

Reversal learning performance in the XY* mouse model of Klinefelter and Turner Syndromes

3

4 **Shawn M. Aarde^{1*}, Haley Hrncir¹, Arthur P. Arnold¹, and J. David Jentsch²**

⁵ ¹Laboratory of Neuroendocrinology, Brain Research Institute, Department of Integrative Biology
⁶ and Physiology, University of California, Los Angeles, CA, USA

⁷ ²Department of Psychology, Binghamton University, Binghamton NY

8

9 *Correspondence:

10 Shawn M. Aarde

11 saarde@binghamton.edu

12

13 **Keywords:** Reversal Learning, Klinefelter Syndrome, Turner Syndrome, Animal Model,
14 XY*, Sex Chromosome Aneuploidy, Perseveration

15

ABSTRACT

16

17 Klinefelter syndrome (KS; 47, XXY) and Turner syndrome (TS; 45, XO) are caused by two
18 relatively common sex chromosome aneuploidies. These conditions are associated with an
19 increased odds of neuropsychiatric disorders, including attention deficit/hyperactivity disorder
20 (ADHD), as well as impairments in cognition that include learning delays, attentional
21 dysfunction and impulsivity. We studied cognitive functions in the XY* mouse model, which
22 allows comparison of XXY to XY males (KS model), and XO to XX females (TS model). We
23 evaluated adult mice with and without gonads, using a version of an operant reversal-learning
24 task (RLT) that can be used to measure various facets of learning, impulsivity and attention. In
25 the KS model, only one measure related to impulsivity – perseverative responding under reversal
26 conditions – reliably discriminated gonadally intact XXY and XY mice. In contrast, a
27 fundamental learning impairment (more trials to criterion in acquisition phase) in XXY mice, as
28 compared to XY, was observed in gonadectomized subjects. No other task measures showed
29 differences consistent with KS. In the TS mouse model, XO mice did not show a pattern of
30 results consistent with TS, similar to past observations. Thus, the application of this RLT to
31 these XY* models reveals only limited behavioral impairments relevant to KS.

32

33 **1 Introduction**

34 Sex-chromosome aneuploidies, such as Klinefelter syndrome (KS; 47, XXY) and Turner
35 syndrome (TS; 45, X), are associated with various cognitive impairments and with an increased
36 risk of psychiatric and/or neurodevelopmental disorders, including attention deficit-hyperactivity
37 disorder, autism, schizophrenia, and bipolar disorder (Belling et al., 2017; Cederlöf et al., 2014;
38 Russell et al., 2006; Tartaglia et al., 2017; Zhao and Gong, 2017). For example, an increased
39 risk of ADHD has been observed in people with either KS (Cederlöf et al., 2014) or TS (Russell
40 et al., 2006). Moreover, KS men who do not have a diagnosis of autism spectrum disorder
41 nonetheless have higher Autism-spectrum Quotient scores (AQ) (Baron-Cohen et al., 2001),
42 including poorer scores on the “attention switching” subscale, indicating subclinical
43 neurobehavioral manifestations that will require quantitative, rather than diagnostic, behavioral
44 approaches (Cederlöf et al., 2014; van Rijn et al., 2012b, 2014).

45 Cognitive assessments indicate a modestly lower full-scale IQ (5-10 points) in both KS
46 and TS, with higher performance IQ relative to verbal IQ in KS, and the opposite relationship in
47 TS (Hong and Reiss, 2014). Moreover, in a recent assessment that included a Stroop Word-
48 Color Test and the Wisconsin Card Sorting Test, KS men exhibited a greater Stroop effect
49 (thus, poorer inhibition) and made more errors (including more perseverative errors) on the card
50 sort task relative to controls (thus, poorer behavioral flexibility) (Skakkebæk et al., 2014).

51 To better understand the mechanisms by which sex-chromosome aneuploidies impact
52 phenotypes, various animal models of KS or TS have been developed (Burgoyne and Arnold,
53 2016; Cox et al., 2014; Lue et al., 2010; Wistuba, 2010). Behavioral studies of these models
54 indicate that both KS and TS aneuploidies impact learning, impulsivity and/or attention (Chen et

REVERSAL LEARNING IN XY* MOUSE

4

55 al., 2013b; Cox et al., 2015; Davies et al., 2005, 2007; Isles et al., 2004; Lewejohann et al., 2009;
56 Lue et al., 2005).

57 The particular KS and TS models that we used were derived from the XY* mouse. In
58 this mouse, the Y chromosome has a modified pseudoautosomal region that recombines
59 abnormally with the X chromosome. This generates four male gametes: X, Y*, X^{Y*} (fused X
60 and Y*), and Y^{*X} (which paradoxically is not a Y chromosome, but predominantly the
61 pseudoautosomal region of the X chromosome) (Burgoyne and Arnold, 2016). Thus, mating an
62 XY* male to an XX female produces mice that are the near-equivalent of XX, XY (i.e., XY*),
63 XXY (i.e., 40,XX^{Y*}), and XO (i.e., 40,XY^{*X}) (Burgoyne et al., 1998; Burgoyne and Arnold,
64 2016; Eicher et al., 1991; Wistuba et al., 2010). Although 39,XO mice have been generated and
65 studied (Davies et al., 2005, 2007; Isles et al., 2004; Lopes et al., 2010; Raznahan et al., 2013),
66 the current study used 40,XO mice (i.e., 40,XY^{*X}) on a C57BL/6J background, because the
67 39,XO model is not available on that background.

68 Although the data are limited, mouse models of KS do appear to have some face validity
69 in terms of learning impairments (Ross et al., 2008; Rovet et al., 1996; Skakkebæk et al., 2017).
70 For example, in a novel-object recognition test, XXY mice from the XY* model failed to show
71 the typical pattern of more exploration of the novel object relative to the more familiar object,
72 but control XY mice did (Lewejohann et al., 2009). In a different KS model, 41,XXY mice were
73 slower to acquire Pavlovian appetitive approach behavior than XY mice (Lue et al., 2005).

74 Regarding TS mouse models, performance on a serial reversal-learning task (Y-maze-
75 based, visual, nonspatial) was worse in 39,XO than 40,XX mice, but only when the X-
76 chromosome in the 39,XO mice was of maternal origin (Davies et al., 2005). Thus, 39,XO mice
77 possessing the maternal X have face validity for the general learning impairments observed in TS

REVERSAL LEARNING IN XY* MOUSE

5

78 (Garron, 1977; Loesch et al., 2005; Mazzocco, 2006). However, as the relevance of imprinting
79 to learning impairments in TS remains unclear (Lepage et al., 2012), so does its relevance to the
80 validity of mouse models of TS (Davies et al., 2005, 2007).

81 On the 5-choice serial reaction time task (5-CSRTT; tests visual attention), 39,XO mice
82 displayed poorer accuracy and slower reaction times compared to 40,XX mice (outbred MF1
83 strain background) (Davies et al., 2007). However, the presence of the Y*^X chromosome in
84 40,XO mice rescued the attention deficit and there were no parent-of-origin effects detected.
85 Additionally, on measures of impulsivity, 39,XO and 40,XX mice did not differ. Thus, the
86 39,XO genotype appears to have face validity in terms of the attentional deficits observed in TS
87 (Delooz et al., 1993; Green et al., 2018; Mauger et al., 2018; McCauley et al., 1987; Ross et al.,
88 2002; Russell et al., 2006), but not for the impulsivity observed in TS (Romans et al., 1997;
89 Russell et al., 2006; Tamm et al., 2003).

90 To further study behavior and cognition in the XY* model, we compared XXY males to
91 XY males (KS comparison), as well as XO females (40,XO; i.e., XY*^X) to XX females (TS
92 comparison), on an operant reversal-learning task (RLT) (Laughlin et al., 2011; Linden et al.,
93 2018). This task was chosen because it measures some of the constructs impaired in KS and TS
94 (learning, impulsivity, and attention), as well as for its relevance to the current literature.

95 A recent advance in the behavioral analysis of this particular version of the reversal
96 learning task (Laughlin et al., 2011; Linden et al., 2018) makes use of *a priori* defined and
97 empirically determined “change points” in the learning curve to better resolve within-phase
98 behavior dynamics (Gallistel et al., 2004; Linden et al., 2018; Papachristos and Gallistel, 2006).
99 In feedback-based operant-learning tasks, the acquisition curve of an individual subject is
100 typically not one of a negatively accelerating, gradual progress toward a performance asymptote

REVERSAL LEARNING IN XY* MOUSE

6

101 (Gallistel et al., 2004; Papachristos and Gallistel, 2006). Rather, such learning curves are
102 typically an artifact of group averaging and thus fail to represent the behavioral dynamics of
103 individuals which include changes in the rate of learning caused by prolonged intervals of stable
104 performance and/or abrupt, large step-like changes in proficiency – i.e., “change points”
105 (Gallistel et al., 2004; Papachristos and Gallistel, 2006).

106 However, a recent report made successful use of these change points to analyze data from
107 a spatial reversal-learning task in rats (Klanker et al., 2015). Specifically, they split trials into
108 those occurring before (PRE) or after (POST) the largest empirically-determined change point in
109 the individual learning curves. They observed that, for rats that learned the reversal, phasic post-
110 reward dopamine release in the ventromedial striatum was lower POST than PRE change-point.
111 Additionally, post-cue dopamine release was higher on trials that followed a rewarded trial than
112 on those prior rewarded trials – but, only PRE change-point. Thus, we made use of this
113 analytical tool as it appears to better resolve discrete phases in learning.

114 Some effects of KS and TS are potentially attributed to altered levels of gonadal
115 hormones. KS men have lower levels of testosterone than XY men (Gravholt et al., 2018; Klein
116 et al., 2018), and TS women have altered ovarian function (Klein et al., 2018; Romans et al.,
117 1998; Ross et al., 1995, 2004; Rovet, 2004). Accordingly, we analyzed the role of gonadal
118 hormones on task performance by comparing gonadectomized mice to gonad-intact controls.

119 Under the assumptions that the XXY and XO genotypes of the XY* mice are sufficiently
120 valid models of the genotypes of KS and TS, respectively, we predicted a pattern of genotype
121 effects on behavior similar to that seen in people with KS and TS, with the exception of
122 premature responding in the XO vs XX comparison for which no difference was predicted based
123 upon prior performance on the 5-CSRTT/1-CSRTT (Davies et al., 2007). We expected that if

REVERSAL LEARNING IN XY* MOUSE

7

124 genotypes differed on behavioral measures, that some of the differences might disappear if they
125 depended on group differences in levels of gonadal hormones in any life stage. However, sex-
126 hormone replacement therapies in adulthood do not appear to remediate the cognitive deficits
127 observed in people with KS (Fales et al., 2003; Kompus et al., 2011; Liberato et al., 2017;
128 Skakkebæk et al., 2017) or TS (Klein et al., 2018; Ross et al., 2002, 2004), and the cognitive
129 consequences of reducing/blocking sex hormones in people with either KS or TS, or in this
130 animal model, are unknown.

131

132 2 METHODS

133 2.1 Subjects

134 2.1.1 XY* (XY-star) mouse model

135 Subjects were adult (100-129 days old at the time of testing) mice from the XY* model
136 (Burgoyne et al., 1998; Burgoyne and Arnold, 2016; Eicher et al., 1991), backcrossed from
137 Jackson lab strain 2021 to C57BL/6J for at least 13 generations. Offspring were produced by
138 mating XY* males to XX females. This model produces 4 genotypes – XY*^X, XX, XY* and
139 XXY* – that are the near-equivalent of XO, XX, XY, and XXY, respectively (Burgoyne and
140 Arnold, 2016; Chen et al., 2013a; Cox et al., 2014). The Y*^X chromosome is an X chromosome
141 with massive deletion of most genes, leaving the pseudoautosomal region and a few nearby
142 genes (Burgoyne and Arnold, 2016), so that XY*^X females have X monosomy (40, XO) except
143 for the presence of a second PAR. In this model, XY and XXY mice have testes, and XO and
144 XX mice have ovaries. In XXY (40, XXY) mice, one X chromosome and the Y chromosome
145 are fused end-to-end (Burgoyne and Arnold, 2016).

146 Gonadectomy, or a control sham surgery, were performed at 72-99 days of age
147 (mean=82), and behavioral testing began 25-41 (mean=30) days later. The 8 groups were:
148 XY,GDX (N = 12); XY,SHAM (N = 11); XXY,GDX (N = 15); XXY,SHAM (N = 16);
149 XX,GDX (N = 13); XX,SHAM (N = 14); XO,GDX (N = 14); XO,SHAM (N = 14).

150 **2.1.2 Genotyping**

151 Genotype was determined by combined measurements of anogenital distance and
152 fluorescent *in-situ* hybridization to detect X and Y chromosomes in interphase lymphocytes
153 using the Kreatech KI-30505 kit (Leica Biosystems). Males also had their genotype verified by
154 visual assessment of testis size; males with one X chromosome have testes roughly 6 times larger
155 than males with two X chromosomes (Wistuba, 2010).

156 **2.1.3 Husbandry**

157 After gonadectomy, mice were transferred to a vivarium that varied in temperature (69-
158 79°F) and humidity (~20-~70%), under a 14h:10h light:dark cycle. Behavioral testing was
159 performed 1-4 h before onset of the dark phase. Mice were housed in groups of 2-4 mice/cage,
160 on sawdust bedding.

161 To facilitate motivation to perform the task, all mice were food-restricted to maintain a
162 body weight of 80-85% of baseline (pre-restriction) weights. The daily allocation of standard
163 rodent chow was fed about 30 min after testing, adjusted daily based on overnight changes in
164 body weight, the difference between current and target weight (82.5%), and the amount of food
165 consumed during testing. Water was always available except during testing (~1 h), and the post-
166 testing interval before being given their chow. All experimental procedures were approved by the
167 UCLA Chancellor's Animal Research Committee.

168

169 **2.2 Operant Conditioning Testing - Reversal-Learning Task (RLT)**

170 **2.2.1 *Overview, Equipment***

171 Operant chambers (Med Associates; St. Albans VT) were housed within sound-
172 attenuating cubicles and were equipped with: 5 horizontally arranged nose-poke apertures on one
173 curved wall, a reinforcer-delivery magazine on the opposite wall, a white-noise generator (~85
174 dB; always on), and a house light (located outside and above the magazine-side of the chamber).
175 Nose-poke apertures and the magazine were illuminated via recessed lamps, and entries into
176 apertures/magazine were detected via interruption of an infrared-beam sensor. Data were
177 collected via MedPC IV software (Med Associates) running custom behavioral programs.

178 **2.2.2 *Habituation Phase***

179 After initiation of food restriction, mice were transferred to the operant testing room
180 where the equipment was turned on. Mice were placed singly into clean home cages (no
181 bedding, two nestlets). After ~ 30 min, a ceramic ramekin containing 1.4 g of the reward (14-mg
182 Dustless Precision purified reinforcer pellets; BioServ item #F05684) was placed into the cage.
183 After 1 h, the mice were returned to their original home cages. This was repeated for a total of 4
184 consecutive days.

185 **2.2.3 *Magazine Training***

186 Mice were next given 2 sessions of magazine training, during which reinforcer pellets
187 were delivered on a modified variable-time schedule ($30 \pm 0, 5, \text{ or } 10 \text{ s}$) in which reinforcers
188 were delivered every ~30 s, so long as a nose-poke into the magazine was detected before the
189 time of the next pellet delivery (i.e., cessation of magazine poking suspended the timer and thus
190 stopped further pellet deliveries until poking resumed). The magazine was illuminated when the

191 pellet was delivered and then darkened when an entry into the magazine was detected. Sessions
192 ended after delivery of 60 pellets or after 60 min, whichever occurred first.

193 **2.2.4 *Observing-Response Training***

194 Mice were next trained to produce a sustained duration nose-poke response into the central
195 aperture (hole 3 of 5 within the horizontal array); this was termed an “observing” response, for
196 use in the acquisition and reversal phases of testing. If the mice were successful at sustaining
197 their response for the required duration, a pellet was delivered into the magazine, the magazine
198 light was illuminated, and the center aperture was darkened. Failure to sustain the response
199 caused a 2-s timeout during which the house light was illuminated and the center aperture was
200 darkened. The required holding duration (RHD) was block randomized and possible durations
201 were incremented in the next session if the mouse met performance criterion as follows (failure
202 to meet criterion resulted in a repeat of the condition):

203 a) RHD = 1, 5, or 10 csec, criterion \geq 30 pellets in < 60 min
204 b) RHD = 10, 20, or 30 csec, criterion \geq 40 pellets in < 60 min
205 c) RHD = 20, 30, or 40 csec, criterion \geq 40 pellets in < 60 min
206 d) RHD = 30, 40, or 50 csec, criterion \geq 50 pellets in < 60 min

207 **2.2.5 *Acquisition Learning Phase (ACQ)***

208 Mice were next trained in ~1-h daily sessions to acquire a simple spatial discrimination.
209 Each trial began with illumination of hole 3 of 5; upon completion of the observing response
210 (RHD = 1, 10 or 20 csec), the center aperture was darkened and the flanking apertures (holes 2
211 and 4 of 5) were illuminated. For each mouse, one of the two holes was *a priori* assigned as the
212 correct side (designated correct aperture was counterbalanced across groups), and responses into
213 that aperture would lead to pellet delivery into an illuminated magazine. Reward retrieval would

REVERSAL LEARNING IN XY* MOUSE

11

214 darken the magazine and trigger the start of a 3-s inter-trial interval (ITI) after which the center
215 aperture was re-illuminated and the next trial commenced.

216 Responses into the designated incorrect aperture triggered a 5-s timeout, during which all
217 aperture lights were extinguished and the house light was illuminated. Alternatively, failure to
218 nose-poke into either of the lit target apertures within 30-s of their illumination was counted as a
219 response omission and led to a 5-sec timeout. Timeouts for incorrect responses and omissions
220 were followed by a 3-sec ITI. Timeouts for observing-response failures continued as scheduled
221 in observing-response training. However, after these timeouts, the ACQ trial continued until a
222 successful observing-response triggered target presentation.

223 Premature responses (responses to the target apertures *before* target presentation) and
224 extraneous observing responses (EOR – repetitive responses into the central aperture *during*
225 target presentation) were recorded but had no scheduled consequences.

226 Subjects continued daily testing until they reached a performance criterion of 80% correct
227 within a sliding window of 20 trials within a single session.

228 **2.2.6 Reversal Learning Phase (REV)**

229 The reversal phase began the day following successful completion of the acquisition
230 phase. In the reversal phase, the apertures designated as correct and incorrect were swapped, but
231 all other contingencies remained the same as those in the acquisition phase – including the
232 performance criterion. Testing continued until criterion was met.

233

234 **2.3 Behavioral Measures and Dependent Variables**

235 **2.3.1 Learning Rate**

236 The total number of trials required to reach performance criteria, and the pattern of correct
237 and incorrect choices made over the progression to criteria, were evaluated to characterize
238 individual learning behavior as a function of testing phase. Additionally, to characterize within-
239 phase performance changes, each phase was bisected on the trial in which the maximum change
240 in learning occurred as determined by calculating the maximum change in the cumulative correct
241 response curve (Gallistel et al., 2004; Klanker et al., 2015); leading to a PRE and POST change-
242 point fraction of trials for each testing phase.

243 **2.3.2 *Choice Accuracy by Prior Choice (Behavioral Flexibility Score)***

244 Choice behavior was evaluated as a function of feedback from the preceding trial (reward
245 vs timeout punishment) to quantify the tradeoff between behavioral flexibility (changing
246 response after punishment; “Lose-Shift”) and stability (repeating response after reward; “Win-
247 Stay”). Thus, we calculated the proportion of “Lose” and “Win” trials that were correct ($p(\text{Lose-Shift})$
248 and $p(\text{Win-Stay})$, respectively), then we calculated a flexibility-stability difference score
249 ($FS = p(\text{Lose-Shift}) - p(\text{Win-Stay})$). Thus, a positive FS would indicate greater
250 behavioral flexibility than stability. Moreover, baseline differences in overall error rates due to
251 other factors are subtracted out by this tradeoff calculation.

252 **2.3.3 *Error Parameters (Perseverative and Regressive Errors)***

253 In addition to error rate (errors per trial), two measures parameterized the shape of the
254 learning curve which, in the reversal phase, was characterized by an initial period of
255 perseveration on the old rule followed by a period characterized by occasional “regressive”
256 errors. For the 1st measure, we calculated the maximum length of the strings of consecutive
257 incorrect responses (**MAXCI**) as an operational definition of perseverative responding. For the
258 2nd, we calculated the proportion of the learning curve marked by *regression* from – rather than

259 progression toward – the performance criterion. Learning curves often show variability in these
260 transient periods of decreased proficiency (Gallistel et al., 2004). This **Regress Score** was
261 calculated by identifying blocks of 5 trials in which performance accuracy declined relative to
262 the preceding block, summing the values associated with these declines in accuracy
263 $[-\sum_{i=5}^n (\% \text{ correct next 5 trials} - \% \text{ correct prior 5 trials})i]$, then normalizing this sum to the total
264 number of trials.

265 **2.3.4 Premature Responses**

266 Premature responses (nose pokes into the unlit target apertures outside of the period of
267 target presentation) and the number of timeouts/trial incurred from observing response fails (i.e.,
268 failures to sustain the observing response until the target stimuli are presented) were parsed as a
269 function of testing **Phase** (acquisition vs reversal; ACQ vs REV), and the within-phase interval
270 relative to the maximum **Change Point** in the learning curve (PRE vs POST). Premature
271 responses were also analyzed with respect to response **Side** (correct side in acquisition or correct
272 side in reversal; **C_{ACQ}** or **C_{REV}**).

273 **2.3.5 Response Latencies**

274 Target-response latency was the time from target onset until the start of the 1st nose-poke
275 into an illuminated target aperture. Reward-retrieval latency was the time from pellet delivery to
276 the start of 1st subsequent nose-poke into the magazine. Trial-initiation latency was the time
277 from the end of inter-trial interval to the 1st observing response (regardless of whether it was long
278 enough to trigger target presentation).

279 All three latency measures were analyzed as a function of Testing **Phase** (acquisition vs
280 reversal; ACQ vs REV), and the within-phase interval relative to the maximum **Change Point** in
281 the learning curve (PRE vs POST). Target-Response latencies were parsed by response **Side**

282 (correct side in acquisition or correct side in reversal; **C_{ACQ}** or **C_{REV}**). Trial-initiation latencies
283 were additionally analyzed by the outcome of the **Prior Trial (rewarded or unrewarded)**.

284 **2.3.6 *Extraneous Observing Responses (EOR)***

285 During target-stimuli presentation, additional nose-pokes into the center aperture were
286 recorded but were without scheduled consequences. We analyzed EOR as a function of testing
287 phase and change point.

288 **2.3.7 *Omissions***

289 Target stimuli were presented for 30 s. Failure to respond to one of the target apertures
290 within this interval caused a timeout and an omission to be recorded. We analyzed omissions per
291 trial as a function of testing phase and change point.

292

293 **2.4 Statistical Design**

294 Because one of our central hypotheses focused on gonadal males with one vs two X
295 chromosomes, we directly compared the performance of gonadally intact XY vs XXY mice.
296 Separately, we compared XO vs XX mice as a secondary test of the effects of X chromosome
297 number in the presence of ovaries. Measures were analyzed under designs that included the
298 between-subjects factors of X-chromosome number (i.e., **X-dose; 1X vs 2X**) and gonadectomy
299 group (**GDX; GDX** vs **SHAM**). We also analyzed within-subjects factors of testing **Phase**
300 (acquisition vs reversal; **ACQ** vs **REV**), **Prior-Trial Outcome (rewarded vs unrewarded)**, and
301 before/after the maximum change in the learning curve (i.e., **Change Point; PRE** vs **POST**;
302 determined by calculating the maximum change in the cumulative correct response curve
303 (Gallistel et al., 2004; Klanker et al., 2015)). Premature responses and target-response latencies

REVERSAL LEARNING IN XY* MOUSE

15

304 were analyzed with reference to response **Side** (correct side in ACQ or correct side in REV;
305 **C_{ACQ}** or **C_{REV}**).

306

307 2.5 *Data Analyses*

308 Measures were analyzed by the Generalized Estimating Equations (GEE) procedure
309 available in IBM SPSS Statistics version 25 using the robust estimator of the unstructured
310 covariance matrix, maximum likelihood parameter estimation, Type III model effects, and the
311 Chi-square Wald score for full log quasi-likelihood function. A normal distribution with identity
312 link function was used except when the assumptions of normality and linearity were violated
313 (normality determined by Kolmogorov-Smirnov Test (KST), linearity determined by
314 examination of P-P plots). In those cases, a standard data transformation (link function in GEE;
315 options included untransformed, log, or square root) was chosen based on the lowest Chi
316 Square/highest p-value of KSTs of transformed data. Two measures – premature responses/trial,
317 and omissions/trial – could not be normalized by these standard transformations. However, they
318 both adequately fitted, and were thus analyzed using, a gamma distribution with log-link.
319 Significant model effects ($p < 0.05$) comprising more than two means were delineated with post-
320 hoc paired-means comparisons (PPC) under a Bonferroni correction. Figures plot the raw
321 (untransformed) data, with the exception of premature responses, which were plotted as the value
322 of $\log_{10}(y_i+1)$.

323

324 3 RESULTS

325 3.1 Trials to Criterion

REVERSAL LEARNING IN XY* MOUSE

16

326 As a measure of learning rate, we counted the total number of response trials required to
327 reach the preset performance criterion (omissions were not counted). Before counting, trials
328 were first parsed by testing phase (acquisition vs reversal: ACQ vs REV) and by a derived intra-
329 phase change point (CP) in the learning curve (PRE vs POST) (Figures 1A and 1B,
330 Supplementary Figures 1A and 1B).

331 **3.1.1 Males**

332 Generalized estimating equations (GEE) analysis confirmed significant effects of Phase
333 ($\chi^2_{(1)} = 15.935$, $p < 0.0001$) and CP ($\chi^2_{(1)} = 43.899$, $p < 0.00001$), but there was no Phase*CP
334 interaction ($\chi^2_{(1)} = 0.000$, $p = 0.997$). As expected, more trials were required in REV than ACQ
335 and there were more trials PRE than POST (Supplementary Figure 1A).

336 There were two significant interactions involving experimental groups (Figure 1A): X-
337 dose*Phase ($\chi^2_{(1)} = 7.938$, $p = 0.0048$) and X-dose*GDX*Phase ($\chi^2_{(1)} = 7.856$, $p = 0.0051$).
338 Post-hoc paired-means comparisons confirmed a significant simple effect of Phase in both XY-
339 GDX mice ($p < 0.0001$) and XXY-SHAM mice ($p = 0.0020$), but the simple effect of Phase in
340 both XY-SHAM mice ($p = 0.0169$) and XXY-GDX mice ($p = 0.18$), as well as the simple effect
341 of X-dose (XXY > XY) in GDX mice in ACQ ($p = 0.0469$) did not survive Bonferroni
342 correction ($p > 0.06$ for all other simple effects). Thus, although XY-GDX, XY-SHAM, and
343 XXY-SHAM groups showed the expected reversal cost on trials to criterion, the XXY-GDX
344 mice required *fewer* trials in REV than ACQ due to both relatively more trials in ACQ and fewer
345 trials in REV as compared to the other groups, likely reflecting impaired acquisition of the initial
346 rule in this group.

347 **3.1.2 Females**

348 GEE analysis confirmed effects of Phase ($\chi^2_{(1)} = 21.064$, $p < 0.00001$) and CP ($\chi^2_{(1)} =$
349 16.384 , $p < 0.0001$), as well as a Phase*CP interaction ($\chi^2_{(1)} = 4.188$, $p = 0.0407$). Post hoc
350 comparisons confirmed that the effect of Phase was significant both PRE ($p < 0.00001$) and
351 POST ($p = 0.005$). However, the effect of CP was significant for REV ($p = 0.0001$), but not for
352 ACQ ($p = 0.152$). As expected, there were more trials PRE than POST, and more in REV than
353 ACQ (Supplementary Figure 1B). GEE analysis did not confirm any significant effects or
354 interactions involving X-dose or GDX (all $p > 0.1$) (Figure 1B).

355

356 **3.2 Error Rate**

357 Errors per trial were parsed by testing phase (acquisition vs reversal; ACQ vs REV) and
358 the intra-phase CP in the learning curve (PRE vs POST), the latter to determine within-phase
359 dynamics of learning (Supplementary Figures 1C and 1D).

360 **3.2.1 Males**

361 GEE analysis confirmed significant effects of Phase ($\chi^2_{(1)} = 45.172$, $p < 0.000001$) and
362 CP ($\chi^2_{(1)} = 551.751$, $p < 0.000001$), as well as a Phase*CP interaction ($\chi^2_{(1)} = 18.932$, $p =$
363 0.00001). As expected, there were more errors made PRE than POST, regardless of phase, and
364 more errors in REV than ACQ, regardless of CP (all $p < 0.001$; Supplementary Figure 1C).

365 There were no significant effects or interactions involving X-dose or GDX (all $p > 0.1$).

366 **3.2.2 Females**

367 GEE analysis confirmed effects of Phase ($\chi^2_{(1)} = 23.670$, $p < 0.00001$) and CP ($\chi^2_{(1)} =$
368 610.346 , $p < 0.00001$), and a Phase*CP interaction ($\chi^2_{(1)} = 6.873$, $p = 0.0088$). As expected,
369 there were more errors made PRE than POST, regardless of phase, and more errors in REV than

REVERSAL LEARNING IN XY* MOUSE

18

370 ACQ, regardless of CP (all $p < 0.0001$; Supplementary Figure 1D). There were no significant
371 effects or interactions involving X-dose or GDX (all $p > 0.1$).

372

373 **3.3 Behavioral Flexibility Score (FS)**

374 To score the tradeoff between behavioral flexibility and stability, we calculated the
375 difference between the proportion of responses that were correct following punished trials
376 (p(Lose-Shift); index of flexibility) vs those that were correct following rewarded trials (p(Win-
377 Stay); index of stability) (FS = p(Lose-Shift) – p(Win-Stay); Supplementary Figures 2A and 2B).
378 Thus, a positive FS score would indicate greater behavioral flexibility than stability. These
379 calculations were based on observations parsed by both the testing phase (ACQ vs REV) and the
380 CP in the learning curve (PRE vs POST; used to examine within-phase dynamics).

381 **3.3.1 Males**

382 As expected, mean FS decreased from a positive value PRE to a negative value POST in
383 both ACQ and REV (Supplementary Figure 2A), reflecting a shift from a Lose-Shift strategy to a
384 Win-Stay strategy. GEE analysis confirmed significant main effects of CP ($\chi^2_{(1)} = 38.214$, $p <$
385 0.00001) and Phase ($\chi^2_{(1)} = 9.825$, $p = 0.0017$), but no Phase*CP interaction ($\chi^2_{(1)} = 0.019$, $p =$
386 0.89). Additionally, the overall mean FS was positive in SHAM mice but negative in GDX
387 mice, confirmed by a main effect of GDX ($\chi^2_{(1)} = 5.088$, $p = 0.024$) (Figure 2A).

388 **3.3.2 Females**

389 GEE analysis of FS confirmed a significant main effect of CP ($\chi^2_{(1)} = 27.965$, $p <$
390 0.000001), but not of Phase ($\chi^2_{(1)} = 0.732$, $p = 0.39$) nor a Phase*CP interaction ($\chi^2_{(1)} = 1.943$, p
391 $= 0.16$), reflecting the fact that FS decreased from a positive value PRE to a negative value
392 POST in both ACQ and REV (Supplementary Figure 2B). GEE also confirmed an

393 X-dose*GDX*Phase interaction ($\chi^2_{(1)} = 4.821$, $p = 0.028$) (Figure 2B). However, the simple
394 effects of X-dose (XX > XO in GDX in REV; $p = 0.046$), of GDX (GDX > SHAM in XO in
395 ACQ; $p = 0.009$), and of Phase (ACQ > REV in GDX XO; $p = 0.020$) did not survive correction
396 for multiple comparisons.

397

398 **3.4 Maximum Number of Consecutive Incorrect Responses (MAXCI)**

399 To quantify response perseveration, we calculated the MAXCI within each testing phase
400 (ACQ scores served as a baseline from which the magnitude of the effect of reversal on
401 perseveration was derived) (Figures 3A and 3B). This was an alternative way of quantifying
402 perseveration as compared to methods based on the number of errors within sequential blocks of
403 trials (e.g., (Ragozzino et al., 2002)). The MAXCI was chosen for two reasons: 1) Prior analysis
404 of cumulative response records from this particular reversal task indicated that it is more
405 sensitive to the magnitude of the initial bout of post-reversal perseveration and 2) it consistently
406 shows no significant correlation with the complementary regressive error measure (Figure 3D).

407 **3.4.1 Males**

408 GEE confirmed a main effect of Phase ($\chi^2_{(1)} = 45.719$, $p < 0.00001$) and a significant X-
409 dose*GDX*Phase interaction ($\chi^2_{(1)} = 7.189$, $p = 0.0073$) (Figure 3A). Post hoc comparisons
410 confirmed a simple effect of X-dose in the SHAM group in REV (XXY > XY; $p = 0.0023$; all
411 other $p > 0.19$). By contrast, no simple effects of GDX were confirmed (all $p > 0.13$). Lastly,
412 although MAXCI was greater in REV than ACQ for XY-GDX ($p = 0.0038$), XY-SHAM, ($p =$
413 0.0151), XXY-GDX ($p = 0.0225$), and XXY-SHAM ($p < 0.00001$), this difference was not
414 significant for XY-SHAM and XXY-GDX after Bonferroni correction.

415 **3.4.2 Females**

416 GEE analysis confirmed a main effect of Phase ($\chi^2_{(1)} = 36.010$, $p < 0.00001$) and a
417 significant GDX*Phase interaction ($\chi^2_{(1)} = 4.924$, $p = 0.027$). Although the simple effect of
418 Phase in GDX (REV > ACQ; $p = 0.0027$) and SHAM (REV > ACQ; $p < 0.0001$) survived
419 correction for multiple comparisons, the simple effect of GDX in REV did not (SHAM > GDX;
420 $p = 0.0371$) (Figure 3B).

421

422 **3.5 Regress Score (regressive errors on path to criterion)**

423 To quantify the tendency for performance to initially improve and then regress away
424 from criterion, we calculated the changes in accuracy across the phase (moving window: prior 5
425 trials – next 5 trials), summed the negative values and then normalized this sum to the total
426 number of trials experienced (Figure 3C).

427 **3.5.1 Males**

428 GEE analysis confirmed a main effect of Phase ($\chi^2_{(1)} = 4.792$, $p = 0.0286$), and an X-
429 dose*Phase interaction ($\chi^2_{(1)} = 10.348$, $p = 0.0013$) (Figure 3C). Post hoc comparisons
430 confirmed that Regress scores were higher in REV than ACQ in XY mice ($p = 0.0012$), but not
431 XXY mice ($p = 0.35$). Additionally, the Regress score was higher in XY mice than XXY mice
432 in REV ($p = 0.0114$), but not in ACQ ($p = 0.0517$).

433 **3.5.2 Females**

434 GEE analysis did not confirm any main effects or interactions (all $p > 0.14$).

435

436 **3.6 Correlations: MAXCI, Regress Score, and Trials to Criterion**

437 If MAXCI and the Regress Score quantify independent components of reversal learning
438 (i.e., perseverative and regressive errors, respectively), then they should not be correlated.

439 Correlational analyses split by sex, X-dose and GDX groups confirmed that these measures were
440 not correlated (all $p > 0.1$, males illustrated in Figure 3D). However, both MAXCI and the
441 Regress Score were positively correlated to trials to criterion (MAXCI, all $p < 0.008$; Regress
442 Score, all $p < 0.007$). Thus, although errors of either type predicted trials to criterion, one error
443 did not predict the other.

444

445 **3.7 Premature Responding**

446 Premature responses per trial to the target apertures (i.e., nose pokes into the unlit target
447 apertures outside of the period of target presentation) on both the correct side in acquisition
448 (**C_{ACQ}**) and the correct side in reversal (**C_{REV}**) were analyzed as a function of testing phase and
449 change point (CP) (Figures 4A thru 4G).

450 **3.7.1 Males**

451 GEE analysis of premature responding on the **C_{ACQ}** side confirmed a main effect of CP
452 ($\chi^2_{(1)} = 7.905$, $p = 0.0049$) and a Phase*CP interaction ($\chi^2_{(1)} = 41.553$, $p < 0.00001$), but no main
453 effect of Phase ($\chi^2_{(1)} = 0.008$, $p = 0.93$) (Figure 4A). However, neither X-dose, nor GDX,
454 affected this pattern of results (all $p > 0.15$). The simple effects of Phase and Change point were
455 all significant (all $p < 0.001$).

456 GEE analysis of premature responding on the **C_{REV}** side confirmed main effects of Phase
457 ($\chi^2_{(1)} = 154.663$, $p < 0.00001$), CP ($\chi^2_{(1)} = 72.122$, $p < 0.00001$), and a Phase*CP interaction
458 ($\chi^2_{(1)} = 72.995$, $p < 0.00001$). There was also an X-dose*GDX*Phase interaction ($\chi^2_{(1)} = 6.067$,
459 $p = 0.0138$), X-dose*GDX*CP interaction ($\chi^2_{(1)} = 6.958$, $p = 0.0083$), X-dose*GDX*Phase*CP
460 interaction ($\chi^2_{(1)} = 4.488$, $p = 0.034$), and a GDX*Phase*CP interaction ($\chi^2_{(1)} = 4.752$, $p = 0.029$)
461 (Figures 4C and 4D). There were no significant simple effects of X-dose (all $p > 0.05$) and the

462 simple effects of GDX (GDX > SHAM in XXY in both ACQ PRE and REV PRE; p = 0.027 and
463 p = 0.029, respectively) did not survive correction for multiple comparisons (Figure 4D) (see
464 Figure 4C for simple effects of Phase and CP).

465 **3.7.2 Females**

466 GEE analysis of premature responding on the **C_{ACQ}** side confirmed a main effect of CP
467 ($\chi^2_{(1)} = 31.629$, p < 0.00001) and a Phase*CP interaction ($\chi^2_{(1)} = 77.525$, p < 0.00001), but no
468 main effect of Phase ($\chi^2_{(1)} = 2.378$, p = 0.12) (Figure 4B; all simple effects of Phase and Change
469 point significant; all p < 0.0001). GEE analysis also confirmed a main effect of X-dose (Figure
470 4C; $\chi^2_{(1)} = 4.506$, p = 0.034), with XX mice overall exhibiting more premature responses than
471 XO subjects (Figure 4F). Finally, GEE confirmed a GDX*Phase*CP interaction ($\chi^2_{(1)} = 4.084$, p
472 = 0.043), but none of the post hoc comparisons for the simple effect of GDX were significant
473 after correction (all p > 0.03) (see Figure 4E for simple effects of Phase and CP).

474 GEE analysis of premature responding on the **C_{REV}** side confirmed main effects of Phase
475 ($\chi^2_{(1)} = 160.374$, p < 0.00001) and CP ($\chi^2_{(1)} = 88.466$, p < 0.00001), as well as a Phase*CP
476 interaction ($\chi^2_{(1)} = 86.810$, p < 0.00001; see Figure 4B for simple effects) and a GDX*Phase
477 interaction ($\chi^2_{(1)} = 7.773$, p = 0.0053; Figure 4G). Although post hoc comparisons confirmed the
478 simple effect of phase within both GDX groups (both p < 0.00001), the simple effect of GDX in
479 REV (GDX > SHAM, p = 0.026) did not survive Bonferroni correction.

480

481 **3.8 Response Latencies**

482 In addition to a decrease in response errors, successful learning of a spatial discrimination
483 task leads to progressive decreases in response latencies. Thus, we calculated mean response
484 latencies (i.e., time from target stimuli onset to first response to a target location) on both the

485 correct side in acquisition (**C_{ACQ}**) and the correct side in reversal (**C_{REV}**) and analyzed these as a
486 function of testing phase and CP (Figures 5A and 5B, Supplementary Figures 3A and 3B).

487 **3.8.1 Males**

488 GEE analysis of response latencies on the **C_{ACQ}** side confirmed main effects of Phase
489 ($\chi^2_{(1)} = 16.226$, $p < 0.0001$) and CP ($\chi^2_{(1)} = 7.357$, $p = 0.007$), as well as a Phase*CP interaction
490 ($\chi^2_{(1)} = 9.700$, $p = 0.002$). However, on the **C_{REV}** side, analysis confirmed a main effect of Phase
491 ($\chi^2_{(1)} = 18.521$, $p = 0.00002$), but no effect of CP ($\chi^2_{(1)} = 0.990$, $p = 0.3$) or Phase*CP interaction
492 ($\chi^2_{(1)} = 1.465$, $p = 0.2$). Response latencies to the **C_{ACQ}** side decreased during ACQ (POST CP <
493 PRE CP) but not REV (POST CP \approx PRE CP), while response latencies to the **C_{REV}** side
494 decreased during REV (POST CP < PRE CP) but not ACQ (POST CP \approx PRE CP)
495 (Supplementary Figure 3A).

496 Analysis of the **C_{ACQ}** side also confirmed a significant GDX*CP interaction ($\chi^2_{(1)} =$
497 11.732 , $p = 0.0006$). Post hoc comparisons confirmed a simple effect of CP in SHAM mice ($p =$
498 0.00004) but not in GDX mice ($p = 0.6$); the simple effect of GDX was not significant either
499 PRE ($p = 0.14$) or POST ($p = 0.07$) (Figure 5A).

500 Lastly, an X-dose*GDX*CP interaction was confirmed on the **C_{REV}** side ($\chi^2_{(1)} = 6.130$, p
501 $= 0.013$), but post hoc comparisons did not identify any simple effects that survived correction
502 for multiple comparisons (Figure 5A).

503 **3.8.2 Females**

504 GEE analysis of response latencies on the **C_{ACQ}** side confirmed main effects of Phase
505 ($\chi^2_{(1)} = 22.846$, $p < 0.00001$) and CP ($\chi^2_{(1)} = 5.234$, $p = 0.02$), but no Phase*CP interaction ($\chi^2_{(1)}$
506 $= 0.651$, $p = 0.4$) (Supplementary Figure 3B). A main effect of GDX ($\chi^2_{(1)} = 8.007$, $p = 0.005$),
507 as well as an X-dose*GDX interaction ($\chi^2_{(1)} = 5.791$, $p = 0.016$) was identified (Figure 5B).

508 Post hoc comparisons confirmed the simple effect of GDX in XX mice ($p = 0.0007$); however
509 the simple effect of X-dose in GDX mice was not significant after Bonferroni correction ($p =$
510 0.027) (other $p > 0.2$).

511 GEE analysis of response latencies on the C_{REV} side confirmed a main effect of Phase
512 ($\chi^2_{(1)} = 5.996$, $p = 0.014$), but not of CP ($\chi^2_{(1)} = 3.019$, $p = 0.08$) nor a Phase*CP interaction ($\chi^2_{(1)} = 1.503$, $p = 0.2$) (Supplementary Figure 3B). GEE analysis also confirmed an X-
514 dose*Phase*CP interaction ($\chi^2_{(1)} = 8.276$, $p = 0.004$) and an X-dose*GDX*Phase*CP interaction
515 ($\chi^2_{(1)} = 4.361$, $p = 0.037$). No simple effects of X-dose or GDX survived correction for multiple
516 comparisons (Figure 5B).

517

518 **3.9 Reward Retrieval Latencies**

519 As an ancillary response latency measure, we calculated the average time to collect the
520 reward after committing a correct response as a function of both testing phase and change point
521 (CP) (Figures 5C thru 5D).

522 **3.9.1 Males**

523 GEE analysis of reward retrieval latencies confirmed no main effects of Phase ($\chi^2_{(1)} = 0.468$, $p = 0.5$) or CP ($\chi^2_{(1)} = 0.130$, $p = 0.7$), nor a Phase*CP interaction ($\chi^2_{(1)} = 0.059$, $p = 0.8$).
525 GEE analysis did confirm a GDX*Phase*CP interaction ($\chi^2_{(1)} = 3.914$, $p = 0.048$), however none
526 of the post hoc comparisons were significant (all $p > 0.06$) (Figure 5C).

527 **3.9.2 Females**

528 GEE analysis of reward retrieval latencies did confirm main effects of Phase ($\chi^2_{(1)} = 4.151$, $p = 0.04$; ACQ > REV) and CP ($\chi^2_{(1)} = 6.495$, $p = 0.01$; PRE > POST), but no Phase*CP
530 interaction ($\chi^2_{(1)} = 0.257$, $p = 0.6$) (Figure 5D). GEE analysis also confirmed an X-dose*CP

531 interaction ($\chi^2_{(1)} = 4.539$, $p = 0.03$). Post hoc comparisons confirmed a simple effect of CP in
532 XX mice ($p < 0.0001$) (all other $p > 0.1$) (Figure 5E).

533

534 **3.10 Trial Initiation Latencies**

535 As an ancillary response latency measure that is affected by motivation to engage in the
536 task, we calculated the mean time to initiate a trial (i.e., time from the end of inter-trial interval to
537 the 1st observing response) as a function of both testing phase and the outcome of the prior trial
538 (rewarded or unrewarded) (Figure 5F and 5G, Supplementary Figures 3C and 3D).

539 **3.10.1 Males**

540 As expected, trial initiation latencies were shorter after unrewarded trials ($M = 12.0$ s, SD
541 $= 8.3$ s) than after rewarded trials ($M = 29.5$ s, $SD = 20.1$ s), regardless of phase (Supplementary
542 Figure 3C). GEE analysis on latencies confirmed main effects of Phase ($\chi^2_{(1)} = 11.387$, $p =$
543 0.0007) and the outcome of the prior trial ($\chi^2_{(1)} = 134.876$, $p < 0.00001$), but no Phase*Prior-
544 Trial interaction ($\chi^2_{(1)} = 1.473$, $p = 0.2$). GEE also confirmed a main effect of X-dose ($\chi^2_{(1)} =$
545 14.300 , $p = 0.00016$). XXY mice had overall longer trial initiation latencies than XY mice
546 (Figure 5F).

547 **3.10.2 Females**

548 As expected, trial initiation latencies were shorter after unrewarded trials ($M = 14.4$ s, SD
549 $= 9.8$ s) than rewarded trials ($M = 33.3$ s, $SD = 18.2$ s) (Supplementary Figure 3D). GEE
550 analysis on latencies confirmed main effects of Phase ($\chi^2_{(1)} = 4.379$, $p = 0.036$) and the outcome
551 of the prior trial ($\chi^2_{(1)} = 151.134$, $p < 0.00001$), but no Phase*Prior-Trial interaction ($\chi^2_{(1)} =$
552 1.086 , $p = 0.3$). GEE also confirmed a main effect of GDX ($\chi^2_{(1)} = 8.088$, $p = 0.0045$). GDX
553 mice had overall longer latencies than SHAM mice (Figure 5G).

554

555 **3.11 Timeouts from Observing-Response Failures (ORTO)**

556 Failure to complete the holding requirement of the observing response (~0.0 to 0.2
557 seconds) causes a short 2-second timeout after which the subject must make another attempt;
558 thus, a subject can incur multiple observing-response timeouts each trial. These errors may
559 reflect a facet of response inhibition or impulsivity (Linden et al., 2018); thus, we calculated the
560 mean number of timeouts per trial as a function of both testing phase and change point (CP)
561 (Figures 6A and 6B).

562 **3.11.1 Males**

563 GEE analysis of ORTO confirmed a main effect of Phase (REV > ACQ; $\chi^2_{(1)} = 18.311$, p
564 = 0.0001), but no main effect of CP ($\chi^2_{(1)} = 2.089$, p = 0.15), nor a Phase*CP interaction ($\chi^2_{(1)} =$
565 0.611, p = 0.4). GEE analysis also confirmed a GDX*Phase*CP interaction ($\chi^2_{(1)} = 4.263$, p =
566 0.039) and an X-dose*GDX*Phase*CP interaction ($\chi^2_{(1)} = 4.780$, p = 0.029). However, none of
567 the post hoc comparisons were significant after Bonferroni correction (Figure 6A).

568 **3.11.2 Females**

569 GEE analysis of ORTO confirmed a main effect of CP ($\chi^2_{(1)} = 10.091$, p = 0.0015) and a
570 Phase*CP interaction ($\chi^2_{(1)} = 4.075$, p = 0.044), but no main effect of Phase ($\chi^2_{(1)} = 3.103$, p =
571 0.078) (Figure 6B). Post hoc comparisons confirmed a simple effect of Phase PRE (REV >
572 ACQ; p = 0.01) and a simple effect of CP in ACQ (POST > PRE; p = 0.00005) (other p > 0.3).

573

574 **3.12 Extraneous Observing Responses (EOR)**

575 During the period of target aperture illumination, observing responses were without
576 consequence. However, as these extraneous observing responses (EOR) may reflect a lack of

577 attention and/or the degree to which the subject has learned the task rules (EOR are expected to
578 decrease and the animal gains proficiency), we calculated the mean EOR per trial parsed by
579 Phase and CP (Figures 6C and 6D).

580 **3.12.1 Males**

581 GEE analysis of EOR confirmed a main effect of Phase ($\chi^2_{(1)} = 14.598$, $p = 0.0001$) and
582 GDX ($\chi^2_{(1)} = 6.018$, $p = 0.014$), but no main effect of CP ($\chi^2_{(1)} = 0.023$, $p = 0.9$) nor Phase*CP
583 interaction ($\chi^2_{(1)} = 0.076$, $p = 0.8$). EOR decreased from ACQ to REV and were higher in GDX
584 mice than SHAM mice (Figure 6C).

585 **3.12.2 Females**

586 GEE analysis of EOR confirmed a main effect of Phase (ACQ > REV; $\chi^2_{(1)} = 17.410$, $p =$
587 0.00003) and GDX ($\chi^2_{(1)} = 4.647$, $p = 0.03$), but no main effect of CP ($\chi^2_{(1)} = 0.724$, $p = 0.4$) nor
588 Phase*CP interaction ($\chi^2_{(1)} = 0.971$, $p = 0.3$). GEE analysis also confirmed an X-dose*Phase
589 interaction ($\chi^2_{(1)} = 5.013$, $p = 0.025$) and a GDX*Phase interaction ($\chi^2_{(1)} = 6.296$, $p = 0.012$).
590 Post hoc comparisons confirmed simple effects of Phase in XX mice ($p < 0.00001$) and GDX
591 mice ($p < 0.00001$), as well as a simple effect of GDX in ACQ (GDX > SHAM; $p = 0.005$) (all
592 other $p > 0.08$) (Figure 6D).

593

594 **3.13 Omissions**

595 Failure to make a response into a target aperture during the 30-s target-stimuli
596 presentation interval resulted in a 5-s timeout and the recording of an omission error. We
597 calculated the proportion of trials that were omission errors parsed by testing phase and CP
598 (Figures 7A and 7B, Supplementary Figures 4A and 4B).

599 **3.13.1 Males**

600 GEE analysis of omission errors confirmed a main effect of X-dose ($\chi^2_{(1)} = 4.452$, p =
601 0.035), Phase ($\chi^2_{(1)} = 16.845$, p = 0.00004), and CP ($\chi^2_{(1)} = 67.598$, p < 0.00001), as well as a
602 Phase*CP interaction ($\chi^2_{(1)} = 12.507$, p = 0.0004). As expected, omission errors decreased from
603 ACQ-PRE to REV-POST (Supplementary Figure 4A). Omission errors were overall more
604 frequent in XXY than XY mice (Figure 7A).

605 **3.13.2 Females**

606 GEE analysis of omission errors confirmed the main effects of Phase ($\chi^2_{(1)} = 10.543$, p =
607 0.001) and CP ($\chi^2_{(1)} = 68.951$, p < 0.00001), but no Phase*CP interaction ($\chi^2_{(1)} = 2.164$, p =
608 0.14). As expected, omission errors decreased from ACQ-PRE to REV-POST (Supplementary
609 Figure 4B). GEE analysis also confirmed an X-dose*GDX interaction ($\chi^2_{(1)} = 6.671$, p =
610 0.0098). Post hoc comparisons confirmed simple effects of X-dose in GDX mice (XX > XO; p
611 = 0.0027) and of GDX in XX mice (GDX > SHAM; p = 0.0009) (other p > 0.4). Omissions
612 were overall more frequent in XX-GDX mice than in the other groups (Figure 7B).

613

614 **4 DISCUSSION**

615 **4.1 Overview**

616 In gonadally-intact males, XXY mice exhibited a greater degree of perseverative error in
617 the reversal phase than XY mice, while in gonadectomized males, XXY mice required more
618 trials to reach criterion in the acquisition phase than XY mice. These results indicate that
619 gonadal function moderates the impact of X-dose on impulsivity and learning, respectively, in
620 the XY* model of KS. Nevertheless, in KS men, androgen therapy in adulthood does not appear
621 to affect these aspects of learning and cognition (Fales et al., 2003; Kompus et al., 2011; Liberato
622 et al., 2017; Skakkebæk et al., 2017).

623 Additionally, a number of gonadectomy-independent effects were observed (overall,
624 longer trial initiation latencies and more omissions by XXY compared to XY; greater regressive
625 error in reversal in XY than XXY) that indicate direct effects of the sex-chromosome
626 complement on behavior, even if the relevance of these effects to KS is currently either unclear
627 or unsubstantiated.

628 Consistent with past reports (Davies et al., 2005, 2007), XO vs XX comparisons of RLT
629 performance do not model the cognitive deficits in TS.

630

631 **4.2 *XXY vs XY mice as a model of KS***

632 Two principle measures discriminated XXY from XY mice – trials to criterion and
633 perseverative responding in reversal – and both of these interacted with gonadal status. The
634 group difference in perseverative responding is noteworthy for three reasons: 1) the greater
635 perseverative responding in XXY than XY mice was observed in intact mice only, 2) this effect
636 is conceptually similar to the relatively higher number of perseverative errors made by people
637 with KS on the Wisconsin Card Sorting Test (Skakkebæk et al., 2013; van Rijn et al., 2012a),
638 and 3) both XXY mice (Leweijohann et al., 2009; Lue et al., 2005) and men with KS are
639 hypogonadal, so this result may be due to a group difference in levels of gonadal hormones.

640 Additionally, these differences appear to be specific increases in perseverative
641 responding, as overall error rates (errors/trial) did not differ between genotypes. Moreover,
642 although XY mice showed a greater across-phase increase in, and higher reversal-phase values
643 for, *regressive* errors than XXY mice, *regressive* errors did not correlate with perseverative
644 errors. Additionally, van Rijn et. al. (2012a) demonstrated that perseveration errors in KS men
645 were not affected by androgen supplementation. Thus, resolving the significance for model

646 validity of this genotype by gonadectomy interaction on perseverative errors will require further
647 study.

648 Similarly, the implications of the gonadectomy-dependent learning deficit in XXY mice –
649 but, not in XY mice – remains unclear. In van Rijn et al (2012a), perseveration errors in KS men
650 were statistically independent of overall WCST performance and intellectual function (full-scale
651 IQ). However, in the RLT, perseverative errors were positively correlated with trials to criterion.
652 Moreover, the pattern of group differences in trials to criterion did not mirror those for
653 perseverative errors. As these observations place further limitations on model validity, it appears
654 that alternative behavioral assays of perseverative responding and learning rate, as well as
655 additional controls for hormone levels/exposure, would be required to fully determine model
656 validity.

657 **4.3 *XO vs XX mice as a model of TS***

658 Consistent with past reports comparing 40,XO mice to XX mice on an outbred MF1
659 strain (Davies et al., 2005, 2007), when comparing 40,XO mice to XX mice on an inbred
660 C57BL/6J background in the RLT, 40,XO do not show cognitive deficits. Indeed, XX mice
661 made more premature responses than XO mice on the initially reinforced side – a result opposite
662 of that predicted for a model of TS – and no genotype effect was observed on the side reinforced
663 in the reversal phase. Additionally, there were no significant effects of genotype on either
664 perseverative responding or response-holding failures (impulsivity measure), and the genotype
665 effects on response latencies did not survive statistical correction. Lastly, although the across-
666 phase decrease in extraneous observing responses (attention measure) was statistically significant
667 in XX but not XO mice, within-phase genotype differences were not.

668 Thus, although the RLT was sufficiently sensitive to detect a number of gonadectomy
669 effects on these measures (larger reversal cost on perseverative errors in SHAM than GDX, more
670 premature responding in GDX than SHAM, longer response latencies in XX-GDX than XX-
671 SHAM, and more acquisition phase extraneous observing responses in GDX than SHAM),
672 genotype differences were either below the limit of detection or opposite of that predicted for a
673 model of TS. However, these results do bolster the claim that the small remnant Y*^X
674 chromosome in the 40,XO mice can largely rescue the cognitive deficits that may have resulted
675 from the complete loss of a second X chromosome. That suggestion could increase the
676 attractiveness of the steroid sulfatase gene (*STS*) as a target for TS-associated cognitive deficits
677 (Davies et al., 2005, 2007, 2009).

678 A difference in copy number of *Sts* does not explain the differences between XY and
679 XXY mice reported here as both have only one copy of *Sts* (both Y* and X^{Y*} lack *Sts*)
680 (Burgoyne and Arnold, 2016). Nevertheless, dysregulation of *Sts* in 40, XXY mice may still
681 occur (e.g., due to skewed X-inactivation – X vs. X^{Y*} – and/or escape from inactivation).
682 Interest in *STS* as a contributor to phenotypic features of KS remains high because of previous
683 studies in mice (Davies et al., 2009, 2014), and because of the association of *STS* with cognitive
684 function and deficits in humans (Cavenagh et al., 2019; Chatterjee et al., 2016; Kent et al., 2008;
685 Stergiakouli et al., 2011).

686

687 **4.4 *Conclusions***

688 Greater perseveration in XXY than XY intact male mice in the RLT is a facet of
689 inflexible responding with face validity for the greater perseverative responding in KS men than
690 controls on the WCST. Importantly, the effects of sex hormones appeared to play a moderating

REVERSAL LEARNING IN XY* MOUSE

32

691 role, as this genotype difference was not observed in GDX mice. These results may have
692 implications for the use of androgens to remedy the cognitive deficits observed in KS men.
693 Although androgen therapy does not appear to improve cognition in either KS adults
694 (Skakkebæk et al., 2017) or children (Ross et al., 2017), little is known about the consequence of
695 either an increased severity of hypogonadism and/or the lack of standard androgen replacement
696 therapy on cognitive function. Our results indicate that in XXY mice, even small changes in
697 circulating androgens can significantly change cognitive processes and learning.

698

699 **5 REFERENCES**

700 Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., and Clubley, E. (2001). The autism-spectrum
701 quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females,
702 scientists and mathematicians. *J. Autism Dev. Disord.* 31, 5–17.

703 Belling, K., Russo, F., Jensen, A. B., Dalgaard, M. D., Westergaard, D., Rajpert-De Meyts, E., et al. (2017).
704 Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered
705 protein interactome activity. *Hum. Mol. Genet.* doi:10.1093/hmg/ddx014.

706 Burgoyne, P. S., and Arnold, A. P. (2016). A primer on the use of mouse models for identifying direct sex
707 chromosome effects that cause sex differences in non-gonadal tissues. *Biol. Sex Differ.* 7, 68.
708 doi:10.1186/s13293-016-0115-5.

709 Burgoyne, P. S., Mahadevaiah, S. K., Perry, J., Palmer, S. J., and Ashworth, A. (1998). The Y*
710 rearrangement in mice: new insights into a perplexing PAR. *Cytogenet. Cell Genet.* 80, 37–40.
711 doi:10.1159/000014954.

712 Cavenagh, A., Chatterjee, S., and Davies, W. (2019). Behavioural and psychiatric phenotypes in female
713 carriers of genetic mutations associated with X-linked ichthyosis. *PLoS One* 14, e0212330.
714 doi:10.1371/journal.pone.0212330.

715 Cederlöf, M., Ohlsson Gotby, A., Larsson, H., Serlachius, E., Boman, M., Långström, N., et al. (2014).
716 Klinefelter syndrome and risk of psychosis, autism and ADHD. *J. Psychiatr. Res.* 48, 128–130.
717 doi:10.1016/j.jpsychires.2013.10.001.

718 Chatterjee, S., Humby, T., and Davies, W. (2016). Behavioural and Psychiatric Phenotypes in Men and
719 Boys with X-Linked Ichthyosis: Evidence from a Worldwide Online Survey. *PLoS One* 11,
720 e0164417. doi:10.1371/journal.pone.0164417.

721 Chen, X., McClusky, R., Itoh, Y., Reue, K., and Arnold, A. P. (2013a). X and Y chromosome complement
722 influence adiposity and metabolism in mice. *Endocrinology* 154, 1092–1104.
723 doi:10.1210/en.2012-2098.

724 Chen, X., Williams-Burris, S. M., McClusky, R., Ngun, T. C., Ghahramani, N., Barseghyan, H., et al. (2013b).
725 The Sex Chromosome Trisomy mouse model of XXY and XYY: metabolism and motor
726 performance. *Biol. Sex Differ.* 4, 15. doi:10.1186/2042-6410-4-15.

727 Cox, K. H., Bonthuis, P. J., and Rissman, E. F. (2014). Mouse model systems to study sex chromosome
728 genes and behavior: Relevance to humans. *Front. Neuroendocrinol.*
729 doi:10.1016/j.yfrne.2013.12.004.

730 Cox, K. H., Quinones, K. M., Eschendroeder, A., Didrick, P. M., Eugster, E. A., and Rissman, E. F. (2015).
731 Number of X-chromosome genes influences social behavior and vasopressin gene expression in
732 mice. *Psychoneuroendocrinology* 51, 271–281. doi:10.1016/j.psyneuen.2014.10.010.

733 Davies, W., Humby, T., Isles, A. R., Burgoyne, P. S., and Wilkinson, L. S. (2007). X-monosomy effects on
734 visuospatial attention in mice: a candidate gene and implications for Turner syndrome and

735 attention deficit hyperactivity disorder. *Biol. Psychiatry* 61, 1351–1360.
736 doi:10.1016/j.biopsych.2006.08.011.

737 Davies, W., Humby, T., Kong, W., Otter, T., Burgoyne, P. S., and Wilkinson, L. S. (2009). Converging
738 pharmacological and genetic evidence indicates a role for steroid sulfatase in attention. *Biol.*
739 *Psychiatry* 66, 360–367. doi:10.1016/j.biopsych.2009.01.001.

740 Davies, W., Humby, T., Trent, S., Eddy, J. B., Ojarikre, O. A., and Wilkinson, L. S. (2014). Genetic and
741 Pharmacological Modulation of the Steroid Sulfatase Axis Improves Response Control;
742 Comparison with Drugs Used in ADHD. *Neuropsychopharmacology* 39, 2622–2632.
743 doi:10.1038/npp.2014.115.

744 Davies, W., Isles, A., Smith, R., Karunadasa, D., Burrmann, D., Humby, T., et al. (2005). Xlr3b is a new
745 imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice. *Nat.*
746 *Genet.* 37, 625–629. doi:10.1038/ng1577.

747 Delooz, J., Van den Berghe, H., Swillen, A., Kleczkowska, A., and Fryns, J. P. (1993). Turner syndrome
748 patients as adults: a study of their cognitive profile, psychosocial functioning and
749 psychopathological findings. *Genet. Couns. Geneva Switz.* 4, 169–179.

750 Eicher, E. M., Hale, D. W., Hunt, P. A., Lee, B. K., Tucker, P. K., King, T. R., et al. (1991). The mouse Y*
751 chromosome involves a complex rearrangement, including interstitial positioning of the
752 pseudoautosomal region. *Cytogenet. Cell Genet.* 57, 221–230. doi:10.1159/000133152.

753 Fales, C. L., Knowlton, B. J., Holyoak, K. J., Geschwind, D. H., Swerdloff, R. S., and Gonzalo, I. G. (2003).
754 Working memory and relational reasoning in Klinefelter syndrome. *J. Int. Neuropsychol. Soc.* 9,
755 839–846. doi:10.1017/S1355617703960036.

756 Gallistel, C. R., Fairhurst, S., and Balsam, P. (2004). The learning curve: Implications of a quantitative
757 analysis. *Proc. Natl. Acad. Sci. U. S. A.* 101, 13124–13131. doi:10.1073/pnas.0404965101.

758 Garron, D. C. (1977). Intelligence among persons with Turner's syndrome. *Behav. Genet.* 7, 105–127.
759 doi:10.1007/BF01066000.

760 Gravholt, C. H., Chang, S., Wallentin, M., Fedder, J., Moore, P., and Skakkebæk, A. (2018). Klinefelter
761 Syndrome: Integrating Genetics, Neuropsychology, and Endocrinology. *Endocr. Rev.* 39, 389–
762 423. doi:10.1210/er.2017-00212.

763 Green, T., Saggar, M., Ishak, A., Hong, D. S., and Reiss, A. L. (2018). X-Chromosome Effects on Attention
764 Networks: Insights from Imaging Resting-State Networks in Turner Syndrome. *Cereb. Cortex N. Y.*
765 *N* 1991 28, 3176–3183. doi:10.1093/cercor/bhx188.

766 Hong, D. S., and Reiss, A. L. (2014). Cognitive and neurological aspects of sex chromosome aneuploidies.
767 *Lancet Neurol.* 13, 306–318. doi:10.1016/S1474-4422(13)70302-8.

768 Isles, A. R., Davies, W., Burrmann, D., Burgoyne, P. S., and Wilkinson, L. S. (2004). Effects on fear
769 reactivity in XO mice are due to haploinsufficiency of a non-PAR X gene: implications for
770 emotional function in Turner's syndrome. *Hum. Mol. Genet.* 13, 1849–1855.
771 doi:10.1093/hmg/ddh203.

REVERSAL LEARNING IN XY* MOUSE

35

772 Kent, L., Emerton, J., Bhadravathi, V., Weisblatt, E., Pasco, G., Willatt, L. R., et al. (2008). X-linked
773 ichthyosis (steroid sulfatase deficiency) is associated with increased risk of attention deficit
774 hyperactivity disorder, autism and social communication deficits. *J. Med. Genet.* 45, 519–524.
775 doi:10.1136/jmg.2008.057729.

776 Klanker, M., Sandberg, T., Joosten, R., Willuhn, I., Feenstra, M., and Denys, D. (2015). Phasic dopamine
777 release induced by positive feedback predicts individual differences in reversal learning.
778 *Neurobiol. Learn. Mem.* 125, 135–145. doi:10.1016/j.nlm.2015.08.011.

779 Klein, K. O., Rosenfield, R. L., Santen, R. J., Gawlik, A. M., Backeljauw, P. F., Gravholt, C. H., et al. (2018).
780 Estrogen Replacement in Turner Syndrome: Literature Review and Practical Considerations. *J.*
781 *Clin. Endocrinol. Metab.* 103, 1790–1803. doi:10.1210/jc.2017-02183.

782 Kompus, K., Westerhausen, R., Nilsson, L.-G., Hugdahl, K., Jongstra, S., Berglund, A., et al. (2011). Deficits
783 in inhibitory executive functions in Klinefelter (47, XXY) syndrome. *Psychiatry Res.* 189, 135–140.
784 doi:10.1016/j.psychres.2011.02.028.

785 Laughlin, R. E., Grant, T. L., Williams, R. W., and Jentsch, J. D. (2011). Genetic dissection of behavioral
786 flexibility: reversal learning in mice. *Biol. Psychiatry* 69, 1109–1116.
787 doi:10.1016/j.biopsych.2011.01.014.

788 Lepage, J.-F., Hong, D. S., Hallmayer, J., and Reiss, A. L. (2012). Genomic Imprinting Effects on Cognitive
789 and Social Abilities in Prepubertal Girls with Turner Syndrome. *J. Clin. Endocrinol. Metab.* 97,
790 E460–E464. doi:10.1210/jc.2011-2916.

791 Lewejohann, L., Damm, O. S., Luetjens, C. M., Hämäläinen, T., Simoni, M., Nieschlag, E., et al. (2009).
792 Impaired recognition memory in male mice with a supernumerary X chromosome. *Physiol.*
793 *Behav.* 96, 23–29. doi:10.1016/j.physbeh.2008.08.007.

794 Liberato, D., Granato, S., Grimaldi, D., Rossi, F. M., Tahani, N., Gianfrilli, D., et al. (2017). Fluid
795 intelligence, traits of personality and personality disorders in a cohort of adult KS patients with
796 the classic 47, XXY karyotype. *J. Endocrinol. Invest.* 40, 1191–1199. doi:10.1007/s40618-017-
797 0674-2.

798 Linden, J., James, A. S., McDaniel, C., and Jentsch, J. D. (2018). Dopamine D2 Receptors in Dopaminergic
799 Neurons Modulate Performance in a Reversal Learning Task in Mice. *eNeuro* 5.
800 doi:10.1523/ENEURO.0229-17.2018.

801 Loesch, D. Z., Bui, Q. M., Kelso, W., Huggins, R. M., Slater, H., Warne, G., et al. (2005). Effect of Turner's
802 syndrome and X-linked imprinting on cognitive status: analysis based on pedigree data. *Brain*
803 *Dev.* 27, 494–503. doi:10.1016/j.braindev.2004.12.009.

804 Lopes, A. M., Burgoyne, P. S., Ojarikre, A., Bauer, J., Sargent, C. A., Amorim, A., et al. (2010).
805 Transcriptional changes in response to X chromosome dosage in the mouse: implications for X
806 inactivation and the molecular basis of Turner Syndrome. *BMC Genomics* 11, 82.
807 doi:10.1186/1471-2164-11-82.

808 Lue, Y., Jentsch, J. D., Wang, C., Rao, P. N., Hikim, A. P. S., Salameh, W., et al. (2005). XXY mice exhibit
809 gonadal and behavioral phenotypes similar to Klinefelter syndrome. *Endocrinology* 146, 4148–
810 4154. doi:10.1210/en.2005-0278.

811 Lue, Y., Wang, C., Liu, P. Y., Erkilla, K., and Swerdloff, R. S. (2010). Insights into the pathogenesis of XXY
812 phenotype from comparison of the clinical syndrome with an experimental XXY mouse model.
813 *Pediatr. Endocrinol. Rev. PER* 8 Suppl 1, 140–144.

814 Mauger, C., Lancelot, C., Roy, A., Coutant, R., Cantisano, N., and Le Gall, D. (2018). Executive Functions in
815 Children and Adolescents with Turner Syndrome: A Systematic Review and Meta-Analysis.
816 *Neuropsychol. Rev.* 28, 188–215. doi:10.1007/s11065-018-9372-x.

817 Mazzocco, M. M. M. (2006). The cognitive phenotype of Turner syndrome: Specific learning disabilities.
818 *Int. Congr. Ser.* 1298, 83–92. doi:10.1016/j.ics.2006.06.016.

819 McCauley, E., Kay, T., Ito, J., and Treder, R. (1987). The Turner Syndrome: Cognitive Deficits, Affective
820 Discrimination, and Behavior Problems. *Child Dev.* 58, 464–473. doi:10.2307/1130523.

821 Papachristos, E. B., and Gallistel, C. R. (2006). Autoshaped Head Poking in the Mouse: A Quantitative
822 Analysis of the Learning Curve. *J. Exp. Anal. Behav.* 85, 293–308. doi:10.1901/jeab.2006.71-05.

823 Ragazzino, M. E., Jih, J., and Tzavos, A. (2002). Involvement of the dorsomedial striatum in behavioral
824 flexibility: role of muscarinic cholinergic receptors. *Brain Res.* 953, 205–214. doi:10.1016/S0006-
825 8993(02)03287-0.

826 Raznahan, A., Probst, F., Palmert, M. R., Giedd, J. N., and Lerch, J. P. (2013). High resolution whole brain
827 imaging of anatomical variation in XO, XX, and XY mice. *NeuroImage* 83, 962–968.
828 doi:10.1016/j.neuroimage.2013.07.052.

829 Romans, S. M., Roeltgen, D. P., Kushner, H., and Ross, J. L. (1997). Executive function in girls with
830 turner's syndrome. *Dev. Neuropsychol.* 13, 23–40. doi:10.1080/87565649709540666.

831 Romans, S. M., Stefanatos, G., Roeltgen, D. P., Kushner, H., and Ross, J. L. (1998). Transition to young
832 adulthood in Ullrich-Turner syndrome: Neurodevelopmental changes. *Am. J. Med. Genet.* 79,
833 140–147. doi:10.1002/(SICI)1096-8628(19980901)79:2<140::AID-AJMG10>3.0.CO;2-J.

834 Ross, J. L., Kushner, H., Kowal, K., Bardsley, M., Davis, S., Reiss, A. L., et al. (2017). Androgen Treatment
835 Effects on Motor Function, Cognition, and Behavior in Boys with Klinefelter Syndrome. *J. Pediatr.*
836 doi:10.1016/j.jpeds.2017.02.036.

837 Ross, J. L., Roeltgen, D. P., Stefanatos, G., Benecke, R., Zeger, M. P. D., Kushner, H., et al. (2008).
838 Cognitive and motor development during childhood in boys with Klinefelter syndrome. *Am. J.*
839 *Med. Genet. A.* 146A, 708–719. doi:10.1002/ajmg.a.32232.

840 Ross, J. L., Stefanatos, G. A. Dp., Kushner, H., Zinn, A., Bondy, C., and Roeltgen, D. (2002). Persistent
841 cognitive deficits in adult women with Turner syndrome. *Neurology* 58, 218–225.
842 doi:10.1212/WNL.58.2.218.

843 Ross, J. L., Stefanatos, G. A., Kushner, H., Bondy, C., Nelson, L., Zinn, A., et al. (2004). The Effect of
844 Genetic Differences and Ovarian Failure: Intact Cognitive Function in Adult Women with
845 Premature Ovarian Failure Versus Turner Syndrome. *J. Clin. Endocrinol. Metab.* 89, 1817–1822.
846 doi:10.1210/jc.2003-031463.

847 Ross, J. L., Stefanatos, G., Roeltgen, D., Kushner, H., and Cutler, G. B. (1995). Ullrich-Turner syndrome:
848 Neurodevelopmental changes from childhood through adolescence. *Am. J. Med. Genet.* 58, 74–
849 82. doi:10.1002/ajmg.1320580115.

850 Rovet, J. (2004). Turner Syndrome: Genetic and Hormonal Factors Contributing to a Specific Learning
851 Disability Profile. *Learn. Disabil. Res. Pract.* 19, 133–145. doi:10.1111/j.1540-5826.2004.00097.x.

852 Rovet, J., Netley, C., Keenan, M., Bailey, J., and Stewart, D. (1996). The Psychoeducational Profile of Boys
853 with Klinefelter Syndrome. *J. Learn. Disabil.* 29, 180–196. doi:10.1177/002221949602900208.

854 Russell, H. F., Wallis, D., Mazzocco, M. M. M., Moshang, T., Zackai, E., Zinn, A. R., et al. (2006). Increased
855 prevalence of ADHD in Turner syndrome with no evidence of imprinting effects. *J. Pediatr.*
856 *Psychol.* 31, 945–955. doi:10.1093/jpepsy/jsj106.

857 Skakkebæk, A., Gravholt, C. H., Rasmussen, P. M., Bojesen, A., Jensen, J. S., Fedder, J., et al. (2013).
858 Neuroanatomical correlates of Klinefelter syndrome studied in relation to the
859 neuropsychological profile. *NeuroImage Clin.* 4, 1–9. doi:10.1016/j.nicl.2013.10.013.

860 Skakkebæk, A., Moore, P. J., Pedersen, A. D., Bojesen, A., Kristensen, M. K., Fedder, J., et al. (2017). The
861 role of genes, intelligence, personality, and social engagement in cognitive performance in
862 Klinefelter syndrome. *Brain Behav.* 7, e00645. doi:10.1002/brb3.645.

863 Stergiakouli, E., Langley, K., Williams, H., Walters, J., Williams, N. M., Suren, S., et al. (2011). Steroid
864 sulfatase is a potential modifier of cognition in attention deficit hyperactivity disorder. *Genes*
865 *Brain Behav.* 10, 334–344. doi:10.1111/j.1601-183X.2010.00672.x.

866 Tamm, L., Menon, V., and Reiss, A. L. (2003). Abnormal prefrontal cortex function during response
867 inhibition in turner syndrome: functional magnetic resonance imaging evidence. *Biol. Psychiatry*
868 53, 107–111. doi:10.1016/S0006-3223(02)01488-9.

869 Tartaglia, N. R., Wilson, R., Miller, J. S., Rafalko, J., Cordeiro, L., Davis, S., et al. (2017). Autism Spectrum
870 Disorder in Males with Sex Chromosome Aneuploidy: XXY/Klinefelter Syndrome, XYY, and XXYY.
871 *J. Dev. Behav. Pediatr. JDBP* 38, 197–207. doi:10.1097/DBP.0000000000000429.

872 van Rijn, S., Bierman, M., Bruining, H., and Swaab, H. (2012a). Vulnerability for autism traits in boys and
873 men with an extra X chromosome (47,XXY): the mediating role of cognitive flexibility. *J.*
874 *Psychiatr. Res.* 46, 1300–1306. doi:10.1016/j.jpsychires.2012.06.004.

875 van Rijn, S., Stockmann, L., Borghgraef, M., Bruining, H., van Ravenswaaij-Arts, C., Govaerts, L., et al.
876 (2014). The social behavioral phenotype in boys and girls with an extra x chromosome
877 (klinefelter syndrome and trisomy x): a comparison with autism spectrum disorder. *J. Autism*
878 *Dev. Disord.* 44, 310–320. doi:10.1007/s10803-013-1860-5.

879 van Rijn, S., Swaab, H., Baas, D., de Haan, E., Kahn, R. S., and Aleman, A. (2012b). Neural systems for
880 social cognition in Klinefelter syndrome (47,XXY): evidence from fMRI. *Soc. Cogn. Affect.*
881 *Neurosci.* 7, 689–697. doi:10.1093/scan/nsr041.

882 Wistuba, J. (2010). Animal models for Klinefelter's syndrome and their relevance for the clinic. *Mol.*
883 *Hum. Reprod.* 16, 375–385. doi:10.1093/molehr/gaq024.

884 Wistuba, J., Luetjens, C. M., Stukenborg, J.-B., Poplinski, A., Werler, S., Dittmann, M., et al. (2010). Male
885 41, XXY* mice as a model for klinefelter syndrome: hyperactivation of leydig cells. *Endocrinology*
886 151, 2898–2910. doi:10.1210/en.2009-1396.

887 Zhao, C., and Gong, G. (2017). Mapping the effect of the X chromosome on the human brain:
888 Neuroimaging evidence from Turner syndrome. *Neurosci. Biobehav. Rev.* 80, 263–275.
889 doi:10.1016/j.neubiorev.2017.05.023.

890

891

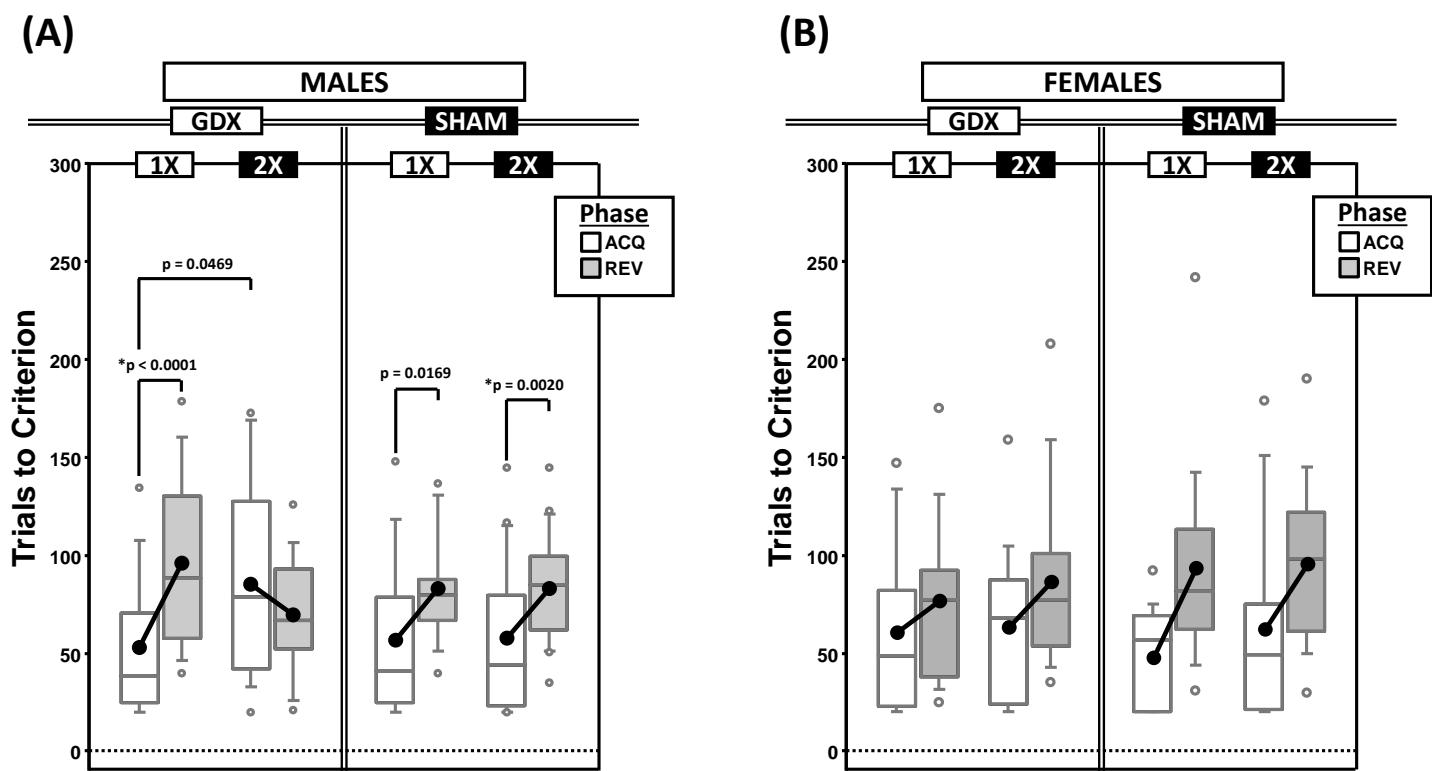
892 **6 FIGURE CAPTIONS**

893 **Figure 1:** Boxplots of trials to criterion for males (**A**) and for females (**B**) grouped by X-dose
894 (number of X-chromosomes; 1X or 2X) and GDX group, and split by the testing phase
895 (Acquisition = ACQ vs Reversal = REV). Collapsing across and/or splitting by factors in males
896 was based on the omnibus results. Boxes represent median \pm quartile, whiskers extend additional
897 15th of a percentile, grey open circles represent extreme values; black filled circles represent
898 means. Simple effects ($p < 0.05$) that remained statistically significant after Bonferroni
899 correction are indicated by “**”.

900 **Figure 2:** Boxplots of the difference between the proportion of responses that were correct
901 following either an incorrect response (**p(Lose-Shift)**; index of *flexibility*) or a correct response
902 (**p(Win-Stay)**; index of *stability*) for males (**A**) broken down by gonadectomy group, or for
903 females (**B**) broken down by X-dose (number of X-chromosomes; 1X or 2X), gonadectomy
904 group and testing phase. Collapsing across and/or splitting by factors was based on the omnibus
905 results. Boxes represent median \pm quartile, whiskers extend additional 15th of a percentile, grey
906 open circles represent extreme values; black filled circles represent means. None of the simple
907 effects ($p < 0.05$) indicated in (B) were significant after Bonferroni correction.

908 **Figure 3:** Boxplots of maximum consecutive incorrect responses for males (**A**) and for females
909 (**B**), as well as the regress score for males (**C**) broken down by testing phase (Acquisition = ACQ
910 vs Reversal = REV). Collapsing across and/or splitting by factors was based on the omnibus
911 results. Boxes represent median \pm quartile, whiskers extend additional 15th of a percentile, grey
912 open circles represent extreme values; black filled circles represent means. Simple effects ($p <$
913 0.05) on either measure that remained statistically significant after Bonferroni correction are
914 indicated by “**”. (**D**) Bivariate scattergram of maximum consecutive incorrect and regress
915 score for males split by group.

916 **Figure 4:** Top panels are boxplots of \log_{10} of premature responses per trial (+1) split by
917 response side (correct in ACQ vs correct in REV; **C_{ACQ}** vs **C_{REV}**), parsed by testing phase
918 (Acquisition = ACQ vs Reversal = REV) and Intra-phase Change Point (PRE vs POST) for
919 males (**A**) and for females (**B**). Middle panels are premature responses for males on the **C_{REV}**
920 side that are either split by X-dose (number of X-chromosomes; 1X or 2X) and grouped by GDX
921 group (**C**), or vice versa (**D**). Bottom panels are premature responses for females on the **C_{ACQ}**
922 side that are either split by GDX group and parsed by testing phase and change point (**E**), or only
923 split by X-dose (**F**), and premature responses for females on the **C_{REV}** side split by GDX group
924 and parsed by testing phase (**G**). Collapsing across and/or splitting by factors was based on the
925 omnibus results. Simple effects of group ($p < 0.05$) that remained statistically significant after
926 Bonferroni correction are indicated by “**”. Letters “P” and “C” indicate simple effects of Phase
927 and Change Point ($p < 0.05$), respectively (bold letters indicate significance after Bonferroni
928 correction). Boxes represent median \pm quartile, whiskers extend additional 15th of a percentile,
929 grey open circles represent extreme values; black filled circles represent means.


930 **Figure 5:** Top panels are boxplots of response latencies to target apertures as a function of
931 response side (correct in ACQ = **C_{ACQ}** vs correct in REV = **C_{REV}**) for males (**A**) and for females

(B), split by X-dose (number of X-chromosomes; 1X or 2X) or GDX group and parsed by testing phase (Acquisition = ACQ vs. Reversal = REV) and/or Intra-phase Change Point (PRE vs. POST). Middle panels are boxplots of reward-retrieval latencies for males (C) and for females (D) grouped by X-dose, GDX group, testing phase and CP. Bottom panels include box plots of reward retrieval latencies for females collapsed across testing phase and GDX group (E) and of trial-initiation latencies for males split by X-dose (F) and for females split by GDX group (G). Collapsing across and/or splitting by factors was guided by the omnibus results. Simple effects of group ($p < 0.05$) on response latencies and trial initiation latencies that remained statistically significant after Bonferroni correction are indicated by “*”. Letters “P” and “C” indicate simple effects of Phase and Change Point ($p < 0.05$), respectively, on response latencies and trial initiation latencies (bold letters indicate significance after Bonferroni correction). On reward retrieval latencies in males, there was a significant GDX by Phase by Change point interaction ($p = 0.048$; no significant simple effects, all $p > 0.06$). On reward retrieval latencies in females, there were main effects of Phase ($p = 0.042$) and Change Point ($p = 0.011$), and an X-dose by Change Point interaction ($p = 0.033$; simple effect of Change Point in 2X, $p < 0.0001$; all other simple effects, $p > 0.12$). Boxes represent median \pm quartile, whiskers extend additional 15th of a percentile, grey open circles represent extreme values; black filled circles represent means.

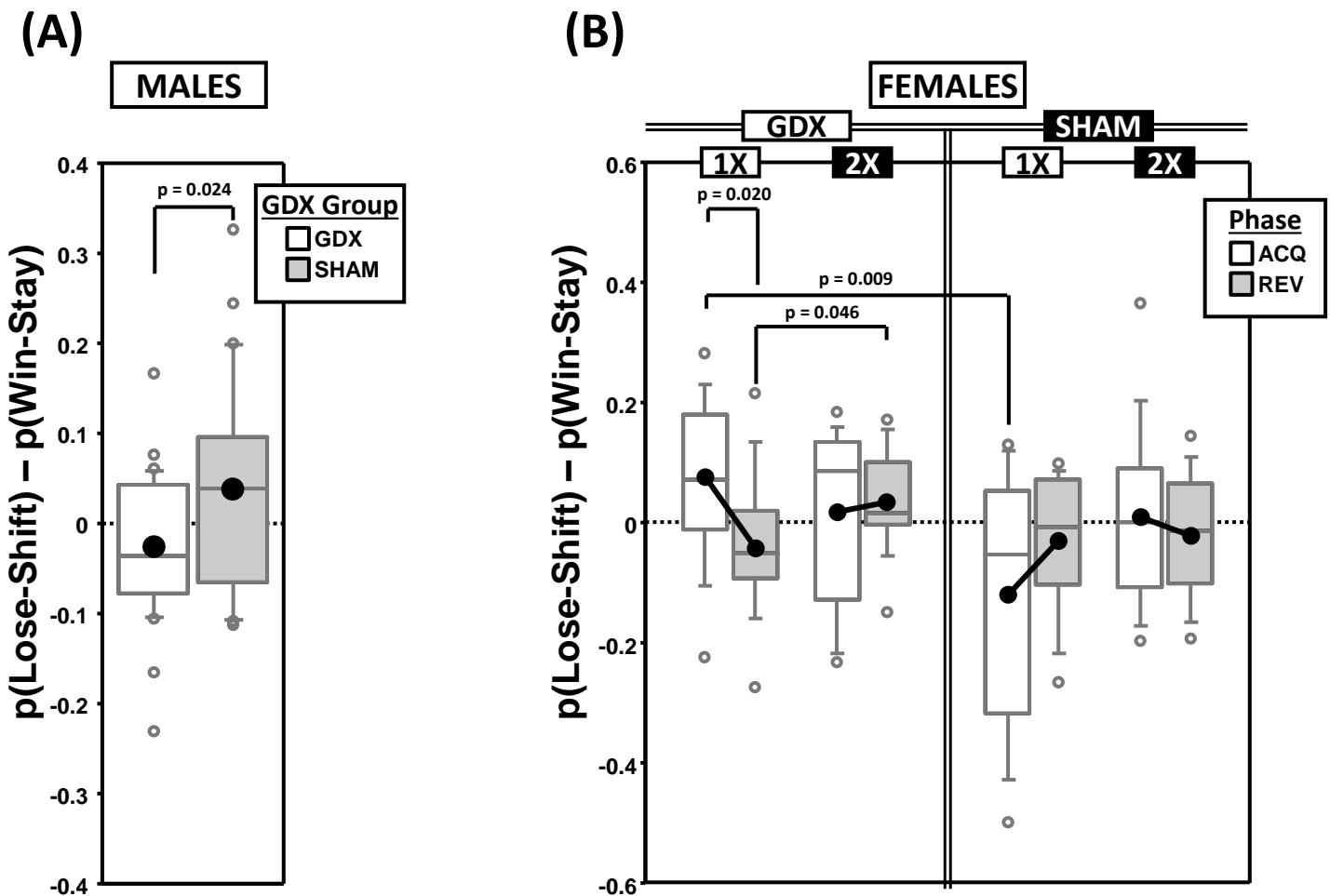
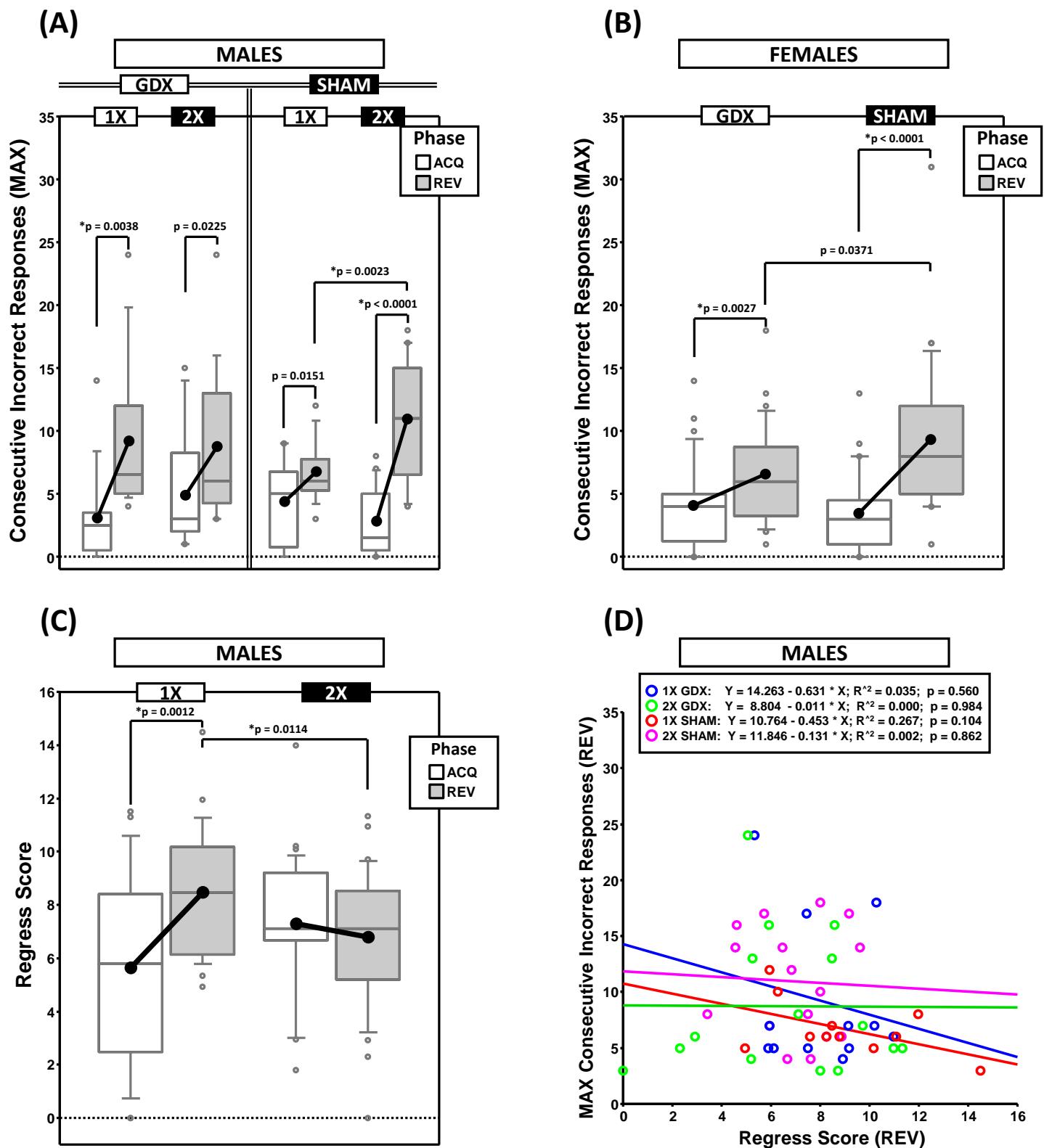
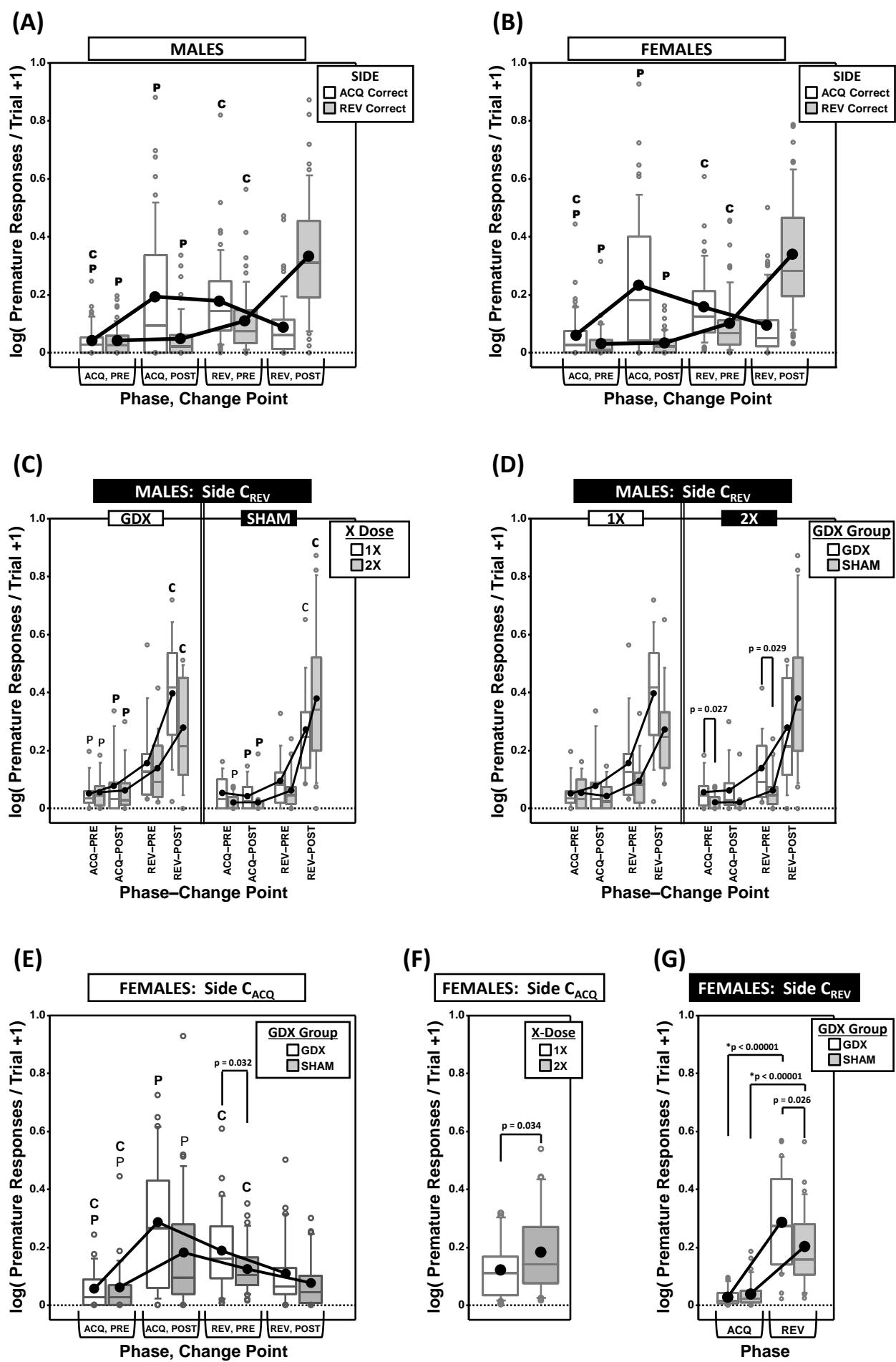
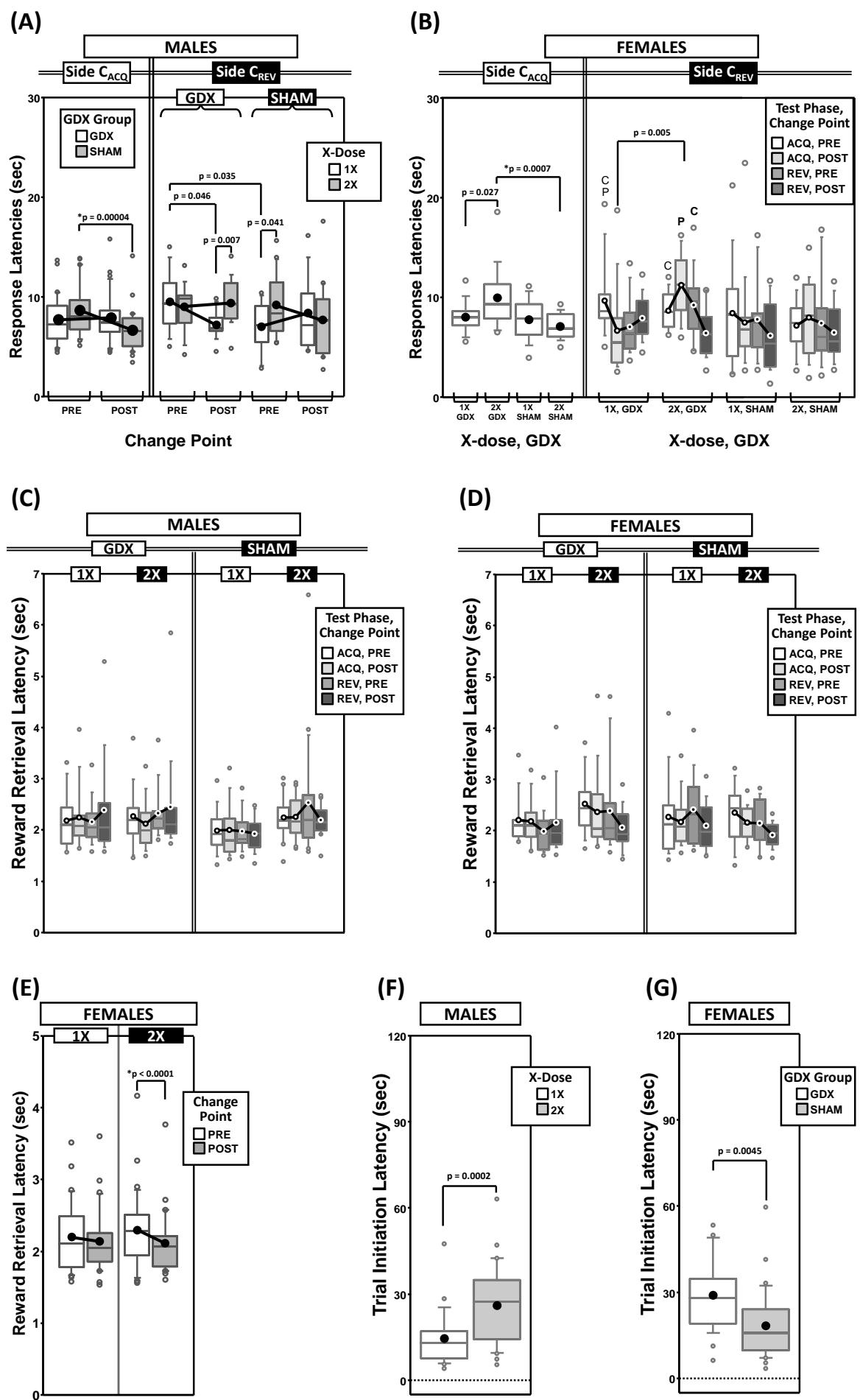
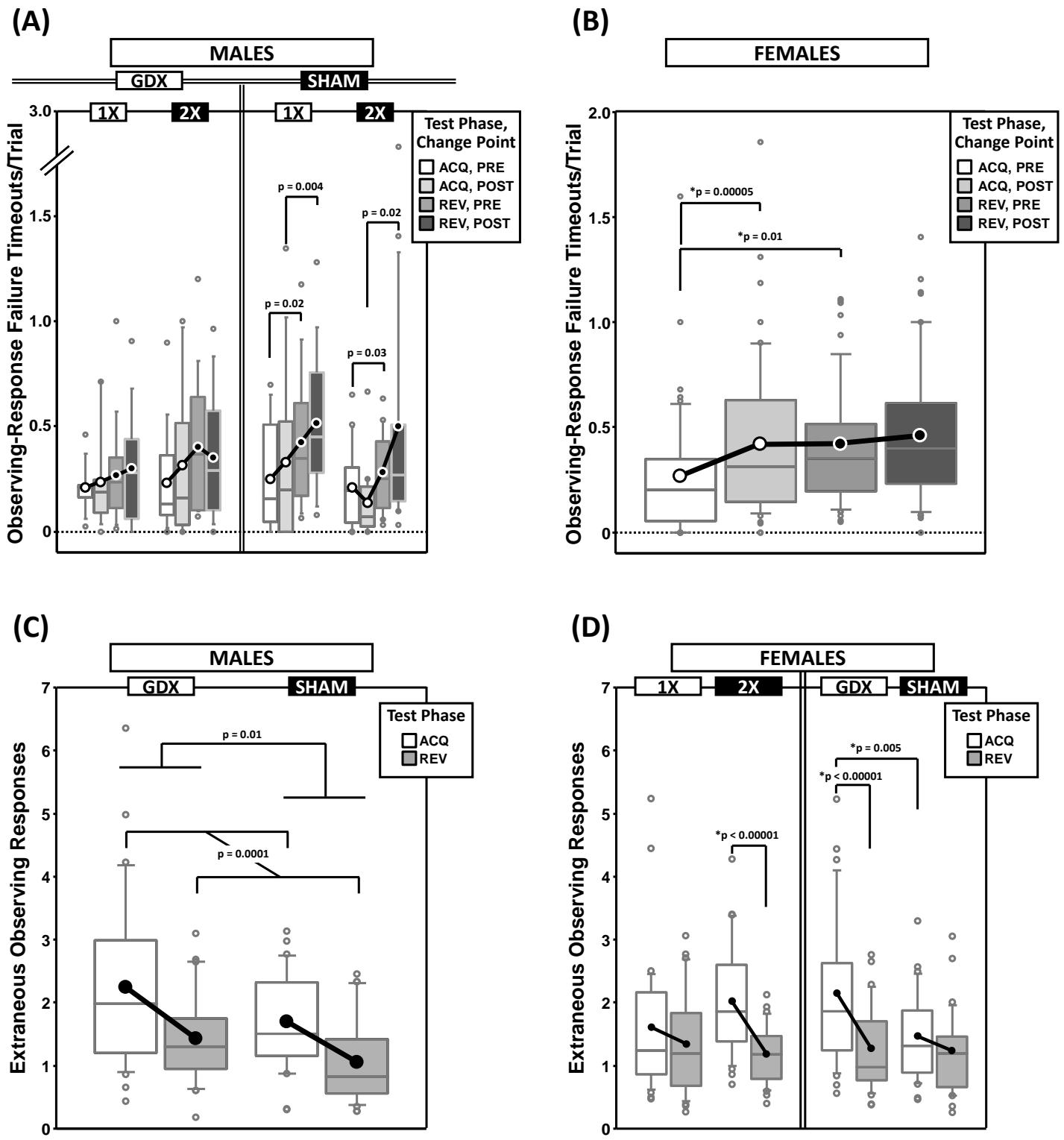

Figure 6: Top panels are boxplots of timeouts/trial due to failures to complete the observing response for males (A) and for females (B), split by X-dose and/or GDX group, and parsed by testing phase (Acquisition = ACQ vs. Reversal = REV) and Intra-phase Change Point (PRE vs. POST). In males, the main effect of Phase was significant ($p = 0.0001$). Bottom panels are boxplots of extraneous observing responses/trial (i.e., observing responses made during target presentation) for males grouped by GDX group (C) and for females grouped by GDX group or X-dose (D) – both parsed by testing phase. In females, the main effect of Phase was significant ($p = 0.00003$). Collapsing across and/or splitting by factors was based on the omnibus results. Simple effects ($p < 0.05$) that remained statistically significant after Bonferroni correction are indicated by “*”. Boxes represent median \pm quartile, whiskers extend additional 15th of a percentile, grey open circles represent extreme values; black/white circles filled white/black represent means.

Figure 7: Boxplots of omissions per trial for males split by X-dose (A) and for females split by X-dose and GDX group (B). Collapsing across and/or splitting by factors was based on the omnibus results. Simple effects ($p < 0.05$) that remained statistically significant after Bonferroni correction are indicated by “*”. Boxes represent median \pm quartile, whiskers extend additional 15th of a percentile, grey open circles represent extreme values; black filled circles represent means.


FIGURE 1


FIGURE 2


FIGURE 3


FIGURE 4

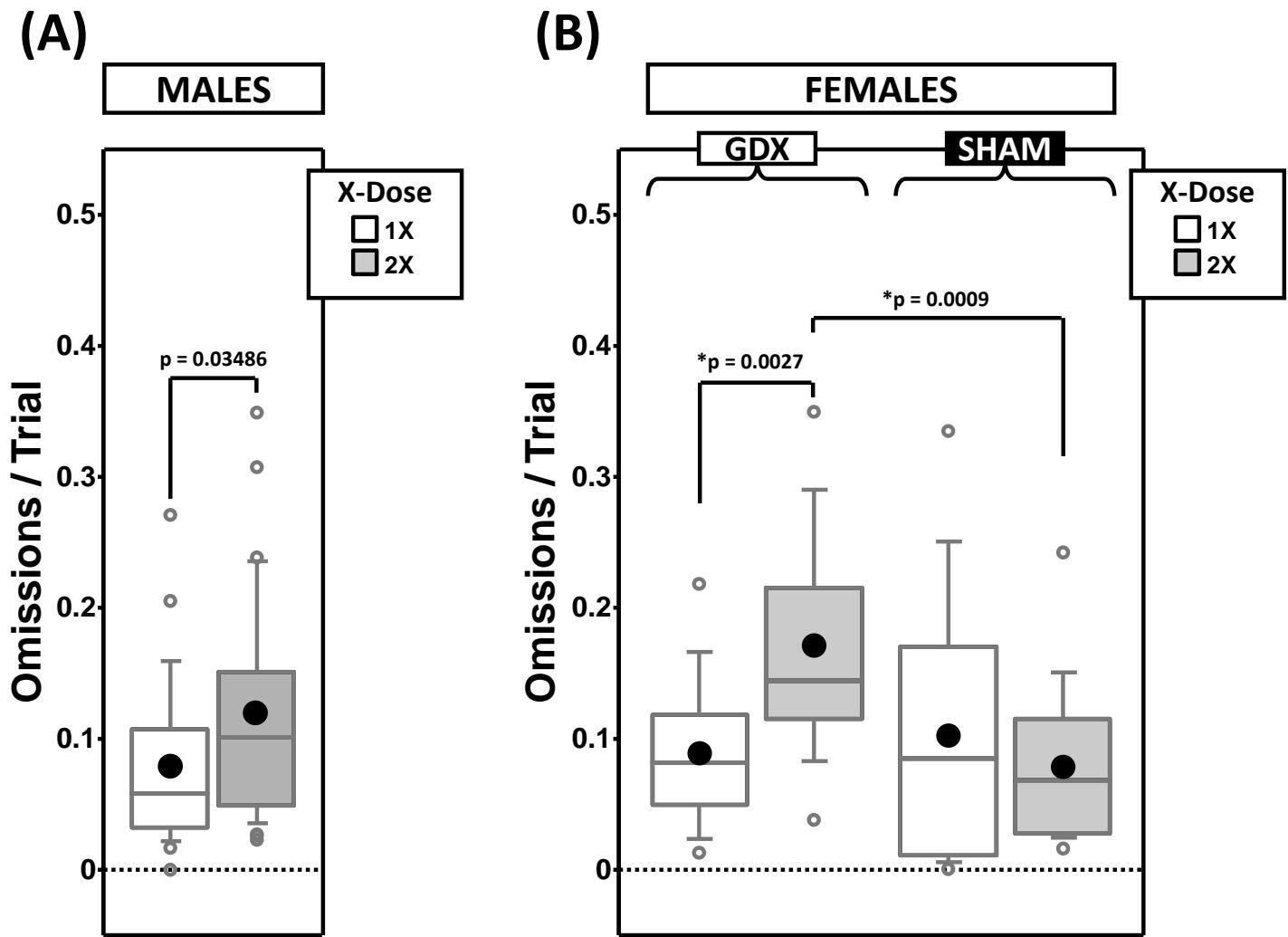

FIGURE 5

FIGURE 6

FIGURE 7

