

Title

Accurate, ultra-low coverage genome reconstruction and association studies in Hybrid Swarm mapping populations

Cory A. Weller^{1,2}, Alan O. Bergland¹

¹ Department of Biology, University of Virginia, Charlottesville, Virginia 22904

² E-mail: caw5cv@virginia.edu

Abstract

12 Genetic association mapping studies seek to uncover the link between genotype and
13 phenotype, and often utilize inbred reference panels as a replicable source of genetic
14 variation. However, inbred reference panels can differ substantially from wild
15 populations in their genotypic distribution, and patterns of linkage-disequilibrium and
16 nucleotide diversity. As a result, associations discovered using inbred reference panels
17 may not reflect the genetic basis of phenotypic variation in natural populations. To
18 address this problem, we evaluated a mapping population design where dozens to
19 hundreds of inbred lines are outbred for few (e.g. five) generations, which we call the
20 Hybrid Swarm. The Hybrid Swarm approach has likely remained underutilized relative to
21 pre-sequenced inbred lines due to the costs of genome-wide genotyping. To reduce
22 sequencing costs and make the Hybrid Swarm approach feasible, we developed a
23 computational pipeline that reconstructs accurate whole genomes from ultra-low-
24 coverage (0.05X) sequence data in Hybrid Swarm populations derived from ancestors
25 with phased haplotypes. We compared the power and precision of GWAS using the
26 Hybrid Swarm, inbred lines, recombinant inbred lines, and highly outbred populations
27 across a range of allele frequencies and effect sizes, modeling genetic variation from
28 the *Drosophila* Genetic Reference Panel as well as variation from neutral simulations.
29 While inbred populations tended to perform best due to the intrinsic power benefits
30 conferred by the lack of heterozygotes, association mapping with the Hybrid Swarm
31 performed comparably to highly outbred (F_{50}) populations and has higher precision than
32 mapping with inbred lines. Taken together, our results demonstrate the feasibility of the
33 Hybrid Swarm as a cost-effective method of fine-scale genetic mapping.

34

Introduction

35

36 Genetic mapping studies seek to describe the link between genotype and phenotype.
37 For experimental crosses, mapping was traditionally conducted by scoring the
38 phenotypes of recombinant offspring descended from a limited number of parental lines.
39 While such QTL mapping studies can have high power to detect associations, they offer
40 minimal mapping resolution (Cheng *et al.* 2010), often detecting broad regions of
41 phenotypic association (Bergland *et al.* 2012). If linkage disequilibrium is lowered,
42 spurious associations become rarer (Li *et al.* 2005) and associations can be resolved at
43 the gene or nucleotide level, as in GWAS of large outbred populations (Nikpay *et al.*
44 2015; Wu *et al.* 2017; Monir and Zhu 2017). However, GWAS suffer from reduced
45 power to detect associations, necessitating a large sample size relative to QTL mapping
46 (Spencer *et al.* 2009).

47

48 To generate higher resolution mapping populations than the traditional biparental F2
49 design, Multiparent Populations (MPPs) are commonly used. By crossing together
50 multiple inbred lines, researchers can produce genetically diverse mapping populations
51 without sampling wild individuals. MPPs are commonly used for the dissection of
52 complex traits in model organisms (Chesler *et al.* 2008; Kover *et al.* 2009; King *et al.*
53 2012b) and agriculturally important crops (Huang *et al.* 2012; Singh *et al.* 2013; Krämer
54 *et al.* 2014). The mapping resolution of MPPs depends on the extent of linkage
55 disequilibrium, and resolution is improved by allowing for more recombination between
56 haplotypes, or by incorporating a greater number of genetically diverse haplotypes (Mott
57 *et al.* 2000; Chia *et al.* 2005).

58

59 One alternative approach for generating a high-resolution mapping population is to
60 substitute extensive recombination for increased haplotype diversity. By crossing
61 dozens to hundreds of inbred lines for a limited number of generations, heterozygous
62 mapping populations can be generated quickly with sufficiently reduced LD to detect
63 associations with high resolution. Unfortunately, the many-haplotypes few-generations
64 method is not without its drawbacks. First, including many haplotypes decreases the

65 frequency of the rarest alleles, reducing power to detect associations. Second, such an
66 outbred population would require recurring genotyping efforts (Yang *et al.* 2018) unlike
67 pre-sequenced homozygous lines. The net requirement of genotyping a large sample
68 size may explain the widespread use of pre-genotyped inbred reference panels for
69 genetic association experiments in model systems (Huang *et al.* 2011; King *et al.*
70 2012b; MacKay *et al.* 2012; Srivastava *et al.* 2017).

71

72 Here, we describe computational methods that allow for cost-effective association
73 mapping with a large outbred population. The Hybrid Swarm is founded by dozens to
74 hundreds of inbred lines, crossed for a limited number of generations. To reduce
75 genotyping costs of the Hybrid Swarm, we developed and evaluated a pipeline to
76 reconstruct whole genomes using ultra-low coverage sequencing data. We developed
77 and tested our pipeline by reconstructing whole genomes for thousands of simulated
78 Hybrid Swarm individuals. Our simulated genomes draw from natural variation in the
79 *Drosophila melanogaster* Genetic Reference Panel (DGRP), as well as from variation
80 generated from coalescent models representing a broad range of genetic diversity
81 parameters for common model systems. We show that the Hybrid Swarm approach
82 allows for highly accurate genotyping (average 99.9% genotypic accuracy) from ultra-
83 low-coverage (0.005-0.05X) whole-genome individual-based sequencing. We then
84 perform simulated GWAS to describe the power and precision of association mapping in
85 the Hybrid Swarm compared to inbred lines, recombinant inbred lines, and a highly
86 outbred (F_{50}) population. Our computational tools are capable of efficiently simulating
87 low-coverage reconstruction and GWAS power analysis of any model system. Together,
88 our results the feasibility of cost-effective high-resolution association mapping in a large
89 outbred population.

90

91 **Methods**

92

93 **Generating and preparing simulated reference panels.**

94 In order to evaluate low-coverage reconstruction for various degrees of genetic
95 diversity, we generated reference panels using haplotypes produced by coalescent

96 models across a range of genetic diversity levels. Haplotypes were generated using the
97 *R* (R Core Team 2016) package *scrm* (Paul R. Staab et al. 2015) and subsequently
98 restructured into VCF file format (Danecek et al. 2011). We generated ten independent
99 panels for each of all 18 combinations of population size ($N_e = 10^4, 10^5, 10^6$), mutation
100 rate ($\mu = 10^{-9}, 5 \times 10^{-9}, 10^{-8}$), and number of haplotypes (32, 128). The value for θ for
101 each simulation was defined as $4N_e\mu$. We simulated a chromosome-length locus of 25
102 Mb with a recombination rate of 1.5 cM/Mb. SNP positions output by *scrm* (a decimal
103 within the range of 0 to 1) were converted to base pair positions by multiplying the
104 decimal by chromosome length (25×10^6 base pairs for our simulations) and rounding
105 down to the nearest integer. Any sites with more than two alleles were converted to a
106 biallelic site by discarding tertiary or quaternary alleles. Genotype values were re-coded
107 as polarized signed integers: +1 for reference and -1 for alternate alleles. For every
108 position, reference and alternate alleles were defined by randomly selecting one of the
109 twelve non-repeating pairs of nucleotides. Reference genome FASTA files were
110 created with a custom python script that generated a 25 million length string of
111 nucleotide characters with weighted probability to achieve 45% GC-content, followed by
112 replacing variable positions with their respective reference alleles.

113

114 **Preparing DGRP haplotype data**

115 As a case study of low-coverage genome reconstruction in a model system, we
116 incorporated wild fruit fly genetic diversity from the *Drosophila* Genetic Reference Panel
117 (MacKay et al. 2012) DGRP freeze 2 as available from the *Drosophila* Genome Nexus
118 (Lack et al. 2015). To minimize missing data, we included the 129 lines (out of 205)
119 which exhibited aligned whole genome FASTA files with less than 50% of nucleotides
120 indicated by the ambiguity character N. We excluded insertions, deletions, fixed sites,
121 and sites with more than two alleles. Any heterozygous genotype calls were masked as
122 missing data. Diploid genotypes were re-coded as a single signed integer value, with +1
123 for homozygous reference, -1 for homozygous alternate, and 0 for missing data. This
124 resulted in a polarized VCF file containing only biallelic SNPs and only homozygous (or
125 missing) genotype calls.

126

127 **Simulating Mapping Populations**

128 To generate simulated populations, we developed a forward-simulator in R that stores
129 ancestral haplotype block maps instead of genotypes. Our analyses necessitated a
130 method of storing genotype information for thousands of individuals across thousands of
131 simulations. To do so, we leveraged information redundancy that exists between related
132 individuals in recombinant populations, generating haplotype block files. We achieved
133 between three and four orders of magnitude of compression relative to a VCF file. For
134 example, for a population containing 5000 diploid genotypes at nearly four million sites,
135 a compressed VCF file is approximately 6.5 GB, compared to approximately 3.5 MB for
136 a haplotype block file. This reduced file size is what allowed us to generate and store
137 28,000 total independent GWAS simulations (500 each for 56 parameter combinations).
138 When haplotype block ancestry is known and recorded, as is possible with simulations,
139 genotypes must only be recorded once (for the ancestral founders). Recombinant
140 individual genotypes can then be reconstituted by extracting ancestral genotypes from
141 ancestor and base pair position indices.

142

143 We simulated Hybrid Swarms through random mating over five non-overlapping
144 generations at a population size of 10,000. Simulations proceeded in the following
145 manner: first, a subset of either 32 or 128 founders was selected. Then, of that founder
146 subset, 10,000 individuals were sampled with replacement. All possible founders were
147 chosen with equal probability and assigned male or female sex with a 1:1 ratio, where
148 sex was determined by the presence of a designated sex chromosome. Sexual
149 reproduction was simulated by random sampling of recombinant gametes from male-
150 female pairs. Once 10,000 recombinant progeny were generated, the parental
151 generation was discarded. Reproduction continued until the F₅ population was
152 achieved. Recombination frequency was modeled as a Poisson process with an
153 expected value $\lambda = \Sigma(Morgans)$ per chromosome. For simulations of *Drosophila*
154 populations based on DGRP chromosomes, recombination occurred only in females,
155 with recombination frequency and position based on values from Comeron et al (2012).
156 For populations founded by simulated haplotypes, recombination occurred in both

157 sexes, with recombination occurring uniformly across each chromosome (Supplemental
158 Figure S1).

159

160 **Simulating and Mapping Sequencing Data**

161 We used *wgsim* (Li 2011) to generate simulated reads. To achieve a desired level of
162 sequencing coverage $C = 0.05$ or 0.005 , we generated $N = (C \times S)/(2 \times L)$ reads per
163 chromosome, with read length $L = 100$ bp and chromosome length S bp. We specified a
164 base error rate of 0.001 and an indel fraction of 0. Remaining *wgsim* parameters were
165 left as default.

166

167 We assembled paired end reads using *PEAR* (Zhang *et al.* 2014) and separately
168 aligned the assembled and unassembled groups to a reference genome with *bwa*
169 0.7.14 using the BWA-MEM algorithm (Li 2013). Reads from DGRP-derived populations
170 were mapped to the *D. melanogaster* reference genome v5.39, and reads from
171 coalescent-derived populations were mapped to their respective simulated reference
172 genomes. After converting mapped reads to compressed BAM format with *samtools*
173 1.3.1 (Li *et al.* 2009), we removed PCR duplicates with *Picard tools* 2.0.1 (Broad
174 Institute 2015a).

175

176 **Most Likely Ancestors Selection**

177 To make chromosome reconstructions in the hybrid swarm computationally tractable
178 (Figure 1), we developed a method of accurately selecting a subset of most likely
179 ancestors for any single chromosome. We then used that ancestor subset to reconstruct
180 haplotype blocks using the *RABBIT* package (Zheng *et al.* 2015) in Mathematica.
181 *RABBIT* operates as a Hidden Markov Model (HMM) using the Viterbi algorithm to
182 return the most likely series of parental combinations (hidden states) across the
183 genome (SNP positions) given the observations (sequenced alleles). For every position
184 in the genome, the Viterbi algorithm evaluates relative likelihoods of transitioning to any
185 possible hidden state. Because the hidden states in our case are ancestor
186 combinations, there will be $(N^2 + N)/2$ combinations of N haplotypes to evaluate at
187 every site. This number of evaluations is tractable at smaller values of N but grows at a

188 quadratic rate. For example, increasing the number of founding haplotypes from 8 to
189 128 is a 16-fold increase in haplotypes, but it would incur orders of magnitude increases
190 in computational effort (Figure 1). Thus, in order to make reconstructions in *RABBIT*
191 computationally tractable for hybrid swarm individuals, it is necessary to identify a
192 subset of founders that accurately includes the true ancestors contributing to any given
193 chromosome.

194

195 We used the software package *HARP* (Kessner *et al.* 2013) to rank the population
196 founding lines based on likelihood of being a true ancestor of a chromosome to be
197 reconstructed. *HARP* was originally developed to estimate haplotype frequencies from
198 pooled sequence data, and we co-opted it to assess relative likelihood that any founder
199 contributed to a genomic window. We ran *HARP* with non-overlapping 100 kb windows
200 with a minimum frequency cutoff 0.0001, producing output which can be visualized as a
201 heat map of ancestor likelihood across the chromosome. A custom *R* script analyzed
202 this *HARP* output and ranked all possible founders in terms of likelihood of contribution
203 for a given chromosome. Briefly, a chromosome-wide significance threshold was
204 calculated, e.g. the 95% or 99% quantile of all likelihoods across all founders and all
205 chromosome windows. Then, every potential ancestor for each 100 kb window was
206 classified as falling above or below this threshold. Founding lines were then ranked in
207 descending order of the number of windows passing the threshold. We examined two
208 measures of effectiveness for this method across a range of quantile threshold values
209 (90%, 95%, 99%, and 99.9%) when selecting up to a maximum number of most likely
210 ancestral haplotypes. The first measure is the number of true ancestral founders
211 excluded; the second measure is the fraction of the chromosome derived from
212 ancestors missing from the selected subset.

213

214 **Chromosome Reconstruction with RABBIT**

215 We used the MAGIC reconstruct method of the Mathematica package RABBIT (Zheng
216 *et al.* 2015) to perform chromosome reconstructions, which has been shown to be
217 accurate for genotype estimation at sequencing coverage at 0.05X for a variety of
218 multiparent populations (Zheng *et al.* 2018). RABBIT requires three inputs: observed

219 genotypes in the individual being reconstructed; map distance (in cM units) of the same
220 loci; and genotypes for the potential ancestors at those same loci. For DGRP-derived
221 simulated populations, we specified map distance based on values reported by
222 Comeron et al. (2012) by performing linear interpolation of cumulative map units (cM) as
223 a function of base pair position. For populations derived from simulated haplotypes, we
224 used a linear function of 37.5 cM over each 25 Mb chromosome. To specify genotype
225 information, we first counted reference and alternate reads using the Genome Analysis
226 Toolkit *ASEReadCounter* (Broad Institute 2015b). Because it is not possible to make
227 confident homozygote genotype calls from low coverage sequencing data where most
228 sites are observed only once and or twice, we only included diploid genotype
229 observations for sites where both reference and alternate alleles were observed. As
230 RABBIT allows for an ambiguous allele character, for all sites where only reference or
231 alternate reads were observed (but not both), we included one ambiguous allele.

232

233 To minimize memory and runtime requirements, we included at most 5,000 SNPs per
234 chromosome, selected for maximum ancestor-discriminating information content. If an
235 observed (sequenced) allele is common, it will only slightly narrow down the possibility
236 of ancestors. If a sequenced allele is rare—at the most extreme, unique to one
237 individual—it provides greater information from which founder that site is derived. Thus,
238 we designate information-rich sites as those where the frequency of the sequenced
239 allele is the lowest with respect to the pool of most likely ancestors. In order to sample
240 sites with high information content spread throughout the chromosome, we used an
241 iterative approach. First, we included all heterozygous sites (i.e. where reference and
242 alternate alleles are both observed). Then, 10% of all SNPs were randomly sampled,
243 and we retained up to the top 0.2% most informative sites, repeating the random
244 sampling and retention until we designated 5,000 SNPs.

245

246 We ran RABBIT independently for each chromosome using the Viterbi decoding
247 function under the joint model, with all other RABBIT parameters left at default. RABBIT
248 output was converted to a phased chromosome haplotype map, which we then used to
249 extract and concatenate genotype information from a VCF file containing founder

250 genotypes. To calculate genotype reconstruction accuracy, we first imported true
251 (simulated) and estimated (reconstructed) genotypes using a custom *R* script. We
252 measured the fraction of all remaining sites where the estimated diploid genotype is
253 identical to the originally simulated diploid genotype, excluding fixed sites with respect
254 to the founding haplotypes, and excluding any sites with missing genotype information.
255 Because male individuals do not possess two copies of the sex chromosome, we only
256 evaluated accuracy for autosomes.

257

258 To measure accuracy of estimated frequency of recombination events, true and
259 estimated recombination counts were first summed over both copies of each
260 chromosome in a simulated individual. This removed the possibility of introducing error
261 by comparing the wrong copies of chromosomes. Only detectable recombination events
262 were considered, i.e. those that did not occur between homologous haplotypes. We
263 then used the *epi.ccc* function of the *R* package *epiR* (Stevenson 2018) to calculate
264 Lin's concordance correlation coefficient (ρ) between the true and estimated
265 recombination counts.

266

267 **Modeling Computational Complexity of Chromosome Reconstruction**

268 To estimate the rate at which computational requirements grows with data input, we
269 performed chromosome reconstructions with varying numbers of potential founders and
270 markers (SNPs). This allows us to extrapolate the runtime and memory for performing
271 the most resource intensive chromosome reconstructions (i.e. those with > 40 founding
272 lines). To generate runtime and memory usage data, we performed 900 reconstructions
273 using varying sizes of RABBIT input for a single example individual 2L chromosome.
274 Reconstructions included the four true ancestors of the simulated individual, plus 0 to 32
275 additional haplotypes (for a total of between 4 and 36 founders, in steps of 4) and a
276 random selection of marker SNPs (between 500 and 5000 in steps of 500). Ten
277 replicates, each with a unique random set of SNPs, was conducted for each
278 combination of N founding lines and S SNPs using a single core on the University of
279 Virginia computing cluster, with total runtime and peak memory usage as reported from
280 the SLURM workload manager (CPUtime and MaxRSS, respectively). We then

281 modeled the mean runtime and memory usage (averaged across 10 replicates per
282 parameter combination) as a function of number of founding lines and number of SNPs
283 fed into RABBIT. For runtime, simulations involving 8 or fewer founding lines were
284 omitted from the regression model because they ran too quickly to resolve non-zero
285 runtime. Memory was modeled as $Memory(GB) = 7.367 \times 10^{-9} \times SN^4 + 0.0316$, while
286 runtime was modeled as $Runtime(Minutes) = [1.189 \times 10^{-3} \times N^2 + 1.038 \times 10^{-6} \times$
287 $SN^2 + 2.649 \times 10^{-4} \times S]^2$.

288

289 **Simulated GWAS**

290 We performed GWAS on mapping populations produced by random sampling and
291 permutation of the previously-described forward-simulated populations. Although the
292 forward simulator we developed is efficient, it would not have been computationally
293 feasible to simulate 500 fully independent mapping populations (per parameter
294 combination) in a reasonable amount of time. Instead, we generated ten independent
295 forward-simulated populations, and for each of those, generated fifty randomly
296 permuted subsets (Figure 2). For a single simulated mapping population, we began by
297 sampling (with replacement) a random subset of 5,000 individuals, out of 10,000 total
298 individuals generated by forward-simulation. Then, we performed a permutation of
299 haplotype ancestry with a new, randomly-ordered (equally sized) subset of founders.
300 The permutation of ancestry was one-to-one, e.g. all haplotype blocks that were
301 previously derived from founder X would be translated to founder Y, and blocks
302 previously derived from Y would in turn be mapped to founder Z.

303

304 In addition to Hybrid Swarm populations, which we ran through the simulated
305 sequencing and mapping pipeline, we generated four additional types of mapping
306 populations for comparing GWAS performance: Highly outbred (F_{50}) populations, similar
307 to sampling wild individuals; Inbred Lines (ILs), similar to mapping with the DGRP; and
308 Recombinant Inbred Lines (RILs), similar to mapping with the DSPr.

309

310 The F_{50} populations were generated in same manner as the Hybrid Swarm, except for
311 fifty non-overlapping generations of recombination instead of five generations. The ten

312 resulting forward-simulated populations were resampled and permuted as we did with
313 the Hybrid Swarms.

314

315 We simulated ten initial sets of 800 RILs using the same forward-simulator as previously
316 described, each initialized with a random subset of eight DGRP haplotypes. Populations
317 randomly recombined at a population size of 10,000 for fifty non-overlapping
318 generations, after which 800 random male-female pairs of individuals were isogenized
319 through 25 generations of full-sibling mating. This scenario roughly corresponds to the
320 Drosophila Synthetic Population Resource (King *et al.* 2012a). For computational
321 simplicity, after the 25 generations of isogenization we removed any remaining residual
322 heterozygosity by forcing the identity of a second chromosome copy to be identical to
323 the first copy. We then sampled 5,000 draws (with replacement) of the 800 RILs
324 followed by ancestry permutation as described above.

325

326 To simulate GWAS on Inbred Lines, no forward-simulation was necessary. For a single
327 simulated population, we first randomly selected 128 DGRP lines with high coverage
328 and low levels of heterozygosity as the set of founders. Then, those 128 lines were
329 randomly sampled with replacement 5,000 times. As with hybrid swarm and RILs, for
330 any parameter combination we generated a total of 500 mapping populations.

331

332 Phenotypes were modeled as probabilistic assignment to a case or control group
333 dependent on allele dosage at a purely additive single SNP. We designated a causal
334 locus as a random autosomal biallelic SNP segregating within 0.5% of a desired minor
335 allele frequency (50%, 25%, and 12.5%). We modeled SNPs at 5% and 10% percent
336 variation explained (PVE), where reference allele homozygotes were assigned to the
337 case group with probability $50\% - PVE/2$, and alternate allele homozygotes were
338 assigned to the case group with probability $50\% + PVE/2$. Heterozygotes were equally
339 likely to be assigned case and control.

340

341 To perform many replicates of GWAS for many parameter combinations, we performed
342 a simple χ^2 test of independence for reference and alternate allele counts between case

343 and control groups. To do so most efficiently, we developed a method of aggregating
344 allele counts that uses a haplotype map table in conjunction with a single table of
345 founder genotypes (Figure 2). Briefly, haplotype table breakpoints across all individuals
346 were sorted in ascending order. When iterating through ascending unique start and stop
347 positions, between any pair of breakpoints, all SNPs will be comprised of the same
348 number of each founding haplotype. Haplotype IDs could then be counted and sorted in
349 the same column position order as the table containing polarized allele status (-1 for
350 alternate, +1 for reference). Multiplying the genotype table by the haplotype count vector
351 results in final allele counts, polarized negative for alternate alleles and positive for
352 reference alleles. For inbred mapping populations, we corrected for non-independent
353 allele draws by dividing the χ^2 value by two.

354

355 To describe the accuracy of simulated GWAS, we measured the likelihood of including
356 a locus that is near the causal site when considering a set of the top N most significant
357 SNPs. Here, 'near' is defined as either exact-SNP resolution, or within 1, 10, or 100 Kb.
358 In the case of 1 kb precision, we first consider the set of SNPs +/- 1 kb from the most
359 significant locus (greatest chi-square statistic). Then, we consider the second set of
360 SNPs as those within +/- 1 kb of the most significant locus outside of the window
361 already accounted for. This selection of significant clusters was repeated iteratively for
362 the top 25 regions, for window sizes of 0 (exact SNP resolution), 1 kb, 10 kb, and 100
363 kb.

364

365 We calculated genomic inflation factor (GIF, λ_{1000}) as the value of $\chi^2_{observed}/\chi^2_{expected}$
366 with two degrees of freedom. Because GIF increases with sample size, we performed a
367 correction to report the level of GIF expected with a sample size of 1,000 case and
368 1,000 control individuals (Freedman *et al.* 2004).

369

370 **Assessing counts of variable sites at appreciable frequency in the DGRP**

371 There is a reduction in power to detect associations with alleles segregating at low
372 minor allele frequencies. When a population is founded by N lines, any SNP will be
373 segregating at a relative frequency of at least 1/N, given that the SNP is not fixed within

374 the population and haplotypes are equally represented. We counted the number of sites
375 on a given chromosome arm segregating above a minor allele frequency threshold of
376 MAF=(0.05, 0.125, and 0.25) for random draws (without replacement) when sampling
377 N=(2, 4, 8, 16, 32, 64, 128) haplotypes of the 129 included DGRP lines We performed
378 this sampling 20 times for each chromosome arm.

379

380 **Data Availability Statement**

381 The code used to generate, process, and plot our data is available on GitHub:

382 <https://github.com/cory-weller/low-coverage-genome-reconstruction>

383

384 **Results**

385

386 **Computational Complexity of Chromosome Reconstruction**

387 To determine reasonable limits for numbers of SNPs and haplotypes used for
388 chromosome reconstruction with RABBIT, we modeled peak memory usage and
389 runtime across a range of input sizes. Peak memory grew linearly with number of SNPs
390 used, and at a greater-than-linear rate with haplotypes (Figure 1A, *Memory* =
391 $7.367 \times 10^{-9} \times SN^4 + 0.0316$, $F = 3.534 \times 10^6$, $df = 1 \& 88$, $R^2 = 1$). The runtime of
392 RABBIT increased at a greater-than-linear rate for both number of SNPs and number of
393 haplotypes, though the *N* parameter dominates (Figure 1B, *Runtime* = $[1.189 \times 10^{-3} \times$
394 $N^2 + 1.038 \times 10^{-6} \times SN^2 + 2.649 \times 10^{-4} \times S]$, $F = 4.316 \times 10^4$, $df = 3 \& 67$, $R^2 =$
395 0.9995). These models allowed us to estimate resource requirements at greater
396 numbers of haplotypes (Figure 1, C & D) which would be unfeasible to measure
397 empirically.

398

399 **Most-Likely-Ancestor Selection**

400 To reduce computational requirements of haplotype reconstructions with RABBIT, we
401 developed and evaluated an algorithm for selecting a minimum representative set of
402 Most-Likely-Ancestors (MLAs) for chromosome reconstruction. We found a HARP
403 threshold of 0.99 (see methods) discerned a minimal subset of founding lines that
404 tended to include a given chromosome's true ancestors (Figure 3). At this threshold,

405 outcomes became asymptotic at the computationally tractable cap of 16 founding lines
406 (Figure 1). Thus, we performed chromosome reconstruction using up to 16 most-likely-
407 ancestors as inferred with a HARP threshold of 0.99.

408

409 In all cases, decreasing the HARP threshold from 0.95 to 0.90 further reduced
410 chromosome representation while increasing the number of extraneous founding lines
411 selected for reconstruction. While a higher HARP threshold of 0.999 yielded the
412 smallest and most computationally tractable set sizes of MLAs ($\bar{N}=2.4-3.5$), the strict
413 threshold excluded true ancestors, resulting in a set that is least representative of
414 chromosomes to be reconstructed. For 128-founder populations, a threshold of 0.999
415 failed to identify founders constituting an average of 3.33% and 13.9% of chromosomes
416 for DGRP- and Coalescent-founded populations, respectively. In 32-founder
417 populations, the 0.999 threshold missed founders representing an average of 15.5%
418 and 29.7% of chromosomes from DGRP- and Coalescent-founded populations,
419 respectively.

420

421 Populations simulated with genetic variation derived from coalescent models described
422 above included the parameters $N_e = 10^6$ and $\mu = 5 \times 10^{-9}$. The effectiveness of most-
423 likely-ancestor selection for populations modeled across extended values of N_e and μ is
424 shown in supplemental Figures S2 and S3, respectively. Similarly, the number of most-
425 likely-ancestors chosen for reconstruction in RABBIT are shown in Figures S5 and S6.

426

427 Selected MLA set size is described in Figure S5 for 32-founder populations and Figure
428 S6 for 128-founder populations. Ancestor selection effectiveness for DGRP-derived
429 populations at two levels of sequencing coverage (0.005X and 0.05X) is shown in
430 supplemental Figure S4, and the corresponding number of most-likely-ancestors
431 chosen for reconstruction are shown in supplemental Figure S7.

432

433 **Reconstruction Accuracy**

434 Chromosome reconstruction of simulated F_5 Hybrid Swarm genomes at 0.05X
435 sequencing coverage yielded highly accurate genotype estimates (Figure 4). The

436 median percent of sites with correctly estimated genotypes was greater than 99.9%
437 whether the population was founded by 32 or 128 founding lines for either DGRP or
438 coalescent ($N_e = 10^6$ and $\mu = 5 \times 10^{-9}$) haplotypes. We additionally report
439 reconstruction accuracy in coalescent-derived populations across a range of N_e and μ
440 values in supplemental Figure S8.

441
442 For simulations founded by DGRP lines, 80.5% of reconstructed chromosomes from 32-
443 founder populations exhibited > 99.9% accuracy, with the remaining 19.5% of
444 reconstructions contributing to a long tail with a minimum of 84.37%. Increasing the
445 number of founding lines to 128 resulted in genotype accuracy above 99% for all cases
446 (minimum: 99.4%), with 83% of reconstructed chromosomes achieving greater than
447 99.9% accuracy.

448
449 Although median accuracy for coalescent-derived populations was equivalent to that of
450 DGRP-derived populations (99.9%), coalescent-derived populations with 32 founders
451 exhibited a greater number of low-accuracy reconstructions. While 82.5% of simulations
452 with 32 coalescent haplotypes were at least 99% accurate, the remaining 17.5% of
453 reconstructions contributing to a long tail with a minimum accuracy of 59.7%. Increasing
454 the number of founding lines to 128 resulted in 96.3% of simulations being greater than
455 99% accurate, with a minimum accuracy of 89.6%.

456
457 The number of recombination events estimated from chromosome reconstruction was
458 most accurate for populations founded by 128 lines (Table 1). Reconstructions of
459 DGRP- and Coalescent-derived chromosomes yielded recombination count estimates
460 that were 98.6% and 95.6% concordant with their respective true recombination counts
461 (Lin's concordance correlation coefficient, ρ). When populations were founded by 32
462 lines, recombination count estimates were more inaccurate, with DGRP- and
463 Coalescent-derived reconstructions achieving 50.2% and 75.9% concordance with their
464 respective true recombination counts. For 32-founder populations, DGRP-derived
465 reconstructions tended to slightly overestimate recombination counts, while the same
466 counts were underestimated for coalescent-derived populations.

467
468 Simulations that inferred an unlikely high number of recombination events tended to
469 exhibit reduced accuracy (Figure 4). All DGRP-derived simulated individuals (of 1600
470 total) exhibited ≤ 8 recombination events, and all but three coalescent-derived simulated
471 individuals (7197 of 7200 total) exhibited ≤ 9 recombination events. Accordingly, we
472 considered any reconstructions to be 'hyper-recombinant estimates' if the inferred
473 recombination count is greater than 8 for DGRP-derived populations or greater than 9
474 for coalescent-derived populations.
475
476 At 0.05X sequencing coverage, hyper-recombinant estimates did not occur for 128-
477 founder populations, and only rarely resulted from 32-founder populations. Within
478 DGRP-derived 32-founder populations, reconstructions with hyper-recombinant
479 estimates were below the sixth percentile of genotype accuracy (N=6/400 simulations,
480 genotype accuracy range=92.8%-98.8%). For coalescent-derived 32-founder
481 populations, reconstructions estimated as hyper-recombinant fell in the bottom 9% of
482 genotype accuracy (N=3/400 simulations, genotype accuracy range = 92.1%-95.6%).
483 Although hyper-recombinant estimates always fell in the bottom 10% of accuracy, the
484 least accurate reconstructions were not hyper-recombinant. For coalescent-derived 32-
485 founder populations, 4.25% (17/400) of reconstructions without hyper-recombinant
486 estimates exhibited lower genotype accuracy than the least accurate hyper-recombinant
487 simulation (range = 59.7%-92.1%). Similarly, for DGRP-derived 32-founder populations,
488 2.5% (10/400) of reconstructions without hyper-recombinant estimates exhibited lower
489 genotype accuracy than the least accurate hyper-recombinant simulation (range =
490 82.3%-92.8%).
491
492 Reducing sequencing coverage by an order of magnitude from 0.05X to 0.005X resulted
493 in more frequent hyper-recombinant reconstruction estimates, though overall median
494 genotype accuracy remained above 99% (Figure S9). Hyper-recombinant reconstructed
495 chromosomes exhibited genotype estimates with accuracy below 99%, while the
496 remaining simulations (with lower recombinant counts) achieved above 99% genotype
497 accuracy. For populations founded by 32 DGRP lines and sequenced at 0.005X

498 coverage, 14% of simulations produced hyper-recombinant estimates (N=56/400), of
499 which only 26.8% (N=15/56) surpassed 99% genotype accuracy (median=98.5%). The
500 remaining 86% of simulations (N=344/400) that were not hyper-recombinant retained
501 greater accuracy, with 89% of simulations resulting in at least 99% genotype accuracy
502 (median=99.5). Increasing the number of founding DGRP lines from 32 to 128 at 0.005X
503 coverage failed to eliminate hyper-recombinant estimates. With 128 founding lines,
504 14.5% of simulations were hyper-recombinant (N=58/400), of which 24.1% (N=14/58)
505 surpassed 99% genotype accuracy (median=98.6%). The 85.5% of simulations that
506 were not hyper-recombinant (N=342/400), exhibited accurate genotype estimates, with
507 86.5% (296/342) of simulations achieving over 99% genotype accuracy (median=99.6).
508

509 **GWAS Simulation Accuracy**

510 To report the power of a GWAS, we must first define a “true positive” result. Consider a
511 putative SNP identified by GWAS that is 50 kb from the causal SNP. Such a result
512 would be considered a false positive if the aim is to identify the exact responsible
513 nucleotide, but may be a true positive with respect to to identify an associated gene. To
514 cover both use cases, we describe a true positive in terms of both SNP-level resolution
515 (requiring an exact base-pair match), or region-level resolution (allowing for tolerance
516 up to 100kb between putative hits and the causal SNP). Additionally, it is unrealistic to
517 simply evaluate the single top result of a GWAS. Rather, a set of candidate loci may be
518 chosen for follow-up evaluation in confirmatory studies, and the probability of including
519 the causal SNP will increase as a greater number of putative SNPs are evaluated. Most
520 distinct changes in GWAS power occurred when including between most significant to
521 top 10 most significant candidate loci, after which power increased at a reduced rate, if
522 an asymptote was not already reached.
523

524 The estimated power of GWAS using a specific type of mapping population, i.e. the
525 fraction of simulations with a true positive, is shown in Figure 5. For simplicity, we focus
526 on GWAS power when including the top 10 most significant candidate loci—a
527 reasonable number of putative sites that may be investigated in follow-up studies.
528

529 ⁵ Hybrid Swarms founded by either 32 or 128 founding lines exhibited nearly
530 equivalent power compared to ⁵⁰ outbred populations across all parameter
531 combinations. For common alleles, i.e. those segregating at 50% frequency, all outbred
532 populations achieved approximately 50% power to identify a causal variant with SNP-
533 level precision, and 70% power at the gene-level. Both inbred populations were highly
534 effective at detecting associations at the gene-level (99% and 99.8% for ILs and RILs,
535 respectively). SNP-level power was one fourth lower than gene-level power for RILs
536 (75.4%), but only marginally reduced for inbred lines (97.4%).

537

538 Power to detect associations is reduced when the causal allele is rare (segregating at
539 12.5% frequency). For such rare alleles, the gene-resolving power of ILs drops by
540 nearly half (to 54.8%), while RILs maintained high power (81.8%). All outbred
541 populations exhibited approximately 20% power to detect rare alleles at the gene-level.
542 Inbred lines were the sole frontrunner for identifying low frequency alleles with SNP-
543 level resolution (37.2%), followed by 128-founder Hybrid Swarm (10.8%), F50 outbred
544 (8.2%), 32-founder Hybrid Swarm (6%), and RILs (3.2%).

545

546 **GWAS Genomic Inflation Factor**

547 If individuals are assigned to case and control groups with equal probability, then the
548 resulting χ^2 statistics should follow the expected distribution. If individuals are not sorted
549 into groups randomly, i.e. allele state at a causal SNP dictates nonrandom group
550 assignment, then χ^2 values for that SNP should be inflated to some extent. Nonrandom
551 associations between a causal SNP and other loci can inflated test statistics across a
552 chromosome, or across a whole genome. The genome-wide inflation factor (λ) can be
553 expressed as the ratio of observed and expected median χ^2 values (Figure 6). Because
554 our simulations model a single causal SNP, λ is a reflection of greater-than-chance
555 associations arising due to linkage with the causal SNP being modeled, which can
556 serve as a proxy for false positive rate.

557

558 Because the median expected χ^2 statistic increases with sample size, we report λ_{1000} , a
559 sample-size-corrected value that is comparable across studies (Freedman *et al.* 2004).

560 We calculated λ as aggregated across three groups: linked, including only the
561 autosome arm containing the causal SNP; unlinked, including the unlinked autosome
562 that doesn't contain the causal SNP; and autosomal, for all sites across both autosomes
563 two and three

564

565 Inflation factor measured across autosomes two and three was greatest for ILs, followed
566 by 32-founder Hybrid Swarm, RILs, 128-founder Hybrid Swarm, and F_{50} Outbred
567 populations. This order was observed whether the causal allele was common or rare,
568 though with reduced values of λ at the lower allele frequency (Figure 7).

569

570 Only inbred populations displayed inflation on unlinked autosomes. When the causal
571 allele is common (50% frequency), inflation on unlinked sites was greater for Inbred
572 lines (median $\lambda = 1.17$, interquartile range or $IQR = 0.11$) than for RILs ($\lambda = 1.02, IQR =$
573 0.07). There was no inflation for unlinked chromosome in outbred populations, where
574 $\lambda = 1.0$ with varying degrees of dispersion ($IQR = 0.10, 0.06$ and 0.03 , respectively, for
575 32-founder HS, 128-founder HS, and F_{50} outbred populations). Unlinked sites remained
576 inflated for ILs even when the causal allele was rare ($\lambda = 1.07, IQR = 0.09$). Distributions
577 for λ across an extended range of autosome groups, PVE and allele frequencies are
578 shown in Figure S11.

579

580 When we dissociated phenotype from genotype with purely random case-control
581 assignment (i.e. PVE was set to 0% in our simulations), λ was centered at 1 (Figure
582 S12). F_{50} outbred populations exhibited the lowest dispersion ($IQR = 0.02$), followed by
583 128-founder Hybrid Swarms ($IQR = 0.04$), RILs ($IQR = 0.06$), and 32-founder Hybrid
584 Swarms or ILs ($IQR = 0.07$ each).

585

586 **Frequency of sites segregating at appreciable frequency**

587 The number of SNPs segregating amongst DGRP haplotypes with at least a given MAF
588 strongly depends on the haplotype subset count for a given population (Figure 8). If only
589 considering SNPs segregating at or above a frequency of 12.5% on chromosome arm
590 2L, a population founded by 8 lines will yield approximately twice as many SNPs

591 compared to a population founded by 128 lines (N=8 lines yields a median of 140K
592 SNPs; N=128 lines yields a median of 71k SNPs). If the minimum MAF threshold is
593 instead set to 5%, then populations with a greater number of lines exhibit a greater
594 number of SNPs—with a maximum number of segregating sites with N=16 lines
595 (median of 231.6k SNPs), nearly as many for 128 lines (median of 194k SNPs), and
596 fewer for N=8 lines (median of 133k SNPs).

597

Discussion

599 Herein, we examined the feasibility and statistical properties of genome-wide
600 association mapping using the Hybrid Swarm, an outbred population derived from
601 limited and random outcrossing of an arbitrary number of founding strains. We show
602 that it is possible to accurately reconstruct whole genomes from Hybrid Swarm
603 populations using ultra-low coverage sequencing data (Figure 5). Genome-wide
604 association mapping using the Hybrid Swarm approach performs as well as mapping in
605 highly outbred F_{50} populations in a case-control GWAS framework (Figures 6,
606 Supplemental Figure S10). While mapping using the Hybrid Swarm approach generally
607 has reduced power compared to mapping using inbred lines (as would any outbred
608 population in general) a limited number of generations of recombination reduces false
609 positives arising from long-distance linkage disequilibrium present in founding strains
610 (Figure 7, Supplemental Figure S11). Together, our results demonstrate the feasibility
611 and potential of using the Hybrid Swarm approach for generating and genotyping
612 outbred mapping populations in a cost-effective and computationally-efficient (Figure 1)
613 manner.

614

615 Benefits of the Hybrid swarm Approach

616 The Hybrid Swarm approach is applicable to a wide variety of organisms and
617 experimental designs, conferring potential benefits over inbred reference panels. These
618 benefits are realized in three primary ways by: (1) allowing researchers to address
619 questions that require heterozygotes; 2) reducing labor and the influence of cage-effects
620 with random mating in a common environment; and 3) breaking down population
621 structure when incorporating individuals from divergent populations. These benefits are

622 possible due to the ability to reconstruct genomes accurately and in a cost-effective
623 manner for a large number of individuals.

624

625 Note that the Hybrid Swarm method is not limited to populations founded by inbred
626 lines, as the technique can be applied to populations where phased genomes are
627 available for all outbred founders. Research systems without inbred reference panels
628 can thus make an up-front investment of fully phasing founder genomes to realize
629 downstream savings of reconstructing progeny from low-coverage sequencing data.
630 Due to the relative ease of generating phased genomes from a variety of long-read
631 sequencing technologies (Pollard *et al.* 2018), the Hybrid Swarm method may enable
632 association mapping in a wide variety of organisms.

633

634 *Representation of heterozygotes*

635 One clear difference between inbred and outbred mapping populations is the presence
636 of heterozygotes. On the one hand, the presence of heterozygotes in outbred
637 populations decreases power to detect association relative to inbred lines for an (semi-)
638 additive allele with a given effect size (Figure 6, Supplemental Figure S10). However,
639 the reduced statistical power of association mapping in outbred populations may be
640 ameliorated by reduced inbreeding depression and by the ability to assess the
641 heterozygous effects of alleles.

642

643 The ability to assess heterozygous effects of alleles will provide valuable insights into
644 several interesting aspects of biology, such as the nature of dominance and the identity
645 of regulatory polymorphisms. An increased understanding of dominance relationships
646 and regulatory polymorphisms is important for advancing our understanding of
647 quantitative trait variation and evolution. For instance, several theoretical models have
648 shown that context dependent dominance of quantitative fitness traits can underlie the
649 stable maintenance of polymorphisms subject to seasonally variable (Wittmann *et al.*
650 2017) or sexually antagonistic (Connallon and Chenoweth 2019) selection. The ability
651 to efficiently map loci with context dependent dominance relationships will aid in the

652 understanding of the stability and abundance of polymorphisms maintained by these
653 forms of balancing selection.

654

655 Regulatory polymorphisms are known to underlie genetic variation in expression (Brem
656 *et al.* 2002; Cavet *et al.* 2003; Rockman and Kruglyak 2006) and this expression
657 variation can potentially be resolved to exact nucleotide differences (Grosveld *et al.*
658 1987; Rave-Harel *et al.* 1997; Bosma *et al.* 2002). The resulting differences in
659 expression can manifest as phenotypic changes to drive local adaptation (Kudaravalli
660 *et al.* 2009; Fraser *et al.* 2010; Fraser 2011, 2013). Allele-specific expression (ASE)
661 arising from cis-acting regulatory factors is a common mechanism to produce heritable
662 differences in expression (Yan *et al.* 2002; Cowles *et al.* 2002; Lo *et al.* 2003; Doss
663 2005). Because allelic expression biases are only produced (and detectable) in
664 heterozygotes, Hybrid Swarm populations facilitate the study of regulatory genetic
665 variation (i.e. ASE) as a driver of local adaptation in a variety of organisms.

666

667 *Undirected outbreeding in a common environment*

668 The Hybrid Swarm approach involves propagation of a single large outbred population
669 via undirected crossing. This design confers benefits over alternatives of either rearing
670 inbred lines separately or performing controlled crosses. First, a single population
671 reduces the influence of random block effects associated with rearing families or closely
672 related individuals in separate enclosures or defined areas. Second, random
673 outbreeding of a single population requires less labor compared to performing controlled
674 crosses or serial propagation of inbred lines. One drawback of the randomly outbred
675 method is susceptibility to loss of haplotypes due to genetic drift. The distribution of
676 haplotypes can also be skewed by line-specific differences in fitness or fecundity, with
677 such differences being observed for DGRP lines (Horváth and Kalinka 2016). To
678 attenuate haplotype dropout, it may be prudent to seed a Hybrid Swarm with a large
679 population of F1 hybrids produced by round-robin crosses. The F1 population would
680 then be followed by a limited number of generations (e.g., 4-5) of random outbreeding.

681

682 *Hybrid Swarm breaks down population structure and linkage disequilibrium*

683 Recombination between lines in the Hybrid Swarm approach allows for greater
684 dissection of functional polymorphisms segregating between genetically structured
685 populations. If an association study incorporates haplotypes from multiple distinct
686 source populations, causal variants would segregate along with other linked variants.
687 Thus, to identify genetic mechanisms of local adaptation and trait variation in general, it
688 is necessary to minimize false positives from linked non-causal loci. Corrections due to
689 relatedness can reduce the type I error rate to some degree (Yu *et al.* 2006; Price *et al.*
690 2010; Yang *et al.* 2014), and can be further reduced by a greater extent of
691 recombination. Within mapping populations with many haplotypes such as the DGRP,
692 long-distance linkage disequilibrium results from correlated occurrence of rare variants
693 (Huang *et al.* 2014), potentially contributing to false positives in GWAS. This is reflected
694 in our simulations by genome-wide inflation of λ , even across physically unlinked
695 chromosomes, whereas five generations of recombination were sufficient to reduce this
696 inflation (Figure 7).

697

698 Most notably, F_5 Hybrid Swarm populations performed equivalently to F_{50} outbred
699 population in a case-control GWAS framework. This is likely owed to the large number
700 of unique haplotypes within the Hybrid Swarm population, reducing the influence of long
701 distance LD, and in turn reducing false positive GWAS hits. One interpretation is that
702 only slightly recombinant populations comprised of a modest number of haplotypes are
703 sufficient representations of highly outbred (or wild) populations in a GWAS framework.
704 Inbred populations did exhibit greater power than outbred populations for identifying a
705 causal locus, although this result is to be expected. Because we simulated a purely
706 additive trait for which heterozygotes are equally likely to be assigned to either case or
707 control group, heterozygotes contribute no statistical signal of association. Accordingly,
708 for a causal allele segregating at 50% frequency, sample sizes for any outbred
709 populations will be effectively half that of an inbred population.

710

711 The Hybrid Swarm method is similar but distinct from advanced intercross populations
712 (AIPs), where AIPs result from crossing few lines (e.g., 8) for many generations

713 (Chesler 2014; Mackay and Huang 2018) and the Hybrid Swarm from crossing dozens
714 to hundreds of lines for few generations. The choice to use an AIP or hybrid swarm
715 population will influence the number of SNPs segregating at or above a desired minor
716 allele frequency (Figure 8). For an association test to detect a causal variant with single-
717 nucleotide precision, that variant must be segregating above a minor allele frequency
718 required to detect phenotypic association at a given effect size and sample size. If
719 sample size precludes sites segregating at a minor allele frequency below 1/8, then a
720 population founded by 8 haplotypes would yield the greatest number of variants. If
721 power is sufficient to detect association with alleles segregating above a frequency of
722 5%, then populations founded by 16+ lines would yield a greater number of variants
723 (Figure 8). In cases where only few founding haplotypes are available, an AIP may be
724 necessary, as the breakup of linkage disequilibrium can only be accomplished with
725 many generations of crosses instead of leveraging greater haplotype diversity.

726

727 **Computational Considerations**

728 The simulations conducted for this analysis were made feasible by three primary
729 innovations. First, the haplotype block file format allowed us to leverage information
730 redundancy between related individuals and store highly compressed, lossless
731 genotype information. With nearly 1/2000th the file size of a compressed VCF file,
732 haplotype block files greatly reduced both the disk storage footprint and time required
733 for disk write operations. Second, instead of performing forward-time simulations for
734 every single iteration of GWAS, permuted subsets of simulated populations allowed for
735 more rapid GWAS simulations. The format of haplotype block files facilitated
736 permutations of the ancestry contained within a population's mosaic haplotypes,
737 generating novel population genetic structure while preserving the forward-simulator's
738 influence of drift and meiotic recombination (Figure 2). Third, instead of extracting site-
739 specific genotypes for every individual, we decreased the number of computational
740 operations by performing aggregate counts across all sites between adjacent
741 recombination events in the population (Figure 3).

742

743 Importantly, selecting a subset of most-likely-ancestors results in maximum
744 computational complexity that remains constant with increasing number of founding
745 lines, instead of complexity increasing at a greater-than-linear rate. This means that the
746 larger the pool of unique haplotypes that an individual descends from, the greater
747 speedup of our pipeline relative to other methods. Although computational speed has
748 been shown to be reduced by haplotype pre-phasing (Howie *et al.* 2011), to our
749 knowledge, pre-phasing has not been demonstrated with ultra-low coverage sequencing
750 on the order of 0.005-0.05X. As a result, pre-phasing would likely require greater
751 sequencing effort, negating the benefit of low coverage reconstruction. Computational
752 search space can also be reduced if an individual's pedigree is known with certainty,
753 however controlled crosses can be laborious, and may lead to cage-specific effects.

754

755

756 **Applying the Hybrid Swarm approach**

757 At minimum, the Hybrid Swarm approach requires a sequenced set of individuals for
758 founding a recombinant population. Although our simulations presented here were
759 conducted with inbred founding lines, genome reconstructions can similarly be
760 performed with any phased genomes. For example, 16 phased outbred founders could
761 be treated as 32 independent haplotypes. Phased genomes are becoming increasingly
762 accessible with the advent of long-read sequencing platforms and phasing software
763 (Chin *et al.* 2016; Mostovoy *et al.* 2016; Seo *et al.* 2016), allowing this technique to be
764 applied to even more systems. Optionally, a recombination rate map for the population
765 can be provided, otherwise recombination is assumed to occur with equal user-defined
766 probability across any chromosome.

767

768 As a first step, power analyses using our rapid association test simulation pipeline will
769 inform choices of sample size and mapping population design (Figure 3). After
770 determining a feasible sample size for a given SNP of minimum percent variation
771 explained, researchers can evaluate the accuracy of low-coverage chromosome
772 reconstructions for a simulated proposed mapping population. Note that while we
773 performed association tests in a case/control framework, the relative power of the

774 Hybrid Swarm is expected to be the same for quantitative traits, which could garner
775 additional power from sampling individuals from phenotypic extremes (D. Li, Lewinger,
776 Gauderman, Murcray, & Conti, 2011).

777

778 For our simulations, we parameterized chromosome reconstructions using a maximum
779 of $N = 16$ most-likely ancestors (MLAs) and $S = 5000$ SNPs, which required less than 3
780 GB of memory and completed in under 5 minutes on a single core. However, these
781 values may not be ideal for all systems. It may be necessary to select greater number of
782 MLAs prior to reconstruction if haplotypes are difficult to differentiate due to being less
783 divergent (i.e. exhibiting lower θ_π) than those simulated here. For example,
784 reconstruction accuracy was low for coalescent-derived mapping populations modeled
785 with $\theta = 4 \times 10^{-5}$ (Supplemental Figure S8), which may reflect those of *C. elegans*
786 (Barrière and Félix 2005). Further, 5000 SNPs may be an over- or under-estimate of
787 those required in other systems. Because recombination between haplotypes can only
788 be inferred at sampled variable sites, SNP density directly influences how close inferred
789 breakpoints will be resolved with respect to their actual position. The models described
790 in Figure 1 can be used to estimate the memory and runtime required for a given
791 number of input ancestor haplotypes.

792

793 To evaluate whether low coverage sequencing data will yield accurate genotype
794 estimates for a given proposed mapping population, researchers can test reconstruction
795 accuracy *in silico*. We provide a convenient forward-simulation R script for this purpose
796 that generates output in the haplotype map format (Figure 2). Simulated individuals can
797 then be ran through the simulated sequencing and mapping pipeline at a desired level
798 of coverage. After generating simulated mapped individuals, researchers can optimize
799 the number of MLAs and HARP threshold that provide most effective MLA selection for
800 their mapping population (Figure 4). This step may reveal haplotypes that are
801 consistently problematic or inaccurately chosen, which can be excluded from further
802 simulations (and when generating the true mapping population). Researchers can then
803 perform chromosome reconstruction using the optimized MLA selection parameters and
804 evaluate whether accuracy is acceptable (Figure 5).

805

806 After performing chromosome reconstructions, a quality control step may be applied
807 whereby troublesome regions are masked. For example, a reconstructed chromosome
808 with a sequence of short recombination blocks could be masked prior to evaluating
809 genotyping accuracy or performing association testing. In our simulations, it was
810 surprisingly difficult to diagnose exact factors contributing to the least accurate
811 reconstructions. However, these highly recombinant reconstructions still achieved 90-
812 99% accuracy, suggesting that accuracy may be achieved even for anomalous hyper-
813 recombinant individuals (Figure 5). Optimized parameters can then be applied to a
814 genuine mapping population akin to the simulated one.

815

816 **Conclusions**

817 An outbred high-resolution mapping population that can be generated in little time is an
818 attractive option for researchers, but such mapping populations have been prohibited by
819 genotyping costs or computational requirements to impute genotypes from ultra-low
820 sequencing data. Our work demonstrates the feasibility of the Hybrid Swarm as a cost-
821 effective method of fine-scale genetic mapping in an outbred population and provides a
822 computationally efficient framework for GWAS power analysis.

823

824

825 **References**

826 Barrière, A. and Félix, M.-A. Natural variation and population genetics of
827 *Caenorhabditis elegans* (December 26, 2005), *WormBook*, ed. The *C. elegans*
828 Research Community, WormBook, doi/10.1895/wormbook.1.43.1,
829 <http://www.wormbook.org>.

830 Bergland A. O., H. Chae, Y.-J. Kim, and M. Tatar, 2012 Fine-Scale Mapping of Natural
831 Variation in Fly Fecundity Identifies Neuronal Domain of Expression and Function
832 of an Aquaporin. *PLoS Genet.* 8: e1002631.

833 Bosma P. J., J. R. Chowdhury, C. Bakker, S. Gantla, A. de Boer, *et al.*, 2002 The
834 Genetic Basis of the Reduced Expression of Bilirubin UDP-Glucuronosyltransferase
835 1 in Gilbert's Syndrome. *N. Engl. J. Med.* 333: 1171–1175.

836 Brem R. B., G. Yvert, R. Clinton, and L. Kruglyak, 2002 Genetic dissection of
837 transcriptional regulation in budding yeast. *Science* 296: 752–5.

838 Broad Institute, 2015a The Picard toolkit. <https://broadinstitute.github.io/picard/>.

839 Broad Institute, 2015b Genome Analysis Toolkit: Variant Discovery in High-Throughput
840 Sequencing Data. <https://software.broadinstitute.org/gatk/>.

841 Cavet G., P. S. Linsley, M. Mao, R. B. Stoughton, S. H. Friend, *et al.*, 2003 Genetics of
842 gene expression surveyed in maize, mouse and man. *Nature* 422: 297–302.

843 Cheng R., J. E. Lim, K. E. Samocha, G. Sokoloff, M. Abney, *et al.*, 2010 Genome-wide
844 association studies and the problem of relatedness among advanced intercross
845 lines and other highly recombinant populations. *Genetics* 185: 1033–1044.

846 Chesler E. J., D. R. Miller, L. R. Branstetter, L. D. Galloway, B. L. Jackson, *et al.*, 2008
847 The Collaborative Cross at Oak Ridge National Laboratory: Developing a powerful
848 resource for systems genetics. *Mamm. Genome* 19: 382–389.

849 Chesler E. J., 2014 Out of the bottleneck: the Diversity Outcross and Collaborative
850 Cross mouse populations in behavioral genetics research. *Mamm. Genome* 25: 3–
851 11.

852 Chia R., F. Achilli, M. F. W. Festing, and E. M. C. Fisher, 2005 The origins and uses of
853 mouse outbred stocks. *Nat. Genet.* 37: 1181–1186.

854 Chin C.-S., P. Peluso, F. J. Sedlazeck, M. Nattestad, G. T. Concepcion, *et al.*, 2016
855 Phased diploid genome assembly with single-molecule real-time sequencing. *Nat.*
856 *Methods* 13: 1050–1054.

857 Comeron J. M., R. Ratnappan, and S. Bailin, 2012 The Many Landscapes of
858 Recombination in *Drosophila melanogaster*. *PLoS Genet.* 8: 33–35.

859 Connallon T., and S. F. Chenoweth, 2019 Dominance reversals and the maintenance of
860 genetic variation for fitness. *PLoS Biol.* 17: 1–11.

861 Cowles C. R., J. N. Hirschhorn, D. Altshuler, and E. S. Lander, 2002 Detection of
862 regulatory variation in mouse genes. *Nat. Genet.* 32: 432–437.

863 Danecek P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, *et al.*, 2011 The variant call
864 format and VCFtools. *Bioinformatics* 27: 2156–2158.

865 Doss S., 2005 Cis-acting expression quantitative trait loci in mice. *Genome Res.* 15:
866 681–691.

867 Fraser H. B., A. M. Moses, and E. E. Schadt, 2010 Evidence for widespread adaptive
868 evolution of gene expression in budding yeast. *Proc. Natl. Acad. Sci.* 107: 2977–
869 2982.

870 Fraser H. B., 2011 Genome-wide approaches to the study of adaptive gene expression
871 evolution. *BioEssays* 33: 469–477.

872 Fraser H. B., 2013 Gene expression drives local adaptation in humans. *Genome Res.*

873 23: 1089–1096.

874 Freedman M. L., D. Reich, K. L. Penney, G. J. McDonald, A. A. Mignault, *et al.*, 2004
875 Assessing the impact of population stratification on genetic association studies.
876 Nat. Genet. 36: 388–393.

877 Grosveld F., G. B. van Assendelft, D. R. Greaves, and G. Kollias, 1987 Position-
878 independent, high-level expression of the human beta-globin gene in transgenic
879 mice. Cell 51: 975–85.

880 Horváth B., and A. T. Kalinka, 2016 Effects of larval crowding on quantitative variation
881 for development time and viability in *Drosophila melanogaster*. Ecol. Evol. 6: 8460–
882 8473.

883 Howie B., J. Marchini, and M. Stephens, 2011 Genotype imputation with thousands of
884 genomes. G3 1: 457–70.

885 Huang X., M.-J. Paulo, M. Boer, S. Effgen, P. Keizer, *et al.*, 2011 Analysis of natural
886 allelic variation in *Arabidopsis* using a multiparent recombinant inbred line
887 population. Proc. Natl. Acad. Sci. U. S. A. 108: 4488–93.

888 Huang B. E., A. W. George, K. L. Forrest, A. Kilian, M. J. Hayden, *et al.*, 2012 A
889 multiparent advanced generation inter-cross population for genetic analysis in
890 wheat. Plant Biotechnol. J. 10: 826–839.

891 Huang W., A. Massouras, Y. Inoue, J. Peiffer, M. Ramia, *et al.*, 2014 Natural variation in
892 genome architecture among 205 *Drosophila melanogaster* Genetic Reference
893 Panel lines. Genome Res. 24: 1193–1208.

894 Kessner D., T. L. Turner, and J. Novembre, 2013 Maximum likelihood estimation of
895 frequencies of known haplotypes from pooled sequence data. Mol. Biol. Evol. 30:
896 1145–58.

897 King E. G., S. J. Macdonald, and A. D. Long, 2012a Properties and power of the
898 *Drosophila* synthetic population resource for the routine dissection of complex
899 traits. Genetics 191: 935–949.

900 King E. G., C. M. Merkes, C. L. McNeil, S. R. Hoofer, S. Sen, *et al.*, 2012b Genetic
901 dissection of a model complex trait using the *Drosophila* Synthetic Population
902 Resource. Genome Res. 22: 1558–1566.

903 Kover P. X., W. Valdar, J. Trakalo, N. Scarcelli, I. M. Ehrenreich, *et al.*, 2009 A
904 Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in
905 *Arabidopsis thaliana*, (R. Mauricio, Ed.). PLoS Genet. 5: e1000551.

906 Krämer N., N. Ranc, N. Meyer, M. Ouzunova, C. Lehermeier, *et al.*, 2014 Usefulness of
907 Multiparental Populations of Maize (*Zea mays* L.) for Genome-Based Prediction .
908 Genetics 198: 3–16.

909 Kudaravalli S., J. B. Veyrieras, B. E. Stranger, E. T. Dermitzakis, and J. K. Pritchard,
910 2009 Gene expression levels are a target of recent natural selection in the human
911 genome. *Mol. Biol. Evol.* 26: 649–658.

912 Lack J. B., C. M. Cardeno, M. W. Crepeau, W. Taylor, R. B. Corbett-Detig, *et al.*, 2015
913 The drosophila genome nexus: A population genomic resource of 623 *Drosophila*
914 *melanogaster* genomes, including 197 from a single ancestral range population.
915 *Genetics* 199: 1229–1241.

916 Li R., M. A. Lyons, H. Wittenburg, B. Paigen, and G. A. Churchill, 2005 Combining data
917 from multiple inbred line crosses improves the power and resolution of quantitative
918 trait loci mapping. *Genetics* 169: 1699–709.

919 Li H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, *et al.*, 2009 The Sequence
920 Alignment/Map format and SAMtools. *Bioinformatics* 25: 2078–2079.

921 Li H., 2011 wgsim (short read simulator). <https://github.com/lh3/wgsim>.

922 Li H., 2013 Aligning sequence reads, clone sequences and assembly contigs with BWA-
923 MEM. *arXiv:1303.3997*.

924 Lo H. S., Z. Wang, Y. Hu, H. H. Yang, S. Gere, *et al.*, 2003 Allelic variation in gene
925 expression is common in the human genome. *Genome Res.* 13: 1855–62.

926 Mackay T. F. C., and W. Huang, 2018 Charting the genotype–phenotype map: lessons
927 from the *Drosophila melanogaster* Genetic Reference Panel. *Wiley Interdiscip. Rev.*
928 *Dev. Biol.* 7: e289.

929 MacKay T. F. C. C., S. Richards, E. A. Stone, A. Barbadilla, J. F. Ayroles, *et al.*, 2012
930 The *Drosophila melanogaster* Genetic Reference Panel. *Nature* 482: 173–178.

931 Monir M. M., and J. Zhu, 2017 Comparing GWAS Results of Complex Traits Using Full
932 Genetic Model and Additive Models for Revealing Genetic Architecture. *Sci. Rep.* 7:
933 38600.

934 Mostovoy Y., M. Levy-Sakin, J. Lam, E. T. Lam, A. R. Hastie, *et al.*, 2016 A hybrid
935 approach for *de novo* human genome sequence assembly and phasing. *Nat.*
936 *Methods* 13: 587–590.

937 Mott R., C. J. Talbot, M. G. Turri, A. C. Collins, and J. Flint, 2000 A method for fine
938 mapping quantitative trait loci in outbred animal stocks. *Proc. Natl. Acad. Sci.* 97:
939 12649–54.

940 Nikpay M., A. Goel, H. H. Won, L. M. Hall, C. Willenborg, *et al.*, 2015 A comprehensive
941 1000 Genomes-based genome-wide association meta-analysis of coronary artery
942 disease. *Nat. Genet.* 47: 1121–1130.

943 Paul R. Staab, Sha Zhu, Dirk Metzler, and Gerton Lunter, 2015 {scrm}: efficiently

944 simulating long sequences using the approximated coalescent with recombination.
945 *Bioinformatics* 31: 1680–1682.

946 Pollard M. O., D. Gurdasani, A. J. Mentzer, T. Porter, and M. S. Sandhu, 2018 Long
947 reads: their purpose and place. *Hum. Mol. Genet.* 27: R234–R241.

948 Price A. L., N. A. Zaitlen, D. Reich, and N. Patterson, 2010 New approaches to
949 population stratification in genome-wide association studies. *Nat. Rev. Genet.* 11:
950 459–463.

951 R Core Team, 2016 R: A Language and Environment for Statistical Computing

952 Rave-Harel N., E. Kerem, M. Nissim-Rafinia, I. Madjar, R. Goshen, *et al.*, 1997 The
953 molecular basis of partial penetrance of splicing mutations in cystic fibrosis. *Am. J.*
954 *Hum. Genet.* 60: 87–94.

955 Rockman M. V., and L. Kruglyak, 2006 Genetics of global gene expression. *Nat. Rev.*
956 *Genet.* 7: 862–872.

957 Seo J. S., A. Rhie, J. Kim, S. Lee, M. H. Sohn, *et al.*, 2016 De novo assembly and
958 phasing of a Korean human genome. *Nature* 538: 243–247.

959 Singh R., I. T. Lobina, M. Thomson, S. McCouch, C. Dilla-Ermita, *et al.*, 2013 Multi-
960 parent advanced generation inter-cross (MAGIC) populations in rice: progress and
961 potential for genetics research and breeding. *Rice* 6: 11.

962 Spencer C. C. A., Z. Su, P. Donnelly, and J. Marchini, 2009 Designing genome-wide
963 association studies: Sample size, power, imputation, and the choice of genotyping
964 chip. *PLoS Genet.* 5.

965 Srivastava A., A. P. Morgan, M. L. Najarian, V. K. Sarsani, J. S. Sigmon, *et al.*, 2017
966 Genomes of the Mouse Collaborative Cross. *Genetics* 206: 537–556.

967 Stevenson M., 2018 epiR: Tools for the Analysis of Epidemiological Data.
968 <https://rdrr.io/cran/epiR/>.

969 Wittmann M. J., A. O. Bergland, M. W. Feldman, P. S. Schmidt, and D. A. Petrov, 2017
970 Seasonally fluctuating selection can maintain polymorphism at many loci via
971 segregation lift. *Proc. Natl. Acad. Sci.* 114: E9932–E9941.

972 Wu Y., Z. Zheng, P. M. Visscher, and J. Yang, 2017 Quantifying the mapping precision
973 of genome-wide association studies using whole-genome sequencing data.
974 *Genome Biol.* 18: 1–10.

975 Yan H., W. Yuan, V. E. Velculescu, B. Vogelstein, and K. W. Kinzler, 2002 Allelic
976 variation in human gene expression. *Science* 297: 1143.

977 Yang J., N. A. Zaitlen, M. E. Goddard, P. M. Visscher, and A. L. Price, 2014 Advantages

978 and pitfalls in the application of mixed-model association methods. *Nat. Genet.* 46:
979 100–106.

980 Yang C., Y. Wang, W. Xu, Z. Liu, S. Zhou, *et al.*, 2018 Genome-wide association study
981 using diversity outcross mice identified candidate genes of pancreatic cancer.
982 *Genomics* 0–1.

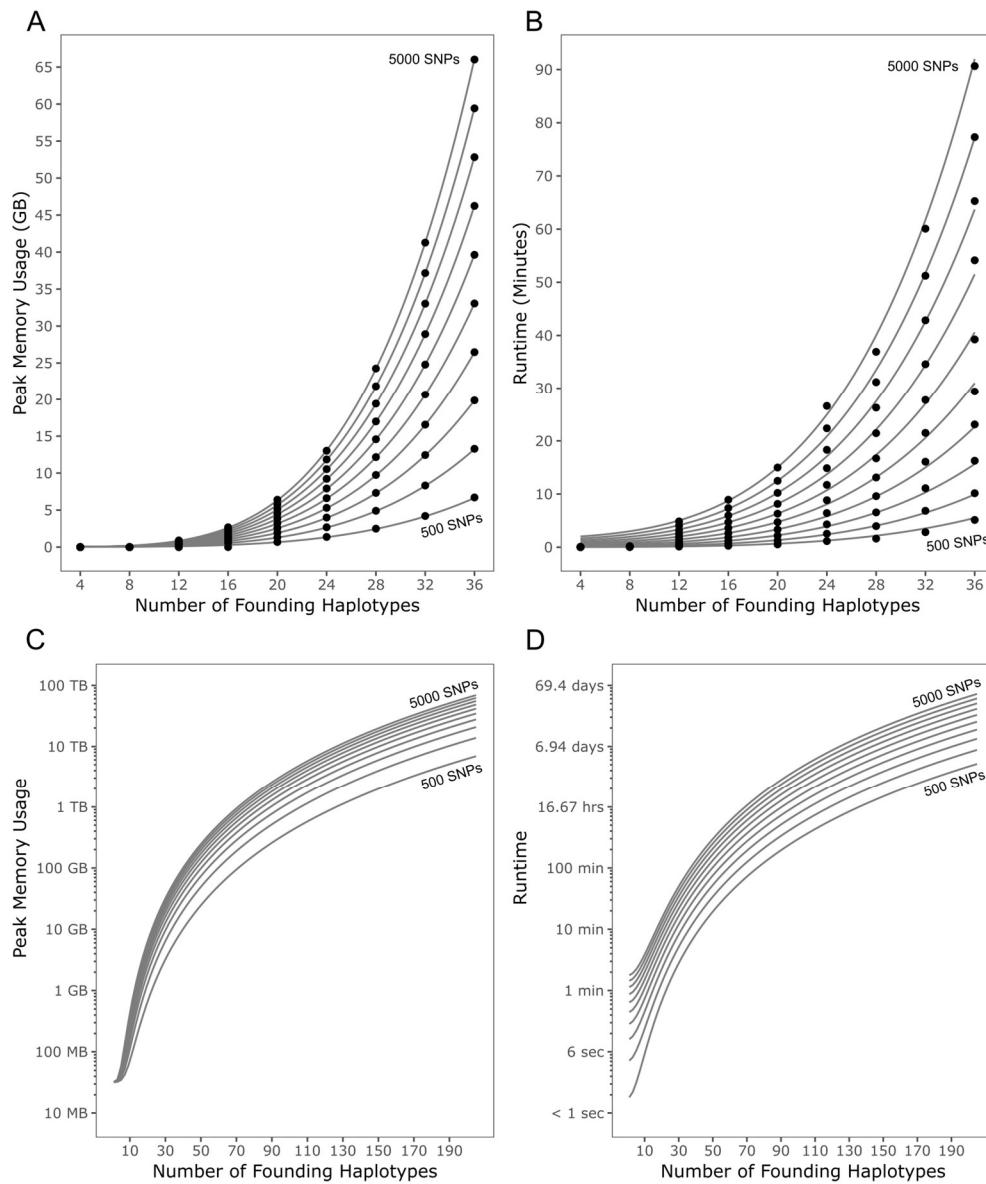
983 Yu J., G. Pressoir, W. H. Briggs, I. V. Bi, M. Yamasaki, *et al.*, 2006 A unified mixed-
984 model method for association mapping that accounts for multiple levels of
985 relatedness. *Nat. Genet.* 38: 203–208.

986 Zhang J., K. Kobert, T. Flouri, and A. Stamatakis, 2014 PEAR: A fast and accurate
987 Illumina Paired-End reAd mergeR. *Bioinformatics* 30: 614–620.

988 Zheng C., M. P. Boer, and F. A. van Eeuwijk, 2015 Reconstruction of genome ancestry
989 blocks in multiparental populations. *Genetics* 200: 1073–1087.

990 Zheng C., M. P. Boer, and F. A. van Eeuwijk, 2018 Accurate genotype imputation in
991 multiparental populations from low-coverage sequence. *Genetics* 210: 71–82.

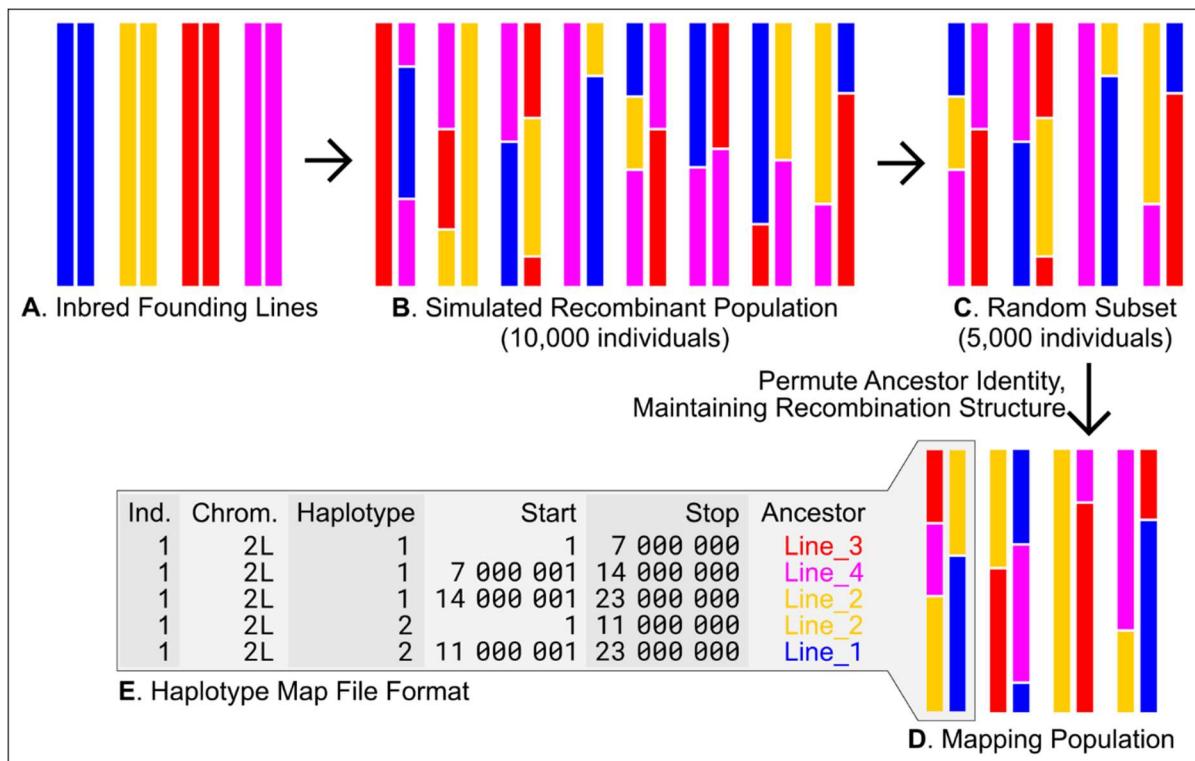
992 Figures



993

994 **Figure 1. Resource usage of RABBIT during haplotype reconstruction.**

995 All reconstructions involve the same simulated 2L chromosome arm comprised of four
996 haplotypes. Simulations included varied numbers of founding haplotypes (N) and a
997 randomly selected set of markers (number of SNPs, S , incremented in steps of 500). All
998 simulations included, at minimum, the four true haplotypes for the simulated individual.
999 In **A** and **B**, points depict the mean of empirical values (over 10 replicates) and gray
1000 lines depict the defined regression models. Predicted peak memory usage and runtime
1001 are displayed on a log scale over a greater range for number of founding haplotypes in
1002 **C** and **D**, respectively.



1003
1004 **Figure 2.** Basic structure of the forward simulator pipeline.
1005

1006 Inbred founding lines (**A**) are randomly intercrossed to produce a recombinant
1007 population (**B**). Rapid generation of independent mapping populations is achieved by
1008 random down-sampling (**C**) and permutation of ancestry (**D**). Population genetic data is
1009 encoded in a highly compressed format (**E**) that references the positions of haplotype
1010 blocks instead of genotypes at every site, enabling us to generate 500 mapping
1011 populations for a given parameter combination. Individuals are probabilistically assigned
1012 to case or control groups based on genotype at a randomly chosen causal SNP
segregating at a specified frequency.

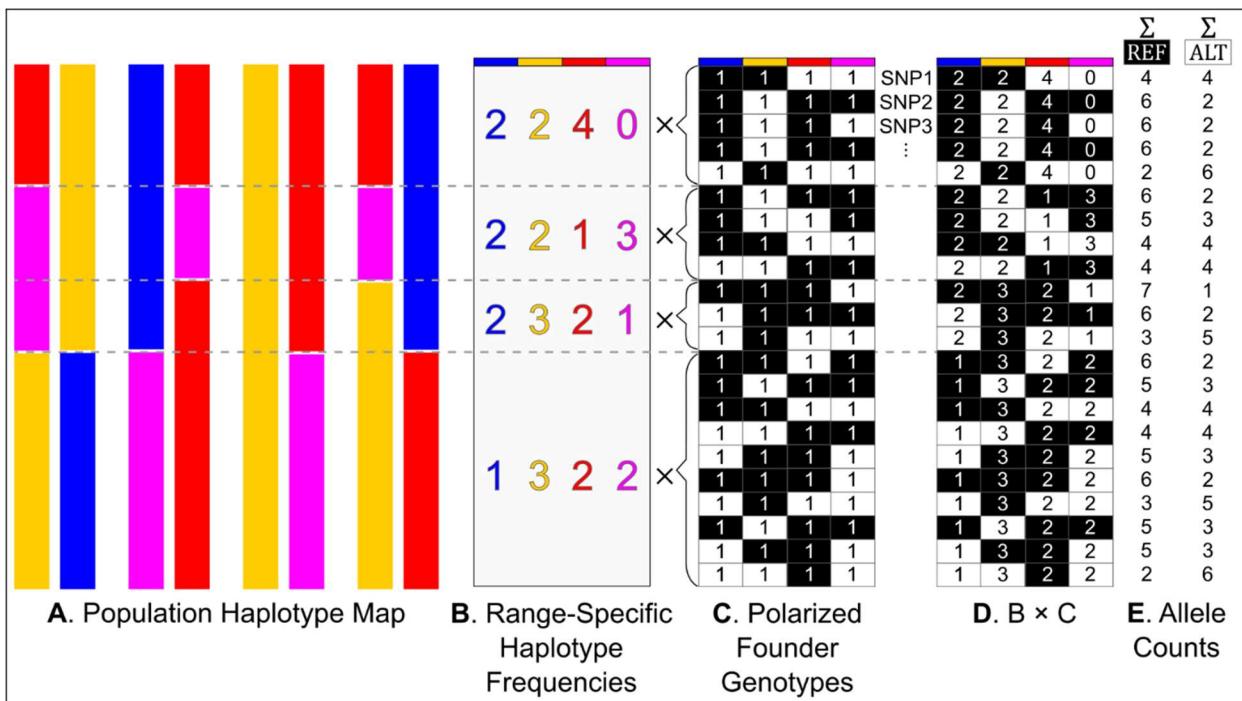
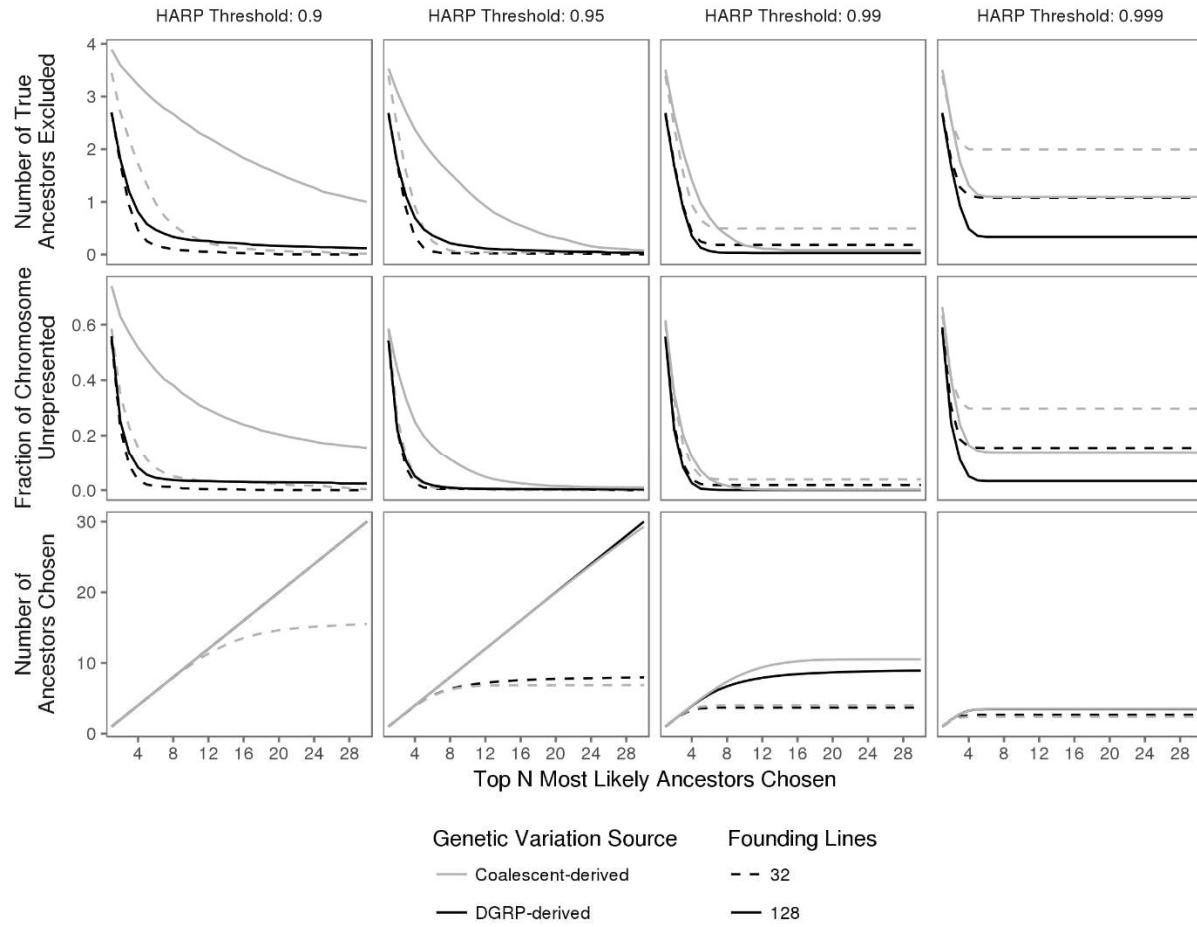


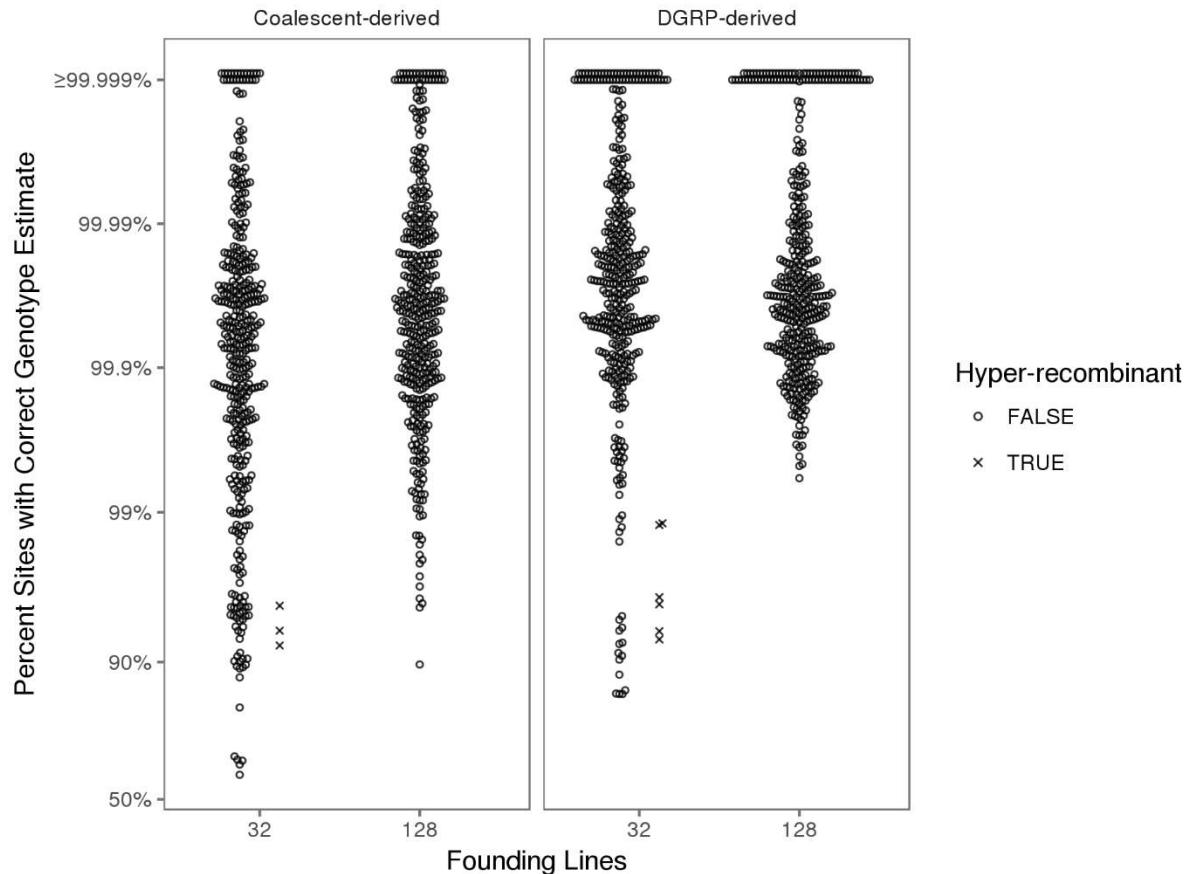
Figure 3. Schematic for rapid association testing with the haplotype block files. For a given population represented by a haplotype map file (**A**), all SNPs between sorted breakpoints (indicated by dashed lines) will share identical aggregated haplotype frequencies (**B**). Haplotype frequencies are multiplied by a founder genotype matrix (**C**) where alleles are coded reference (black cells) and alternate (white cells). Conditional row sums of the resulting matrix (**D**) yields reference and alternate frequencies at each locus (**E**), to be used for χ^2 tests of independence.



1021

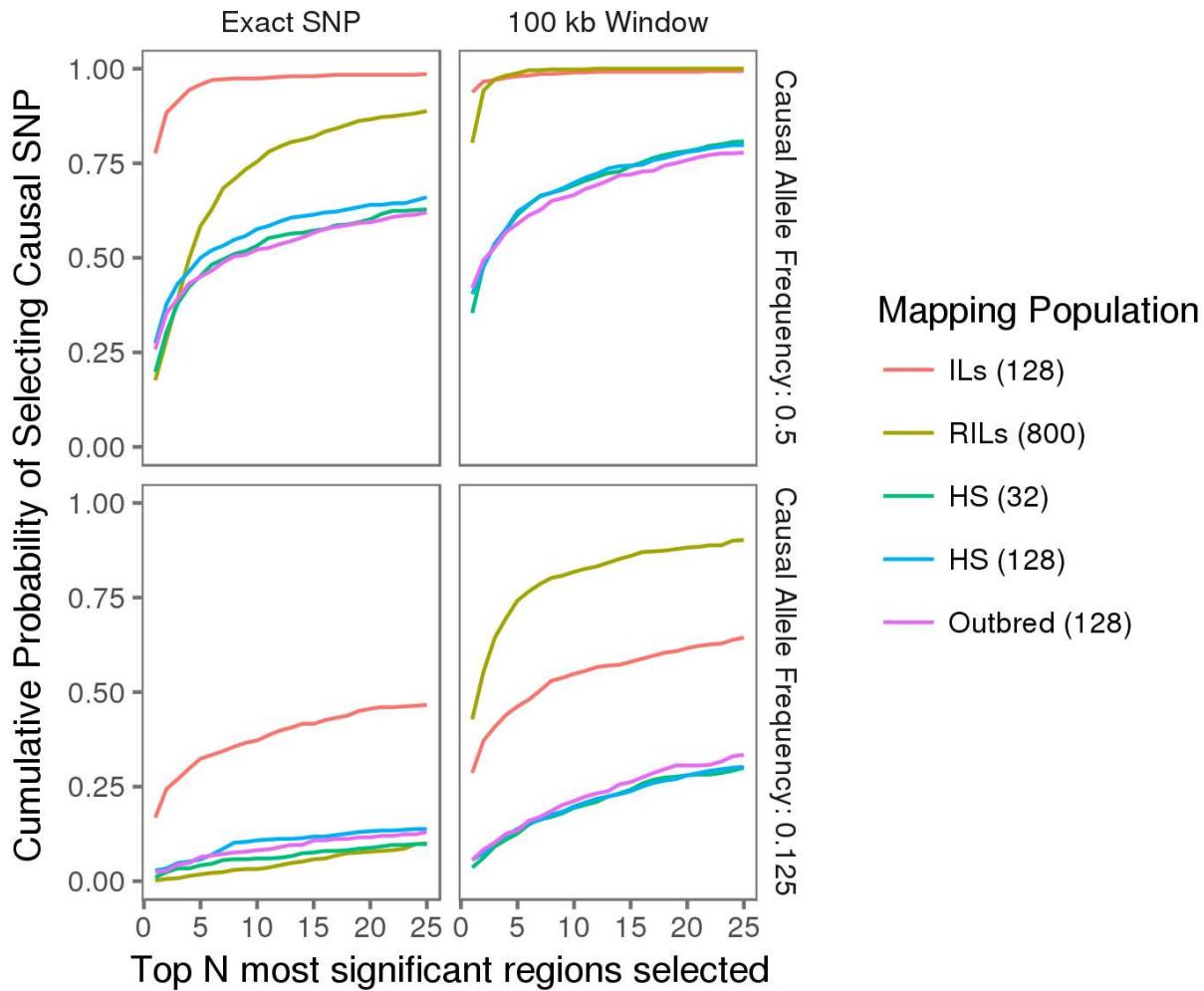
1022 **Figure 4.** Optimization curves for Most-Likely-Ancestor (MLA) selection.

1023 Increasing the upper limit for the number of MLAs chosen reduces the number of true
1024 ancestors missed, similarly reducing the fraction of a given chromosome that is not
1025 represented within the selected set of MLAs. Ancestors that fail to pass the HARP
1026 threshold across all genomic windows are not selected, resulting in realized sets of
1027 MLAs (Number of Ancestors Chosen) below the upper-limit allowed (x-axis). Data
1028 shown reports means across 400 replicates made up of 100 simulated individuals (4
1029 autosomes each for coalescent simulations, 4 autosome arms each for DGRP
1030 simulations) per parameter combination. Coalescent-derived populations described
1031 here were simulated with $N_e = 10^6$ and $\mu = 5 \times 10^{-9}$.



1032
1033 **Figure 5.** Accuracy of genome reconstruction pipeline for simulated F₅ Hybrid Swarm
1034 individuals.

1035 Reconstructions were performed for populations simulated as being founded by either
1036 32 or 128 inbred lines at 0.05X sequencing coverage with up to 16 MLAs as determined
1037 with a HARP threshold of 0.99. Accuracy, calculated as the per-chromosome fraction of
1038 variable sites with a correct diploid genotype estimate, is shown on logit-transformed
1039 scale. Values are coded depending on the number of estimated recombination events,
1040 with highly recombinant estimates (≥ 10 recombination events) displayed as an X. Each
1041 parameter combination includes 400 reconstructed autosomes (individual circles) for
1042 100 simulated individuals. The coalescent-derived individuals displayed here were
1043 simulated with an effective population size of $N_e = 1 \times 10^6$ and mutation rate $\mu =$
1044 5×10^{-9} .



1045
1046 **Figure 6.** Accuracy of simulated GWAS for various mapping populations.
1047

1048 Plots display the cumulative probability of including a causal SNP when selecting the
1049 top N most significant SNPs, or 100kb windows around those SNPs, out of 500
1050 simulated GWAS (each comprised of 5000 individuals phenotypically assigned in a
1051 case-control framework). Homozygotes for the reference allele were assigned to the
1052 case group with 45% probability, while homozygotes for the alternate allele were
1053 assigned to the case group with 55% probability (a difference of 10%), and
1054 heterozygotes are assigned to case and control groups with equal probability. **ILs**:
1055 inbred lines. **RILs**: recombinant inbred lines. **HS**: Hybrid Swarm populations founded by
32 or 128 lines. **Outbred**: An F_{50} population founded by 128 lines.

1056

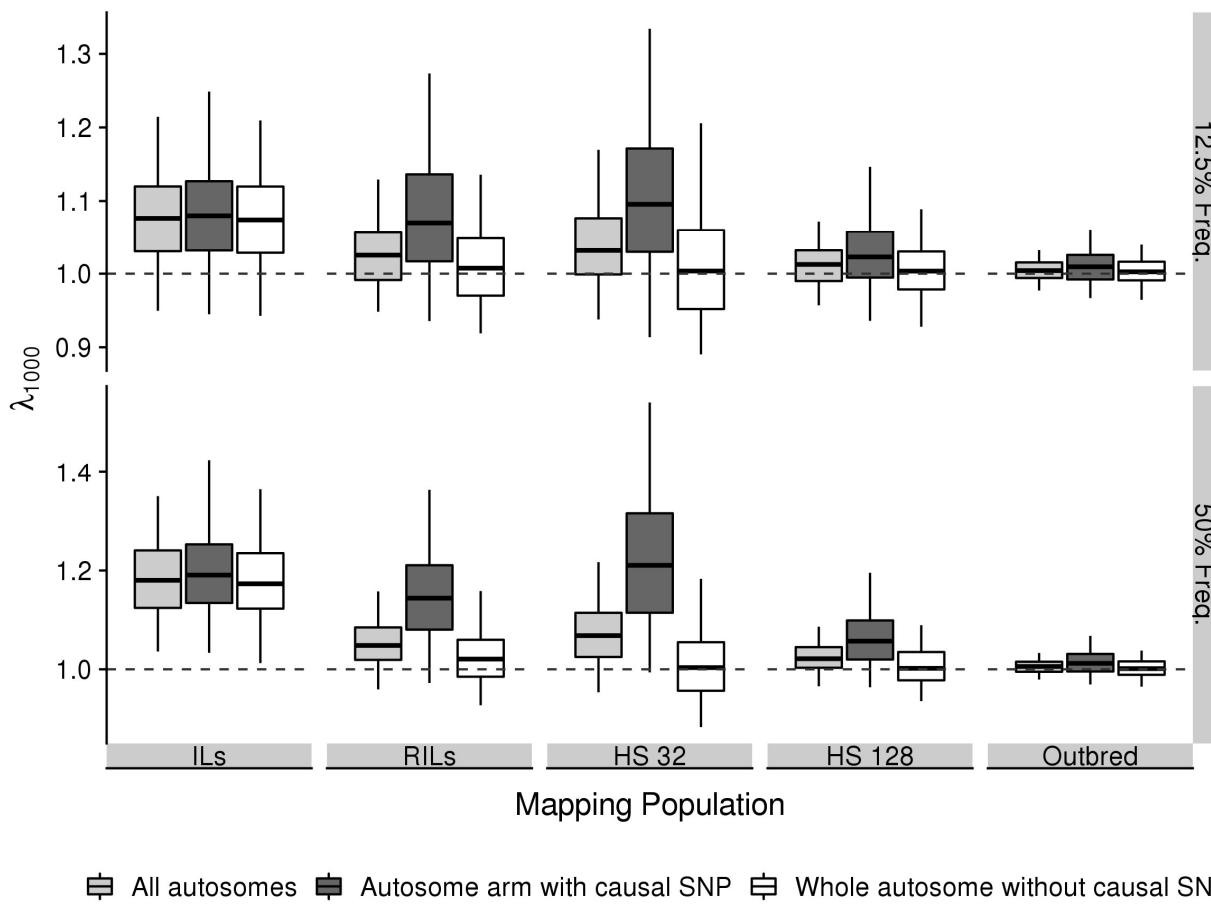
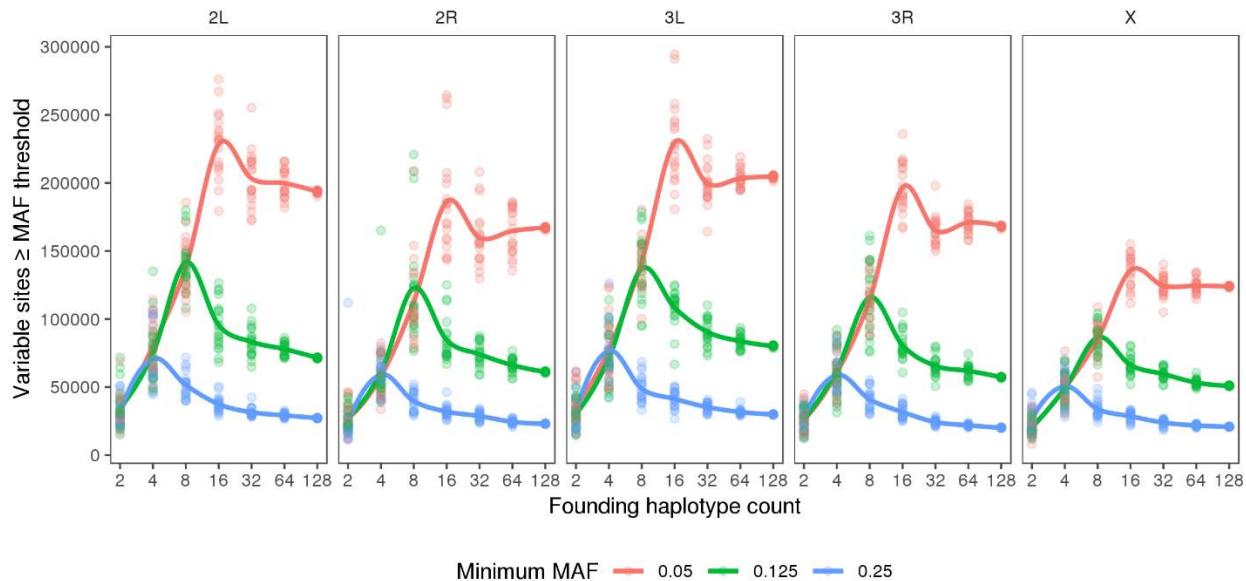


Figure 7. Genomic Inflation Factor (GIF, λ_{1000}) for simulated GWAS with a causal allele segregating at a specified frequency. GIF is calculated genome-wide (across all autosomes); on the autosome arm containing the causal allele (linked); and for sites on the autosome physically unlinked to the causal allele. λ is calculated as the ratio of observed to expected χ^2 values, and a correction is performed to produce the null expectation given the sample size had actually been 1000 individuals (see Materials and Methods for details). Data are averaged over 500 simulated GWAS (each comprised of 5000 individuals phenotypically assigned in a case-control framework). Homozygotes for the reference allele were assigned to the case group with 45% probability, while homozygotes for the alternate allele were assigned to the case group with 55% probability (a difference of 10%), and heterozygotes are assigned to case and control groups with equal probability. Boxes represent the median and interquartile range; whiskers extending to the lower and upper bounds of the 95% quantiles. **ILs:** 128 Inbred Lines. **RILs:** 800 Recombinant Inbred Lines. **HS:** Hybrid Swarm with 32 or 128 founding lines. **Outbred:** F_{50} population founded by 128 inbred lines.



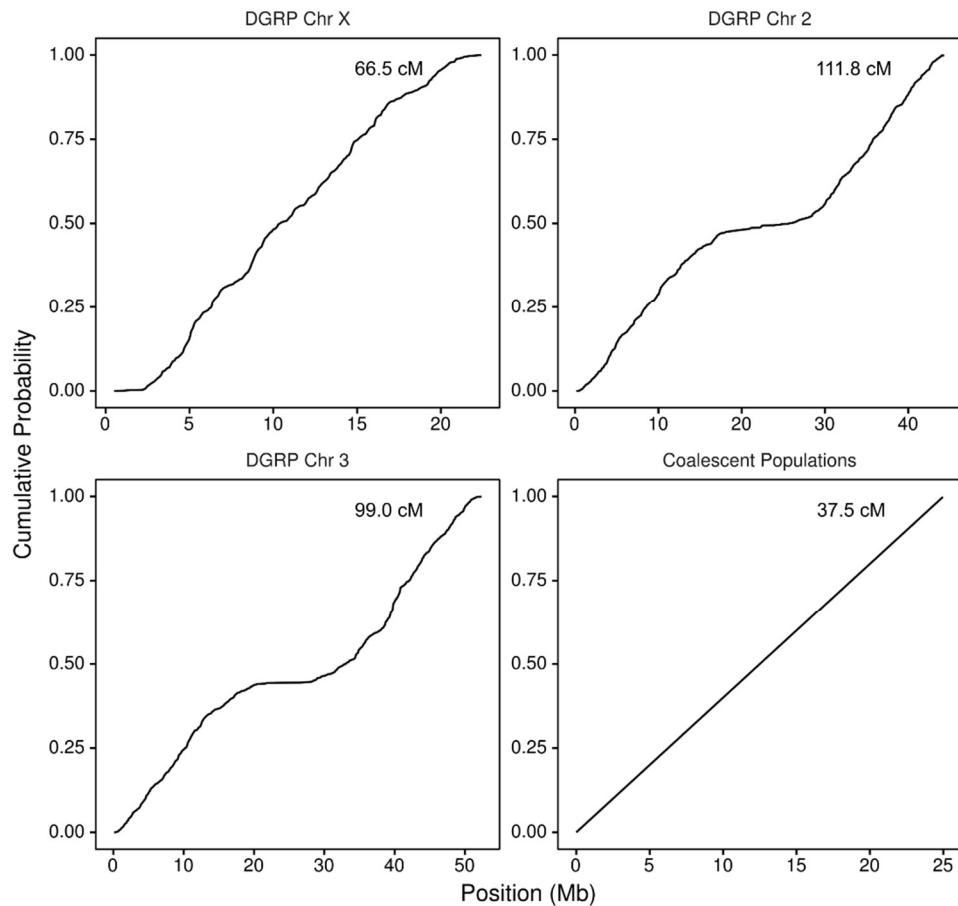
1075
1076 **Figure 8.** Counts of variable sites depending on number of founding DGRP haplotypes
1077 Each point represents the number of sites segregating at or above a given minor allele
1078 frequency threshold when drawing N haplotypes, with 20 replicates per parameter
1079 combination. With a minimum minor allele frequency (MAF) of 12.5%, a population
1080 founded by eight haplotypes exhibits approximately double the number of variable sites
1081 compared to a population founded by 128 haplotypes. With a minimum MAF of 5%,
1082 populations with eight founding haplotypes present with fewer SNPs compared to
1083 populations founded by 16 or more haplotypes.

Population	N Founders	ρ	$\bar{\Delta}$	σ_{Δ}
DGRP	128	0.986	-0.015	0.25
DGRP	32	0.502	0.17	2.15
Coalescent	128	0.956	-0.17	0.44
Coalescent	32	0.759	-0.31	1.26

1084

1085 **Table 1.** Accuracy of estimated number of recombination events following chromosome
1086 reconstruction.

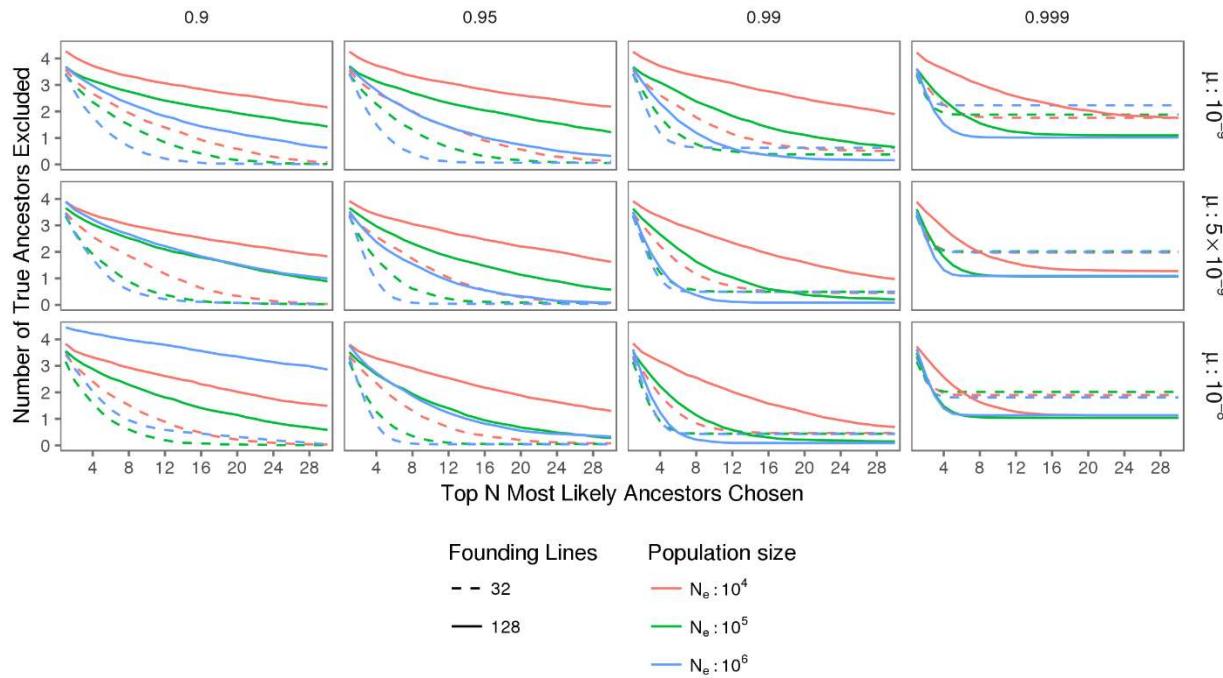
1087 A high concordance correlation coefficient (Lin's ρ) indicates agreement between
1088 estimated and true recombination counts for 400 reconstructed chromosomes
1089 (coalescent-derived populations) or chromosome arms (DGRP-derived populations).
1090 Coalescent-derived populations are described across a range of values for effective
1091 population size N_e and mutation rate μ . $\bar{\Delta}$ and σ_{Δ} denote mean and standard deviation,
1092 respectively, of difference between estimated and true recombination counts.
1093 Reconstructions were performed with a maximum of 16 most-likely-ancestors with a
1094 HARP threshold of 0.99 (see methods for more details).



1095

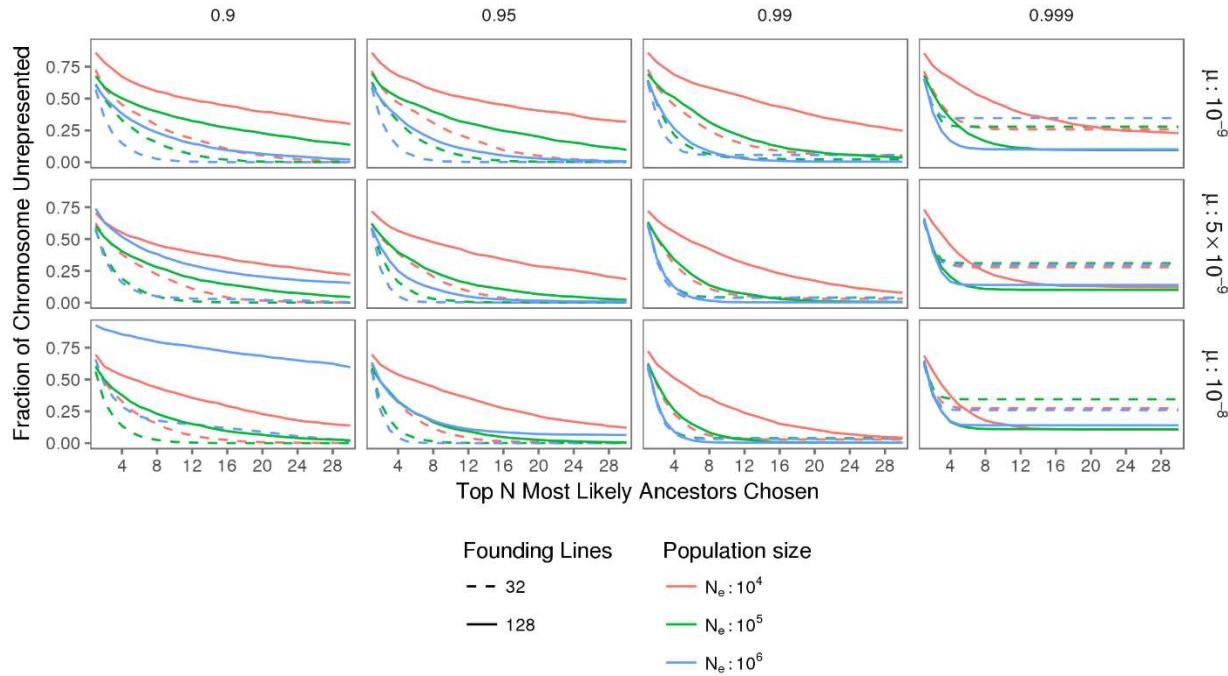
1096 **Figure S1.** Recombination probability functions used for simulated individuals.

1097 Recombination is modeled as a Poisson process, with position sampled from linear
1098 interpolation of recombination rates measured in *Drosophila melanogaster* by Comeron
1099 et al. (2012). The frequency of recombination samples cumulative map distance (inset,
1100 e.g. a 99 cM chromosome is modeled as a Poisson variable with an expected value of
1101 $\lambda = 0.99$). For DGRP-derived individuals, recombination was simulated for full
1102 chromosomes two and three, and reconstructions were then conducted independently
1103 for arms 2L, 2R, 3L, and 3R.



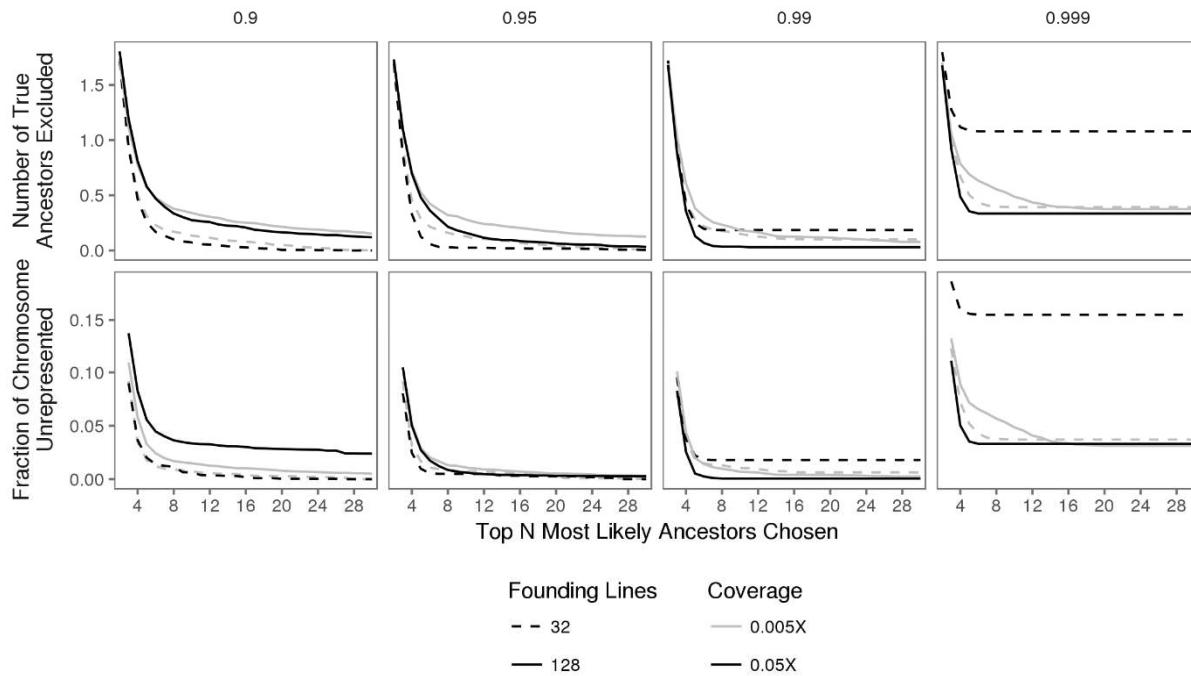
1104
1105
1106
1107
1108
1109
1110

Figure S2. Optimization curves for Most-Likely-Ancestor inclusion, by count, in SCRM-derived F_5 hybrid swarm individuals
The number of missed true ancestors is shown as a function of the number of ancestors chosen across a range of HARP threshold values (0.9 to 0.999), effective population sizes (N_e) and mutation rates (μ). Values are averaged across 400 reconstructed autosomes (from 100 individuals) per parameter combination.

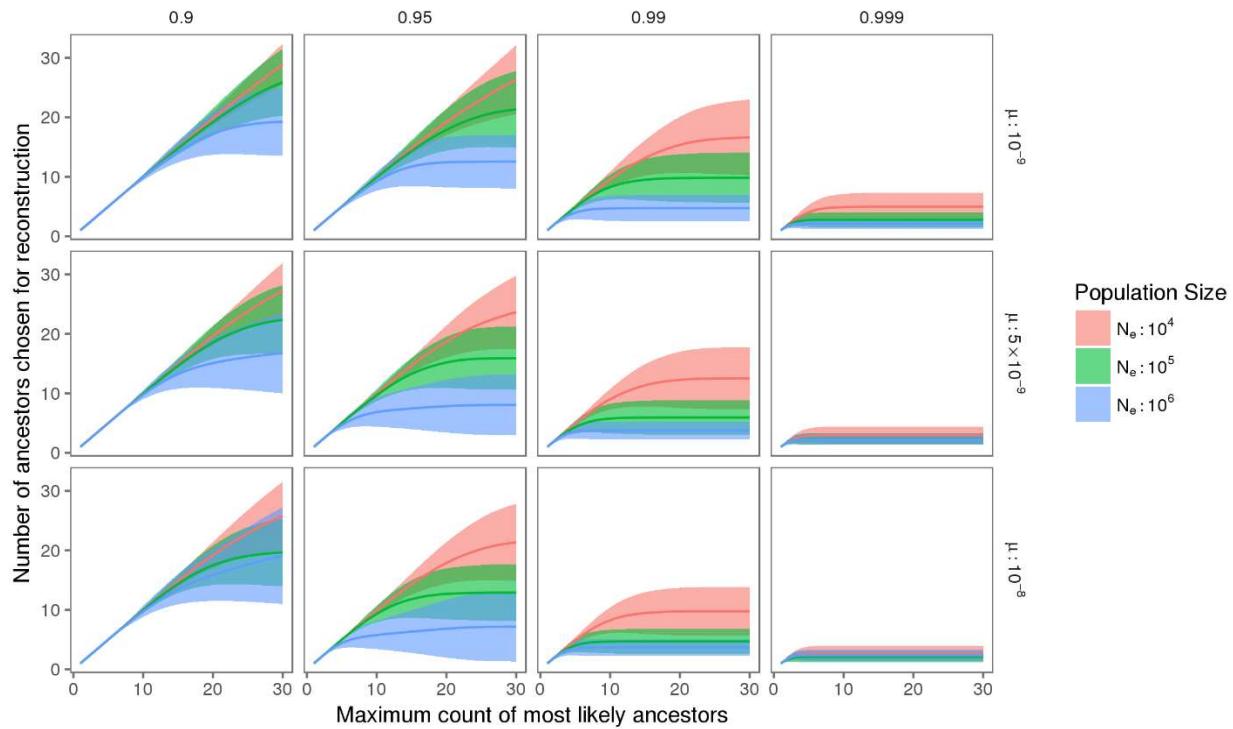


1111
1112 **Figure S3.** Optimization curves for Most-Likely-Ancestor inclusion, by chromosome
1113 representation, in simulated SCRM-derived F_5 hybrid swarm individuals.

1114 The proportion of the chromosome not covered by the chosen ancestors is shown as a
1115 function of the number of ancestors chosen for populations founded by either 32 or 128
1116 inbred founding lines across a range of HARP threshold values (0.9 to 0.999), effective
1117 population sizes (N_e) and mutation rates (μ). Each line summarizes the arithmetic mean
1118 fraction of sites where the true ancestor is not included within the inferred set of Most-
1119 Likely-Ancestors. Values are averaged across 400 reconstructed autosomes (from 100
1120 individuals) per parameter combination.



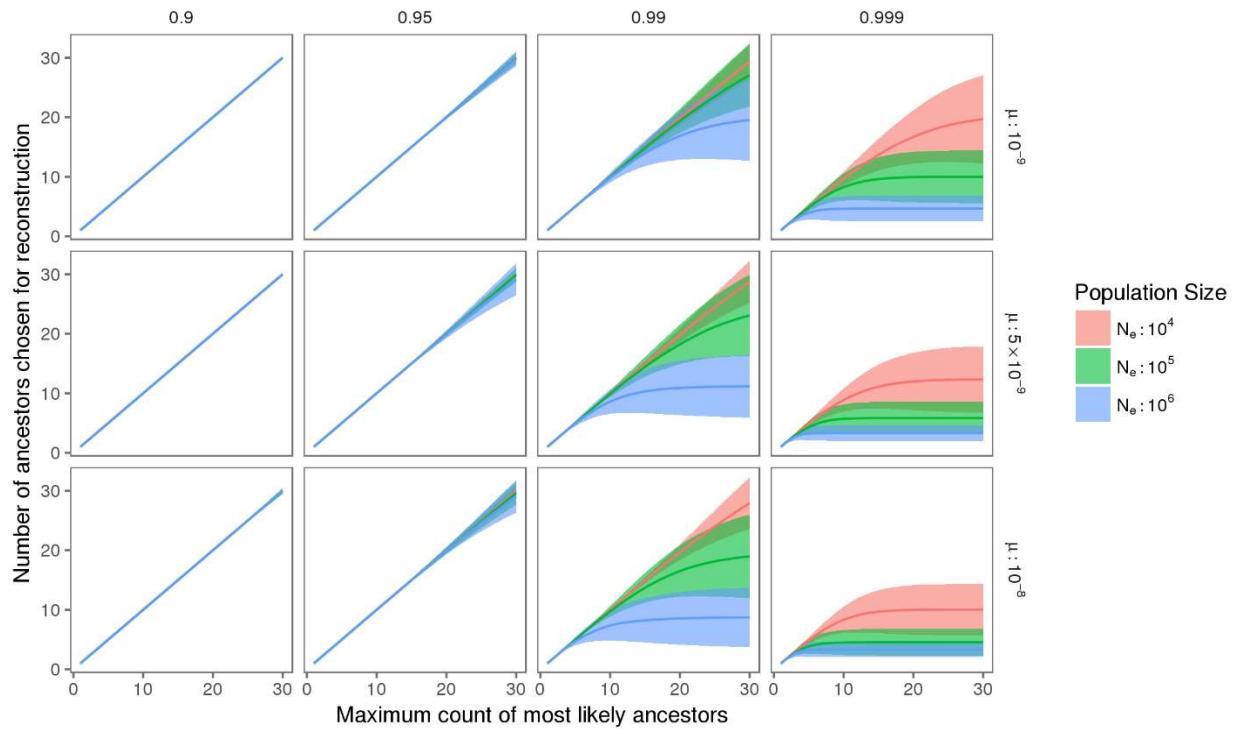
1121
1122 **Figure S4.** Optimization curves for Most-Likely-Ancestor (MLA) selection for DGRP-
1123 derived F_5 hybrid swarm individuals.
1124 Effectiveness is shown for populations founded by either 32 or 128 inbred founding lines
1125 across a range of HARP threshold values (0.9 to 0.999), for two levels of sequencing
1126 coverage. Values are averaged across 400 reconstructed autosomes (from 100
1127 individuals) per parameter combination.



1128

1129 **Figure S5.** Distribution of Most-Likely-Ancestor counts for simulated, Coalescent-
1130 derived, 32-founder F₅ hybrid swarm individuals.

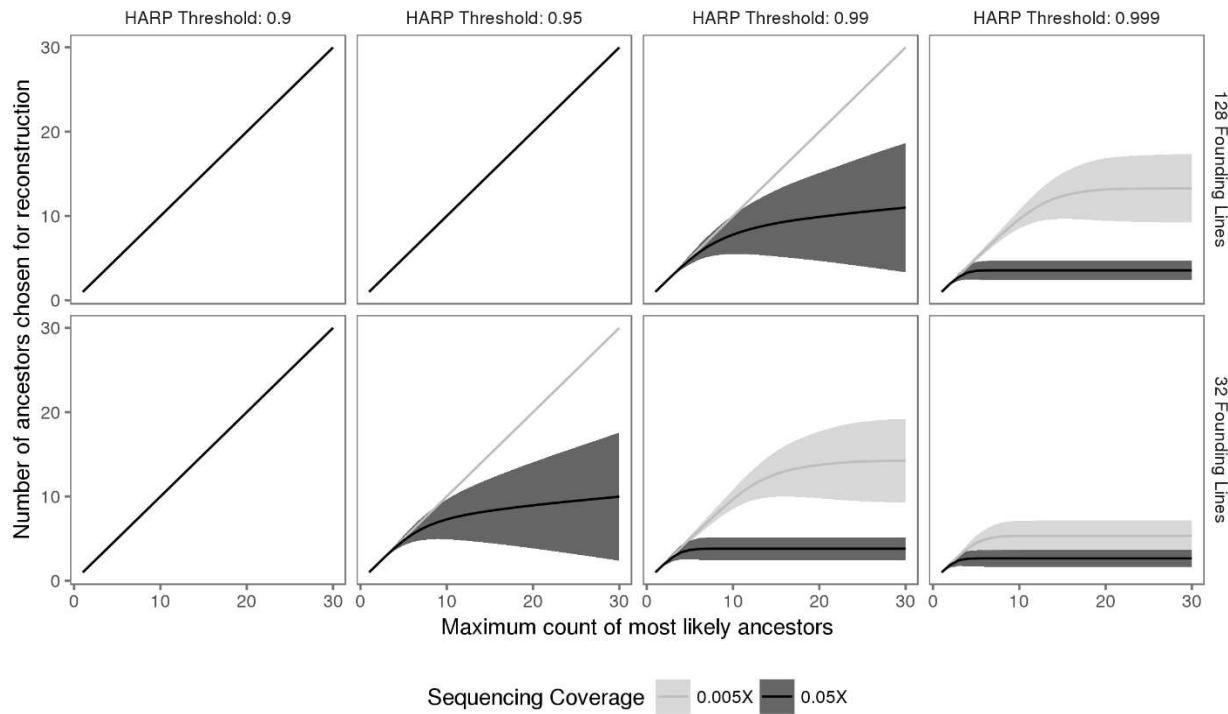
1131 The mean value ± 1 standard deviation is shown by the solid line and ribbon,
1132 respectively, across a range of HARP threshold values (0.9 to 0.999), effective
1133 population sizes (N_e) and mutation rates (μ). The number of Most-Likely-Ancestors
1134 dictates the computational complexity (runtime and memory requirements) of
1135 chromosome reconstruction. Each parameter combination includes 400 chromosomes
1136 (from 100 simulated individuals) simulated with 0.05X sequencing coverage.



1137

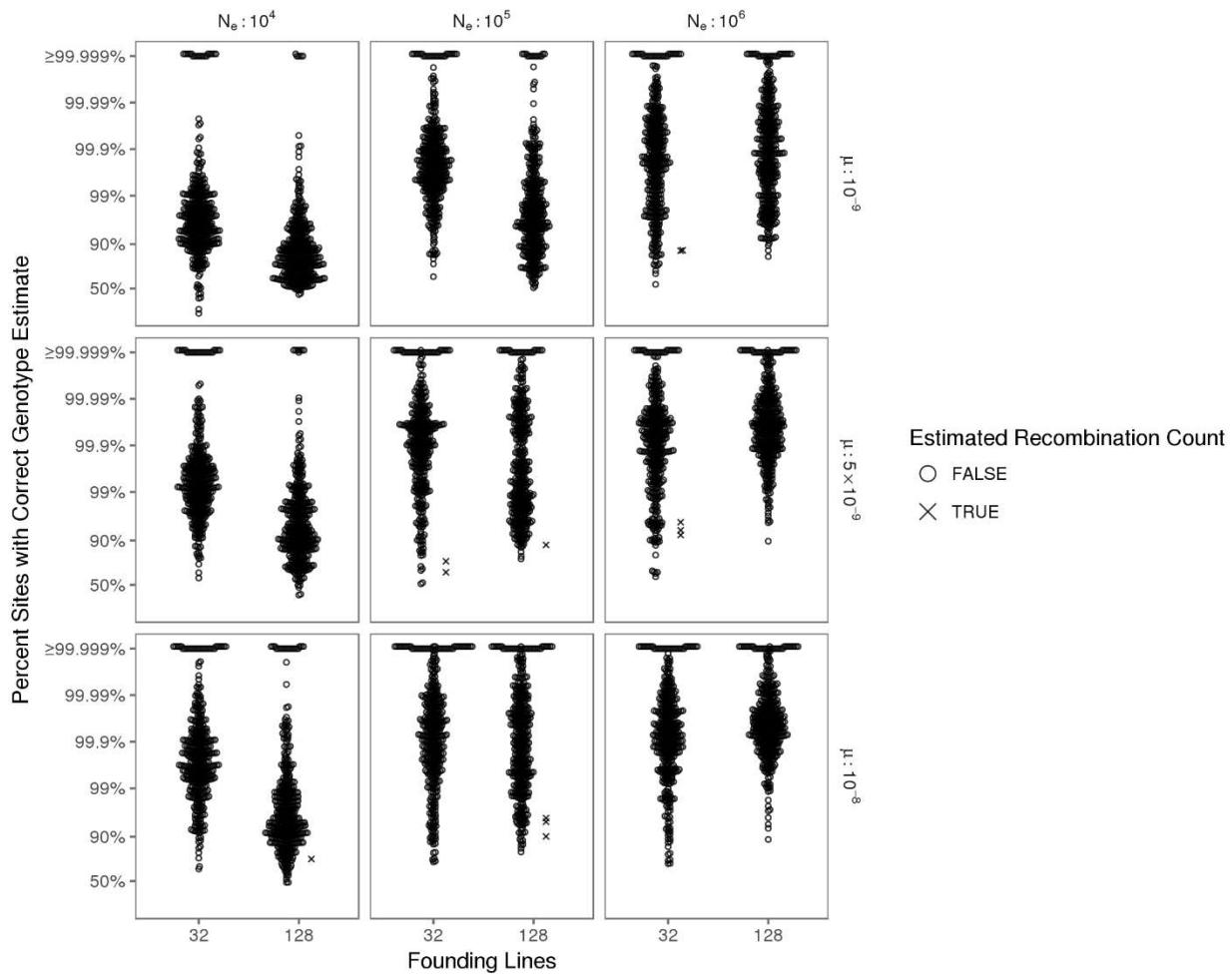
1138 **Figure S6.** Distribution of Most-Likely-Ancestor counts for simulated, Coalescent-
1139 derived, 128-founder F₅ hybrid swarm individuals.

1140 The mean value ± 1 standard deviation is shown by the solid line and ribbon,
1141 respectively, across a range of HARP threshold values (0.9 to 0.999), effective
1142 population sizes (N_e) and mutation rates (μ). The number of Most-Likely-Ancestors
1143 dictates the computational complexity (runtime and memory requirements) of
1144 chromosome reconstruction. Each parameter combination includes 400 chromosomes
1145 (from 100 simulated individuals) simulated with 0.05X sequencing coverage.



1146
1147
1148
1149
1150
1151
1152
1153
1154

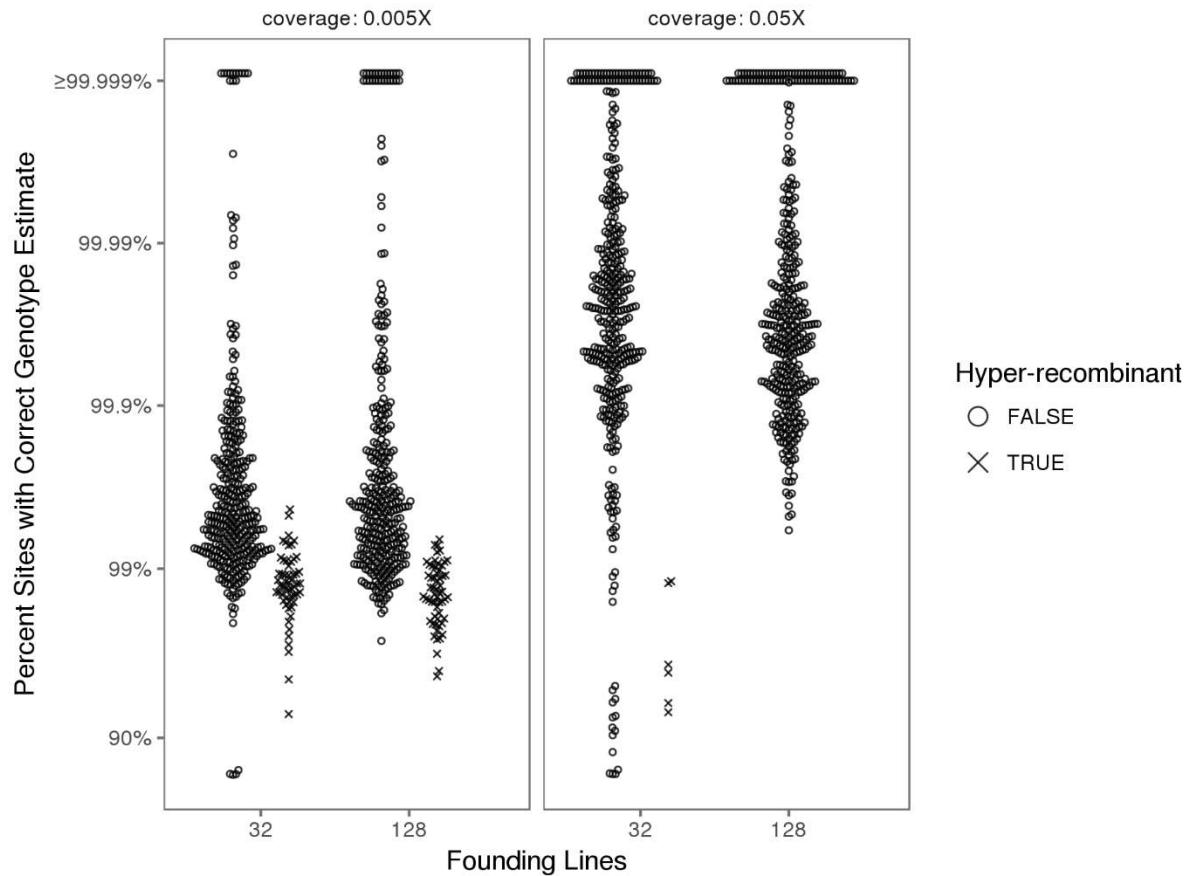
Figure S7. Distribution of Most-Likely-Ancestor counts for simulated, DGRP-derived F₅ hybrid swarm individuals.
The mean value ± 1 standard deviation is shown by the solid line and ribbon, respectively, for populations founded by either 32 or 128 inbred lines, across a range of HARP threshold values (0.9 to 0.999) and two levels of sequencing coverage. Each parameter combination includes 400 chromosomes (from 100 simulated individuals) simulated with 0.05X sequencing coverage.



1155

1156 **Figure S8.** Accuracy of genome reconstruction for simulated, coalescent-derived F_5
1157 hybrid swarm individuals.

1158 Reconstructions were performed for populations simulated as being founded by either
1159 32 or 128 inbred lines for various effective population sizes (N_e) and mutation rates (μ).
1160 Accuracy is represented on a logit scale, as most points occur above 90%.
1161 Reconstructed chromosomes that are predicted to exhibit ≥ 10 recombination events are
1162 denoted by an X. Each parameter combination includes 400 reconstructed
1163 chromosomes (from 100 simulated individuals).

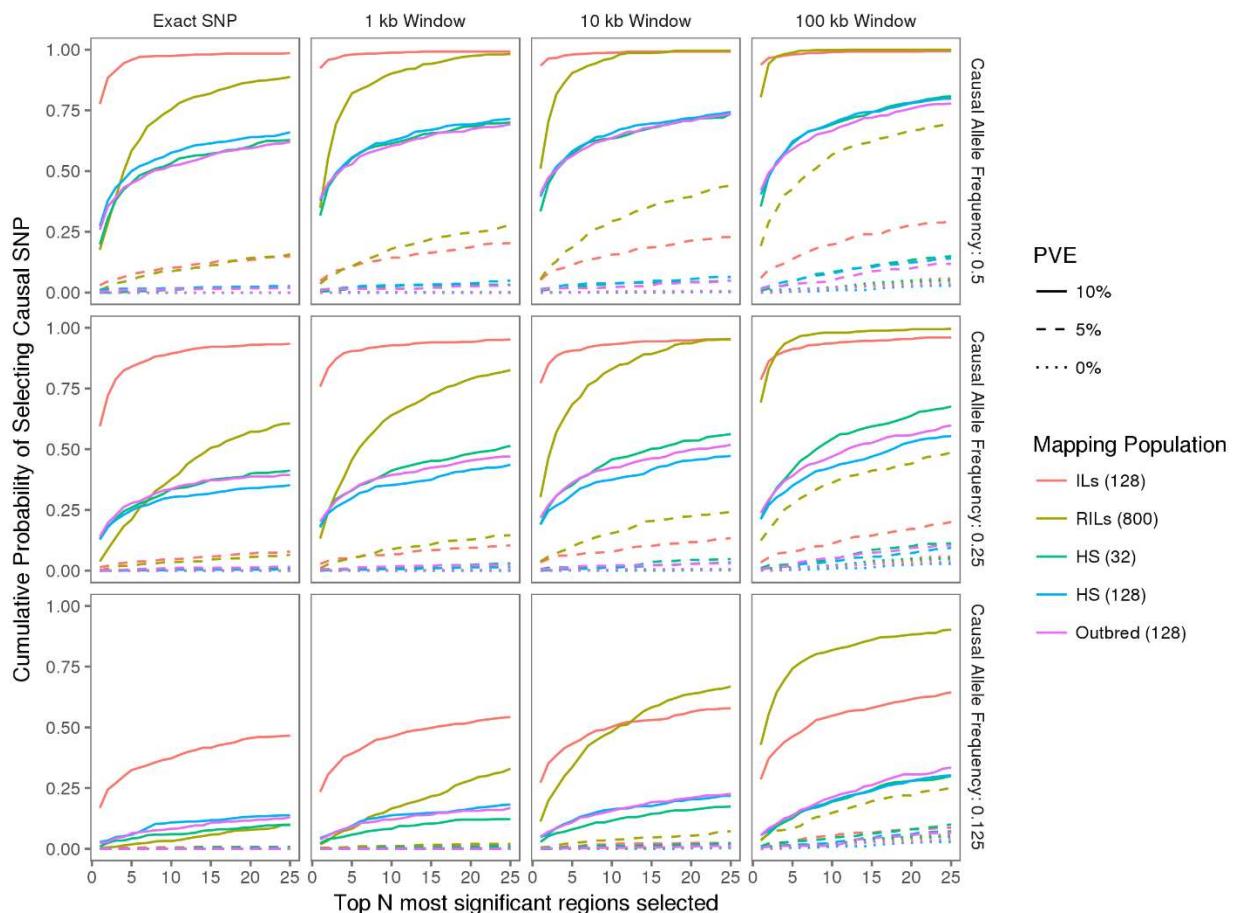


1164

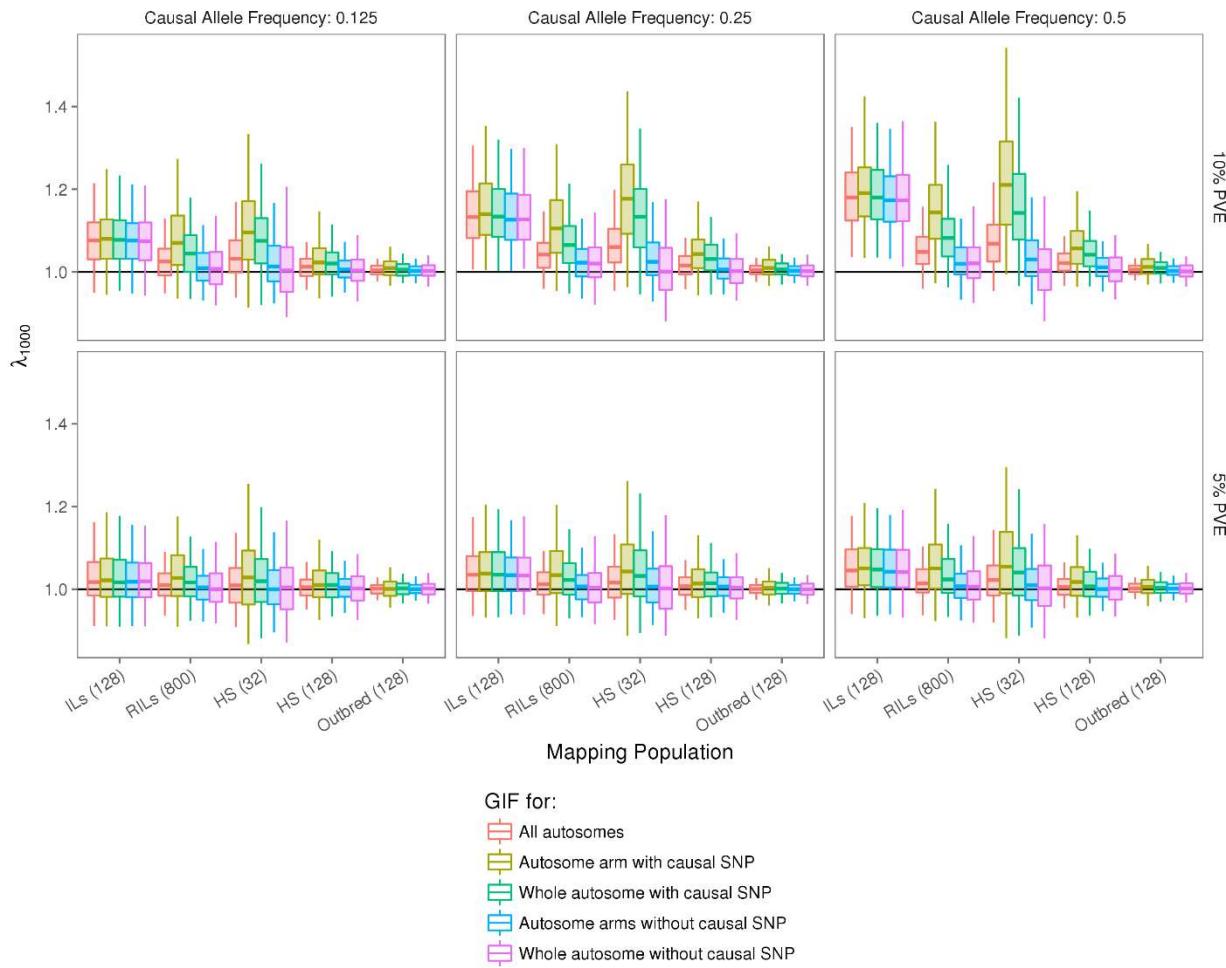
1165 **Figure S9** Accuracy of genome reconstruction for simulated, DGRP-derived F₅ hybrid
1166 swarm individuals.

1167 Reconstructions were performed for populations simulated as being founded by either
1168 32 or 128 inbred lines for two levels of ultra-low sequencing coverage. Accuracy is
1169 represented on a logit scale, as most points occur above 90%. Accuracy values are
1170 marked depending on the number of estimated recombination events, with highly
1171 recombinant estimates (≥ 10 recombination events) displayed as an X. Each parameter
1172 combination includes 400 reconstructed chromosomes (from 100 simulated individuals).
1173

1174
1175

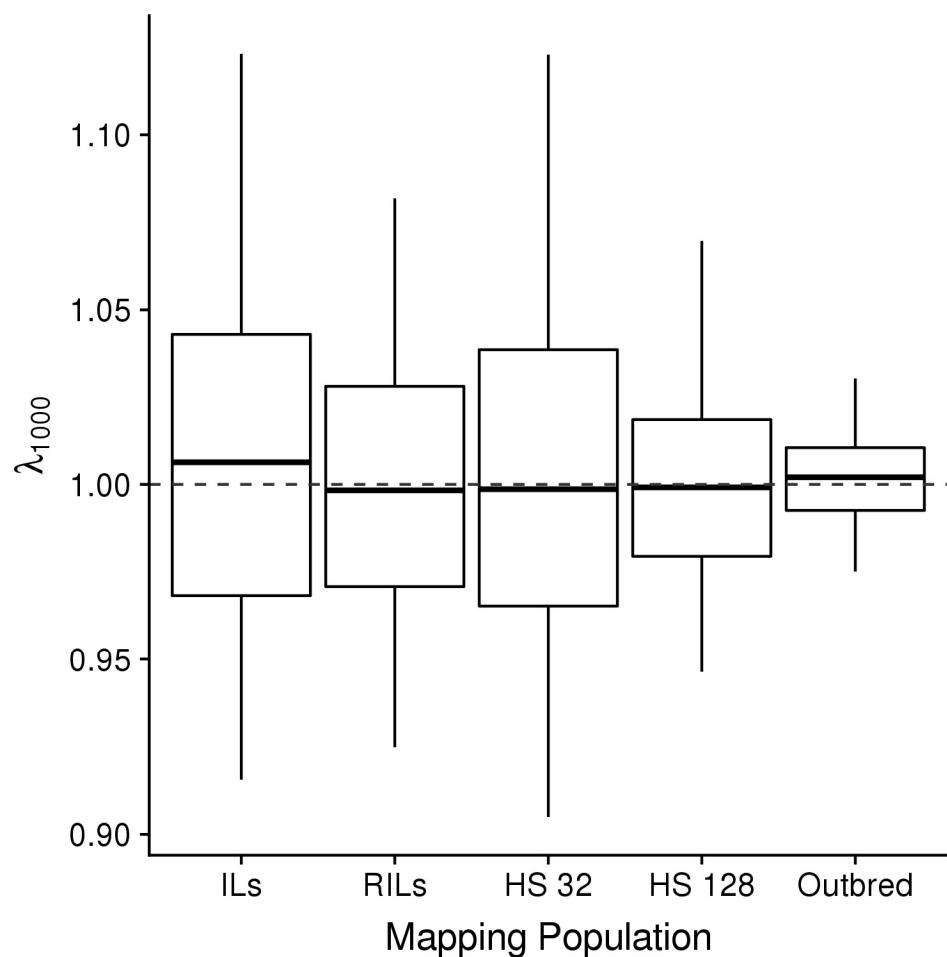


1176
1177 **Figure S10.** Probability of selecting a causal SNP (or a nearby neighbor) in simulated
1178 GWAS.
1179 Each line represents the fraction of GWAS simulations (out of 500 total GWAS, each
1180 comprised of 5000 individuals in a case-control framework) where the causal SNP is
1181 selected within N most significant regions. Case-control status was assigned based on
1182 reference allele dosage at a randomly selected causal SNP segregating with frequency
1183 of 50%, 25%, or 12.5%. For 10% PVE, homozygotes for the reference allele were
1184 assigned to the case group with 45% probability, while homozygotes for the alternate
1185 allele were assigned to the case group with 55% probability (a difference of 10%). For
1186 5% PVE, homozygotes for the reference allele were assigned to the case group with
1187 47.5% probability, while homozygotes for the alternate allele were assigned to the case
1188 group with 52.5% probability (a difference of 5%). All heterozygotes (and any individuals
1189 modeled with 0% PVE, irrespective of genotype) were equally likely to be assigned to
1190 case or control group (a difference of 0%).
1191



1192
1193 **Figure S11.** Genomic Inflation Factor (GIF, λ_{1000}) in simulated DGRP GWAS as a
1194 function of minor allele frequency and percent variation explained.
1195 GIF is stronger with greater PVE, and is elevated on the arms which contain (and are
1196 directly and most strongly linked to) the SNP associated with case and control status.
1197

1198



1199

1200 **Figure S12.** Genomic Inflation Factor (GIF, λ_{1000}) in simulated DGRP GWAS with no
1201 genotype-phenotype link.
1202 As the percent variation explained is 0% (and thus, case and control status is randomly
1203 assigned), GIF centers around 1.0 as expected.
1204
1205

Population	Coverage	N Founders	N_e	μ	ρ	$\bar{\Delta}$	σ_{Δ}
DGRP	0.005X	128	-	-	0.201	3.06	3.11
DGRP	0.005X	32	-	-	0.201	3.15	2.81
DGRP	0.05X	128	-	-	0.986	-0.015	0.25
DGRP	0.05X	32	-	-	0.502	0.17	2.15
Coalescent	0.05X	128	10^4	1×10^{-9}	0.029	-2.72	1.60
Coalescent	0.05X	32	10^4	1×10^{-9}	0.219	-1.84	1.50
Coalescent	0.05X	128	10^5	1×10^{-9}	0.288	-1.57	1.64
Coalescent	0.05X	32	10^5	1×10^{-9}	0.761	-0.53	0.99
Coalescent	0.05X	128	10^6	1×10^{-9}	0.742	-0.46	1.09
Coalescent	0.05X	32	10^6	1×10^{-9}	0.754	-0.42	1.22
Coalescent	0.05X	128	10^4	5×10^{-9}	0.203	-2.03	1.73
Coalescent	0.05X	32	10^4	5×10^{-9}	0.622	-0.89	1.17
Coalescent	0.05X	128	10^5	5×10^{-9}	0.652	-0.64	1.41
Coalescent	0.05X	32	10^5	5×10^{-9}	0.782	-0.26	1.16
Coalescent	0.05X	128	10^6	5×10^{-9}	0.956	-0.17	0.44
Coalescent	0.05X	32	10^6	5×10^{-9}	0.759	-0.31	1.26
Coalescent	0.05X	128	10^4	1×10^{-8}	0.238	-1.65	1.86
Coalescent	0.05X	32	10^4	1×10^{-8}	0.745	-0.66	1.05
Coalescent	0.05X	128	10^5	1×10^{-8}	0.776	-0.34	1.12
Coalescent	0.05X	32	10^5	1×10^{-8}	0.846	-0.25	0.93
Coalescent	0.05X	128	10^6	1×10^{-8}	0.937	-0.22	0.56
Coalescent	0.05X	32	10^6	1×10^{-8}	0.833	-0.32	0.95

1206 **Table S1.** Accuracy of estimated number of recombination events following
 1207 chromosome reconstruction.
 1208 A high concordance correlation coefficient (Lin's ρ) indicates agreement between
 1209 estimated and true recombination counts for 400 reconstructed chromosomes
 1210 (coalescent-derived populations) or chromosome arms (DGRP-derived populations).
 1211 Coalescent-derived populations are described across a range of values for effective
 1212 population size N_e and mutation rate μ . $\bar{\Delta}$ and σ_{Δ} denote mean and standard deviation,
 1213 respectively, for difference between estimated and true recombination count.
 1214 Reconstructions were performed with a maximum of 16 most-likely-ancestors with a
 1215 HARP threshold of 0.99 (see methods for more details).