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ABSTRACT 

Apathy is a debilitating syndrome that is associated with reduced goal-directed behaviour. 

Although apathy is common and detrimental to prognosis in many neuropsychiatric diseases, 

its underlying mechanisms remain controversial. We propose a new model of apathy, in the 

context of Bayesian theories of brain function, whereby actions require predictions of their 

outcomes to be held with sufficient precision for ‘explaining away’ differences in sensory 

inputs. In this active inference model, apathy would result from reduced precision of prior 

beliefs about action outcomes. Healthy adults (N=47) performed a visuomotor task that 

independently manipulated physical effort and reward, and served to estimate the precision of 

priors. Participants’ perception of their performance was biased towards the target, which was 

accounted for by precise prior beliefs about action outcomes. Crucially, prior precision was 

negatively associated with apathy. The results support a Bayesian account of apathy, that 

could inform future studies of clinical populations. 

Keywords: apathy, motivation, goal-directed action, Bayesian, sensorimotor prediction 
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INTRODUCTION 

Apathy is common, debilitating and detrimental to the prognosis in many neurological and 

psychiatric diseases (Lanctôt et al., 2017; Lansdall et al., 2019), but it also occurs to varying 

degrees in the healthy population (Ang, Lockwood, Apps, Muhammed, & Husain, 2017). 

Apathy is a complex construct, often decomposed into emotional, cognitive, and behavioural 

domains (Levy & Dubois, 2005). However, its underlying mechanisms are controversial and 

several accounts have been put forward for the reduction in ‘goal-directedness’ of behaviour 

that characterises apathy. 

Behavioural economics and reinforcement learning models cast apathy primarily as a 

pathology of value-based decisions (Husain & Roiser, 2018). On this basis, apathetic 

individuals behave in ways that fail to maximise their utility, given information about the 

likely costs and benefits of different actions. Specifically, they exert less effort for reward 

(Chong, Bonnelle, & Husain, 2016), which has been attributed to deficits in dopamine-

dependent reward sensitivity (Adam et al., 2013; Le Bouc et al., 2016; Muhammed et al., 

2016). However, defining apathy as a lack of dopamine-dependent motivation has limitations. 

Current paradigms constrain action to be the consequence of a stimulus (such as a reward 

cue) and subsequently evaluate the action against an external reward function. This does not 

directly address the subject’s desire to actively fulfil their internal goals and beliefs or 

expectations (Gottlieb & Oudeyer, 2018). Goal-directed behaviour can alternatively be 

regarded as anticipatory rather than reflexive, such that actions are driven by their intended 

consequences (Hommel, Müsseler, Aschersleben, & Prinz, 2001). 

Here we propose that apathy is directly related to the dependence of motivated behaviour on 

the precision of the representations of internal goals and beliefs about action outcomes. We 

build on the concept that brain function is a form of hierarchical Bayesian inference (Clark, 

2013; Hohwy, 2013). On this basis, the brain maintains a generative model that optimises 

predictions of sensory inputs and minimises prediction error or ‘surprise’ (Friston, 2010; 

Friston, Daunizeau, Kilner, & Kiebel, 2010). Prediction error can be minimised in two ways: 

passively, by changing predictions to better fit the sensory inputs (perceptual inference), or 

actively, by performing actions to change the sensory input itself (active inference; Adams, 

Shipp, & Friston, 2013; Friston et al., 2010). We propose that apathetic behaviour is a 

disorder of active inference, within a generalised Bayesian framework. 

The key question with regard to apathy is how the balance between perception and action is 

regulated. Under active inference theory, the precision (inverse uncertainty) of predictions 

and sensory input determine their relative contribution to behaviour. When predictions are 

held with high precision, they will be maintained even in the face of conflicting sensory 

input, and induce action so that the predicted and current state of the world are no longer in 

conflict. This means that action requires sensory attenuation: the transient down-weighting of 

sensory prediction errors so that expectations and goals can be fulfilled through action 

(Brown, Adams, Parees, Edwards, & Friston, 2013; Wolpe et al., 2016, 2018). Thus, a 

driving force of action is the regulation of the precision of predictions. A corollary is that low 

prior precision leads to a more passive behavioural state, where prediction errors are resolved 

by changing prior beliefs about the environment instead of by action (Friston et al., 2010, 

2014).  
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The precision of prior beliefs can be inferred through computational modelling of behavioural 

data (e.g. Wolpe, Wolpert, & Rowe, 2014). This can be used to test the mechanism of 

individual differences in apathy, in healthy adults and clinical populations, and in relation to 

clinical outcomes and neural data (Adams, Huys, & Roiser, 2015). In the context of 

visuomotor tasks, we previously found that the precision of priors was associated with trait 

optimism, such that more optimistic individuals tended to have more precise priors, leading 

to a perceptual distortion towards better performance (Wolpe et al., 2014). Evidence from 

Parkinson’s disease suggests that the precision of priors is related to dopamine (Wolpe, 

Nombela, & Rowe, 2015). 

To bring these separate lines of evidence into a common analytical framework, we 

hypothesised that individuals with greater apathy have less precise prior beliefs about their 

action outcomes. We tested this hypothesis using a visuomotor task that independently 

manipulated effort and reward, and from which the precision of action priors could be 

estimated psychophysically. We predicted that participants’ estimates of performance would 

be biased, in line with the integration of sensory evidence with prior beliefs about action 

outcomes. Using Bayesian modelling of the participants’ performance and their reported 

perception of performance, we estimated the precision of participants’ priors and its 

fluctuation across levels of effort and reward. We tested whether individual differences in 

apathy are related to variation in the precision of priors, and how the precision of priors 

depends on effort and reward. 
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METHOD 

Participants 

We aimed to be sufficiently powered to detect moderate associations between task metrics 

and apathy as follows: to detect a true correlation of 𝜌 = 0.4 with 𝛼 = .05 (two-tailed) and 

power of 80%, the required sample size is 46. We recruited 53 healthy adult participants to 

account for at least 10% data exclusions from aberrant performance profiles or technical 

issues. The participants had no history of a neurological or psychiatric disorder and had 

normal or corrected-to-normal vision. The study was approved by the Cambridge Psychology 

Research Ethics Committee, and all participants provided written informed consent. 

Participants received a standard compensation of £6 per hour and a bonus of up to £5 based 

on performance. Participants completed the Apathy Motivation Index (AMI; Ang et al., 

2017), a questionnaire measure of apathy that is designed for the healthy adult population. 

We excluded five participants whose average task performance was ≥ 3 times the median 

absolute deviation from the group median performance, and one participant who could not 

perform the force calibration appropriately. The reported analyses are therefore based on 47 

participants (24 females, age range of 18–35 years, mean = 24.75, 𝑆𝐷 = 4.79; further 

demographics are given in Table S1). 

Task and procedure 

The visuomotor task (see Figure 1) was designed to infer the precision of prior beliefs and its 

influence on the perception of action outcomes, under different levels of effort and reward. 

Participants pressed a force sensor to control the subsequent ballistic trajectory of a ‘ball’ 

cursor on the screen (32 pixel radius). The aim of each trial was to ‘land’ the cursor on the 

target (38 pixel radius). The target was either displayed close (512 pixels from left margin) or 

far (896 pixels from left margin) from the ball’s start position (128 pixels from left margin), 

such that the distance to travel corresponded to 35% (Low Effort condition) or 65% (High 

Effort) of each participant’s maximum force. Performance was either rewarded (in ‘points’, 

to be converted to cash reward after the study), or not rewarded (Reward or No Reward 

condition).  

For each trial, participants performed a sustained finger press for 3 seconds, after which the 

black ball turned green to indicate that the finger could be released. Within the 3-second 

recording, we took the mean force from 2 to 2.5 seconds as the response (Wolpe et al., 2016). 

The force response determined the initial velocity of the ball. The deceleration of the ball was 

constant, and therefore the initial velocity (i.e. force response) uniquely determined the ball’s 

final position. The difference between the force response and the force needed to land the ball 

perfectly on target constitutes the force error, expressed as a percentage of the participant’s 

maximum force. 

The task consisted of two types of trials: basic trials and estimation trials. For basic trials, 

participants viewed an animation of the ball’s trajectory from the start position to the final 

position in the direction of the target - that is, the outcome of their action. The difference 

between the ball’s final position and the target constitutes the performance error, expressed 

in pixels. For estimation trials, the ball’s trajectory was hidden and participants used a mouse 

cursor to provide their estimate of where the ball would have finished. The difference 
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between the estimated final ball position and the true final ball position constitutes the 

estimation error, expressed in pixels. Note that the target was not displayed during the 

estimation procedure, and participants did not receive any feedback regarding the true final 

ball position. Furthermore, participants were not pre-cued about what type of trial they were 

engaging in. For estimation trials the ball’s animation started as usual, but after traveling 10% 

of the screen width, the screen turned blank and the cursor was drawn to the screen. 

 

 
Figure 1: Overview of the visuomotor task. Participants performed a sustained finger press 

to trigger a ballistic ball trajectory, aiming it at a target. The target was either displayed 

close to or far from the ball’s start position, corresponding to 35% (Low Effort) or 65% 

(High Effort) of the participant’s maximum force. Further, participants were either given a 

performance-dependent monetary reward or no reward. For a minority of trials, the ball’s 

movement trajectory was not displayed, and participants estimated the ball’s final position 

with a cursor. 

 

The experiment started with two practice blocks of 50 basic trials each, with the target in the 

centre of the screen (704 pixels from the left margin). In the second practice block, 

participants were asked to estimate their performance after viewing the full trajectory of the 

ball, to introduce the estimation procedure. The test phase consisted of 40 blocks of 27 trials 

each. We used a 2x2 full-factorial design (Low and High Effort and No Reward and Reward). 

In the reward condition, the maximum score of £1 was given when the ball landed perfectly 

on the target, and this score decreased linearly as performance error increased. To avoid 

confounding the effort and reward manipulations, the minimal performance required for a 

reward was more stringent in the Low Effort condition than in the High Effort condition 

(15% of the screen width from the close target versus 30% of the screen width from the far 

target). 

There were 10 blocks of trials for each combination of effort and reward, and the blocks were 

ordered pseudorandomly for each participant at the start of the experiment. Each block 
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consisted of 19 basic trials and 8 estimation trials. The trial order within each block was 

determined pseudorandomly, with the constraints that the first 3 trials were always basic 

trials, and that there could never be two consecutive estimation trials. Overall, excluding 

practice, participants completed 1080 trials, of which 320 were estimation trials. To reduce 

fatigue effects, we gave participants the opportunity to take a short break after completing a 

block. 

Maximum force calibration 

At the start of the task, we established each participant’s maximum force in order to 

normalise the effort levels between participants. This procedure consisted of 3 trials of 10 

seconds each. Participants pressed with the maximum level of force they could sustain for the 

duration of the trial, using the index finger of their dominant hand. At the end of each trial, a 

sliding window function was used to select the 5 second window with the lowest force 

variance, and the mean force within that window was taken as the maximum force for that 

trial. The highest value across trials was taken as the participant’s true maximum force. 

The maximum force was used to convert the force response to the ball’s initial velocity. The 

applied force was divided by 25% of the maximum force and then multiplied by 30% of the 

screen width per second. That is, pressing at 25% of one’s maximum force caused the ball to 

initially move at 30% of the screen width per second. To make the task less difficult under 

higher levels of force, we also scaled the relationship between force and initial velocity by 

multiplying the applied force by 0.5. 

Data analysis 

Task performance 

We preprocessed the data as follows: (i) we removed the first trial from each block to exclude 

any effects of switching between experimental conditions, which reduced the total number of 

trials from 1080 to 1040 (260 per condition); (ii) for each participant and each condition, we 

removed trials with a force error that was more than 3 times the median absolute deviation 

away from that condition’s median. On average, we removed 4 trials per condition for each 

participant. 

We first examined the effects of effort and reward on behavioural performance. Accuracy 

(median force error) and variability (interquartile range, IQR, of force error) served as 

dependent variables in repeated measures ANOVA, with effort and reward as within-subjects 

factors. We report generalised eta-squared (𝜂
𝐺

2
) as the estimate of effect size, and we 

performed post-hoc Tukey’s tests to compare levels of effort and reward. We also performed 

Bayes factor analyses with the default ‘JZS’ prior to quantify the relative evidence in favour 

of a model, given the data. 
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Figure 2: Distributions of force error by experimental conditions for a typical participant. 

For each distribution, the white box represents the interquartile range and the black line 

inside the box represents the median. 

 

Precision of prior beliefs 

To infer the precision of prior beliefs in the perception of action outcomes, we examined 

participants’ estimates of their own performance as follows. For each estimation trial, we 

assumed that the prior and sensory evidence are Gaussian, such that the optimal estimate of 

the ball’s final position can be derived from Bayes’ rule (Wolpe et al., 2014): 

 𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑤 ∗ 𝜇𝑝𝑟𝑖𝑜𝑟 + (1 − 𝑤) ∗ 𝜇𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 (1) 

 

where the weighting 𝑤 is given by: 

 𝑤 =
𝜎𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
2

𝜎𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
2 + 𝜎𝑝𝑟𝑖𝑜𝑟

2  (2) 

 

For a given estimation trial, we consider the ball’s true final ball position as the mean of the 

sensory evidence distribution, and the target position as the mean of the prior distribution. If a 

participant has no clear prior expectation regarding their performance (i.e. a ‘flat’ prior with 

very large variance 𝜎𝑝𝑟𝑖𝑜𝑟
2 ), the estimate of the ball’s final position would be similar to the 

ball’s true final position, affected only by sensory noise with variance 𝜎𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
2 . Conversely, 

if a participant has an exaggerated expectation of success (i.e. a prior with very small 

variance 𝜎𝑝𝑟𝑖𝑜𝑟
2 ), this prior would ‘overwhelm’ the sensory evidence, leading to estimates of 

performance that are biased towards the target relative to the true final ball position. 
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Relative weighting of priors 

The first equation can be rewritten as: 

 
𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝜇𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒⏟            

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

= −𝑤 ∗ (𝜇𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 − 𝜇𝑝𝑟𝑖𝑜𝑟)⏟            
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑒𝑟𝑟𝑜𝑟

 
(3) 

 

where the slope of a linear regression of estimation error by performance error characterises 

the weighting term 𝑤 (Wolpe et al., 2014). A slope of -1 corresponds to full reliance on priors 

relative to sensory evidence, whereas a slope of 0 corresponds to a disregard of priors relative 

to sensory evidence. 

We used linear mixed models to fit the linear relationship of estimation error by performance 

error. As a baseline model, we allowed the intercept and slope to vary by participants. Given 

that we expected performance error to depend on effort and reward, we also fit a set of 

models with an additional random effect term to allow for adjustments by effort and reward 

within each participant. Specifically, within each participant we allowed either the intercept, 

the slope, or both to vary by either effort, reward, or both, resulting in nine additional linear 

mixed models. For each model we retrieved the conditional Akaike Information Criterion 

(cAIC) as an approximation to the log model evidence. We selected the model with the 

lowest cAIC value as the most parsimonious model. 

Modelling of prior variance 

To estimate the prior variance for each participant, we fit the data with a set of hierarchical 

Bayesian models. The first model assumed that the prior distribution was centered on the 

target with unknown variance 𝜎𝑝𝑟𝑖𝑜𝑟
2 , and the sensory evidence distribution was centered on 

the true final ball position with unknown variance 𝜎𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
2 . The observed estimates of the 

ball’s final position were then modeled as a precision-weighted combination of the prior 

distribution and the sensory evidence distribution (see equation 1). However, performance of 

the task may have been affected by computational imperfections (Stengård & van den Berg, 

2019), such as perceptual shifts as a result of the ball’s rightward motion or a general bias 

towards the centre of visual space. The second model therefore featured an additional free 

parameter, 𝐬, to account for directional shifts in the mean of sensory evidence: 

 𝜇𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑥𝑡𝑟𝑢𝑒 + 𝐬 (4) 

 

Although we consider the target as the mean of the prior distribution, participants could 

instead use ‘observational’ priors that reflect their actual performance distribution. We 

therefore additionally fit the data with a model that was similar to the first model, except the 

prior distribution was determined by the mean and standard deviation of each participant’s 

true performance on basic trials (i.e. when the true final ball position was shown). 

We estimated the free parameters hierarchically: (i) parameters for individual participants 

were considered samples from group-level Gaussian distributions; (ii) within each participant 

parameters were permitted to vary between experimental conditions. Further details about the 

model specification are provided in Figure 5A and Figure S1). 

We used Markov Chain Monte Carlo sampling to approximate the posterior distributions of 

parameters simultaneously at the level of the group, participant, and conditions. For each 
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model we used 8 independent chains with 2000 samples, discarding the first 1000 samples as 

the ‘burn-in’ period. We assessed model convergence by the chains’ time series plots, and 

confirmed that the potential scale reduction statistic 𝑅̂ was less than 1.01 for all parameters. 

To identify the best model, we computed the Widely Applicable Information Criterion 

(WAIC) as well as approximate leave-one-out (LOO) cross-validation using Pareto smoothed 

importance sampling (Vehtari, Gelman, & Gabry, 2017). These estimate the pointwise 

predictive accuracy of a model (penalised for the effective number of parameters), using the 

log-likelihood evaluated at the posterior simulations of the parameter values. Our primary 

interest was in the participant-level estimates of prior variance, as well as the change in prior 

variance across levels of effort and reward. 

Prior precision and trait apathy 

We tested the relationship between model estimates of prior variance and individual 

differences in trait apathy. We measured trait apathy with the Apathy Motivation Index 

(AMI), a questionnaire measure of apathy that is suitable for the healthy population and has 

strong psychometric properties (Ang et al., 2017). The AMI provides a mean total score as 

well as mean scores for three different domains of apathy: behavioural activation, emotional 

sensitivity and social motivation. Each subscale consists of 6 Likert-scale items that are 

scored from 0 to 4, where higher scores indicate greater apathy. 

As action priors correlate with performance variability and in order to rule out the effect of 

performance, we computed the partial correlation between trait apathy and prior precision 

using Pearson’s correlation, adjusted for individual differences in performance variability. 

Specifically, we used each participant’s standard deviation of performance error for all basic 

trials as an index of performance variability. We performed the partial correlation analysis 

separately for each outcome of the AMI. We also report the Bayes Factor for partial 

correlations to quantify the evidence in favour of the alternative hypothesis, given the data 

(Wetzels & Wagenmakers, 2012). 

Software and equipment 

The task was programmed in MATLAB (R2014a) using the Psychophysics Toolbox extensions 

(version 3), and were displayed on a 17-inch LCD screen (1280 x 1024 pixels). The force 

sensor had a sampling rate of 60 Hz and a measurement accuracy of ± 9.8 mN. Statistical 

analyses were implemented in R (version 3.5; R Core Team, 2018; see Table S5 for an 

overview of additional packages used). The hierarchical Bayesian modeling was 

implemented in Stan (Carpenter et al., 2017) using the 𝚛𝚜𝚝𝚊𝚗 interface package. The 

Method and Results sections of this paper were generated from R code using the literate 

programming tool 𝚔𝚗𝚒𝚝𝚛. All code, data and materials are freely available through the Open 

Science Framework (<link to be inserted upon acceptance for publication>).  
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RESULTS 

Task performance 

For each subject and each condition, we obtained a distribution of force errors (Figure 2). We 

examined accuracy (median force error) and variability (IQR) as a function of effort and 

reward (Figure 3; Tables S2 and S3). Accuracy was lower in the High Effort condition than 

in the low effort condition, as participants tended to ‘undershoot’ the target in the high effort 

condition (𝐹(1,46) = 193.46, 𝑝 < .001, 𝜂
𝐺

2
= .46). Participants were more accurate in the 

Reward condition than in the No Reward condition (𝐹(1,46) = 15.69, 𝑝 < .001, 𝜂
𝐺

2
= .03). 

This reward effect was more pronounced in the high effort condition (effort × reward 

interaction: 𝐹(1,46) = 13.32, 𝑝 < .001, 𝜂
𝐺

2
= .01). However, the Bayes Factor for the full 

model including an interaction effect (𝐵𝐹10 = 5.46 × 10
37) was comparable to the Bayes 

Factor for the main effects model (𝐵𝐹10 = 4.22 × 10
37), suggesting that the data do not 

provide clear evidence for an interaction effect (𝐵𝐹𝑟𝑎𝑡𝑖𝑜 = 1.30). 

Variability was greater in the High Effort condition than in the Low Effort condition 

(𝐹(1,46) = 396.35, 𝑝 < .001, 𝜂
𝐺

2
= .52). There was reduced variability in the Reward 

condition compared to the No Reward condition (𝐹(1,46) = 31.67, 𝑝 < .001, 𝜂
𝐺

2
= .05), but 

this reward effect was not different between effort conditions (no effort × reward interaction: 

𝐹(1,46) = 1.12, 𝑝 = .295). Bayes Factor analysis confirmed that the main effects only model 

(𝐵𝐹10 = 8.19 × 10
48) was more likely than the full model (𝐵𝐹10 = 2.42 × 10

48), providing 

positive evidence against an interaction effect (𝐵𝐹𝑟𝑎𝑡𝑖𝑜 = 0.30). 

 

 

Figure 3: The effects of effort and reward on task accuracy (panel A) and variability (panel 

B). Solid dots represent the median force error (panel A) or the interquartile range of force 

error (panel B) for a given participant and experimental condition. The hollow dots and 

horizontal line segments represent the group-level mean for a given experimental condition. 
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Together, these results confirm that on more effortful trials, performance accuracy decreased 

and variability increased. In contrast, reward improved accuracy and variability in 

performance. 

Perception of performance 

We tested whether there was a bias in the perception of action outcomes, as found in previous 

studies (Wolpe et al., 2015, 2014). To this end, we measured the extent to which estimates of 

action outcomes were biased relative to the veridical action outcomes. We first determined 

whether the linear relationship between estimation error and performance error varied as a 

function of effort, reward, or both. We fitted a set of linear mixed models that adjusted each 

participant’s regression intercept and slope. The ‘full model’ allowed for different intercepts 

and slopes by both effort and reward, and was the most likely model with an AIC difference 

to the next best model of 26.32 (Table S4). We therefore report the parameters derived from 

the full model. 

Estimation errors tended to be biased, consistent with a prior centered on the target position 

(Figure 4; cf. Wolpe et al., 2014). The extent of this bias depended on performance error, as 

revealed by a strongly negative slope between estimation error and performance error (group-

level 𝛽 = −0.71, 𝐶𝐼: [−0.75,−0.67]). Individual differences in the slope ranged from −0.9 

to −0.36, confirming that all participants exhibited this estimation bias. 

 

 

Figure 4: Estimation errors (difference between estimated and true ball position) plotted 

against performance errors (difference between true ball position and target) for a typical 

participant. The slope of the regression across conditions (black line) indicates the degree to 

which estimates of performance were biased. 

 

Prior precision 

To test the hypothesis that trait apathy is associated with the precision (inverse of variance) of 

priors for the perception of outcomes, we used hierarchical Bayesian models (Figure 5A) to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2019. ; https://doi.org/10.1101/672113doi: bioRxiv preprint 

https://doi.org/10.1101/672113
http://creativecommons.org/licenses/by-nc-nd/4.0/


Apathy and action priors  Page 13 of 29 

 

estimate each participant’s variance of priors. The model that best accounted for the data 

assumed that the prior was centered on the target position, and included a spatial shift in 

sensory evidence. This model was strongly preferred over a model without a sensory 

evidence shift (𝛥𝐿𝑂𝑂𝐼𝐶 = 5642.15, 𝑆𝐸𝛥𝐿𝑂𝑂𝐼𝐶 = 154.22; 𝛥𝑊𝐴𝐼𝐶 = 5642.25, 𝑆𝐸𝛥𝑊𝐴𝐼𝐶 =

154.20) as well as a model with the prior determined by the mean and standard deviation of 

participants’ true performance (𝛥𝐿𝑂𝑂𝐼𝐶 = 7491.53, 𝑆𝐸𝛥𝐿𝑂𝑂𝐼𝐶 = 179.21; 𝛥𝑊𝐴𝐼𝐶 =

7496.62, 𝑆𝐸𝛥𝑊𝐴𝐼𝐶 = 178.76). As illustrated in Figure 5B, there was a good agreement 

between the selected model’s posterior predictions and the observed data. We therefore 

proceeded with examining the posterior estimates of the participant-level prior standard 

deviation, SD. 

 

 

Figure 5: A) The best fitting Bayesian model. Shaded nodes represent observed data whereas 

the white nodes represent latent variables. The rectangular node represents the target 

position, which is a discrete variable, whereas the remaining circular nodes represent 

continuous variables. The double-bordered nodes represent deterministic variables that are a 

function of other variables without stochastic contribution. The variable of primary interest, 

the standard deviation of the participant-level prior, is highlighted with a blue border. B) 

Posterior predictive check for the best fitting model. The grey histogram represents the 

observed estimates of performance, and the blue density trace represents the model’s 

posterior predictions of estimates of performance. C) Scatterplot of the standard deviation of 

participant-level prior against standard deviation of performance error. 

 

The estimates of prior SD were consistently smaller than the corresponding performance 

error SD (𝑡(46) = 17.24, 𝑝 < .001; Figure 5C). There was also a strong correlation between 
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prior SD and performance error SD (𝑟(45) = 0.58, 𝑝 < .001). These results suggest that 

participants held overly precise priors that did not simply reflect the statistics of their true 

performance in the task. 

Within participants, we allowed the prior SD to vary between experimental conditions 

(Figure 5A). We therefore examined prior SD as a function of effort and reward (Figure S2). 

Given that prior SD was scaled to performance SD (Figure 5C), and performance SD was 

strongly affected by effort and reward (Figure 3B), we normalised the prior SD to 

performance SD (as the ratio between prior SD and the sum of prior SD and performance SD; 

Wolpe et al., 2015). This normalised prior SD was smaller in the High Effort condition than 

in the Low Effort Condition (𝐹(1,46) = 66.24, 𝑝 < .001, 𝜂
𝐺

2
= .19). In contrast, normalised 

prior SD was larger in the Reward condition than in the No Reward condition (𝐹(1,46) = 7.16, 

𝑝 = .010, 𝜂
𝐺

2
= .01). There was no significant interaction effect between effort and reward 

(𝐹(1,46) = 1.25, 𝑝 = .269). Bayes Factor analysis confirmed that the main effects only model 

(𝐵𝐹10 = 3.72 × 10
15) was more likely than the full model (𝐵𝐹10 = 1.21 × 10

15), providing 

positive evidence against an interaction effect (𝐵𝐹𝑟𝑎𝑡𝑖𝑜 = 0.32). 

 

 

Figure 6: Scatterplot of the standard deviation of participant-level prior against the Apathy 

Motivation Index behavioural activation subscale. For illustration purposes, identical 

questionnaire scores are jittered. 

 

To test whether the variance of prior beliefs about action outcomes is associated with trait 

apathy, we used partial correlations of the participant-level estimates of prior SD and the 

Apathy Motivation Index scores, adjusting for task performance variability. There was a 

significant correlation between prior SD and the AMI behavioural activation subscale 

(𝑟(45) = 0.36, 𝑝 = .012, Holm-Bonferroni corrected 𝑝 = .050; 𝐵𝐹10 = 3.67; Figure 6). The 

association was positive, suggesting that individuals who were more apathetic had reduced 

prior precision. There were no significant partial correlations with the AMI total score 

(𝑟(45) = 0.18, 𝑝 = .220; 𝐵𝐹10 = 0.37), emotional sensitivity subscale (𝑟(45) = 0.12, 𝑝 =

.413; 𝐵𝐹10 = 0.24), or social motivation subscale (𝑟(45) = −0.11, 𝑝 = .458; 𝐵𝐹10 = 0.23). 
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We explored whether changes in prior SD between experimental conditions were associated 

with trait apathy, but found no evidence for such relationships. The difference between 

reward conditions in normalised prior SD was not significantly associated with the AMI total 

score (𝛽 = −0.07, 𝑝 = .639), behavioural activation subscale (𝛽 = 0.19, 𝑝 = .168), 

emotional sensitivity subscale (𝛽 = −0.13, 𝑝 = .358), or social motivation subscale (𝛽 =

−0.22, 𝑝 = .120). These associations also did not depend on effort, as there were no 

significant interaction effects between effort and the change in normalised prior SD by 

reward (all p values ≥ .194). Bayes Factor analysis confirmed that the intercept only model 

was more likely than the full model for all AMI scales, providing positive evidence against 

associations with trait apathy (all 𝐵𝐹10 ≤ 0.04). In terms of effort, the difference between the 

Low Effort and High Effort conditions in normalised prior SD was not associated with the 

AMI total score (𝛽 = −0.01, 𝑝 = .965), behavioural activation subscale (𝛽 = 0.15, 𝑝 =

.305), emotional sensitivity subscale (𝛽 = −0.08, 𝑝 = .590), or social motivation subscale 

(𝛽 = −0.10, 𝑝 = .498), and there were no significant interaction effects between reward and 

the change in normalised prior SD by effort (all p values ≥ .306). Bayes Factor analysis 

confirmed that the intercept only model was more likely than the full model for all AMI 

scales, providing positive evidence against associations with trait apathy (all 𝐵𝐹10 ≤ 0.02).  
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DISCUSSION 

The principal result of this study is that higher trait apathy is associated with lower precision 

of prior beliefs about action outcomes. In the context of effortful, goal-directed actions, we 

confirmed that people's perception of performance was biased, relative to the veridical action 

outcomes. Participants’ estimation of their action outcomes were explained by ‘overly 

precise’ priors that do not simply reflect the statistics of performance. The variability of these 

priors was associated with trait apathy, such that more apathetic individuals tended to have 

less precise priors of action outcomes.  

These results are consistent with a Bayesian framework of brain function, in which the brain 

engages in active inference on the causes of sensory inputs. Central to this model is that prior 

beliefs and sensory input are combined in a precision-weighted manner, so that more precise 

(i.e. less uncertain) information plays a stronger role in shaping action and perception. A 

hypothesis emerging from this framework is that a loss of prior precision leads to 

bradykinesia and a loss of goal-directed behaviour (e.g. Friston et al., 2010, 2014). Our 

results support this hypothesis. 

There is evidence that apathetic individuals are less incentivised by rewards, particularly 

when those rewards require investment of effort. Although reduced motivation for reward 

certainly can contribute to apathy (Adam et al., 2013), this mechanism does not fully explain 

the multifaceted nature of apathy in patient groups (Lansdall et al., 2017). For example, even 

in the absence of external prompts (such as a reward cue), apathetic patients often have 

difficulty in self-generating motor patterns, over and above blunted affect or cognitive 

dysfunction (Levy & Dubois, 2005). Such ‘auto-activation’ symptoms have previously been 

formalised as a failure to reach a necessary activation threshold for a response (Zhang et al., 

2016). Patients were surprisingly biased in favour of performing an action, but were 

subsequently impaired at translating this prior preference into an observed response, as 

indicated by a strongly reduced rate of accumulation to threshold (Zhang et al., 2016). We 

suggest that the diversity of symptoms associated with apathy can be understood as different 

expressions of a common underlying pathology: a reduction in the precision of prior beliefs 

about action outcomes. 

Although estimates of prior precision within participants changed significantly between 

levels of effort and reward, the amount of change between conditions did not depend on trait 

apathy. This suggests that participants’ overall prior for action reflects their higher-level 

beliefs and motivations related to trait apathy, whereas trail-to-trial changes to prior precision 

in light of task demands reflect lower-level mechanisms of sensorimotor prediction. In the 

current experiment, reward decreased the precision of priors relative to the true performance 

distribution. Such a strategy would promote learning in the context of expected reward (since 

the posterior belief will be weighted more towards the evidence than the prior), in contrast to 

the motivational advantage of the illusion of superiority that occurs in non-rewarded trials 

(when the posterior belief of success is weighted more towards the prior than the evidence). 

In other words, the reward manipulation facilitates learning from sensory evidence, so that 

trial-to-trial performance errors can be used to improve task performance. 

Neuropathologies associated with apathy provide insights into the functional anatomy and 

candidate mechanisms of the abnormal precision of priors. Clinical apathy is associated with 

disruptions to frontal-subcortical circuits that are involved in self-initiated, goal-directed 
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behaviour (Levy & Dubois, 2005). Lesions of the prefrontal cortices have long been known 

to impair goal-directed behaviour (Luria, 1995), and apathy is an important feature of 

neurodegenerative diseases affecting prefrontal regions (Passamonti, Lansdall, & Rowe, 

2018). Lesion and neuroimaging studies have also implicated the anterior cingulate cortex 

and basal ganglia in apathy (Le Heron, Apps, & Husain, 2017; Levy & Dubois, 2005). Thus, 

current evidence suggests that apathy follows a disruption to fronto-striatal brain circuits. 

Changes in these fronto-striatal circuits have been implicated in controlling the relative 

precision of predictions and sensory input (Dayan & Yu, 2006; Friston et al., 2014; Moran et 

al., 2013). In Parkinson’s disease, the severe depletion of striatal dopamine is associated with 

a loss of sensory attenuation and presence of apathy, both consequences of impaired active 

inference (Drui et al., 2014; Macerollo et al., 2016; Santangelo et al., 2015; Wolpe et al., 

2018). Indeed, individual differences in the degree of sensory attenuation were negatively 

related to disease severity, but positively related to dopamine medication dose (Wolpe et al., 

2018). We hypothesise that neuromodulatory deficits in patients can cause a loss of prior 

precision relative to the sensory input, which subsequently leads to apathy. Furthermore, 

higher order prior beliefs about desired outcomes may fail to appropriately contextualise 

lower-level representations about sensory input due to structural and functional abnormalities 

in prefrontal and temporal brain regions (Rittman et al., 2019). Further work is required to 

establish the synaptic and molecular basis of aberrant precision, aided by the parameterisation 

of the precision of an individual’s prior. 

There are limitations to this study. First, we examined individual differences in trait apathy in 

the healthy population, and the generalisation to apathetic clinical disorders remains to be 

proven. A dimensional approach assumes that the mechanisms underlying normal variation 

are the same mechanisms which underlie clinical disorders (Cuthbert & Insel, 2013) but we 

recognise that apathetic patients might be qualitatively different to controls. Second, our 

primary results are correlational and therefore do not directly demonstrate causal 

mechanisms. Our results do not in themselves prove whether the precision of priors is a cause 

or consequence of trait apathy. Future work can adopt our approach to study the induction of 

apathy in the context of neurosurgical or temporary focal brain lesions (e.g. through 

transcranial magnetic stimulation) or pharmacological manipulations (e.g. Adam et al., 2013; 

Le Bouc et al., 2016). Third, we cannot comment on the variations in functional anatomy or 

connectivity that may determine the precision of priors in our cohort. Finally, the Bayesian 

framework for computational models enables relative evidences to be compared formally 

(Adams et al., 2015), but only between members of the subset of models tested. 

In conclusion, our study suggests that apathy is associated with poor precision of prior beliefs 

about action outcomes. We propose that apathy can be understood as a failure to assign the 

necessary precision to prior beliefs about one’s action outcomes, necessary for self-initiated 

movement, leading to an apparent ‘acceptance’ of the state of the world. This can be 

understood as satisfying an intended goal in the absence of the actual action necessary to 

achieve it. This approach paves the way to a common framework for understanding the 

causes of apathy in neurological and psychiatric disorders, and a target for novel treatment 

strategies.  
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Table S1: Descriptive statistics of sample demographics and trait apathy 

 
mean SD range 

age 24.23 4.84 18-35 

education 

yearsa 17.30 3.12 13-26 

degreeb 1.94 0.89 1-4 

Apathy Motivation Indexc 

total 1.34 0.42 0.5-2.39 

behavioural activation 1.54 0.66 0.33-3.17 

social motivation 1.48 0.65 0.33-2.83 

emotional sensitivity 1.00 0.54 0.17-2.17 

Note: 47 participants (24 females). 
a total years of formal education, including everything after kindergarten. 
b highest obtained degree categorised according to the British education system: 0 = GCSE 

(General Certificate of Secondary Education), 1 = A Levels (General Certificate of 

Secondary Education Advanced Level), 2 = undergraduate degree, 3 = graduate degree, 4 = 

postgraduate / doctorate degree. 
c scored on a Likert scale from 0 to 4, with higher scores indicating greater apathy (Ang, 

Lockwood, Apps, Muhammed, & Husain, 2017). 
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Figure S1: The best fitting Bayesian model (as in Figure 5A), including the parameters’ 

sampling statements and functional dependencies. Participant-level parameters were 

sampled from latent group-level parameters, and within participants parameters were 

permitted to vary between conditions. Condition-level parameters were then used to compute 

a precision-weighted combination of the prior and trial-level sensory evidence. This trial-

level posterior mean served as the trial-level predicted estimate of performance. The model is 

represented in plate notation: shaded nodes represent observed data whereas white nodes 

represent latent variables; rectangular nodes represent discrete variables whereas circular 

nodes represent continuous variables; and double-bordered white nodes represent 

deterministic variables whereas single-bordered white nodes represent stochastic variables.  
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Table S2: Descriptive statistics of accuracy (median force error) for each experimental 

condition 

  mean 95% CI p 

low effort 

no reward -0.47% -1.12%, 0.18%  

reward -0.19% -0.83%, 0.46% .55 

high effort 

no reward -4.95% -5.6%, -4.31%  

reward -3.82% -4.46%, -3.17% < .001 

Note: The dependent variable, median force error, is expressed as a percentage of the 

participant’s maximum force. The p-values correspond to post-hoc Tukey’s tests comparing 

reward conditions within each effort condition. 

 

Table S3: Descriptive statistics of variability (interquartile range of force error) for each 

experimental condition 

  mean 95% CI p 

low effort 

no reward 7.06% 6.49%, 7.64%  

reward 6.33% 5.76%, 6.90% .004 

high effort 

no reward 11.31% 10.73%, 11.88%  

reward 10.29% 9.71%, 10.86% < .001 

Note: The dependent variable, interquartile range of force error, is expressed as a percentage 

of the participant’s maximum force. The p-values correspond to post-hoc Tukey’s tests 

comparing reward conditions within each effort condition. 
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Table S4: Log model evidence for linear mixed models of estimation error by performance 

error 

 
cAIC ΔcAIC 

basic 30017.32 1873.01 

varying intercepts 

effort 28349.94 205.63 

reward 29900.64 1756.34 

effort & reward 28170.63 26.32 

varying slopes 

effort 29865.84 1721.53 

reward 29947.07 1802.76 

effort & reward 29817.52 1673.21 

varying intercepts & slopes 

effort 28342.20 197.89 

reward 29858.90 1714.59 

effort & reward 28144.31 0.00 

Note: cAIC = conditional Akaike Information Criterion (Greven & Kneib, 2010), ΔcAIC = 

[cAIC – min(cAIC)]. The ‘basic’ model allowed for varying intercepts and slopes between 

participants, but did not take into account the experimental conditions of effort and reward. 

The nine remaining models allowed for further adjustments to the intercept, slope, or both by 

effort, reward, or both. The favoured model, with varying intercepts and slopes by effort and 

reward, is highlighted in bold. 
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Figure S2: The effects of effort and reward on the standard deviation of the prior, normalised 

to the standard deviation of performance error (Wolpe, Nombela, & Rowe, 2015). Values 

smaller than 0.5 represent priors that are more precise than the corresponding performance 

distribution. Solid dots represent individual participants, whereas the hollow dots and 

horizontal line segments represent the group-level mean for a given experimental condition.  
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Table S5: R packages used for statistical analysis 

package usage citation 

tidyverse (version 1.2.1) data organisation and 

visualisation 

(Wickham, 2017) 

pwr (version 1.2-2) power calculations for 

correlation test 

(Champely, 2018) 

afex (version 0.21-2) ANOVA (Singmann, Bolker, 

Westfall, & Aust, 2017) 

BayesFactor (version 0.9.12-

4.2) 

Bayes factor for ANOVA 

and regression models 

(Morey & Rouder, 2018) 

emmeans (version 1.2.2) estimated marginal means 

and post-hoc Tukey’s tests 

(Lenth, 2018) 

lme4 (version 1.1-20) linear mixed models (Bates, Mächler, Bolker, & 

Walker, 2015) 

cAIC4 (version 0.5) conditional Akaike 

information criterion for 

linear mixed models 

(Säfken, Rügamer, Kneib, & 

Greven, 2018) 

merTools (version 0.4.1) extract and organise 

parameter estimates from 

linear mixed model 

(Knowles & Frederick, 

2018) 

rstan (version 2.18.2) hierarchical Bayesian 

modelling 

(Stan Development Team, 

2018) 

loo (version 2.0.0) approximate leave-one-out 

cross-validation and widely 

applicable information 

criterion for Bayesian 

models 

(Vehtari, Gabry, Yao, & 

Gelman, 2018) 

tidybayes (version 1.0.4) extract and organise 

parameter estimates from 

Bayesian model 

(Kay, 2019) 

knitr (version 1.20) generate methods and results 

sections from R code 

(Xie, 2018) 
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