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ABSTRACT

Apathy is a debilitating syndrome that is associated with reduced goal-directed behaviour.
Although apathy is common and detrimental to prognosis in many neuropsychiatric diseases,
its underlying mechanisms remain controversial. We propose a new model of apathy, in the
context of Bayesian theories of brain function, whereby actions require predictions of their
outcomes to be held with sufficient precision for ‘explaining away’ differences in sensory
inputs. In this active inference model, apathy would result from reduced precision of prior
beliefs about action outcomes. Healthy adults (N=47) performed a visuomotor task that
independently manipulated physical effort and reward, and served to estimate the precision of
priors. Participants’ perception of their performance was biased towards the target, which was
accounted for by precise prior beliefs about action outcomes. Crucially, prior precision was
negatively associated with apathy. The results support a Bayesian account of apathy, that
could inform future studies of clinical populations.
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INTRODUCTION

Apathy is common, debilitating and detrimental to the prognosis in many neurological and
psychiatric diseases (Lanctot et al., 2017; Lansdall et al., 2019), but it also occurs to varying
degrees in the healthy population (Ang, Lockwood, Apps, Muhammed, & Husain, 2017).
Apathy is a complex construct, often decomposed into emotional, cognitive, and behavioural
domains (Levy & Dubois, 2005). However, its underlying mechanisms are controversial and
several accounts have been put forward for the reduction in ‘goal-directedness’ of behaviour
that characterises apathy.

Behavioural economics and reinforcement learning models cast apathy primarily as a
pathology of value-based decisions (Husain & Roiser, 2018). On this basis, apathetic
individuals behave in ways that fail to maximise their utility, given information about the
likely costs and benefits of different actions. Specifically, they exert less effort for reward
(Chong, Bonnelle, & Husain, 2016), which has been attributed to deficits in dopamine-
dependent reward sensitivity (Adam et al., 2013; Le Bouc et al., 2016; Muhammed et al.,
2016). However, defining apathy as a lack of dopamine-dependent motivation has limitations.
Current paradigms constrain action to be the consequence of a stimulus (such as a reward
cue) and subsequently evaluate the action against an external reward function. This does not
directly address the subject’s desire to actively fulfil their internal goals and beliefs or
expectations (Gottlieb & Oudeyer, 2018). Goal-directed behaviour can alternatively be
regarded as anticipatory rather than reflexive, such that actions are driven by their intended
consequences (Hommel, Musseler, Aschersleben, & Prinz, 2001).

Here we propose that apathy is directly related to the dependence of motivated behaviour on
the precision of the representations of internal goals and beliefs about action outcomes. We
build on the concept that brain function is a form of hierarchical Bayesian inference (Clark,
2013; Hohwy, 2013). On this basis, the brain maintains a generative model that optimises
predictions of sensory inputs and minimises prediction error or ‘surprise’ (Friston, 2010;
Friston, Daunizeau, Kilner, & Kiebel, 2010). Prediction error can be minimised in two ways:
passively, by changing predictions to better fit the sensory inputs (perceptual inference), or
actively, by performing actions to change the sensory input itself (active inference; Adams,
Shipp, & Friston, 2013; Friston et al., 2010). We propose that apathetic behaviour is a
disorder of active inference, within a generalised Bayesian framework.

The key question with regard to apathy is how the balance between perception and action is
regulated. Under active inference theory, the precision (inverse uncertainty) of predictions
and sensory input determine their relative contribution to behaviour. When predictions are
held with high precision, they will be maintained even in the face of conflicting sensory
input, and induce action so that the predicted and current state of the world are no longer in
conflict. This means that action requires sensory attenuation: the transient down-weighting of
sensory prediction errors so that expectations and goals can be fulfilled through action
(Brown, Adams, Parees, Edwards, & Friston, 2013; Wolpe et al., 2016, 2018). Thus, a
driving force of action is the regulation of the precision of predictions. A corollary is that low
prior precision leads to a more passive behavioural state, where prediction errors are resolved
by changing prior beliefs about the environment instead of by action (Friston et al., 2010,
2014).
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The precision of prior beliefs can be inferred through computational modelling of behavioural
data (e.g. Wolpe, Wolpert, & Rowe, 2014). This can be used to test the mechanism of
individual differences in apathy, in healthy adults and clinical populations, and in relation to
clinical outcomes and neural data (Adams, Huys, & Roiser, 2015). In the context of
visuomotor tasks, we previously found that the precision of priors was associated with trait
optimism, such that more optimistic individuals tended to have more precise priors, leading
to a perceptual distortion towards better performance (Wolpe et al., 2014). Evidence from
Parkinson’s disease suggests that the precision of priors is related to dopamine (Wolpe,
Nombela, & Rowe, 2015).

To bring these separate lines of evidence into a common analytical framework, we
hypothesised that individuals with greater apathy have less precise prior beliefs about their
action outcomes. We tested this hypothesis using a visuomotor task that independently
manipulated effort and reward, and from which the precision of action priors could be
estimated psychophysically. We predicted that participants’ estimates of performance would
be biased, in line with the integration of sensory evidence with prior beliefs about action
outcomes. Using Bayesian modelling of the participants’ performance and their reported
perception of performance, we estimated the precision of participants’ priors and its
fluctuation across levels of effort and reward. We tested whether individual differences in
apathy are related to variation in the precision of priors, and how the precision of priors
depends on effort and reward.
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METHOD
Participants

We aimed to be sufficiently powered to detect moderate associations between task metrics
and apathy as follows: to detect a true correlation of p = 0.4 with a = .05 (two-tailed) and
power of 80%, the required sample size is 46. We recruited 53 healthy adult participants to
account for at least 10% data exclusions from aberrant performance profiles or technical
issues. The participants had no history of a neurological or psychiatric disorder and had
normal or corrected-to-normal vision. The study was approved by the Cambridge Psychology
Research Ethics Committee, and all participants provided written informed consent.
Participants received a standard compensation of £6 per hour and a bonus of up to £5 based
on performance. Participants completed the Apathy Motivation Index (AMI; Ang et al.,
2017), a questionnaire measure of apathy that is designed for the healthy adult population.

We excluded five participants whose average task performance was > 3 times the median
absolute deviation from the group median performance, and one participant who could not
perform the force calibration appropriately. The reported analyses are therefore based on 47
participants (24 females, age range of 18-35 years, mean = 24.75,SD = 4.79; further
demographics are given in Table S1).

Task and procedure

The visuomotor task (see Figure 1) was designed to infer the precision of prior beliefs and its
influence on the perception of action outcomes, under different levels of effort and reward.
Participants pressed a force sensor to control the subsequent ballistic trajectory of a ‘ball’
cursor on the screen (32 pixel radius). The aim of each trial was to ‘land’ the cursor on the
target (38 pixel radius). The target was either displayed close (512 pixels from left margin) or
far (896 pixels from left margin) from the ball’s start position (128 pixels from left margin),
such that the distance to travel corresponded to 35% (Low Effort condition) or 65% (High
Effort) of each participant’s maximum force. Performance was either rewarded (in ‘points’,
to be converted to cash reward after the study), or not rewarded (Reward or No Reward
condition).

For each trial, participants performed a sustained finger press for 3 seconds, after which the
black ball turned green to indicate that the finger could be released. Within the 3-second
recording, we took the mean force from 2 to 2.5 seconds as the response (Wolpe et al., 2016).
The force response determined the initial velocity of the ball. The deceleration of the ball was
constant, and therefore the initial velocity (i.e. force response) uniquely determined the ball’s
final position. The difference between the force response and the force needed to land the ball
perfectly on target constitutes the force error, expressed as a percentage of the participant’s
maximum force.

The task consisted of two types of trials: basic trials and estimation trials. For basic trials,
participants viewed an animation of the ball’s trajectory from the start position to the final
position in the direction of the target - that is, the outcome of their action. The difference
between the ball’s final position and the target constitutes the performance error, expressed
in pixels. For estimation trials, the ball’s trajectory was hidden and participants used a mouse
cursor to provide their estimate of where the ball would have finished. The difference
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between the estimated final ball position and the true final ball position constitutes the
estimation error, expressed in pixels. Note that the target was not displayed during the
estimation procedure, and participants did not receive any feedback regarding the true final
ball position. Furthermore, participants were not pre-cued about what type of trial they were
engaging in. For estimation trials the ball’s animation started as usual, but after traveling 10%
of the screen width, the screen turned blank and the cursor was drawn to the screen.

trial start action outcome

basic trial
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Figure 1: Overview of the visuomotor task. Participants performed a sustained finger press
to trigger a ballistic ball trajectory, aiming it at a target. The target was either displayed
close to or far from the ball’s start position, corresponding to 35% (Low Effort) or 65%
(High Effort) of the participant’s maximum force. Further, participants were either given a
performance-dependent monetary reward or no reward. For a minority of trials, the ball’s
movement trajectory was not displayed, and participants estimated the ball’s final position
with a cursor.

The experiment started with two practice blocks of 50 basic trials each, with the target in the
centre of the screen (704 pixels from the left margin). In the second practice block,
participants were asked to estimate their performance after viewing the full trajectory of the
ball, to introduce the estimation procedure. The test phase consisted of 40 blocks of 27 trials
each. We used a 2x2 full-factorial design (Low and High Effort and No Reward and Reward).
In the reward condition, the maximum score of £1 was given when the ball landed perfectly
on the target, and this score decreased linearly as performance error increased. To avoid
confounding the effort and reward manipulations, the minimal performance required for a
reward was more stringent in the Low Effort condition than in the High Effort condition
(15% of the screen width from the close target versus 30% of the screen width from the far
target).

There were 10 blocks of trials for each combination of effort and reward, and the blocks were
ordered pseudorandomly for each participant at the start of the experiment. Each block
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consisted of 19 basic trials and 8 estimation trials. The trial order within each block was
determined pseudorandomly, with the constraints that the first 3 trials were always basic
trials, and that there could never be two consecutive estimation trials. Overall, excluding
practice, participants completed 1080 trials, of which 320 were estimation trials. To reduce
fatigue effects, we gave participants the opportunity to take a short break after completing a
block.

Maximum force calibration

At the start of the task, we established each participant’s maximum force in order to
normalise the effort levels between participants. This procedure consisted of 3 trials of 10
seconds each. Participants pressed with the maximum level of force they could sustain for the
duration of the trial, using the index finger of their dominant hand. At the end of each trial, a
sliding window function was used to select the 5 second window with the lowest force
variance, and the mean force within that window was taken as the maximum force for that
trial. The highest value across trials was taken as the participant’s true maximum force.

The maximum force was used to convert the force response to the ball’s initial velocity. The
applied force was divided by 25% of the maximum force and then multiplied by 30% of the
screen width per second. That is, pressing at 25% of one’s maximum force caused the ball to
initially move at 30% of the screen width per second. To make the task less difficult under
higher levels of force, we also scaled the relationship between force and initial velocity by
multiplying the applied force by 0.5.

Data analysis
Task performance

We preprocessed the data as follows: (i) we removed the first trial from each block to exclude
any effects of switching between experimental conditions, which reduced the total number of
trials from 1080 to 1040 (260 per condition); (ii) for each participant and each condition, we
removed trials with a force error that was more than 3 times the median absolute deviation
away from that condition’s median. On average, we removed 4 trials per condition for each
participant.

We first examined the effects of effort and reward on behavioural performance. Accuracy
(median force error) and variability (interquartile range, IQR, of force error) served as
dependent variables in repeated measures ANOVA, with effort and reward as within-subjects

factors. We report generalised eta-squared (ﬁf;) as the estimate of effect size, and we

performed post-hoc Tukey’s tests to compare levels of effort and reward. We also performed
Bayes factor analyses with the default ‘JZS’ prior to quantify the relative evidence in favour
of a model, given the data.


https://doi.org/10.1101/672113
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672113; this version posted June 19, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Apathy and action priors Page 8 of 29

example: participant ID 2

low effort,
no reward

low effort,
reward

no reward

high effort,
reward

A
A
. -

-40%  -20% 0%  20%  40%
force error (% of maximum force)

Figure 2: Distributions of force error by experimental conditions for a typical participant.
For each distribution, the white box represents the interquartile range and the black line
inside the box represents the median.

Precision of prior beliefs

To infer the precision of prior beliefs in the perception of action outcomes, we examined
participants’ estimates of their own performance as follows. For each estimation trial, we
assumed that the prior and sensory evidence are Gaussian, such that the optimal estimate of
the ball’s final position can be derived from Bayes’ rule (Wolpe et al., 2014):

Xestimate = W * .uprior + (1 - W) * Uevidence (1)

where the weighting w is given by:

2
Oevidence 2
o? + g? )
evidence prior

w =

For a given estimation trial, we consider the ball’s true final ball position as the mean of the
sensory evidence distribution, and the target position as the mean of the prior distribution. If a
participant has no clear prior expectation regarding their performance (i.e. a ‘flat’ prior with

very large variance a;n-or), the estimate of the ball’s final position would be similar to the

ball’s true final position, affected only by sensory noise with variance 62,;4.nce- CONversely,

if a participant has an exaggerated expectation of success (i.e. a prior with very small
variance a,;,,), this prior would ‘overwhelm’ the sensory evidence, leading to estimates of
performance that are biased towards the target relative to the true final ball position.
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Relative weighting of priors

The first equation can be rewritten as:

Xestimate — Hevidence = —W * (/’Levidence - .uprior) (3)
estimation error per formance error

where the slope of a linear regression of estimation error by performance error characterises
the weighting term w (Wolpe et al., 2014). A slope of -1 corresponds to full reliance on priors
relative to sensory evidence, whereas a slope of 0 corresponds to a disregard of priors relative
to sensory evidence.

We used linear mixed models to fit the linear relationship of estimation error by performance
error. As a baseline model, we allowed the intercept and slope to vary by participants. Given
that we expected performance error to depend on effort and reward, we also fit a set of
models with an additional random effect term to allow for adjustments by effort and reward
within each participant. Specifically, within each participant we allowed either the intercept,
the slope, or both to vary by either effort, reward, or both, resulting in nine additional linear
mixed models. For each model we retrieved the conditional Akaike Information Criterion
(cAIC) as an approximation to the log model evidence. We selected the model with the
lowest cAIC value as the most parsimonious model.

Modelling of prior variance

To estimate the prior variance for each participant, we fit the data with a set of hierarchical
Bayesian models. The first model assumed that the prior distribution was centered on the
target with unknown variance o, and the sensory evidence distribution was centered on

the true final ball position with unknown variance 62, ;... The observed estimates of the
ball’s final position were then modeled as a precision-weighted combination of the prior
distribution and the sensory evidence distribution (see equation 1). However, performance of
the task may have been affected by computational imperfections (Stengard & van den Berg,
2019), such as perceptual shifts as a result of the ball’s rightward motion or a general bias
towards the centre of visual space. The second model therefore featured an additional free
parameter, s, to account for directional shifts in the mean of sensory evidence:

Uevidence = Xtrue T+ S (4)

Although we consider the target as the mean of the prior distribution, participants could
instead use ‘observational’ priors that reflect their actual performance distribution. We
therefore additionally fit the data with a model that was similar to the first model, except the
prior distribution was determined by the mean and standard deviation of each participant’s
true performance on basic trials (i.e. when the true final ball position was shown).

We estimated the free parameters hierarchically: (i) parameters for individual participants
were considered samples from group-level Gaussian distributions; (ii) within each participant
parameters were permitted to vary between experimental conditions. Further details about the
model specification are provided in Figure 5A and Figure S1).

We used Markov Chain Monte Carlo sampling to approximate the posterior distributions of
parameters simultaneously at the level of the group, participant, and conditions. For each
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model we used 8 independent chains with 2000 samples, discarding the first 1000 samples as
the ‘burn-in’ period. We assessed model convergence by the chains’ time series plots, and

confirmed that the potential scale reduction statistic R was less than 1.01 for all parameters.
To identify the best model, we computed the Widely Applicable Information Criterion
(WAIC) as well as approximate leave-one-out (LOO) cross-validation using Pareto smoothed
importance sampling (Vehtari, Gelman, & Gabry, 2017). These estimate the pointwise
predictive accuracy of a model (penalised for the effective number of parameters), using the
log-likelihood evaluated at the posterior simulations of the parameter values. Our primary
interest was in the participant-level estimates of prior variance, as well as the change in prior
variance across levels of effort and reward.

Prior precision and trait apathy

We tested the relationship between model estimates of prior variance and individual
differences in trait apathy. We measured trait apathy with the Apathy Motivation Index
(AMI), a questionnaire measure of apathy that is suitable for the healthy population and has
strong psychometric properties (Ang et al., 2017). The AMI provides a mean total score as
well as mean scores for three different domains of apathy: behavioural activation, emotional
sensitivity and social motivation. Each subscale consists of 6 Likert-scale items that are
scored from O to 4, where higher scores indicate greater apathy.

As action priors correlate with performance variability and in order to rule out the effect of
performance, we computed the partial correlation between trait apathy and prior precision
using Pearson’s correlation, adjusted for individual differences in performance variability.
Specifically, we used each participant’s standard deviation of performance error for all basic
trials as an index of performance variability. We performed the partial correlation analysis
separately for each outcome of the AMI. We also report the Bayes Factor for partial
correlations to quantify the evidence in favour of the alternative hypothesis, given the data
(Wetzels & Wagenmakers, 2012).

Software and equipment

The task was programmed in MATLAB (R2014a) using the Psychophysics Toolbox extensions
(version 3), and were displayed on a 17-inch LCD screen (1280 x 1024 pixels). The force
sensor had a sampling rate of 60 Hz and a measurement accuracy of + 9.8 mN. Statistical
analyses were implemented in R (version 3.5; R Core Team, 2018; see Table S5 for an
overview of additional packages used). The hierarchical Bayesian modeling was
implemented in Stan (Carpenter et al., 2017) using the rstan interface package. The
Method and Results sections of this paper were generated from R code using the literate
programming tool knitr. All code, data and materials are freely available through the Open
Science Framework (<link to be inserted upon acceptance for publication>).
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RESULTS
Task performance

For each subject and each condition, we obtained a distribution of force errors (Figure 2). We
examined accuracy (median force error) and variability (IQR) as a function of effort and
reward (Figure 3; Tables S2 and S3). Accuracy was lower in the High Effort condition than
in the low effort condition, as participants tended to ‘undershoot’ the target in the high effort

condition (F,46) = 193.46, p <.001, ﬁz = .46). Participants were more accurate in the

Reward condition than in the No Reward condition (F; 46y = 15.69, p <.001, ﬁz =.03).
This reward effect was more pronounced in the high effort condition (effort x reward
interaction: Fq 46) = 13.32, p <.001, ﬁz =.01). However, the Bayes Factor for the full

model including an interaction effect (BF;, = 5.46 x 1037) was comparable to the Bayes
Factor for the main effects model (BF,;, = 4.22 x 1037), suggesting that the data do not
provide clear evidence for an interaction effect (BF,4;i, = 1.30).

Variability was greater in the High Effort condition than in the Low Effort condition
(F(1,46) = 396.35, p <.001, ﬁz =.52). There was reduced variability in the Reward

condition compared to the No Reward condition (Fq 46y = 31.67, p <.001, ﬁz =.05), but
this reward effect was not different between effort conditions (no effort x reward interaction:
Fe1,46) = 1.12, p = .295). Bayes Factor analysis confirmed that the main effects only model
(BF; = 8.19 x 10*8) was more likely than the full model (BF;, = 2.42 x 10*8), providing
positive evidence against an interaction effect (BF,4;i, = 0.30).

A ACCURACY B VARIABILITY

- low effort high effort low effort high effort
E E

3
g £ 15%
.
€ 9 =
© s -5 i
O\\C’/ i - 2 10% i =Q=
5 ey .5 : '
@ i o -0
3 —O- o : <
é -5% 0= . é 5%
{ o Y
@ [e)
o hd
2-10% S
noreward reward noreward reward ¢ noreward reward noreward reward

Figure 3: The effects of effort and reward on task accuracy (panel A) and variability (panel
B). Solid dots represent the median force error (panel A) or the interquartile range of force
error (panel B) for a given participant and experimental condition. The hollow dots and

horizontal line segments represent the group-level mean for a given experimental condition.
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Together, these results confirm that on more effortful trials, performance accuracy decreased
and variability increased. In contrast, reward improved accuracy and variability in
performance.

Perception of performance

We tested whether there was a bias in the perception of action outcomes, as found in previous
studies (Wolpe et al., 2015, 2014). To this end, we measured the extent to which estimates of
action outcomes were biased relative to the veridical action outcomes. We first determined
whether the linear relationship between estimation error and performance error varied as a
function of effort, reward, or both. We fitted a set of linear mixed models that adjusted each
participant’s regression intercept and slope. The ‘full model” allowed for different intercepts
and slopes by both effort and reward, and was the most likely model with an AIC difference
to the next best model of 26.32 (Table S4). We therefore report the parameters derived from
the full model.

Estimation errors tended to be biased, consistent with a prior centered on the target position
(Figure 4; cf. Wolpe et al., 2014). The extent of this bias depended on performance error, as
revealed by a strongly negative slope between estimation error and performance error (group-
level § = —0.71, CI:[—0.75,—0.67]). Individual differences in the slope ranged from —0.9
to —0.36, confirming that all participants exhibited this estimation bias.

example: participant 11
400

low effort, no reward
low effort, reward

® high effort, no reward
® high effort, reward

200 - .

-200

estimation error (pixels)
o

-400

-400 -200 0 200 400
performance error (pixels)

Figure 4: Estimation errors (difference between estimated and true ball position) plotted
against performance errors (difference between true ball position and target) for a typical
participant. The slope of the regression across conditions (black line) indicates the degree to
which estimates of performance were biased.

Prior precision

To test the hypothesis that trait apathy is associated with the precision (inverse of variance) of
priors for the perception of outcomes, we used hierarchical Bayesian models (Figure 5A) to


https://doi.org/10.1101/672113
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672113; this version posted June 19, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Apathy and action priors Page 13 of 29

estimate each participant’s variance of priors. The model that best accounted for the data
assumed that the prior was centered on the target position, and included a spatial shift in
sensory evidence. This model was strongly preferred over a model without a sensory
evidence shift (ALOO,; = 5642.15, SE;,00,. = 154.22; AWAIC = 5642.25, SEqyarc =

154.20) as well as a model with the prior determined by the mean and standard deviation of
participants’ true performance (ALO0;¢c = 7491.53, SE4 100, = 179.21; AWAIC =

7496.62, SE ya1c = 178.76). As illustrated in Figure 5B, there was a good agreement
between the selected model’s posterior predictions and the observed data. We therefore
proceeded with examining the posterior estimates of the participant-level prior standard
deviation, SD.

—— model prediction
— observed data

participants

y 500 750 j000 1250
estimate of performance (pixels)

v

conditions r=0.58,p<0.001

v

trials

Vo € {1,.... trials}

Vi € {1,...,conditions}

50 100 150
true performance SD (pixels)

Vi e {l,...,part ivipunls}}

Figure 5: A) The best fitting Bayesian model. Shaded nodes represent observed data whereas
the white nodes represent latent variables. The rectangular node represents the target
position, which is a discrete variable, whereas the remaining circular nodes represent
continuous variables. The double-bordered nodes represent deterministic variables that are a
function of other variables without stochastic contribution. The variable of primary interest,
the standard deviation of the participant-level prior, is highlighted with a blue border. B)
Posterior predictive check for the best fitting model. The grey histogram represents the
observed estimates of performance, and the blue density trace represents the model’s
posterior predictions of estimates of performance. C) Scatterplot of the standard deviation of
participant-level prior against standard deviation of performance error.

The estimates of prior SD were consistently smaller than the corresponding performance
error SD (t() = 17.24, p < .001; Figure 5C). There was also a strong correlation between


https://doi.org/10.1101/672113
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/672113; this version posted June 19, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Apathy and action priors Page 14 of 29

prior SD and performance error SD (r(45) = 0.58, p < .001). These results suggest that

participants held overly precise priors that did not simply reflect the statistics of their true
performance in the task.

Within participants, we allowed the prior SD to vary between experimental conditions
(Figure 5A). We therefore examined prior SD as a function of effort and reward (Figure S2).
Given that prior SD was scaled to performance SD (Figure 5C), and performance SD was
strongly affected by effort and reward (Figure 3B), we normalised the prior SD to
performance SD (as the ratio between prior SD and the sum of prior SD and performance SD;
Wolpe et al., 2015). This normalised prior SD was smaller in the High Effort condition than
in the Low Effort Condition (F(q4¢) = 66.24, p <.001, ﬁz =.19). In contrast, normalised
prior SD was larger in the Reward condition than in the No Reward condition (F(; 46y = 7.16,

p =.010, ﬁz =.01). There was no significant interaction effect between effort and reward
(F1,46) = 1.25, p = .269). Bayes Factor analysis confirmed that the main effects only model

(BF;, = 3.72 x 10*°) was more likely than the full model (BF;, = 1.21 x 10*®), providing
positive evidence against an interaction effect (BF, 4, = 0.32).

100 r=0.36,p=0.012 ©
BF ;=367 °

3
Apathy Motivation Index (behavioural subscale)

Figure 6: Scatterplot of the standard deviation of participant-level prior against the Apathy
Motivation Index behavioural activation subscale. For illustration purposes, identical
questionnaire scores are jittered.

To test whether the variance of prior beliefs about action outcomes is associated with trait
apathy, we used partial correlations of the participant-level estimates of prior SD and the
Apathy Motivation Index scores, adjusting for task performance variability. There was a
significant correlation between prior SD and the AMI behavioural activation subscale

(Tasy = 0.36, p = .012, Holm-Bonferroni corrected p = .050; BF;, = 3.67; Figure 6). The
association was positive, suggesting that individuals who were more apathetic had reduced
prior precision. There were no significant partial correlations with the AMI total score

(Tasy = 0.18, p = .220; BF;, = 0.37), emotional sensitivity subscale (r4sy = 0.12,p =
413; BF;, = 0.24), or social motivation subscale (r(4sy = —0.11, p = .458; BF;, = 0.23).
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We explored whether changes in prior SD between experimental conditions were associated
with trait apathy, but found no evidence for such relationships. The difference between
reward conditions in normalised prior SD was not significantly associated with the AMI total
score (8 = —0.07, p = .639), behavioural activation subscale (f = 0.19, p = .168),
emotional sensitivity subscale (8 = —0.13, p = .358), or social motivation subscale (8 =
—0.22, p = .120). These associations also did not depend on effort, as there were no
significant interaction effects between effort and the change in normalised prior SD by
reward (all p values > .194). Bayes Factor analysis confirmed that the intercept only model
was more likely than the full model for all AMI scales, providing positive evidence against
associations with trait apathy (all BF;, < 0.04). In terms of effort, the difference between the
Low Effort and High Effort conditions in normalised prior SD was not associated with the
AMI total score (f = —0.01, p = .965), behavioural activation subscale (8 = 0.15,p =
.305), emotional sensitivity subscale (8 = —0.08, p = .590), or social motivation subscale
(B = —0.10, p = .498), and there were no significant interaction effects between reward and
the change in normalised prior SD by effort (all p values > .306). Bayes Factor analysis
confirmed that the intercept only model was more likely than the full model for all AMI
scales, providing positive evidence against associations with trait apathy (all BF;, < 0.02).
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DISCUSSION

The principal result of this study is that higher trait apathy is associated with lower precision
of prior beliefs about action outcomes. In the context of effortful, goal-directed actions, we
confirmed that people's perception of performance was biased, relative to the veridical action
outcomes. Participants’ estimation of their action outcomes were explained by ‘overly
precise’ priors that do not simply reflect the statistics of performance. The variability of these
priors was associated with trait apathy, such that more apathetic individuals tended to have
less precise priors of action outcomes.

These results are consistent with a Bayesian framework of brain function, in which the brain
engages in active inference on the causes of sensory inputs. Central to this model is that prior
beliefs and sensory input are combined in a precision-weighted manner, so that more precise
(i.e. less uncertain) information plays a stronger role in shaping action and perception. A
hypothesis emerging from this framework is that a loss of prior precision leads to
bradykinesia and a loss of goal-directed behaviour (e.g. Friston et al., 2010, 2014). Our
results support this hypothesis.

There is evidence that apathetic individuals are less incentivised by rewards, particularly
when those rewards require investment of effort. Although reduced motivation for reward
certainly can contribute to apathy (Adam et al., 2013), this mechanism does not fully explain
the multifaceted nature of apathy in patient groups (Lansdall et al., 2017). For example, even
in the absence of external prompts (such as a reward cue), apathetic patients often have
difficulty in self-generating motor patterns, over and above blunted affect or cognitive
dysfunction (Levy & Dubois, 2005). Such ‘auto-activation’ symptoms have previously been
formalised as a failure to reach a necessary activation threshold for a response (Zhang et al.,
2016). Patients were surprisingly biased in favour of performing an action, but were
subsequently impaired at translating this prior preference into an observed response, as
indicated by a strongly reduced rate of accumulation to threshold (Zhang et al., 2016). We
suggest that the diversity of symptoms associated with apathy can be understood as different
expressions of a common underlying pathology: a reduction in the precision of prior beliefs
about action outcomes.

Although estimates of prior precision within participants changed significantly between
levels of effort and reward, the amount of change between conditions did not depend on trait
apathy. This suggests that participants’ overall prior for action reflects their higher-level
beliefs and motivations related to trait apathy, whereas trail-to-trial changes to prior precision
in light of task demands reflect lower-level mechanisms of sensorimotor prediction. In the
current experiment, reward decreased the precision of priors relative to the true performance
distribution. Such a strategy would promote learning in the context of expected reward (since
the posterior belief will be weighted more towards the evidence than the prior), in contrast to
the motivational advantage of the illusion of superiority that occurs in non-rewarded trials
(when the posterior belief of success is weighted more towards the prior than the evidence).
In other words, the reward manipulation facilitates learning from sensory evidence, so that
trial-to-trial performance errors can be used to improve task performance.

Neuropathologies associated with apathy provide insights into the functional anatomy and
candidate mechanisms of the abnormal precision of priors. Clinical apathy is associated with
disruptions to frontal-subcortical circuits that are involved in self-initiated, goal-directed
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behaviour (Levy & Dubois, 2005). Lesions of the prefrontal cortices have long been known
to impair goal-directed behaviour (Luria, 1995), and apathy is an important feature of
neurodegenerative diseases affecting prefrontal regions (Passamonti, Lansdall, & Rowe,
2018). Lesion and neuroimaging studies have also implicated the anterior cingulate cortex
and basal ganglia in apathy (Le Heron, Apps, & Husain, 2017; Levy & Dubois, 2005). Thus,
current evidence suggests that apathy follows a disruption to fronto-striatal brain circuits.

Changes in these fronto-striatal circuits have been implicated in controlling the relative
precision of predictions and sensory input (Dayan & Yu, 2006; Friston et al., 2014; Moran et
al., 2013). In Parkinson’s disease, the severe depletion of striatal dopamine is associated with
a loss of sensory attenuation and presence of apathy, both consequences of impaired active
inference (Drui et al., 2014; Macerollo et al., 2016; Santangelo et al., 2015; Wolpe et al.,
2018). Indeed, individual differences in the degree of sensory attenuation were negatively
related to disease severity, but positively related to dopamine medication dose (Wolpe et al.,
2018). We hypothesise that neuromodulatory deficits in patients can cause a loss of prior
precision relative to the sensory input, which subsequently leads to apathy. Furthermore,
higher order prior beliefs about desired outcomes may fail to appropriately contextualise
lower-level representations about sensory input due to structural and functional abnormalities
in prefrontal and temporal brain regions (Rittman et al., 2019). Further work is required to
establish the synaptic and molecular basis of aberrant precision, aided by the parameterisation
of the precision of an individual’s prior.

There are limitations to this study. First, we examined individual differences in trait apathy in
the healthy population, and the generalisation to apathetic clinical disorders remains to be
proven. A dimensional approach assumes that the mechanisms underlying normal variation
are the same mechanisms which underlie clinical disorders (Cuthbert & Insel, 2013) but we
recognise that apathetic patients might be qualitatively different to controls. Second, our
primary results are correlational and therefore do not directly demonstrate causal
mechanisms. Our results do not in themselves prove whether the precision of priors is a cause
or consequence of trait apathy. Future work can adopt our approach to study the induction of
apathy in the context of neurosurgical or temporary focal brain lesions (e.g. through
transcranial magnetic stimulation) or pharmacological manipulations (e.g. Adam et al., 2013;
Le Bouc et al., 2016). Third, we cannot comment on the variations in functional anatomy or
connectivity that may determine the precision of priors in our cohort. Finally, the Bayesian
framework for computational models enables relative evidences to be compared formally
(Adams et al., 2015), but only between members of the subset of models tested.

In conclusion, our study suggests that apathy is associated with poor precision of prior beliefs
about action outcomes. We propose that apathy can be understood as a failure to assign the
necessary precision to prior beliefs about one’s action outcomes, necessary for self-initiated
movement, leading to an apparent ‘acceptance’ of the state of the world. This can be
understood as satisfying an intended goal in the absence of the actual action necessary to
achieve it. This approach paves the way to a common framework for understanding the
causes of apathy in neurological and psychiatric disorders, and a target for novel treatment
strategies.
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Table S1: Descriptive statistics of sample demographics and trait apathy

mean SD  range

age 2423 4.84 18-35
education
years? 17.30 3.12 13-26
degree® 1.94 089 1-4

Apathy Motivation Index®
total 1.34 042 0.5-2.39
behavioural activation 1.54 0.66 0.33-3.17
social motivation 148 0.65 0.33-2.83

emotional sensitivity  1.00 054 0.17-2.17

Note: 47 participants (24 females).

& total years of formal education, including everything after kindergarten.

b highest obtained degree categorised according to the British education system: 0 = GCSE
(General Certificate of Secondary Education), 1 = A Levels (General Certificate of
Secondary Education Advanced Level), 2 = undergraduate degree, 3 = graduate degree, 4 =
postgraduate / doctorate degree.

¢scored on a Likert scale from 0 to 4, with higher scores indicating greater apathy (Ang,
Lockwood, Apps, Muhammed, & Husain, 2017).
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Figure S1: The best fitting Bayesian model (as in Figure 54), including the parameters’
sampling statements and functional dependencies. Participant-level parameters were
sampled from latent group-level parameters, and within participants parameters were
permitted to vary between conditions. Condition-level parameters were then used to compute
a precision-weighted combination of the prior and trial-level sensory evidence. This trial-
level posterior mean served as the trial-level predicted estimate of performance. The model is
represented in plate notation: shaded nodes represent observed data whereas white nodes
represent latent variables; rectangular nodes represent discrete variables whereas circular
nodes represent continuous variables; and double-bordered white nodes represent
deterministic variables whereas single-bordered white nodes represent stochastic variables.
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Table S2: Descriptive statistics of accuracy (median force error) for each experimental
condition

mean 95% ClI p

noreward -0.47% -1.12%, 0.18%
low effort
reward -0.19% -0.83%, 0.46% .55

noreward -4.95% -5.6%, -4.31%
high effort
reward -3.82% -4.46%, -3.17% < .001

Note: The dependent variable, median force error, is expressed as a percentage of the
participant’s maximum force. The p-values correspond to post-hoc Tukey’s tests comparing
reward conditions within each effort condition.

Table S3: Descriptive statistics of variability (interquartile range of force error) for each
experimental condition

mean 95% CI p

noreward 7.06% 6.49%, 7.64%
low effort
reward 6.33% 5.76%, 6.90% .004

noreward 11.31% 10.73%, 11.88%
high effort
reward 10.29% 9.71%, 10.86% < .001

Note: The dependent variable, interquartile range of force error, is expressed as a percentage
of the participant’s maximum force. The p-values correspond to post-hoc Tukey’s tests
comparing reward conditions within each effort condition.
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Table S4: Log model evidence for linear mixed models of estimation error by performance
error

cAIC AcAIC

basic 30017.32 1873.01

varying intercepts

effort 28349.94 205.63

reward 29900.64 1756.34

effort & reward 28170.63 26.32

varying slopes

effort 29865.84 1721.53

reward 29947.07 1802.76

effort & reward  29817.52 1673.21

varying intercepts & slopes

effort 28342.20 197.89

reward 29858.90 1714.59

effort & reward 28144.31 0.00

Note: cAIC = conditional Akaike Information Criterion (Greven & Kneib, 2010), AcAIC =
[cAIC — min(cAIC)]. The ‘basic’ model allowed for varying intercepts and slopes between
participants, but did not take into account the experimental conditions of effort and reward.
The nine remaining models allowed for further adjustments to the intercept, slope, or both by
effort, reward, or both. The favoured model, with varying intercepts and slopes by effort and
reward, is highlighted in bold.
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Figure S2: The effects of effort and reward on the standard deviation of the prior, normalised
to the standard deviation of performance error (Wolpe, Nombela, & Rowe, 2015). Values
smaller than 0.5 represent priors that are more precise than the corresponding performance
distribution. Solid dots represent individual participants, whereas the hollow dots and
horizontal line segments represent the group-level mean for a given experimental condition.
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Table S5: R packages used for statistical analysis

package usage citation
tidyverse (version 1.2.1) data organisation and (Wickham, 2017)
visualisation

pwr (version 1.2-2)

afex (version 0.21-2)
BayesFactor (version 0.9.12-
4.2)

emmeans (version 1.2.2)

Ime4 (version 1.1-20)

CAIC4 (version 0.5)

merTools (version 0.4.1)

rstan (version 2.18.2)

loo (version 2.0.0)

tidybayes (version 1.0.4)

knitr (version 1.20)

power calculations for
correlation test
ANOVA

Bayes factor for ANOVA
and regression models
estimated marginal means
and post-hoc Tukey’s tests
linear mixed models

conditional Akaike
information criterion for
linear mixed models
extract and organise
parameter estimates from
linear mixed model
hierarchical Bayesian
modelling

approximate leave-one-out
cross-validation and widely
applicable information
criterion for Bayesian
models

extract and organise
parameter estimates from
Bayesian model

generate methods and results
sections from R code

(Champely, 2018)

(Singmann, Bolker,
Westfall, & Aust, 2017)
(Morey & Rouder, 2018)

(Lenth, 2018)

(Bates, Machler, Bolker, &
Walker, 2015)

(Safken, Rigamer, Kneib, &
Greven, 2018)

(Knowles & Frederick,
2018)

(Stan Development Team,
2018)

(Vehtari, Gabry, Yao, &
Gelman, 2018)

(Kay, 2019)

(Xie, 2018)
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