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Abstract 11 

Genetic association mapping studies seek to uncover the link between genotype and 12 

phenotype, and often utilize inbred reference panels as a replicable source of genetic 13 

variation. However, inbred reference panels can differ substantially from wild 14 

populations in their genotypic distribution, and patterns of linkage-disequilibrium and 15 

nucleotide diversity. As a result, associations discovered using inbred reference panels 16 

may not reflect the genetic basis of phenotypic variation in natural populations. To 17 

address this problem, we evaluated a mapping population design where dozens to 18 

hundreds of inbred lines are outbred for few (e.g. five) generations, which we call the 19 

Hybrid Swarm. The Hybrid Swarm approach has likely remained underutilized relative to 20 

pre-sequenced inbred lines due to the costs of genome-wide genotyping. To reduce 21 

sequencing costs and make the Hybrid Swarm approach feasible, we developed a 22 

computational pipeline that reconstructs accurate whole genomes from ultra-low-23 

coverage (0.05X) sequence data in Hybrid Swarm populations derived from ancestors 24 

with phased haplotypes. We compared the power and precision of GWAS using the 25 

Hybrid Swarm, inbred lines, recombinant inbred lines, and highly outbred populations 26 

across a range of allele frequencies and effect sizes, modeling genetic variation from 27 

the Drosophila Genetic Reference Panel as well as variation from neutral simulations. 28 

While inbred populations tended to perform best due to the intrinsic power benefits 29 

conferred by the lack of heterozygotes, association mapping with the Hybrid Swarm 30 

performed comparably to highly outbred (F50) populations and has higher precision than 31 

mapping with inbred lines. Taken together, our results demonstrate the feasibility of the 32 

Hybrid Swarm as a cost-effective method of fine-scale genetic mapping.   33 
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Introduction 34 

 35 

Genetic mapping studies seek to describe the link between genotype and phenotype. 36 

For experimental crosses, mapping was traditionally conducted by scoring the 37 

phenotypes of recombinant offspring descended from a limited number of parental lines. 38 

While such QTL mapping studies can have high power to detect associations, they offer 39 

minimal mapping resolution (Cheng et al. 2010), often detecting broad regions of 40 

phenotypic association (Bergland et al. 2012). If linkage disequilibrium is lowered, 41 

spurious associations become rarer (Li et al. 2005) and associations can be resolved at 42 

the gene or nucleotide level, as in GWAS of large outbred populations (Nikpay et al. 43 

2015; Wu et al. 2017; Monir and Zhu 2017). However, GWAS suffer from reduced 44 

power to detect associations, necessitating a large sample size relative to QTL mapping 45 

(Spencer et al. 2009). 46 

 47 

To generate higher resolution mapping populations than the traditional biparental F2 48 

design, Multiparent Populations (MPPs) are commonly used. By crossing together 49 

multiple inbred lines, researchers can produce genetically diverse mapping populations 50 

without sampling wild individuals. MPPs are commonly used for the dissection of 51 

complex traits in model organisms (Chesler et al. 2008; Kover et al. 2009; King et al. 52 

2012b) and agriculturally important crops (Huang et al. 2012; Singh et al. 2013; Krämer 53 

et al. 2014). The mapping resolution of MPPs depends on the extent of linkage 54 

disequilibrium, and resolution is improved by allowing for more recombination between 55 

haplotypes, or by incorporating a greater number of genetically diverse haplotypes (Mott 56 

et al. 2000; Chia et al. 2005).  57 

 58 

One alternative approach for generating a high-resolution mapping population is to 59 

substitute extensive recombination for increased haplotype diversity. By crossing 60 

dozens to hundreds of inbred lines for a limited number of generations, heterozygous 61 

mapping populations can be generated quickly with sufficiently reduced LD to detect 62 

associations with high resolution. Unfortunately, the many-haplotypes few-generations 63 

method is not without its drawbacks. First, including many haplotypes decreases the 64 
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frequency of the rarest alleles, reducing power to detect associations. Second, such an 65 

outbred population would require recurring genotyping efforts (Yang et al. 2018) unlike 66 

pre-sequenced homozygous lines. The net requirement of genotyping a large sample 67 

size may explain the widespread use of pre-genotyped inbred reference panels for 68 

genetic association experiments in model systems (Huang et al. 2011; King et al. 69 

2012b; MacKay et al. 2012; Srivastava et al. 2017). 70 

 71 

Here, we describe computational methods that allow for cost-effective association 72 

mapping with a large outbred population. The Hybrid Swarm is founded by dozens to 73 

hundreds of inbred lines, crossed for a limited number of generations. To reduce 74 

genotyping costs of the Hybrid Swarm, we developed and evaluated a pipeline to 75 

reconstruct whole genomes using ultra-low coverage sequencing data. We developed 76 

and tested our pipeline by reconstructing whole genomes for thousands of simulated 77 

Hybrid Swarm individuals. Our simulated genomes draw from natural variation in the 78 

Drosophila melanogaster Genetic Reference Panel (DGRP), as well as from variation 79 

generated from coalescent models representing a broad range of genetic diversity 80 

parameters for common model systems. We show that the Hybrid Swarm approach 81 

allows for highly accurate genotyping (average 99.9% genotypic accuracy) from ultra-82 

low-coverage (0.005-0.05X) whole-genome individual-based sequencing. We then 83 

perform simulated GWAS to describe the power and precision of association mapping in 84 

the Hybrid Swarm compared to inbred lines, recombinant inbred lines, and a highly 85 

outbred (𝐹ହ଴) population. Our computational tools are capable of efficiently simulating 86 

low-coverage reconstruction and GWAS power analysis of any model system. Together, 87 

our results the feasibility of cost-effective high-resolution association mapping in a large 88 

outbred population. 89 

 90 

Methods 91 

 92 

Generating and preparing simulated reference panels. 93 

In order to evaluate low-coverage reconstruction for various degrees of genetic 94 

diversity, we generated reference panels using haplotypes produced by coalescent 95 
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models across a range of genetic diversity levels. Haplotypes were generated using the 96 

R (R Core Team 2016) package scrm (Paul R. Staab et al. 2015) and subsequently 97 

restructured into VCF file format (Danecek et al. 2011). We generated ten independent 98 

panels for each of all 18 combinations of population size (Nୣ = 10ସ, 10ହ, 10଺), mutation 99 

rate (μ = 10ିଽ, 5 × 10ିଽ, 10ି଼), and number of haplotypes (32, 128). The value for θ for 100 

each simulation was defined as 4Nୣμ. We simulated a chromosome-length locus of 25 101 

Mb with a recombination rate of 1.5 cM/Mb. SNP positions output by scrm (a decimal 102 

within the range of 0 to 1) were converted to base pair positions by multiplying the 103 

decimal by chromosome length (25 ×106 base pairs for our simulations) and rounding 104 

down to the nearest integer. Any sites with more than two alleles were converted to a 105 

biallelic site by discarding tertiary or quaternary alleles. Genotype values were re-coded 106 

as polarized signed integers: +1 for reference and -1 for alternate alleles. For every 107 

position, reference and alternate alleles were defined by randomly selecting one of the 108 

twelve non-repeating pairs of nucleotides.  Reference genome FASTA files were 109 

created with a custom python script that generated a 25 million length string of 110 

nucleotide characters with weighted probability to achieve 45% GC-content, followed by 111 

replacing variable positions with their respective reference alleles. 112 

 113 

Preparing DGRP haplotype data 114 

As a case study of low-coverage genome reconstruction in a model system, we 115 

incorporated wild fruit fly genetic diversity from the Drosophila Genetic Reference Panel 116 

(MacKay et al. 2012) DGRP freeze 2 as available from the Drosophila Genome Nexus 117 

(Lack et al. 2015). To minimize missing data, we included the 129 lines (out of 205) 118 

which exhibited aligned whole genome FASTA files with less than 50% of nucleotides 119 

indicated by the ambiguity character N. We excluded insertions, deletions, fixed sites, 120 

and sites with more than two alleles. Any heterozygous genotype calls were masked as 121 

missing data. Diploid genotypes were re-coded as a single signed integer value, with +1 122 

for homozygous reference, -1 for homozygous alternate, and 0 for missing data. This 123 

resulted in a polarized VCF file containing only biallelic SNPs and only homozygous (or 124 

missing) genotype calls.  125 

 126 
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Simulating Mapping Populations 127 

To generate simulated populations, we developed a forward-simulator in R that stores 128 

ancestral haplotype block maps instead of genotypes. Our analyses necessitated a 129 

method of storing genotype information for thousands of individuals across thousands of 130 

simulations. To do so, we leveraged information redundancy that exists between related 131 

individuals in recombinant populations, generating haplotype block files. We achieved 132 

between three and four orders of magnitude of compression relative to a VCF file. For 133 

example, for a population containing 5000 diploid genotypes at nearly four million sites, 134 

a compressed VCF file is approximately 6.5 GB, compared to approximately 3.5 MB for 135 

a haplotype block file. This reduced file size is what allowed us to generate and store 136 

28,000 total independent GWAS simulations (500 each for 56 parameter combinations). 137 

When haplotype block ancestry is known and recorded, as is possible with simulations, 138 

genotypes must only be recorded once (for the ancestral founders). Recombinant 139 

individual genotypes can then be reconstituted by extracting ancestral genotypes from 140 

ancestor and base pair position indices.  141 

 142 

We simulated Hybrid Swarms through random mating over five non-overlapping 143 

generations at a population size of 10,000. Simulations proceeded in the following 144 

manner: first, a subset of either 32 or 128 founders was selected. Then, of that founder 145 

subset, 10,000 individuals were sampled with replacement. All possible founders were 146 

chosen with equal probability and assigned male or female sex with a 1:1 ratio, where 147 

sex was determined by the presence of a designated sex chromosome. Sexual 148 

reproduction was simulated by random sampling of recombinant gametes from male-149 

female pairs. Once 10,000 recombinant progeny were generated, the parental 150 

generation was discarded. Reproduction continued until the F5 population was 151 

achieved. Recombination frequency was modeled as a Poisson process with an 152 

expected value 𝜆 = Σ(𝑀𝑜𝑟𝑔𝑎𝑛𝑠) per chromosome. For simulations of Drosophila 153 

populations based on DGRP chromosomes, recombination occurred only in females, 154 

with recombination frequency and position based on values from Comeron et al (2012). 155 

For populations founded by simulated haplotypes, recombination occurred in both 156 
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sexes, with recombination occurring uniformly across each chromosome (Supplemental 157 

Figure S1).  158 

 159 

Simulating and Mapping Sequencing Data 160 

We used wgsim (Li 2011) to generate simulated reads. To achieve a desired level of 161 

sequencing coverage 𝐶 = 0.05 or 0.005, we generated 𝑁 = (𝐶 × 𝑆)/(2 × 𝐿) reads per 162 

chromosome, with read length 𝐿 = 100 bp and chromosome length 𝑆 bp. We specified a 163 

base error rate of 0.001 and an indel fraction of 0. Remaining wgsim parameters were 164 

left as default. 165 

 166 

We assembled paired end reads using PEAR (Zhang et al. 2014) and separately 167 

aligned the assembled and unassembled groups to a reference genome with bwa 168 

0.7.14 using the BWA-MEM algorithm (Li 2013). Reads from DGRP-derived populations 169 

were mapped to the D. melanogaster reference genome v5.39, and reads from 170 

coalescent-derived populations were mapped to their respective simulated reference 171 

genomes. After converting mapped reads to compressed BAM format with samtools 172 

1.3.1 (Li et al. 2009), we removed PCR duplicates with Picard tools 2.0.1 (Broad 173 

Institute 2015a). 174 

 175 

Most Likely Ancestors Selection 176 

To make chromosome reconstructions in the hybrid swarm computationally tractable 177 

(Figure 1), we developed a method of accurately selecting a subset of most likely 178 

ancestors for any single chromosome. We then used that ancestor subset to reconstruct 179 

haplotype blocks using the RABBIT package (Zheng et al. 2015) in Mathematica. 180 

RABBIT operates as a Hidden Markov Model (HMM) using the Viterbi algorithm to 181 

return the most likely series of parental combinations (hidden states) across the 182 

genome (SNP positions) given the observations (sequenced alleles). For every position 183 

in the genome, the Viterbi algorithm evaluates relative likelihoods of transitioning to any 184 

possible hidden state. Because the hidden states in our case are ancestor 185 

combinations, there will be (𝑁2 + 𝑁)/2 combinations of 𝑁 haplotypes to evaluate at 186 

every site. This number of evaluations is tractable at smaller values of 𝑁 but grows at a 187 
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quadratic rate. For example, increasing the number of founding haplotypes from 8 to 188 

128 is a 16-fold increase in haplotypes, but it would incur orders of magnitude increases 189 

in computational effort (Figure 1). Thus, in order to make reconstructions in RABBIT 190 

computationally tractable for hybrid swarm individuals, it is necessary to identify a 191 

subset of founders that accurately includes the true ancestors contributing to any given 192 

chromosome. 193 

 194 

We used the software package HARP (Kessner et al. 2013) to rank the population 195 

founding lines based on likelihood of being a true ancestor of a chromosome to be 196 

reconstructed. HARP was originally developed to estimate haplotype frequencies from 197 

pooled sequence data, and we co-opted it to assess relative likelihood that any founder 198 

contributed to a genomic window. We ran HARP with non-overlapping 100 kb windows 199 

with a minimum frequency cutoff 0.0001, producing output which can be visualized as a 200 

heat map of ancestor likelihood across the chromosome. A custom R script analyzed 201 

this HARP output and ranked all possible founders in terms of likelihood of contribution 202 

for a given chromosome. Briefly, a chromosome-wide significance threshold was 203 

calculated, e.g. the 95% or 99% quantile of all likelihoods across all founders and all 204 

chromosome windows. Then, every potential ancestor for each 100 kb window was 205 

classified as falling above or below this threshold. Founding lines were then ranked in 206 

descending order of the number of windows passing the threshold. We examined two 207 

measures of effectiveness for this method across a range of quantile threshold values 208 

(90%, 95%, 99%, and 99.9%) when selecting up to a maximum number of most likely 209 

ancestral haplotypes. The first measure is the number of true ancestral founders 210 

excluded; the second measure is the fraction of the chromosome derived from 211 

ancestors missing from the selected subset. 212 

 213 

Chromosome Reconstruction with RABBIT 214 

We used the MAGIC reconstruct method of the Mathematica package RABBIT (Zheng 215 

et al. 2015) to perform chromosome reconstructions, which has been shown to be 216 

accurate for genotype estimation at sequencing coverage at 0.05X  for a variety of 217 

multiparent populations (Zheng et al. 2018). RABBIT requires three inputs: observed 218 
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genotypes in the individual being reconstructed; map distance (in cM units) of the same 219 

loci; and genotypes for the potential ancestors at those same loci. For DGRP-derived 220 

simulated populations, we specified map distance based on values reported by 221 

Comeron et al. (2012) by performing linear interpolation of cumulative map units (cM) as 222 

a function of base pair position. For populations derived from simulated haplotyopes, we 223 

used a linear function of 37.5 cM over each 25 Mb chromosome. To specify genotype 224 

information, we first counted reference and alternate reads using the Genome Analysis 225 

Toolkit ASEReadCounter (Broad Institute 2015b). Because it is not possible to make 226 

confident homozygote genotype calls from low coverage sequencing data where most 227 

sites are observed only once and or twice, we only included diploid genotype 228 

observations for sites where both reference and alternate alleles were observed. As 229 

RABBIT allows for an ambiguous allele character, for all sites where only reference or 230 

alternate reads were observed (but not both), we included one ambiguous allele. 231 

 232 

To minimize memory and runtime requirements, we included at most 5,000 SNPs per 233 

chromosome, selected for maximum ancestor-discerning information content. If an 234 

observed (sequenced) allele is common, it will only slightly narrow down the possibility 235 

of ancestors. If a sequenced allele is rare—at the most extreme, unique to one 236 

individual—it provides greater information from which founder that site is derived. Thus, 237 

we designate information-rich sites as those where the frequency of the sequenced 238 

allele is the lowest with respect to the pool of most likely ancestors. In order to sample 239 

sites with high information content spread throughout the chromosome, we used an 240 

iterative approach. First, we included all heterozygous sites (i.e. where reference and 241 

alternate alleles are both observed). Then, 10% of all SNPs were randomly sampled, 242 

and we retained up to the top 0.2% most informative sites, repeating the random 243 

sampling and retention until we designated 5,000 SNPs. 244 

 245 

We ran RABBIT independently for each chromosome using the Viterbi decoding 246 

function under the joint model, with all other RABBIT parameters left at default. RABBIT 247 

output was converted to a phased chromosome haplotype map, which we then used to 248 

extract and concatenate genotype information from a VCF file containing founder 249 
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genotypes. To calculate genotype reconstruction accuracy, we first imported true 250 

(simulated) and estimated (reconstructed) genotypes using a custom R script. We 251 

measured the fraction of all remaining sites where the estimated diploid genotype is 252 

identical to the originally simulated diploid genotype, excluding fixed sites with respect 253 

to the founding haplotypes, and excluding any sites with missing genotype information. 254 

Because male individuals do not possess two copies of the sex chromosome, we only 255 

evaluated accuracy for autosomes. 256 

 257 

To measure accuracy of estimated frequency of recombination events, true and 258 

estimated recombination counts were first summed over both copies of each 259 

chromosome in a simulated individual. This removed the possibility of introducing error 260 

by comparing the wrong copies of chromosomes. Only detectable recombination events 261 

were considered, i.e. those that did not occur between homologous haplotypes. We 262 

then used the epi.ccc function of the R package epiR (Stevenson 2018) to calculate 263 

Lin’s concordance correlation coefficient (𝜌) between the true and estimated 264 

recombination counts.  265 

 266 

Modeling Computational Complexity of Chromosome Reconstruction 267 

To estimate the rate at which computational requirements grows with data input, we 268 

performed chromosome reconstructions with varying numbers of potential founders and 269 

markers (SNPs). This allows us to extrapolate the runtime and memory for performing 270 

the most resource intensive chromosome reconstructions (i.e. those with > 40 founding 271 

lines). To generate runtime and memory usage data, we performed 900 reconstructions 272 

using varying sizes of RABBIT input for a single example individual 2L chromosome. 273 

Reconstructions included the four true ancestors of the simulated individual, plus 0 to 32 274 

additional haplotypes (for a total of between 4 and 36 founders, in steps of 4) and a 275 

random selection of marker SNPs (between 500 and 5000 in steps of 500). Ten 276 

replicates, each with a unique random set of SNPs, was conducted for each 277 

combination of 𝑁 founding lines and 𝑆 SNPs using a single core on the University of 278 

Virginia computing cluster, with total runtime and peak memory usage as reported from 279 

the SLURM workload manager (CPUtime and MaxRSS, respectively). We then 280 
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modeled the mean runtime and memory usage (averaged across 10 replicates per 281 

parameter combination) as a function of number of founding lines and number of SNPs 282 

fed into RABBIT. For runtime, simulations involving 8 or fewer founding lines were 283 

omitted from the regression model because they ran too quickly to resolve non-zero 284 

runtime. Memory was modeled as 𝑀𝑒𝑚𝑜𝑟𝑦(𝐺𝐵) = 7.367 × 10ିଽ × 𝑆𝑁ସ  +  0.0316, while 285 

runtime was modeled as 𝑅𝑢𝑛𝑡𝑖𝑚𝑒(𝑀𝑖𝑛𝑢𝑡𝑒𝑠) = [1.189 × 10ିଷ × 𝑁ଶ  + 1.038 × 10ି଺ ×286 

𝑆𝑁ଶ + 2.649 × 10ିସ × 𝑆]ଶ. 287 

 288 

Simulated GWAS 289 

We performed GWAS on mapping populations produced by random sampling and 290 

permutation of the previously-described forward-simulated populations. Although the 291 

forward simulator we developed is efficient, it would not have been computationally 292 

feasible to simulate 500 fully independent mapping populations (per parameter 293 

combination) in a reasonable amount of time. Instead, we generated ten independent 294 

forward-simulated populations, and for each of those, generated fifty randomly 295 

permuted subsets (Figure 2). For a single simulated mapping population, we began by 296 

sampling (with replacement) a random subset of 5,000 individuals, out of 10,000 total 297 

individuals generated by forward-simulation. Then, we performed a permutation of 298 

haplotype ancestry with a new, randomly-ordered (equally sized) subset of founders. 299 

The permutation of ancestry was one-to-one, e.g. all haplotype blocks that were 300 

previously derived from founder X would be translated to founder Y, and blocks 301 

previously derived from Y would in turn be mapped to founder Z. 302 

 303 

In addition to Hybrid Swarm populations, which we ran through the simulated 304 

sequencing and mapping pipeline, we generated four additional types of mapping 305 

populations for comparing GWAS performance: Highly outbred (F50) populations, similar 306 

to sampling wild individuals; Inbred Lines (ILs), similar to mapping with the DGRP); and 307 

Recombinant Inbred Lines (RILs), similar to mapping with the DSPR. 308 

 309 

The 𝐹ହ଴ populations were generated in same manner as the Hybrid Swarm, except for 310 

fifty non-overlapping generations of recombination instead of five generations. The ten 311 
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resulting forward-simulated populations were resampled and permuted as we did with 312 

the Hybrid Swarms. 313 

 314 

We simulated ten initial sets of 800 RILs using the same forward-simulator as previously 315 

described, each initialized with a random subset of eight DGRP haplotypes. Populations 316 

randomly recombined at a population size of 10,000 for fifty non-overlapping 317 

generations, after which 800 random male-female pairs of individuals were isogenzied 318 

through 25 generations of full-sibling mating. This scenario roughly corresponds to the 319 

Drosophila Synthetic Population Resource (King et al. 2012a). For computational 320 

simplicity, after the 25 generations of isogenization we removed any remaining residual 321 

heterozygosity by forcing the identity of a second chromosome copy to be identical to 322 

the first copy. We then sampled 5,000 draws (with replacement) of the 800 RILs 323 

followed by ancestry permutation as described above.  324 

 325 

To simulate GWAS on Inbred Lines, no forward-simulation was necessary. For a single 326 

simulated population, we first randomly selected 128 DGRP lines with high coverage 327 

and low levels of heterozygosity as the set of founders. Then, those 128 lines were 328 

randomly sampled with replacement 5,000 times. As with hybrid swarm and RILs, for 329 

any parameter combination we generated a total of 500 mapping populations. 330 

 331 

Phenotypes were modeled as probabilistic assignment to a case or control group 332 

dependent on allele dosage at a purely additive single SNP.  We designated a causal 333 

locus as a random autosomal biallelic SNP segregating within 0.5% of a desired minor 334 

allele frequency (50%, 25%, and 12.5%). We modeled SNPs at 5% and 10% percent 335 

variation explained (PVE), where reference allele homozygotes were assigned to the 336 

case group with probability 50% − 𝑃𝑉𝐸/2, and alternate allele homozygotes were 337 

assigned to the case group with probability 50% + 𝑃𝑉𝐸/2. Heterozygotes were equally 338 

likely to be assigned case and control. 339 

 340 

To perform many replicates of GWAS for many parameter combinations, we performed 341 

a simple 2 test of independence for reference and alternate allele counts between case 342 
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and control groups. To do so most efficiently, we developed a method of aggregating 343 

allele counts that uses a haplotype map table in conjunction with a single table of 344 

founder genotypes (Figure 2). Briefly, haplotype table breakpoints across all individuals 345 

were sorted in ascending order. When iterating through ascending unique start and stop 346 

positions, between any pair of breakpoints, all SNPs will be comprised of the same 347 

number of each founding haplotype. Haplotype IDs could then be counted and sorted in 348 

the same column position order as the table containing polarized allele status (-1 for 349 

alternate, +1 for reference). Multiplying the genotype table by the haplotype count vector 350 

results in final allele counts, polarized negative for alternate alleles and positive for 351 

reference alleles. For inbred mapping populations, we corrected for non-independent 352 

allele draws by dividing the 2 value by two. 353 

 354 

To describe the accuracy of simulated GWAS, we measured the likelihood of including 355 

a locus that is near the causal site when considering a set of the top N most significant 356 

SNPs. Here, ‘near’ is defined as either exact-SNP resolution, or within 1, 10, or 100 Kb.  357 

In the case of 1 kb precision, we first consider the set of SNPs +/- 1 kb from the most 358 

significant locus (greatest chi-square statistic). Then, we consider the second set of 359 

SNPs as those within +/- 1 kb of the most significant locus outside of the window 360 

already accounted for. This selection of significant clusters was repeated iteratively for 361 

the top 25 regions, for window sizes of 0 (exact SNP resolution), 1 kb, 10 kb, and 100 362 

kb.  363 

 364 

We calculated genomic inflation factor (GIF, 𝜆1000) as the value of 𝜒௢௕௦௘௥௩௘ௗ
2 /𝜒௘௫௣௘௖௧௘ௗ

2  365 

with two degrees of freedom. Because GIF increases with sample size, we performed a 366 

correction to report the level of GIF expected with a sample size of 1,000 case and 367 

1,000 control individuals (Freedman et al. 2004). 368 

 369 

Assessing counts of variable sites at appreciable frequency in the DGRP 370 

There is a reduction in power to detect associations with alleles segregating at low 371 

minor allele frequencies. When a population is founded by N lines, any SNP will be 372 

segregating at a relative frequency of at least 1/N, given that the SNP is not fixed within 373 
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the population and haplotypes are equally represented. We counted the number of sites 374 

on a given chromosome arm segregating above a minor allele frequency threshold of 375 

MAF=(0.05, 0.125, and 0.25) for random draws (without replacement) when sampling 376 

N=(2, 4, 8, 16, 32, 64, 128) haplotypes of the 129 included DGRP lines We performed 377 

this sampling 20 times for each chromosome arm. 378 

 379 

Data Availability Statement 380 

The code used to generate, process, and plot our data is available on GitHub: 381 

https://github.com/cory-weller/low-coverage-genome-reconstruction 382 

 383 

Results 384 

 385 

Computational Complexity of Chromosome Reconstruction 386 

To determine reasonable limits for numbers of SNPs and haplotypes used for 387 

chromosome reconstruction with RABBIT, we modeled peak memory usage and 388 

runtime across a range of input sizes. Peak memory grew linearly with number of SNPs 389 

used, and at a greater-than-linear rate with haplotypes (Figure 1A, 𝑀𝑒𝑚𝑜𝑟𝑦 =390 

7.367 × 10ିଽ × 𝑆𝑁ସ  +  0.0316),  𝐹 = 3.534 × 10଺, 𝑑𝑓 = 1 & 88,  𝑅ଶ = 1). The runtime of 391 

RABBIT increased at a greater-than-linear rate for both number of SNPs and number of 392 

haplotypes, though the N parameter dominates (Figure 1B, 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 = [1.189 × 10ିଷ ×393 

𝑁ଶ  + 1.038 × 10ି଺ × 𝑆𝑁ଶ + 2.649 × 10ିସ × 𝑆], 𝐹 = 4.316 × 10ସ, 𝑑𝑓 = 3 & 67, 𝑅ଶ =394 

0.9995). These models allowed us to estimate resource requirements at greater 395 

numbers of haplotypes (Figure 1, C & D) which would be unfeasible to measure 396 

empirically. 397 

 398 

Most-Likely-Ancestor Selection 399 

To reduce computational requirements of haplotype reconstructions with RABBIT, we 400 

developed and evaluated an algorithm for selecting a minimum representative set of 401 

Most-Likely-Ancestors (MLAs) for chromosome reconstruction. We found a HARP 402 

threshold of 0.99 (see methods) discerned a minimal subset of founding lines that 403 

tended to include a given chromosome’s true ancestors (Figure 3). At this threshold, 404 
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outcomes became asymptotic at the computationally tractable cap of 16 founding lines 405 

(Figure 1). Thus, we performed chromosome reconstruction using up to 16 most-likely-406 

ancestors as inferred with a HARP threshold of 0.99.  407 

 408 

In all cases, decreasing the HARP threshold from 0.95 to 0.90 further reduced 409 

chromosome representation while increasing the number of extraneous founding lines 410 

selected for reconstruction. While a higher HARP threshold of 0.999 yielded the 411 

smallest and most computationally tractable set sizes of MLAs  (Nഥ=2.4-3.5), the strict 412 

threshold excluded true ancestors, resulting in a set that is least representative of 413 

chromosomes to be reconstructed. For 128-founder populations, a threshold of 0.999 414 

failed to identify founders constituting an average of 3.33% and 13.9% of chromosomes 415 

for DGRP- and Coalescent-founded populations, respectively. In 32-founder 416 

populations, the 0.999 threshold missed founders representing an average of 15.5% 417 

and 29.7% of chromosomes from DGRP- and Coalescent-founded populations, 418 

respectively.  419 

 420 

Populations simulated with genetic variation derived from coalescent models described 421 

above included the parameters 𝑁௘ = 106 and 𝜇 = 5 × 10ି9. The effectiveness of most-422 

likely-ancestor selection for populations modeled across extended values of 𝑁௘ and  𝜇 is 423 

shown in supplemental Figures S2 and S3, respectively. Similarly, the number of most-424 

likely-ancestors chosen for reconstruction in RABBIT are shown in Figures S5 and S6. 425 

 426 

Selected MLA set size is described in Figure S5 for 32-founder populations and Figure 427 

S6 for 128-founder populations. Ancestor selection effectiveness for DGRP-derived 428 

populations at two levels of sequencing coverage (0.005X and 0.05X) is shown in 429 

supplemental Figure S4, and the corresponding number of most-likely-ancestors 430 

chosen for reconstruction are shown in supplemental Figure S7. 431 

 432 

Reconstruction Accuracy 433 

Chromosome reconstruction of simulated Fହ Hybrid Swarm genomes at 0.05X 434 

sequencing coverage yielded highly accurate genotype estimates (Figure 4). The 435 
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median percent of sites with correctly estimated genotypes was greater than 99.9% 436 

whether the population was founded by 32 or 128 founding lines for either DGRP or 437 

coalescent (Nୣ = 10଺ and μ = 5 × 10ିଽ) haplotypes. We additionally report 438 

reconstruction accuracy in coalescent-derived populations across a range of Nୣ and  μ 439 

values in supplemental Figure S8. 440 

 441 

For simulations founded by DGRP lines, 80.5% of reconstructed chromosomes from 32-442 

founder populations exhibited > 99.9% accuracy, with the remaining 19.5% of 443 

reconstructions contributing to a long tail with a minimum of 84.37%. Increasing the 444 

number of founding lines to 128 resulted in genotype accuracy above 99% for all cases 445 

(minimum: 99.4%), with 83% of reconstructed chromosomes achieving greater than 446 

99.9% accuracy.   447 

 448 

Although median accuracy for coalescent-derived populations was equivalent to that of 449 

DGRP-derived populations (99.9%), coalescent-derived populations with 32 founders 450 

exhibited a greater number of low-accuracy reconstructions. While 82.5% of simulations 451 

with 32 coalescent haplotypes were at least 99% accurate, the remaining 17.5% of 452 

reconstructions contributing to a long tail with a minimum accuracy of 59.7%. Increasing 453 

the number of founding lines to 128 resulted in 96.3% of simulations being greater than 454 

99% accurate, with a minimum accuracy of 89.6%. 455 

 456 

The number of recombination events estimated from chromosome reconstruction was 457 

most accurate for populations founded by 128 lines (Table 1). Reconstructions of 458 

DGRP- and Coalescent-derived chromosomes yielded recombination count estimates 459 

that were 98.6% and 95.6% concordant with their respective true recombination counts 460 

(Lin’s concordance correlation coefficient, 𝜌). When populations were founded by 32 461 

lines, recombination count estimates were more inaccurate, with DGRP- and 462 

Coalescent-derived reconstructions achieving 50.2% and 75.9% concordance with their 463 

respective true recombination counts. For 32-founder populations, DGRP-derived 464 

reconstructions tended to slightly overestimate recombination counts, while the same 465 

counts were underestimated for coalescent-derived populations. 466 
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 467 

Simulations that inferred an unlikely high number of recombination events tended to 468 

exhibit reduced accuracy (Figure 4). All DGRP-derived simulated individuals (of 1600 469 

total) exhibited ≤ 8 recombination events, and all but three coalescent-derived simulated 470 

individuals (7197 of 7200 total) exhibited ≤ 9 recombination events. Accordingly, we 471 

considered any reconstructions to be ‘hyper-recombinant estimates’ if the inferred 472 

recombination count is greater than 8 for DGRP-derived populations or greater than 9 473 

for coalescent-derived populations. 474 

 475 

At 0.05X sequencing coverage, hyper-recombinant estimates did not occur for 128-476 

founder populations, and only rarely resulted from 32-founder populations. Within 477 

DGRP-derived 32-founder populations, reconstructions with hyper-recombinant 478 

estimates were below the sixth percentile of genotype accuracy (N=6/400 simulations, 479 

genotype accuracy range=92.8%-98.8%). For coalescent-derived 32-founder 480 

populations, reconstructions estimated as hyper-recombinant fell in the bottom 9% of 481 

genotype accuracy (N=3/400 simulations, genotype accuracy range = 92.1%-95.6%). 482 

Although hyper-recombinant estimates always fell in the bottom 10% of accuracy, the 483 

least accurate reconstructions were not hyper-recombinant. For coalescent-derived 32-484 

founder populations, 4.25% (17/400) of reconstructions without hyper-recombinant 485 

estimates exhibited lower genotype accuracy than the least accurate hyper-recombinant 486 

simulation (range = 59.7%-92.1%). Similarly, for DGRP-derived 32-founder populations, 487 

2.5% (10/400) of reconstructions without hyper-recombinant estimates exhibited lower 488 

genotype accuracy than the least accurate hyper-recombinant simulation (range = 489 

82.3%-92.8%).   490 

 491 

Reducing sequencing coverage by an order of magnitude from 0.05X to 0.005X resulted 492 

in more frequent hyper-recombinant reconstruction estimates, though overall median 493 

genotype accuracy remained above 99% (Figure S9). Hyper-recombinant reconstructed 494 

chromosomes exhibited genotype estimates with accuracy below 99%, while the 495 

remaining simulations (with lower recombinant counts) achieved above 99% genotype 496 

accuracy. For populations founded by 32 DGRP lines and sequenced at 0.005X 497 
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coverage, 14% of simulations produced hyper-recombinant estimates (N=56/400), of 498 

which only 26.8% (N=15/56) surpassed 99% genotype accuracy (median=98.5%). The 499 

remaining 86% of simulations (N=344/400) that were not hyper-recombinant retained 500 

greater accuracy, with 89% of simulations resulting in at least 99% genotype accuracy 501 

(median=99.5). Increasing the number of founding DGRP lines from 32 to 128 at 0.005X 502 

coverage failed to eliminate hyper-recombinant estimates. With 128 founding lines, 503 

14.5% of simulations were hyper-recombinant (N=58/400), of which 24.1% (N=14/58) 504 

surpassed 99% genotype accuracy (median=98.6%). The 85.5% of simulations that 505 

were not hyper-recombinant (N=342/400), exhibited accurate genotype estimates, with 506 

86.5% (296/342) of simulations achieving over 99% genotype accuracy (median=99.6). 507 

 508 

GWAS Simulation Accuracy 509 

To report the power of a GWAS, we must first define a “true positive” result. Consider a 510 

putative SNP identified by GWAS that is 50 kb from the causal SNP. Such a result 511 

would be considered a false positive if the aim is to identify the exact responsible 512 

nucleotide, but may be a true positive with respect to to identify an associated gene. To 513 

cover both use cases, we describe a true positive in terms of both SNP-level resolution 514 

(requiring an exact base-pair match), or region-level resolution (allowing for tolerance 515 

up to 100kb between putative hits and the causal SNP). Additionally, it is unrealistic to 516 

simply evaluate the single top result of a GWAS. Rather, a set of candidate loci may be 517 

chosen for follow-up evaluation in confirmatory studies, and the probability of including 518 

the causal SNP will increase as a greater number of putative SNPs are evaluated. Most 519 

distinct changes in GWAS power occurred when including between most significant to 520 

top 10 most significant candidate loci, after which power increased at a reduced rate, if 521 

an asymptote was not already reached.  522 

 523 

The estimated power of GWAS using a specific type of mapping population, i.e. the 524 

fraction of simulations with a true positive, is shown in Figure 5. For simplicity, we focus 525 

on GWAS power when including the top 10 most significant candidate loci—a 526 

reasonable number of putative sites that may be investigated in follow-up studies.  527 

 528 
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  5 Hybrid Swarms founded by either 32 or 128 founding lines exhibited nearly 529 

equivalent power compared to   50 outbred populations across all parameter 530 

combinations. For common alleles, i.e. those segregating at 50% frequency, all outbred 531 

populations achieved approximately 50% power to identify a causal variant with SNP-532 

level precision, and 70% power at the gene-level. Both inbred populations were highly 533 

effective at detecting associations at the gene-level (99% and 99.8% for ILs and RILs, 534 

respectively). SNP-level power was one fourth lower than gene-level power for RILs 535 

(75.4%), but only marginally reduced for inbred lines (97.4%).  536 

 537 

Power to detect associations is reduced when the causal allele is rare (segregating at 538 

12.5% frequency). For such rare alleles, the gene-resolving power of ILs drops by 539 

nearly half (to 54.8%), while RILs maintained high power (81.8%). All outbred 540 

populations exhibited approximately 20% power to detect rare alleles at the gene-level. 541 

Inbred lines were the sole frontrunner for identifying low frequency alleles with SNP-542 

level resolution (37.2%), followed by 128-founder Hybrid Swarm (10.8%), F50 outbred 543 

(8.2%), 32-founder Hybrid Swarm (6%), and RILs (3.2%). 544 

 545 

GWAS Genomic Inflation Factor 546 

If individuals are assigned to case and control groups with equal probability, then the 547 

resulting 𝜒ଶ statistics should follow the expected distribution. If individuals are not sorted 548 

into groups randomly, i.e. allele state at a causal SNP dictates nonrandom group 549 

assignment, then 𝜒ଶ values for that SNP should be inflated to some extent. Nonrandom 550 

associations between a causal SNP and other loci can inflated test statistics across a 551 

chromosome, or across a whole genome. The genome-wide inflation factor (𝜆) can be 552 

expressed as the ratio of observed and expected median 𝜒ଶ values (Figure 6). Because 553 

our simulations model a single causal SNP, 𝜆 is a reflection of greater-than-chance 554 

associations arising due to linkage with the causal SNP being modeled, which can 555 

serve as a proxy for false positive rate. 556 

 557 

Because the median expected 𝜒2 statistic increases with sample size, we report 𝜆1000, a 558 

sample-size-corrected value that is comparable across studies (Freedman et al. 2004). 559 
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We calculated 𝜆 as aggregated across three groups: linked, including only the 560 

autosome arm containing the causal SNP; unlinked, including the unlinked autosome 561 

that doesn’t contain the causal SNP; and autosomal, for all sites across both autosomes 562 

two and three 563 

 564 

Inflation factor measured across autosomes two and three was greatest for ILs, followed 565 

by 32-founder Hybrid Swarm, RILs, 128-founder Hybrid Swarm, and   50 Outbred 566 

populations. This order was observed whether the causal allele was common or rare, 567 

though with reduced values of 𝜆 at the lower allele frequency (Figure 7).  568 

 569 

Only inbred populations displayed inflation on unlinked autosomes. When the causal 570 

allele is common (50% frequency), inflation on unlinked sites was greater for Inbred 571 

lines (median 𝜆 = 1.17, interquartile range or 𝐼𝑄𝑅 = 0.11) than for RILs (𝜆 = 1.02, 𝐼𝑄𝑅 =572 

0.07). There was no inflation for unlinked chromosome in outbred populations, where 573 

𝜆 = 1.0 with varying degrees of dispersion (𝐼𝑄𝑅 = 0.10,0.06 and 0.03, respectively, for 574 

32-founder HS, 128-founder HS, and F50 outbred populations). Unlinked sites remained 575 

inflated for ILs even when the causal allele was rare (𝜆 = 1.07, 𝐼𝑄𝑅 = 0.09). Distributions 576 

for 𝜆 across an extended range of autosome groups, PVE and allele frequencies are 577 

shown in Figure S11. 578 

 579 

When we dissociated phenotype from genotype with purely random case-control 580 

assignment (i.e. PVE was set to 0% in our simulations), 𝜆 was centered at 1 (Figure 581 

S12). 𝐹50 outbred populations exhibited the lowest dispersion (𝐼𝑄𝑅 = 0.02), followed by 582 

128-founder Hybrid Swarms (𝐼𝑄𝑅 = 0.04), RILs (𝐼𝑄𝑅 = 0.06), and 32-founder Hybrid 583 

Swarms or ILs (𝐼𝑄𝑅 = 0.07 each). 584 

 585 

Frequency of sites segregating at appreciable frequency 586 

The number of SNPs segregating amongst DGRP haplotypes with at least a given MAF 587 

strongly depends on the haplotype subset count for a given population (Figure 8). If only 588 

considering SNPs segregating at or above a frequency of 12.5% on chromosome arm 589 

2L, a population founded by 8 lines will yield approximately twice as many SNPs 590 
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compared to a population founded by 128 lines (N=8 lines yields a median of 140K 591 

SNPs; N=128 lines yields a median of 71k SNPs). If the minimum MAF threshold is 592 

instead set to 5%, then populations with a greater number of lines exhibit a greater 593 

number of SNPs—with a maximum number of segregating sites with N=16 lines 594 

(median of 231.6k SNPs), nearly as many for 128 lines (median of 194k SNPs), and  595 

fewer for N=8 lines (median of 133k SNPs). 596 

 597 

Discussion 598 

Herein, we examined the feasibility and statistical properties of genome-wide 599 

association mapping using the Hybrid Swarm, an outbred population derived from 600 

limited and random outcrossing of an arbitrary number of founding strains. We show 601 

that it is possible to accurately reconstruct whole genomes from Hybrid Swarm 602 

populations using ultra-low coverage sequencing data (Figure 5). Genome-wide 603 

association mapping using the Hybrid Swarm approach performs as well as mapping in 604 

highly outbred 𝐹ହ଴ populations in a case-control GWAS framework (Figures 6, 605 

Supplemental Figure S10). While mapping using the Hybrid Swarm approach generally 606 

has reduced power compared to mapping using inbred lines (as would any outbred 607 

population in general) a limited number of generations of recombination reduces false 608 

positives arising from long-distance linkage disequilibrium present in founding strains 609 

(Figure 7, Supplemental Figure S11). Together, our results demonstrate the feasibility 610 

and potential of using the Hybrid Swarm approach for generating and genotyping 611 

outbred mapping populations in a cost-effective and computationally-efficient (Figure 1) 612 

manner.  613 

 614 

Benefits of the Hybrid swarm Approach 615 

The Hybrid Swarm approach is applicable to a wide variety of organisms and 616 

experimental designs, conferring potential benefits over inbred reference panels. These 617 

benefits are realized in three primary ways by: (1) allowing researchers to address 618 

questions that require heterozygotes; 2) reducing labor and the influence of cage-effects 619 

with random mating in a common environment; and 3) breaking down population 620 

structure when incorporating individuals from divergent populations. These benefits are 621 
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possible due to the ability to reconstruct genomes accurately and in a cost-effective 622 

manner for a large number of individuals.  623 

 624 

Note that the Hybrid Swarm method is not limited to populations founded by inbred 625 

lines, as the technique can be applied to populations where phased genomes are 626 

available for all outbred founders. Research systems without inbred reference panels 627 

can thus make an up-front investment of fully phasing founder genomes to realize 628 

downstream savings of reconstructing progeny from low-coverage sequencing data. 629 

Due to the relative ease of generating phased genomes from a variety of long-read 630 

sequencing technologies (Pollard et al. 2018), the Hybrid Swarm method may enable 631 

association mapping in a wide variety of organisms. 632 

 633 

Representation of heterozygotes 634 

One clear difference between inbred and outbred mapping populations is the presence 635 

of heterozygotes. On the one hand, the presence of heterozygotes in outbred 636 

populations decreases power to detect association relative to inbred lines for an (semi-) 637 

additive allele with a given effect size (Figure 6, Supplemental Figure S10). However, 638 

the reduced statistical power of association mapping in outbred populations may be 639 

ameliorated by reduced inbreeding depression and by the ability to assess the 640 

heterozygous effects of alleles.  641 

 642 

The ability to assess heterozygous effects of alleles will provide valuable insights into 643 

several interesting aspects of biology, such as the nature of dominance and the identity 644 

of regulatory polymorphisms. An increased understanding of dominance relationships 645 

and regulatory polymorphisms is important for advancing our understanding of 646 

quantitative trait variation and evolution. For instance, several theoretical models have 647 

shown that context dependent dominance of quantitative fitness traits can underlie the 648 

stable maintenance of polymorphisms subject to seasonally variable (Wittmann et al. 649 

2017) or sexually antagonistic (Connallon and Chenoweth 2019)  selection. The ability 650 

to efficiently map loci with context dependent dominance relationships will aid in the 651 
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understanding of the stability and abundance of polymorphisms maintained by these 652 

forms of balancing selection. 653 

 654 

Regulatory polymorphisms are known to underlie genetic variation in expression (Brem 655 

et al. 2002; Cavet et al. 2003; Rockman and Kruglyak 2006) and this expression 656 

variation can potentially be resolved to exact nucleotide differences (Grosveld et al. 657 

1987; Rave-Harel et al. 1997; Bosma et al. 2002). The resulting differences in 658 

expression can manifest as phenotypic changes to drive local adaptation  (Kudaravalli 659 

et al. 2009; Fraser et al. 2010; Fraser 2011, 2013). Allele-specific expression (ASE) 660 

arising from cis-acting regulatory factors is a common mechanism to produce heritable 661 

differences in expression (Yan et al. 2002; Cowles et al. 2002; Lo et al. 2003; Doss 662 

2005). Because allelic expression biases are only produced (and detectable) in 663 

heterozygotes, Hybrid Swarm populations facilitate the study of regulatory genetic 664 

variation (i.e. ASE) as a driver of local adaptation in a variety of organisms. 665 

 666 

Undirected outbreeding in a common environment 667 

The Hybrid Swarm approach involves propagation of a single large outbred population 668 

via undirected crossing. This design confers benefits over alternatives of either rearing 669 

inbred lines separately or performing controlled crosses. First, a single population 670 

reduces the influence of random block effects associated with rearing families or closely 671 

related individuals in separate enclosures or defined areas. Second, random 672 

outbreeding of a single population requires less labor compared to performing controlled 673 

crosses or serial propagation of inbred lines. One drawback of the randomly outbred 674 

method is susceptibility to loss of haplotypes due to genetic drift. The distribution of 675 

haplotypes can also be skewed by line-specific differences in fitness or fecundity, with 676 

such differences being observed for DGRP lines (Horváth and Kalinka 2016). To 677 

attenuate haplotype dropout, it may be prudent to seed a Hybrid Swarm with a large 678 

population of F1 hybrids produced by round-robin crosses. The F1 population would 679 

then be followed by a limited number of generations (e.g., 4-5) of random outbreeding.  680 

 681 
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Hybrid Swarm breaks down population structure and linkage disequilibrium 682 

Recombination between lines in the Hybrid Swarm approach allows for greater 683 

dissection of functional polymorphisms segregating between genetically structured 684 

populations. If an association study incorporates haplotypes from multiple distinct 685 

source populations, causal variants would segregate along with other linked variants. 686 

Thus, to identify genetic mechanisms of local adaptation and trait variation in general, it 687 

is necessary to minimize false positives from linked non-causal loci. Corrections due to 688 

relatedness can reduce the type I error rate to some degree (Yu et al. 2006; Price et al. 689 

2010; Yang et al. 2014), and can be further reduced by a greater extent of 690 

recombination. Within mapping populations with many haplotypes such as the DGRP, 691 

long-distance linkage disequilibrium results from correlated occurrence of rare variants 692 

(Huang et al. 2014), potentially contributing to false positives in GWAS. This is reflected 693 

in our simulations by genome-wide inflation of 𝜆, even across physically unlinked 694 

chromosomes, whereas five generations of recombination were sufficient to reduce this 695 

inflation (Figure 7). 696 

 697 

Most notably, 𝐹ହ Hybrid Swarm populations performed equivalently to 𝐹ହ଴outbred 698 

population in a case-control GWAS framework. This is likely owed to the large number 699 

of unique haplotypes within the Hybrid Swarm population, reducing the influence of long 700 

distance LD, and in turn reducing false positive GWAS hits. One interpretation is that 701 

only slightly recombinant populations comprised of a modest number of haplotypes are 702 

sufficient representations of highly outbred (or wild) populations in a GWAS framework. 703 

Inbred populations did exhibit greater power than outbred populations for identifying a 704 

causal locus, although this result is to be expected. Because we simulated a purely 705 

additive trait for which heterozygotes are equally likely to be assigned to either case or 706 

control group, heterozygotes contribute no statistical signal of association. Accordingly, 707 

for a causal allele segregating at 50% frequency, sample sizes for any outbred 708 

populations will be effectively half that of an inbred population.  709 

 710 

The Hybrid Swarm method is similar but distinct from advanced intercross populations 711 

(AIPs), where AIPs result from crossing few lines (e.g., 8) for many generations 712 
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(Chesler 2014; Mackay and Huang 2018) and the Hybrid Swarm from crossing dozens 713 

to hundreds of lines for few generations. The choice to use an AIP or hybrid swarm 714 

population will influence the number of SNPs segregating at or above a desired minor 715 

allele frequency (Figure 8). For an association test to detect a causal variant with single-716 

nucleotide precision, that variant must be segregating above a minor allele frequency 717 

required to detect phenotypic association at a given effect size and sample size. If 718 

sample size precludes sites segregating at a minor allele frequency below 1/8, then a 719 

population founded by 8 haplotypes would yield the greatest number of variants. If 720 

power is sufficient to detect association with alleles segregating above a frequency of 721 

5%, then populations founded by 16+ lines would yield a greater number of variants 722 

(Figure 8). In cases where only few founding haplotypes are available, an AIP may be 723 

necessary, as the breakup of linkage disequilibrium can only be accomplished with 724 

many generations of crosses instead of leveraging greater haplotype diversity.  725 

 726 

Computational Considerations 727 

The simulations conducted for this analysis were made feasible by three primary 728 

innovations. First, the haplotype block file format allowed us to leverage information 729 

redundancy between related individuals and store highly compressed, lossless 730 

genotype information. With nearly 1/2000th the file size of a compressed VCF file, 731 

haplotype block files greatly reduced both the disk storage footprint and time required 732 

for disk write operations. Second, instead of performing forward-time simulations for 733 

every single iteration of GWAS, permuted subsets of simulated populations allowed for 734 

more rapid GWAS simulations. The format of haplotype block files facilitated 735 

permutations of the ancestry contained within a population’s mosaic haplotypes, 736 

generating novel population genetic structure while preserving the forward-simulator’s 737 

influence of drift and meiotic recombination (Figure 2). Third, instead of extracting site-738 

specific genotypes for every individual, we decreased the number of computational 739 

operations by performing aggregate counts across all sites between adjacent 740 

recombination events in the population (Figure 3). 741 

 742 
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Importantly, selecting a subset of most-likely-ancestors results in maximum 743 

computational complexity that remains constant with increasing number of founding 744 

lines, instead of complexity increasing at a greater-than-linear rate. This means that the 745 

larger the pool of unique haplotypes that an individual descends from, the greater 746 

speedup of our pipeline relative to other methods. Although computational speed has 747 

been shown to be reduced by haplotype pre-phasing (Howie et al. 2011), to our 748 

knowledge, pre-phasing has not been demonstrated with ultra-low coverage sequencing 749 

on the order of 0.005-0.05X. As a result, pre-phasing would likely require greater 750 

sequencing effort, negating the benefit of low coverage reconstruction. Computational 751 

search space can also be reduced if an individual’s pedigree is known with certainty, 752 

however controlled crosses can be laborious, and may lead to cage-specific effects. 753 

 754 

 755 

Applying the Hybrid Swarm approach  756 

At minimum, the Hybrid Swarm approach requires a sequenced set of individuals for 757 

founding a recombinant population. Although our simulations presented here were 758 

conducted with inbred founding lines, genome reconstructions can similarly be 759 

performed with any phased genomes. For example, 16 phased outbred founders could 760 

be treated as 32 independent haplotypes. Phased genomes are becoming increasingly 761 

accessible with the advent of long-read sequencing platforms and phasing software 762 

(Chin et al. 2016; Mostovoy et al. 2016; Seo et al. 2016), allowing this technique to be 763 

applied to even more systems. Optionally, a recombination rate map for the population 764 

can be provided, otherwise recombination is assumed to occur with equal user-defined 765 

probability across any chromosome. 766 

 767 

As a first step, power analyses using our rapid association test simulation pipeline will 768 

inform choices of sample size and mapping population design (Figure 3). After 769 

determining a feasible sample size for a given SNP of minimum percent variation 770 

explained, researchers can evaluate the accuracy of low-coverage chromosome 771 

reconstructions for a simulated proposed mapping population. Note that while we 772 

performed association tests in a case/control framework, the relative power of the 773 
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Hybrid Swarm is expected to be the same for quantitative traits, which could garner 774 

additional power from sampling individuals from phenotypic extremes (D. Li, Lewinger, 775 

Gauderman, Murcray, & Conti, 2011). 776 

 777 

For our simulations, we parameterized chromosome reconstructions using a maximum 778 

of 𝑁 = 16 most-likely ancestors (MLAs) and 𝑆 = 5000 SNPs, which required less than 3 779 

GB of memory and completed in under 5 minutes on a single core. However, these 780 

values may not be ideal for all systems. It may be necessary to select greater number of 781 

MLAs prior to reconstruction if haplotypes are difficult to differentiate due to being less 782 

divergent (i.e. exhibiting lower 𝜃గ) than those simulated here. For example, 783 

reconstruction accuracy was low for coalescent-derived mapping populations modeled 784 

with 𝜃 = 4 × 10ିହ (Supplemental Figure S8), which may reflect those of C. elegans 785 

(Barriere and Félix 2005).  Further, 5000 SNPs may be an over- or under-estimate of 786 

those required in other systems. Because recombination between haplotypes can only 787 

be inferred at sampled variable sites, SNP density directly influences how close inferred 788 

breakpoints will be resolved with respect to their actual position. The models described 789 

in Figure 1 can be used to estimate the memory and runtime required for a given 790 

number of input ancestor haplotypes.  791 

 792 

To evaluate whether low coverage sequencing data will yield accurate genotype 793 

estimates for a given proposed mapping population, researchers can test reconstruction 794 

accuracy in silico. We provide a convenient forward-simulation R script for this purpose 795 

that generates output in the haplotype map format (Figure 2). Simulated individuals can 796 

then be ran through the simulated sequencing and mapping pipeline at a desired level 797 

of coverage. After generating simulated mapped individuals, researchers can optimize 798 

the number of MLAs and HARP threshold that provide most effective MLA selection for 799 

their mapping population (Figure 4). This step may reveal haplotypes that are 800 

consistently problematic or inaccurately chosen, which can be excluded from further 801 

simulations (and when generating the true mapping population). Researchers can then 802 

perform chromosome reconstruction using the optimized MLA selection parameters and 803 

evaluate whether accuracy is acceptable (Figure 5).  804 
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 805 

After performing chromosome reconstructions, a quality control step may be applied 806 

whereby troublesome regions are masked. For example, a reconstructed chromosome 807 

with a sequence of short recombination blocks could be masked prior to evaluating 808 

genotyping accuracy or performing association testing. In our simulations, it was 809 

surprisingly difficult to diagnose exact factors contributing to the least accurate 810 

reconstructions. However, these highly recombinant reconstructions still achieved 90-811 

99% accuracy, suggesting that accuracy may be achieved even for anomalous hyper-812 

recombinant individuals (Figure 5). Optimized parameters can then be applied to a 813 

genuine mapping population akin to the simulated one. 814 

 815 

Conclusions 816 

An outbred high-resolution mapping population that can be generated in little time is an 817 

attractive option for researchers, but such mapping populations have been prohibited by 818 

genotyping costs or computational requirements to impute genotypes from ultra-low 819 

sequencing data. Our work demonstrates the feasibility of the Hybrid Swarm as a cost-820 

effective method of fine-scale genetic mapping in an outbred population and provides a 821 

computationally efficient framework for GWAS power analysis. 822 

 823 
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Figures 992 

 993 
Figure 1. Resource usage of RABBIT during haplotype reconstruction. 994 
All reconstructions involve the same simulated 2L chromosome arm comprised of four 995 
haplotypes. Simulations included varied numbers of founding haplotypes (N) and a 996 
randomly selected set of markers (number of SNPs, S, incremented in steps of 500). All 997 
simulations included, at minimum, the four true haplotypes for the simulated individual.  998 
In A and B, points depict the mean of empirical values (over 10 replicates) and gray 999 
lines depict the defined regression models. Predicted peak memory usage and runtime 1000 
are displayed on a log scale over a greater range for number of founding haplotypes in 1001 
C and D, respectively.  1002 
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 1003 
Figure 2. Basic structure of the forward simulator pipeline.  1004 
Inbred founding lines (A) are randomly intercrossed to produce a recombinant 1005 
population (B). Rapid generation of independent mapping populations is achieved by 1006 
random down-sampling (C) and permutation of ancestry (D). Population genetic data is 1007 
encoded in a highly compressed format (E) that references the positions of haplotype 1008 
blocks instead of genotypes at every site, enabling us to generate 500 mapping 1009 
populations for a given parameter combination. Individuals are probabilistically assigned 1010 
to case or control groups based on genotype at a randomly chosen causal SNP 1011 
segregating at a specified frequency.  1012 
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 1013 
Figure 3. Schematic for rapid association testing with the haplotype block files. 1014 
For a given population represented by a haplotype map file (A), all SNPs between 1015 
sorted breakpoints (indicated by dashed lines) will share identical aggregated haplotype 1016 
frequencies (B). Haplotype frequencies are multiplied by a founder genotype matrix (C) 1017 
where alleles are coded reference (black cells) and alternate (white cells). Conditional 1018 
row sums of the resulting matrix (D) yields reference and alternate frequencies at each 1019 
locus (E), to be used for 𝜒2 tests of independence.  1020 
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 1021 
Figure 4. Optimization curves for Most-Likely-Ancestor (MLA) selection.    1022 
Increasing the upper limit for the number of MLAs chosen reduces the number of true 1023 
ancestors missed, similarly reducing the fraction of a given chromosome that is not 1024 
represented within the selected set of MLAs. Ancestors that fail to pass the HARP 1025 
threshold across all genomic windows are not selected, resulting in realized sets of 1026 
MLAs (Number of Ancestors Chosen) below the upper-limit allowed (x-axis). Data 1027 
shown reports means across 400 replicates made up of 100 simulated individuals (4 1028 
autosomes each for coalescent simulations, 4 autosome arms each for DGRP 1029 
simulations) per parameter combination.  Coalescent-derived populations described 1030 
here were simulated with 𝑁௘ = 106 and 𝜇 = 5 × 10ି9.  1031 
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 1032 
Figure 5. Accuracy of genome reconstruction pipeline for simulated F5 Hybrid Swarm 1033 
individuals. 1034 
Reconstructions were performed for populations simulated as being founded by either 1035 
32 or 128 inbred lines at 0.05X sequencing coverage with up to 16 MLAs as determined 1036 
with a HARP threshold of 0.99. Accuracy, calculated as the per-chromosome fraction of 1037 
variable sites with a correct diploid genotype estimate, is shown on logit-transformed 1038 
scale. Values are coded depending on the number of estimated recombination events, 1039 

with highly recombinant estimates (>10 recombination events) displayed as an ✕. Each 1040 

parameter combination includes 400 reconstructed autosomes (individual circles) for 1041 
100 simulated individuals. The coalescent-derived individuals displayed here were 1042 
simulated with an effective population size of 𝑁௘ = 1 × 106 and mutation rate 𝜇 =1043 
5 × 10ି9.   1044 
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 1045 
Figure 6. Accuracy of simulated GWAS for various mapping populations. 1046 
 Plots display the cumulative probability of including a causal SNP when selecting the 1047 
top N most significant SNPs, or 100kb windows around those SNPs, out of 500 1048 
simulated GWAS (each comprised of 5000 individuals phenotypically assigned in a 1049 
case-control framework). Homozygotes for the reference allele were assigned to the 1050 
case group with 45% probability, while homozygotes for the alternate allele were 1051 
assigned to the case group with 55% probability (a difference of 10%), and 1052 
heterozygotes are assigned to case and control groups with equal probability. ILs: 1053 
inbred lines. RILs: recombinant inbred lines. HS: Hybrid Swarm populations founded by 1054 
32 or 128 lines. Outbred: An F50 population founded by 128 lines.   1055 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/671925doi: bioRxiv preprint 

https://doi.org/10.1101/671925
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

 1056 

 1057 
Figure 7. Genomic Inflation Factor (GIF, 𝜆ଵ଴଴଴) for simulated GWAS with a causal allele 1058 
segregating at a specified frequency. 1059 
GIF is calculated genome-wide (across all autosomes); on the autosome arm containing 1060 
the causal allele (linked); and for sites on the autosome physically unlinked to the 1061 
causal allele. 𝜆 is calculated as the ratio of observed to expected 𝜒2 values, and a 1062 
correction is performed to produce the null expectation given the sample size had 1063 
actually been 1000 individuals (see Materials and Methods for details). Data are 1064 
averaged over 500 simulated GWAS (each comprised of 5000 individuals 1065 
phenotypically assigned in a case-control framework). Homozygotes for the reference 1066 
allele were assigned to the case group with 45% probability, while homozygotes for the 1067 
alternate allele were assigned to the case group with 55% probability (a difference of 1068 
10%), and heterozygotes are assigned to case and control groups with equal 1069 
probability. Boxes represent the median and interquartile range; whiskers extending to 1070 
the lower and upper bounds of the 95% quantiles. ILs: 128 Inbred Lines. RILs: 800 1071 
Recombinant Inbred Lines. HS: Hybrid Swarm with 32 or 128 founding lines. Outbred: 1072 
F50 population founded by 128 inbred lines. 1073 

1074 
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 1075 
Figure 8. Counts of variable sites depending on number of founding DGRP haplotypes 1076 
Each point represents the number of sites segregating at or above a given minor allele 1077 
frequency threshold when drawing N haplotypes, with 20 replicates per parameter 1078 
combination. With a minimum minor allele frequency (MAF) of 12.5%, a population 1079 
founded by eight haplotypes exhibits approximately double the number of variable sites 1080 
compared to a population founded by 128 haplotypes. With a minimum MAF of 5%, 1081 
populations with eight founding haplotypes present with fewer SNPs compared to 1082 
populations founded by 16 or more haplotypes.  1083 
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Population N Founders 𝜌 Δഥ 𝜎௱ 
DGRP 128 0.986 -0.015 0.25 
DGRP 32 0.502 0.17 2.15 
Coalescent 128 0.956 -0.17 0.44 
Coalescent 32 0.759 -0.31 1.26 

 1084 
Table 1. Accuracy of estimated number of recombination events following chromosome 1085 
reconstruction. 1086 
 A high concordance correlation coefficient (Lin’s 𝜌) indicates agreement between 1087 
estimated and true recombination counts for 400 reconstructed chromosomes 1088 
(coalescent-derived populations) or chromosome arms (DGRP-derived populations). 1089 
Coalescent-derived populations are described across a range of values for effective 1090 
population size 𝑁௘ and mutation rate 𝜇. Δഥ and 𝜎௱ denote mean and standard deviation, 1091 
respectively, of difference between estimated and true recombination counts. 1092 
Reconstructions were performed with a maximum of 16 most-likely-ancestors with a 1093 
HARP threshold of 0.99 (see methods for more details).  1094 
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 1095 
Figure S1. Recombination probability functions used for simulated individuals. 1096 
 Recombination is modeled as a Poisson process, with position sampled from linear 1097 
interpolation of recombination rates measured in Drosophila melanogaster by Comeron 1098 
et al. (2012). The frequency of recombination samples cumulative map distance (inset, 1099 
e.g. a 99 cM chromosome is modeled as a Poisson variable with an expected value of 1100 
𝜆 = 0.99). For DGRP-derived individuals, recombination was simulated for full 1101 
chromosomes two and three, and reconstructions were then conducted independently  1102 
for arms 2L, 2R, 3L, and 3R. 1103 
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 1104 
Figure S2. Optimization curves for Most-Likely-Ancestor inclusion, by count, in SCRM-1105 
derived F5 hybrid swarm individuals 1106 
 The number of missed true ancestors is shown as a function of the number of 1107 
ancestors chosen across a range of HARP threshold values (0.9 to 0.999), effective 1108 
population sizes (𝑁௘) and mutation rates (𝜇). Values are averaged across 400 1109 
reconstructed autosomes (from 100 individuals) per parameter combination. 1110 
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 1111 
Figure S3. Optimization curves for Most-Likely-Ancestor inclusion, by chromosome 1112 
representation, in simulated SCRM-derived F5 hybrid swarm individuals. 1113 
 The proportion of the chromosome not covered by the chosen ancestors is shown as a 1114 
function of the number of ancestors chosen for populations founded by either 32 or 128 1115 
inbred founding lines across a range of HARP threshold values (0.9 to 0.999), effective 1116 
population sizes (𝑁௘) and mutation rates (𝜇). Each line summarizes the arithmetic mean 1117 
fraction of sites where the true ancestor is not included within the inferred set of Most-1118 
Likely-Ancestors. Values are averaged across 400 reconstructed autosomes (from 100 1119 
individuals) per parameter combination. 1120 
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 1121 
Figure S4. Optimization curves for Most-Likely-Ancestor (MLA) selection for DGRP-1122 
derived F5 hybrid swarm individuals. 1123 
Effectiveness is shown for populations founded by either 32 or 128 inbred founding lines 1124 
across a range of HARP threshold values (0.9 to 0.999), for two levels of sequencing 1125 
coverage.  Values are averaged across 400 reconstructed autosomes (from 100 1126 
individuals) per parameter combination. 1127 
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 1128 
Figure S5. Distribution of Most-Likely-Ancestor counts for simulated, Coalescent-1129 
derived, 32-founder F5 hybrid swarm individuals. 1130 
 The mean value ± 1 standard deviation is shown by the solid line and ribbon, 1131 
respectively, across a range of HARP threshold values (0.9 to 0.999), effective 1132 
population sizes (𝑁௘) and mutation rates (𝜇). The number of Most-Likely-Ancestors 1133 
dictates the computational complexity (runtime and memory requirements) of 1134 
chromosome reconstruction. Each parameter combination includes 400 chromosomes 1135 
(from 100 simulated individuals) simulated with 0.05X sequencing coverage.  1136 
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 1137 
Figure S6. Distribution of Most-Likely-Ancestor counts for simulated, Coalescent-1138 
derived, 128-founder F5 hybrid swarm individuals. 1139 
 The mean value ± 1 standard deviation is shown by the solid line and ribbon, 1140 
respectively, across a range of HARP threshold values (0.9 to 0.999), effective 1141 
population sizes (𝑁௘) and mutation rates (𝜇). The number of Most-Likely-Ancestors 1142 
dictates the computational complexity (runtime and memory requirements) of 1143 
chromosome reconstruction. Each parameter combination includes 400 chromosomes 1144 
(from 100 simulated individuals) simulated with 0.05X sequencing coverage. 1145 
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 1146 
Figure S7. Distribution of Most-Likely-Ancestor counts for simulated, DGRP-derived F5 1147 
hybrid swarm individuals. 1148 
 The mean value ± 1 standard deviation is shown by the solid line and ribbon, 1149 
respectively, for populations founded by either 32 or 128 inbred lines, across a range of 1150 
HARP threshold values (0.9 to 0.999) and two levels of sequencing coverage. Each 1151 
parameter combination includes 400 chromosomes (from 100 simulated individuals) 1152 
simulated with 0.05X sequencing coverage. 1153 

1154 
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 1155 
Figure S8. Accuracy of genome reconstruction for simulated, coalescent-derived F5 1156 
hybrid swarm individuals. 1157 
 Reconstructions were performed for populations simulated as being founded by either 1158 
32 or 128 inbred lines for various effective population sizes (𝑁௘) and mutation rates (𝜇). 1159 
Accuracy is represented on a logit scale, as most points occur above 90%. 1160 
Reconstructed chromosomes that are predicted to exhibit >10 recombination events are 1161 
denoted by an X. Each parameter combination includes 400 reconstructed 1162 
chromosomes (from 100 simulated individuals). 1163 
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 1164 
Figure S9 Accuracy of genome reconstruction for simulated, DGRP-derived F5 hybrid 1165 
swarm individuals. 1166 
 Reconstructions were performed for populations simulated as being founded by either 1167 
32 or 128 inbred lines for two levels of ultra-low sequencing coverage. Accuracy is 1168 
represented on a logit scale, as most points occur above 90%. Accuracy values are 1169 
marked depending on the number of estimated recombination events, with highly 1170 

recombinant estimates (>10 recombination events) displayed as an ✕. Each parameter 1171 

combination includes 400 reconstructed chromosomes (from 100 simulated individuals). 1172 
  1173 
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 1174 
 1175 

 1176 
Figure S10. Probability of selecting a causal SNP (or a nearby neighbor) in simulated 1177 
GWAS. 1178 
 Each line represents the fraction of GWAS simulations (out of 500 total GWAS, each 1179 
comprised of 5000 individuals in a case-control framework) where the causal SNP is 1180 
selected within N most significant regions. Case-control status was assigned based on 1181 
reference allele dosage at a randomly selected causal SNP segregating with frequency 1182 
of 50%, 25%, or 12.5%. For 10% PVE, homozygotes for the reference allele were 1183 
assigned to the case group with 45% probability, while homozygotes for the alternate 1184 
allele were assigned to the case group with 55% probability (a difference of 10%). For 1185 
5% PVE, homozygotes for the reference allele were assigned to the case group with 1186 
47.5% probability, while homozygotes for the alternate allele were assigned to the case 1187 
group with 52.5% probability (a difference of 5%). All heterozygotes (and any individuals 1188 
modeled with 0% PVE, irrespective of genotype) were equally likely to be assigned to 1189 
case or control group (a difference of 0%). 1190 
  1191 
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 1192 
Figure S11. Genomic Inflation Factor (GIF, 𝜆ଵ଴଴଴) in simulated DGRP GWAS as a 1193 
function of minor allele frequency and percent variation explained. 1194 
GIF is stronger with greater PVE, and is elevated on the arms which contain (and are 1195 
directly and most strongly linked to) the SNP associated with case and control status. 1196 
  1197 
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 1198 

 1199 
Figure S12. Genomic Inflation Factor (GIF, 𝜆ଵ଴଴଴) in simulated DGRP GWAS with no 1200 
genotype-phenotype link. 1201 
As the percent variation explained is 0% (and thus, case and control status is randomly 1202 
assigned), GIF centers around 1.0 as expected. 1203 
 1204 
  1205 
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Population Coverage N Founders 𝑁௘  𝜇 𝜌 Δഥ 𝜎௱ 
DGRP 0.005X 128 - - 0.201 3.06 3.11 
DGRP 0.005X 32 - - 0.201 3.15 2.81 
DGRP 0.05X 128 - - 0.986 -0.015 0.25 
DGRP 0.05X 32 - - 0.502 0.17 2.15 
Coalescent 0.05X 128 104 1 × 10ି9 0.029 -2.72 1.60 
Coalescent 0.05X 32 104 1 × 10ି9 0.219 -1.84 1.50 
Coalescent 0.05X 128 105 1 × 10ି9 0.288 -1.57 1.64 
Coalescent 0.05X 32 105 1 × 10ି9 0.761 -0.53 0.99 
Coalescent 0.05X 128 106 1 × 10ି9 0.742 -0.46 1.09 
Coalescent 0.05X 32 106 1 × 10ି9 0.754 -0.42 1.22 
Coalescent 0.05X 128 104 5 × 10ି9 0.203 -2.03 1.73 
Coalescent 0.05X 32 104 5 × 10ି9 0.622 -0.89 1.17 
Coalescent 0.05X 128 105 5 × 10ି9 0.652 -0.64 1.41 
Coalescent 0.05X 32 105 5 × 10ି9 0.782 -0.26 1.16 
Coalescent 0.05X 128 106 5 × 10ି9 0.956 -0.17 0.44 
Coalescent 0.05X 32 106 5 × 10ି9 0.759 -0.31 1.26 
Coalescent 0.05X 128 104 1 × 10ି8 0.238 -1.65 1.86 
Coalescent 0.05X 32 104 1 × 10ି8 0.745 -0.66 1.05 
Coalescent 0.05X 128 105 1 × 10ି8 0.776 -0.34 1.12 
Coalescent 0.05X 32 105 1 × 10ି8 0.846 -0.25 0.93 
Coalescent 0.05X 128 106 1 × 10ି8 0.937 -0.22 0.56 
Coalescent 0.05X 32 106 1 × 10ି8 0.833 -0.32 0.95 
        

Table S1. Accuracy of estimated number of recombination events following 1206 
chromosome reconstruction. 1207 
A high concordance correlation coefficient (Lin’s 𝜌) indicates agreement between 1208 
estimated and true recombination counts for 400 reconstructed chromosomes 1209 
(coalescent-derived populations) or chromosome arms (DGRP-derived populations). 1210 
Coalescent-derived populations are described across a range of values for effective 1211 
population size 𝑁௘ and mutation rate 𝜇. Δഥ and 𝜎௱ denote mean and standard deviation, 1212 
respectively, for difference between estimated and true recombination count. 1213 
Reconstructions were performed with a maximum of 16 most-likely-ancestors with a 1214 
HARP threshold of 0.99 (see methods for more details). 1215 
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