Pong. We then briefly describe the other

packages in Rigbox, and provide benchmarking results.

Overview

Rigbox is made up of a number of packages which run on two computers, referred to as

the “Master Computer” (MC) and “Stimulus/Slave Computer” (SC) (Figure 2). MC is

responsible for selecting, parameterizing, starting, and monitoring an experiment via a

MATLAB GUI. SC is responsible for running an experiment on a rig and interacting with

that rig’s hardware during runtime. MC can control multiple SCs simultaneously.

Figure 2​: Schematic of Rigbox package interactions. The solid lines represent necessary communication between Rigbox

packages, and the dashed lines represent optional communication (for saving data to a remote Alyx database, and for

processing/plotting data). The ​+eui package runs a GUI on the master computer (MC), and the ​+srv package launches

stimulus presentation on the stimulus computer (SC). Though this figure shows only one direct MC-SC connection, MC can

control multiple SCs simultaneously.

3

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

MC and SC communicate during runtime via Java WebSockets using TCP/IP. Therefore, it

is necessary for both computers to be connected to high-speed internet. The precise

computer hardware requirements for SC depend on the complexity of the experiment,

and for MC depend on the number of experiments run concurrently (i.e. number of

active SCs controlled). For most experiments, typical modern desktop computers running

Windows will suffice. SC also requires input/output device(s) for polling hardware inputs

and triggering hardware outputs, and optionally requires graphics and sound cards,

depending on the complexity of the stimuli to be presented.

Instructions for installation and configuration can be found in the README ​file and the

docs/setup folder of the GitHub repository. This includes information on required

dependencies, setting data repository locations, configuring hardware, and setting up

communication between the MC and SC computers.

Signals

Signals was designed for building bespoke behavioral tasks. The framework is built

around the paradigm of functional reactive programming, which simplifies problems

that deal with change over time (Lew, 2017). Signals ​represents an experiment as a

reactive network whose nodes (“signals”) represent experimental parameters. These

signals can evolve over time through interactions with each other ​. The framework

provides a set of input signals which represent time, experiment epochs, and hardware

input devices, and a set of output signals which represent hardware output devices.

Thus, an entire experiment can simply be thought of as a network which maps hardware

inputs to hardware outputs via a set of experimenter-defined transformations (Figure 3).

The core goal of Signals is to represent the relationship between experimental

parameters with straightforward, self-documenting operations. For example, to define

the temporal frequency of a visual stimulus - for example, a drifting grating - an

experimenter could create a signal which changes the grating’s phase as a function of

time (Figure 4). This is shown in the code below:

theta = 2*pi; ​% angle of phase in radians
freq = 3; ​% frequency of phase in Hz
stimulus.phase = theta*freq*t; ​% phase that cycles at 3 Hz for given stimulus

4

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

Figure 3: A Signals representation of an experiment. There are three types of input signals in the network, representing

time, hardware inputs (such as an optical mouse, keyboard, rotary encoder, lever, etc.), and experiment epochs (such as

trial and experiment start and end conditions). The experimenter defines transformations that create new signals (not

shown) from these input signals, which ultimately drive hardware outputs (such as a reward valve, blow gun,

galvanometer, etc.).

Figure 4: Representation of the time-dependent phase of a visual stimulus in Signals. An unfilled circle represents a

constant value - it becomes a node in the network when combined with another signal in an operation (in this instance, via

multiplication).

The operations that can be performed on signals are not just limited to basic arithmetic.

A number of built-in MATLAB functions (including logical, trigonometric, casting, and

array operations) have been overloaded to work on signals as they would on basic

numeric or char types. Furthermore, a number of classical functional programming

functions (e.g. “map”, “scan”, etc.) can be used on signals. These endow signals with

memory, and allow them to gate, trigger, filter, and accumulate other signals (Figure 5).

With this powerful framework, an experimenter can easily define complex relationships

between input and output devices (or more abstractly, between stimuli, response and

5

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

Figure 5: The creation of new signals via example signals methods. ​Conceptually, a signal can be thought of as both a

continuous stream of discrete values, and as a discrete representation whose value changes over time. ​Each panel

represents a signal. The x-axis represents time, and the y-axis represents the signal’s value. Each column depicts a set of

related transformations. The second row depicts a signal which results from applying an operation on the signal in the

same column’s first row. The third row depicts a signal which results from applying an operation on the signals in the

same column’s first and second rows.

reward) in order to create a complete experiment protocol. This protocol takes the form

of a user-written MATLAB function, which we refer to as an “experiment definition”

(“exp def”). Signals runs an experiment by loading this exp def into a network and

posting values to the network’s input signals on every iteration of a while loop, which

triggers asynchronous propagation through the reactive network. The experiment ends

when the “experiment stop” signal is updated (e.g. when a number of correct trials is

reached or when the experimenter clicks the “end” button in the MC GUI).

The following is a brief overview of the structure of an exp def. An exp def takes up to

seven input arguments:

function​ ​expDef(t, events, params, visStim, inputs, outputs, audio)

In order, these are 1) the time signal; 2) an events structure containing signals which

define the experiment’s epochs, and a set of user-chosen signals to be logged from those

defined within the exp def; 3) a parameters structure to define session- or trial-specific

6

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

signals whose values can be changed directly from the MC GUI before starting an

experiment -- parameter defaults are set within the exp def and parameter sets can be

saved and loaded across subjects and experiments; 4) the visual stimuli handler which

contains as fields all signals which parametrize the display of visual stimuli -- any visual

stimulus signal can be assigned various elements (which the viewing model allows to be

defined in visual degrees) for being rendered to a screen, and a visual stimulus can be

loaded directly from a saved image file; 5) an inputs structure containing signals which

map to hardware inputs devices; 6) an outputs structure containing signals which map to

hardware output devices; 7) the audio stimuli handler which can contain as fields signals

which map to available audio devices.

Tutorials on creating an exp def, examples of working exp defs and standalone scripts

(including those mentioned in this paper), and an in-depth overview of Signals can be

found in the ​signals/docs ​folder within the Rigbox repository. ​Though running a

Signals experiment in Rigbox typically requires two computers, the following examples

can be run from a single Windows PC, as their only required hardware devices are an

optical mouse and keyboard. Readers are encouraged to run these examples upon

installing Rigbox and its necessary dependencies.

Example 1: A Psychophysics Experiment

Our first example of a human-interactive Signals experiment is a script that recreates a

psychophysics experiment to study the mechanisms that underlie the discrimination of a

visual stimulus (Ringach 1998). In this experiment, the observer looks at visual gratings

(Figure 6a) that change rapidly and randomly in orientation and phase. The gratings

change so rapidly that they summate in the visual system, and the observer tends to

perceive two or three of them as superimposed. The task of the observer is to hit the

“ctrl” key whenever the grating’s orientation is vertical. At key press, the probability of

detection is plotted as a function of stimulus orientation in the recent past. Typically, this

exposes a center-surround type of organization, with orientations near vertical eliciting

responses, but orientations further away suppressing responses (Figure 6b). The Signals

network representation of this experiment is shown in Figure 7.

To run this experiment, simply run the file ​signals/docs/examples/ringach98.m in the

Rigbox repository. Below is a breakdown of the thirty lines of code:

First, some constants are defined:

oris = 0:18:162; ​% set of orientations, deg
phases = 90:90:360; ​% set of phases, deg
presentationRate = 10; ​% Hz

7

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

winlen = 10; ​% length of histogram window, frames

Next, we create a figure and our Signals network:
figh = figure('Name', 'Press “ctrl” key on horizontal grating',...

 'Position', [680 250 560 700], 'NumberTitle', 'off');

vbox = uix.VBox('Parent', figh);

[t, setElemsFun] = sig.playgroundPTB([], vbox);

net = t.Node.Net; ​% Handle to our network
axh = axes('Parent', vbox, 'NextPlot', 'replacechildren', 'XTick', oris);

xlabel(axh, 'Orientation');

ylabel(axh, 'Time (frames)');

ylim([0 winlen] + 0.5);

Then, we wire our network:
% Create a signal from the keyboard presses

keyPresses = net.fromUIEvent(figh, 'WindowKeyPressFcn');

% Filter it, keeping only ‘ctrl’ key presses. Turn into logical signal

reports = strcmp(keyPresses.Key, 'ctrl');

% Sample the current time at presentationRate

sampler = skipRepeats(floor(presentationRate*t));

% Randomly sample orientations and phases

oriIdx = sampler.map(@(~)randi(numel(oris)));

phaseIdx = sampler.map(@(~)randi(numel(phases)));

currPhase = phaseIdx.map(@(idx)phases(idx));

currOri = oriIdx.map(@(idx)oris(idx));

% create a signal to indicate the current orientation (an indicator vector)

oriMask = oris' == currOri;

% Record the last few orientations presented (buffer last few oriMasks)

oriHistory = oriMask.buffer(winlen);

% After each keypress, add the oriHistory snapshot to an accumulating

% histogram

histogram = oriHistory.at(reports).scan(@plus, zeros(numel(oris), winlen));

% Plot histogram surface each time it changes

histogram.onValue(@(data)imagesc(oris, 1:winlen, flipud(data'),...

 'Parent', axh));

Finally, we create the visual stimulus and send it to the renderer:
% Create a Gabor with changing orientations and phases

grating = vis.grating(t, 'sinusoid', 'gaussian');

grating.show = true;

grating.orientation = currOri;

grating.phase = currPhase;

grating.spatialFreq = 0.2; ​% cyc/deg
% Add the grating to the renderer

setElemsFun(struct('grating', grating));

8

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

Figure 6: a) ​A sample grating for which the subject is required to respond to via a “ctrl” key press. ​b) A heatmap showing

the grating orientations for the ten frames immediately preceding a “ctrl” key press, summed over all “ctrl” key presses for

the duration of the experiment. After a few minutes, the distribution of orientations over time at a “ctrl” key press

resembles a 2D Mexican Hat wavelet, centered on the orientation the subject was reporting at the subject’s average

reaction time. In this example, the subject was reporting a vertical grating orientation (90 degrees) with an average

reaction time of roughly 600ms.

Figure 7: ​ A simplified Signals network diagram of the Ringach experiment.

9

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

Example 2: Pong

A second human-interactive Signals experiment contained in the Rigbox repository is an

exp def which runs the classic computer game, Pong (Figure 8). The signal which sets the

player’s paddle position is mapped to the optical mouse. The epoch structure is set so

that a trial ends on a score, and the experiment ends when either the player or cpu

reaches a target score. The code is divided into three sections: 1) initializing the game, 2)

updating the game, 3) creating visual elements and defining exp def parameters. To run

this exp def, follow the directions in the header of the

signals/docs/examples/signalsPong.m ​file in the Rigbox repository. Because the file

itself (including copious documentation) is over 300 lines, we will share only an

overview here; however, readers are encouraged to look through the full file at their

leisure.

function​ signalsPong(t, events, p, visStim, inputs, outputs, audio

In this first section, we define constants for the game, arena, ball, and paddles:

%% Initialize the game

% how often to update the game in secs

...

% initial scores and target score

...

% size of arena, ball, and paddle: [w h] in visual degrees

...

% ball angle, and ball velocity in visual degrees per second

...

% cpu and player paddle X axis positions in visual degrees

...

The helper function, ​getYPos​, returns the y-position of the cursor, which will be used to

set the player paddle:

 ​function​ yPos = getYPos()
 ...

 ​end
% get cursor's initial y-position

cursorInitialY = events.expStart.map(@(~) getYPos);

In the second section, we define how the ball and paddle interactions update the game:

10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

%% Update game

% create a signal that will update the y-position of the player's paddle using

‘getYPos’

playerPaddleYUpdateVal = ​(cursor.map(@(~)getYPos)-cursorInitialY)*cursorGain
% make sure the y-value of the player's paddle is within the screen bounds,

playerPaddleBounds = cond(playerPaddleYUpdateVal > arenaSz(2)/2, ...

 arenaSz(2)/2, playerPaddleYUpdateVal < -arenaSz(2)/2, -arenaSz(2)/2, ...

 true,playerPaddleYUpdateVal);

% and only updates every 'tUpdate' secs

playerPaddleY = playerPaddleBounds.at(tUpdate);

% Create a struct, 'gameDataInit', holding the initial game state

gameDataInit = struct;

…

% Create a subscriptable signal, 'gameData', whose fields represent the

% evolving game state, and which will be updated every ‘tUpdate’ secs

gameData = playerPaddleY.scan(@updateGame, gameDataInit).subscriptable;

The helper function, ​updateGame​, updates ​gameData​. Specifically, it updates the ball angle,

velocity, position, cpu paddle position, and player and cpu scores, based on the current

ball position:

 ​function​ gameData = updateGame(gameData, playerPaddleY)
 ...

 end

% define trial end (when a score occurs)

anyScored = playerScore | cpuScore;

events.endTrial = anyScored.then(true);

% define game end (when player or cpu score reaches target score)

endGame = (playerScore == targetScore) | (cpuScore == targetScore);

events.expStop = endGame.then(true);

...

In the final section, we create the visual elements representing the arena, ball, and

paddles, and define the exp def parameters:

%% Define the visual elements and the experiment parameters

% create the arena, ball, and paddles as ‘vis.patch' subscriptable signals

arena = vis.patch(t, 'rectangle');

ball = vis.patch(t, 'circle');

playerPaddle = vis.patch(t, 'rectangle');

cpuPaddle = vis.patch(t, 'rectangle');

% assign the arena, ball, and paddles to the 'visStim' subscriptable signal handler

11

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

visStim.arena = arena;

visStim.ball = ball;

visStim.playerPaddle = playerPaddle;

visStim.cpuPaddle = cpuPaddle;

% define parameters that will be displayed in the GUI

try

 ​% ‘ballColor’ as conditional parameter: on any given trial, the ball color will be
 chosen at random among three colors: white, red, blue

 p.ballColor = [1 1 1; 1 0 0; 0 0 1]’; ​% RGB color vector array
 p.targetScore = 5;

catch

end

Figure 8: ​A screenshot of Pong run in Signals.

Benchmarking

Fast execution of experiment runtime code is crucial for performing and accurately

analyzing results from a behavioral experiment. Here we show benchmarking results for

the Signals framework. We include results for individual operations on a signal and for

operations which propagate through each signal in a network. Single built-in MATLAB

operations and Signals-specific methods are consistently executed in the microsecond

range (Figure 9). The network used in the Burgess Steering Wheel Task

(​signals/docs/examples/advancedChoiceWorld.m) ​contains 338 signals spread over 10

layers; a similar network of 350 signals spread over 20 layers can update all signals in

under 5 milliseconds, and a network of 120 signals spread over 20 layers can update all

signals with sub-millisecond precision (Figure 10). Lastly, we include results from

12

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

Figure 9 ​: Benchmarking results for operations on a single signal. The black “x” shows the mean value per group.

Figure 10​: Benchmarking results for updating every signal in a network, for networks of various number of signals

(nodes) spread over various number of layers (depth). The black “x” shows the mean value per group.

13

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

Figure 11​: Delay times for specific updates when running the Steering Wheel Task. The number next to each violin plot

indicates the number of samples in the group. “Wheel Delay” is the time between polling consecutive position values from

the hardware wheel. “Stim Window Delay” is the time between triggering a display to be rendered, and it’s complete

render on a screen. “Reward Delay” is the time between triggering a reward to be delivered and its delivery. 99th

percentile outliers were not included in the plot for “Wheel Delay”: there were 98 instances in which the wheel delay took

between 200-600 ms, due to execution time of the NI-DAQmx MATLAB package when sending analog output (reward

delivery) via the USB-6211 DAQ.

running the Burgess Steering Wheel Task in Signals: updates of the wheel position

typically took less than 2 milliseconds, the time between rendering and displaying the

visual stimulus typically took less than 15 milliseconds, and the delay between triggering

and delivering a reward was typically under 0.2 milliseconds (Figure 11).

All results in the Benchmarking section were obtained from running MATLAB 2018b on a

Windows 10 64-bit OS with an Intel core i7 8700 processor and 16 GB DDR4 dual channel

RAM clocking at a double data rate of 2133 MHz. Because single executions of signals

operations were too quick for MATLAB to measure precisely, we repeated operations

1,000 times and divided MATLAB’s returned measured time by 1,000. MATLAB 2018b’s

Performance Testing Framework was used to obtain these results.

signals/tests/Signals_perftest.m contains the code used to generate the results

shown in Figure 9. ​signals/tests/results/2019-06-14_Signals_perftest.mat contains

a table of the data used to generate these results.

signals/tests/results/2019-06-04_advancedChoiceWorld_Block.mat ​contains the

data used to generate the results shown in Figure 10. National Instrument’s USB-6211

was used as the data acquisition device.

The Other Packages in Rigbox

Often experiments are iterative: task parameters are added or modified many times

14

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

over, and finding an ideal parameter set can be an arduous process. Rigbox allows the

experimenter to develop and test their experiment without having to worry about

boilerplate code and UI modifications, as these are handled by other packages in a

modular fashion. Much of the code is object-oriented with most aspects of the system

represented as configurable objects. Below is a short description of each package.

The ​hardware package ​+hw ​contains calibration functions and classes for interfacing

with various hardware. These include abstract classes such as ​Window and ​DataLogger,

which define general methods for high-level interaction with an on-screen stimulus

display window and a hardware logging device, respectively. ​Window and ​DataLogger

have concrete implementations for specific systems: ​+ptb/Window subclasses ​Window ​to

represent a Psychophysics Toolbox stimulus window, and ​DaqRotaryEncoder ​subclasses

PositionSensor (which subclasses ​DataLogger​) to represent the Lego wheel used in the

Burgess Steering Wheel Task (Figure 12). For novel implementations, additional

subclasses can be created from these abstract classes to represent other specific

hardware.

The hardware package also contains a class called ​Timeline ​which manages the

acquisition and generation of experimental timing data using a National Instruments

Data Acquisition Device (NI-DAQ) (Figure 13). The main timing signal, chrono, is a digital

square wave that flips each time a new chunk of data is available from the NI-DAQ. A

callback function to this flip event collects the NI-DAQ timestamp of the scan where each

flip occured. The difference between this timestamp and the system time recorded when

the flip command was given is recorded as an offset time. This offset time can be used to

unify all timestamps across computers during an experiment. Thus, all event timestamps

across all computers for a given experiment are recorded in times relative to chrono. A

Timeline object can acquire any number of hardware events and record their values

with respect to this offset; for example, a ​Timeline object can record when a reward is

delivered, a laser is fired, a sensor is interacted with, a screen displaying visual stimuli is

updated, etc. In addition to chrono, a ​Timeline object can also output TTL and clock

pulses for triggering external devices (e.g. to acquire frames at a specific rate).

The data package ​+dat contains a number of simple functions for saving and locating

data. Data organization supports separation of data types between repositories, and

redundant local and remote storage. Because all code uses the same paths file, it is very

simple to change the location of data and configuration files. Furthermore, this system

can be easily used with one’s own code to generate read and write paths for arbitrary

datasets. The ​experiment package ​+exp ​contains all of the code pertaining to

15

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

experiment setup and configuration. Two key aspects of this are the ​Parameters class,

which sets, validates, and assorts experiment conditions for each experiment, and the

SignalsExp class, which runs an experiment after loading in the experimenter’s exp def

and appropriate parameters into a Signals network.

The ​server package ​+srv ​provides high level network communication between MC and

SC. In addition, this package provides functions for triggering remote recording software

via UDPs.

The ​experiment UI package ​+eui provides all the graphical user interface (GUI) code.

Principally, this is employed for the ​mc function, which launches the main GUI on MC.

The MC GUI is used to load and configure experiment parameters on MC, monitor

experiments through customizable plots, view experiment history, and log metadata.

The psychometrics package ​+psy contains simple functions for processing and plotting

psychometric data.

The ​alyx-matlab package serves as a MATLAB client for interfacing with an Alyx

database. This package allows experimenters to make queries and posts to an Alyx

database within MATLAB, and create notes during an experiment which are

automatically synced to the database. alyx-matlab uses the npy-matlab submodule to

provide support for saving data.

Alyx is a meta-database that allows experimenters to keep track of animal procedures,

such as breeding and implantation, and organize experimental sessions and their

associated files (Rossant et. al, 2018). The database is heavily used by the International

Brain Laboratory due to its lightweight nature, and can be easily installed on most web

servers (Abbott et al., 2017). More information on Alyx and alyx-matlab can be found in

alyx-matlab/docs ​within the Rigbox repository. The use of Alyx and alyx-matlab within

Rigbox is optional.

16

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

Figure 12. A UML diagram depicting the class structure for data logging in Rigbox. Each box represents a class and

contained within it is the name, attributes and methods. The superclass is ​DataLogging​, which contains the most general

attributes and methods. ​PositionSensor​, it’s immediate subclass (indicated by the white arrow) provides general abstract

methods such as ​readAbsolutePosition for reading the raw position of some nondescript linear position sensor. The

implementation of this depends on the specific drivers and hardware of each device. Two such subclasses are shown: one

for interfacing with a rotary encoder via a NI-DAQ, and another for reading cursor position. The specific details of this

need only be known to each subclass, and therefore it is straightforward to swap in different devices without having to

modify other parts of the system. Also shown is the abstract ​Clock class and its concrete implementation using the

Psychophysics Toolbox. The clock object is used in numerous different hardware classes and ensure that all run via the

same clock.

17

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

Figure 13​. Representation of a Timeline object. The top most signal is the main timing signal, “chrono”, which is used to

unify all timestamps across computers during an experiment. The “inputs” represent different hardware input signals

read by a NI-DAQ, and the “triggers” represent different hardware output signals, triggered by a NI-DAQ.

Discussion

In our laboratory, Rigbox is at the core of our operant, passive, and conditioning

experiments. The principal behavioral task we use is the Burgess Steering Wheel Task

(Burgess et al., 2017). Using Rigbox, we have been able to create multiple variants of this

task. These have included unforced choice, multisensory choice, behavior matching, and

bandit tasks, using wheels, levers, balls, and lick detectors. ​In addition, Rigbox has

allowed us to rapidly integrate these tasks with a variety of recording techniques,

including electrode recordings, 2-Photon imaging, and fiber photometry, and neural

perturbations, such as scanning laser inactivation and dopaminergic stimulation (Jun et

al., 2017; Jacobs et al., 2018; Lak et al., 2018; Steinmetz et al., 2018; Shimaoka et al., 2018;

Zatka-Haas et al., 2018).

Given the modular nature of Rigbox, new features and hardware support may be easily

added, provided there is driver support in MATLAB. For example, to add support for a

novel data acquisition device (such as an Arduino or other microcontroller), one can

simply create a subclass of the ​+hw/DaqController ​class. Similarly, to add support for a

novel position sensor, a new ​+hw/PositionSensor subclass could be created. These

classes simply define what happens when, for example, the code triggers a hardware

output, or polls a hardware input. This principle also holds true for implementing

various visual stimulus viewing models, of which there is currently only one. A new

18

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

viewing model class could be implemented to allow for virtual reality experiments, for

example.

To the best of our knowledge, Rigbox is the most complete behavioral control software

toolbox currently available in the neuroscience community; however, a number of other

toolboxes implement similar features in different ways (Bcontrol 2014; Sanders 2019;

Akam 2019; Aronov and Tank, 2014) (Table 1). Some of these toolboxes also include some

features not currently available in Rigbox, for example microsecond precision triggering

of within-trial events and creating 3D virtual environments. Indeed, the features

employed by a particular toolbox have advantages (and disadvantages) depending on the

user’s desired experiment.

 BControl Bpod pyControl VirMEn Rigbox

Behavioral task
design paradigm

Procedural Procedural Procedural Object-
Oriented

Functional
Reactive

Implements
viewing model? 3D
viewing model?

no no no yes, yes yes, no

Interfaces with
hardware?

yes yes yes yes yes

Synchronizes
multiple
datastreams?

yes yes yes no yes

Communicates
with a remote
database?

yes yes no no yes

Table 1: Comparison of major features across behavioral control system toolboxes. The top row contains the toolbox

names, and the first column contains information on a feature’s implementation. Note: the toolboxes and features

mentioned in this table are not exhaustive.

There are pros and cons to following different programming paradigms for software

developers who decide how a user will programmatically design a behavioral task.

Generally, three main paradigms exist: procedural, object-oriented, and functional

reactive. Here, in the context of programmatic task design, we briefly discuss the

differences between these paradigms and in which scenarios one may be favored over

the others. Note: here we only discuss the aspect of a toolbox that deals with behavioral

task design, not the overall structure of a toolbox (e.g. Rigbox is built on an

19

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

object-oriented paradigm, but Signals provides a functional reactive paradigm in which

to implement a behavioral task).

A procedural approach to task design is probably the most familiar to behavioral

neuroscientists. This approach focuses on “how to execute” a task by explicitly defining a

control flow that moves a task from one state to the next. The Bcontrol, Bpod, and

pyControl toolboxes follow this paradigm by using a real-time finite state machine

(RTFSM) which controls a task’s state (e.g. initial state, reward, punishment, etc.) during

each trial. Some advantages of this approach are that it’s simple and intuitive, and

guarantees event timing precision down to the minimum cycle of the state machine (e.g.

Bcontrol RTFSMs run at a minimum cycle of 6 KHz). Some disadvantages of this

approach are that the memory for task parameters are limited by the RTFSM’s number of

states, and that the discrete implementation of states isn’t amenable to experiments

which seek to control parameters continuously (e.g. a task which uses continuous

hardware input signals).

Like the procedural approach to task design, an object-oriented approach also tends to be

intuitive: objects can neatly represent an experiment’s state via datafields. Objects

representing experimental parameters can easily pass information to each other, and

trigger experimental states via event callbacks. The VirMEn toolbox implements this

approach by treating everything in the virtual environment as an object, and having a

runtime function update the environment by performing method calls on the objects

based on input sensor signals from a subject performing a task. Some disadvantages of

this approach are that the speed of experimental parameter updates are limited by the

speed at which the programming language performs dynamic binding (which is often

much slower than the RTFSM approach discussed above), and that operation “side

effects” (which can alter an experiment’s state in unintended ways) are more likely to

occur due to the emphasis on mutability, when compared to a pure procedural or

functional reactive approach.

By contrast, Signals follows a functional reactive approach to task design. As we have

seen, some advantages of this approach include simplifying the process of updating

experimental parameters over time, endowing parameters with memory, and facilitating

discrete and continuous event updates with equal ease. In general, a task specification in

this paradigm is declarative, which can often make it clearer and more concise than in

other paradigms, where control flow and event handling code can obscure the semantics

of the task. Some disadvantages are that it suffers from similar speed limitations as in an

object-oriented approach, and programmatically designing a task in a functional reactive

20

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

paradigm is probably unfamiliar to most behavioral neuroscientists. When considering

the entire set of behavioral tasks, no single programming paradigm is perfect, and it is

therefore important for an experimenter to consider the goals for their task’s

implementation accordingly.

Rigbox is currently under active, test-driven development. All our code is open source,

distributed under the Apache 2.0 license, and we encourage users to contribute. Please

see the contributing guidelines in the repository for contributing code and reporting

issues.

Acknowledgments

We thank Nick Steinmetz, Max Hunter, Peter Zatka-Haas, Kevin Miller, Hamish Forrest,

and other members of the lab for troubleshooting, feedback, inspiration, and code

contribution. This work was funded by the Medical Research Council (Doctoral Training

Award to CPB), the Royal Society (Newton International Fellowship to AJP), EMBO

(fellowship to AJP), the Human Frontier Science Program (fellowship to AJP), and by the

Wellcome Trust (grant 205093 ​to MC and KDH). MC holds the GlaxoSmithKline / Fight for

Sight Chair in Visual Neuroscience.

References

Abbott, L. F., Angelaki, D. E., Carandini, M., Churchland, A. K., Dan, Y., Dayan, P., …
Zador, A. M. (2017). An International Laboratory for Systems and Computational
Neuroscience. ​Neuron​, ​96 ​(6), 1213–1218.

Akam, T. pyControl. (2019). Retrieved June 7, 2019, from
https://pycontrol.readthedocs.io/en/latest/

Aronov, D. and Tank, D. W. (2014) Engagement of Neural Circuits Underlying 2D Spatial
Navigation in a Rodent Virtual Reality System. ​Neuron 84 ​(2): 442-56.

Bcontrol. (2014). Retrieved May 11, 2019, from
https://brodywiki.princeton.edu/bcontrol/index.php?title=Main_Page

Burgess, C. P., Lak, A., Steinmetz, N., Zatka-Haas, P., Bai Reddy, C., Jacobs, E. A. K., …
Carandini, M. (2017). High-yield methods for accurate two-alternative visual
psychophysics in head-fixed mice. ​Cell Reports, 20 ​(10), 2513-2524.

Carandini, M., and Churchland, A.K. (2013). Probing perceptual decisions in rodents. Nat
Neurosci 16​, 824-831.

21

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://pycontrol.readthedocs.io/en/latest/
https://pycontrol.readthedocs.io/en/latest/
https://brodywiki.princeton.edu/bcontrol/index.php?title=Main_Page
https://brodywiki.princeton.edu/bcontrol/index.php?title=Main_Page
https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

Jacobs, E. A. K., Steinmetz, N. A., Carandini, M., & Harris, K. D. (2018). Cortical state
fluctuations during sensory decision making. ​BioRxiv ​, 348193.

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., … Harris, T.
D. (2017). Fully integrated silicon probes for high-density recording of neural activity.
Nature​, ​551​(7679), 232–236.

Lak, A., Okun, M., Moss, M., Gurnani, H., Wells, M. J., Reddy, C. B., … Carandini, M. (2018).
Dopaminergic and frontal signals for decisions guided by sensory evidence and reward
value. ​BioRxiv​, 411413.

Lew, D. An Introduction to Functional Reactive Programming. (2017). Retrieved May 23,
2019, from Dan Lew Codes website:
https://blog.danlew.net/2017/07/27/an-introduction-to-functional-reactive-programming/

Lee D., Conroy M.L., McGreevy B.P., Barraclough D.J. (2004) Reinforcement learning and
decision making in monkeys during a competitive game. ​Cog Brain Res 22 ​(1)

Ringach, D.L. (1998). Tuning of orientation detectors in human vision. ​Vision Res 38​,
963-972.

Rossant, C., Hunter, M., Winter, O., Burgess, C., Harris, K. ​Alyx (2018). Retrieved May 23,
2019, from​ ​https://alyx.readthedocs.io/en/latest/

Sanders, J. Bpod Wiki. (2019). Retrieved May 11, 2019, from
https://sites.google.com/site/bpoddocumentation/home

Shimaoka, D., Steinmetz, N. A., Harris, K. D., & Carandini, M. (2018). The impact of
bilateral ongoing activity on evoked responses in mouse cortex. ​BioRxiv​, 476333.

Steinmetz, N. A., Zatka-Haas, P., Carandini, M., & Harris, K. D. (2018). Distributed
correlates of visually-guided behavior across the mouse brain. ​BioRxiv​, 474437.

Zatka-Haas, P., Steinmetz, N. A., Carandini, M. Harris, K.D. (2018). Distinct contributions
of mouse cortical areas to visual discrimination. ​BioRxiv,​ 501627

22

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/672204doi: bioRxiv preprint

https://doi.org/10.1101/411413
https://blog.danlew.net/2017/07/27/an-introduction-to-functional-reactive-programming/
https://blog.danlew.net/2017/07/27/an-introduction-to-functional-reactive-programming/
https://doi.org/10.1101/411413
https://alyx.readthedocs.io/en/latest/
https://alyx.readthedocs.io/en/latest/
https://sites.google.com/site/bpoddocumentation/home
https://sites.google.com/site/bpoddocumentation/home
https://doi.org/10.1101/476333
https://doi.org/10.1101/476333
https://doi.org/10.1101/474437
https://doi.org/10.1101/672204
http://creativecommons.org/licenses/by-nc/4.0/

