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Abstract
Genetic association mapping studies seek to uncover the link between genotype and
phenotype, and often utilize inbred reference panels as a replicable source of genetic
variation. However, inbred reference panels can differ substantially from wild
populations in their genotypic distribution, and patterns of linkage-disequilibrium and
nucleotide diversity. As a result, associations discovered using inbred reference panels
may not reflect the genetic basis of phenotypic variation in natural populations. To
address this problem, we evaluated a mapping population design where dozens to
hundreds of inbred lines are outbred for few (e.g. five) generations, which we call the
Hybrid Swarm. The Hybrid Swarm approach has likely remained underutilized relative to
pre-sequenced inbred lines due to the costs of genome-wide genotyping. To reduce
sequencing costs and make the Hybrid Swarm approach feasible, we developed a
computational pipeline that reconstructs accurate whole genomes from ultra-low-
coverage (0.05X) sequence data in Hybrid Swarm populations derived from ancestors
with phased haplotypes. We compared the power and precision of GWAS using the
Hybrid Swarm, inbred lines, recombinant inbred lines, and highly outbred populations
across a range of allele frequencies and effect sizes, modeling genetic variation from
the Drosophila Genetic Reference Panel as well as variation from neutral simulations.
While inbred populations tended to perform best due to the intrinsic power benefits
conferred by the lack of heterozygotes, association mapping with the Hybrid Swarm
performed comparably to highly outbred (Fso) populations and has higher precision than
mapping with inbred lines. Taken together, our results demonstrate the feasibility of the

Hybrid Swarm as a cost-effective method of fine-scale genetic mapping.
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Introduction

Genetic mapping studies seek to describe the link between genotype and phenotype.
For experimental crosses, mapping was traditionally conducted by scoring the
phenotypes of recombinant offspring descended from a limited number of parental lines.
While such QTL mapping studies can have high power to detect associations, they offer
minimal mapping resolution (Cheng et al. 2010), often detecting broad regions of
phenotypic association (Bergland et al. 2012). If linkage disequilibrium is lowered,
spurious associations become rarer (Li et al. 2005) and associations can be resolved at
the gene or nucleotide level, as in GWAS of large outbred populations (Nikpay et al.
2015; Wu et al. 2017; Monir and Zhu 2017). However, GWAS suffer from reduced
power to detect associations, necessitating a large sample size relative to QTL mapping
(Spencer et al. 2009).

To generate higher resolution mapping populations than the traditional biparental F2
design, Multiparent Populations (MPPs) are commonly used. By crossing together
multiple inbred lines, researchers can produce genetically diverse mapping populations
without sampling wild individuals. MPPs are commonly used for the dissection of
complex traits in model organisms (Chesler et al. 2008; Kover et al. 2009; King et al.
2012b) and agriculturally important crops (Huang et al. 2012; Singh et al. 2013; Kramer
et al. 2014). The mapping resolution of MPPs depends on the extent of linkage
disequilibrium, and resolution is improved by allowing for more recombination between
haplotypes, or by incorporating a greater number of genetically diverse haplotypes (Mott
et al. 2000; Chia et al. 2005).

One alternative approach for generating a high-resolution mapping population is to
substitute extensive recombination for increased haplotype diversity. By crossing
dozens to hundreds of inbred lines for a limited number of generations, heterozygous
mapping populations can be generated quickly with sufficiently reduced LD to detect
associations with high resolution. Unfortunately, the many-haplotypes few-generations

method is not without its drawbacks. First, including many haplotypes decreases the
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frequency of the rarest alleles, reducing power to detect associations. Second, such an
outbred population would require recurring genotyping efforts (Yang et al. 2018) unlike
pre-sequenced homozygous lines. The net requirement of genotyping a large sample
size may explain the widespread use of pre-genotyped inbred reference panels for
genetic association experiments in model systems (Huang et al. 2011; King et al.
2012b; MacKay et al. 2012; Srivastava et al. 2017).

Here, we describe computational methods that allow for cost-effective association
mapping with a large outbred population. The Hybrid Swarm is founded by dozens to
hundreds of inbred lines, crossed for a limited number of generations. To reduce
genotyping costs of the Hybrid Swarm, we developed and evaluated a pipeline to
reconstruct whole genomes using ultra-low coverage sequencing data. We developed
and tested our pipeline by reconstructing whole genomes for thousands of simulated
Hybrid Swarm individuals. Our simulated genomes draw from natural variation in the
Drosophila melanogaster Genetic Reference Panel (DGRP), as well as from variation
generated from coalescent models representing a broad range of genetic diversity
parameters for common model systems. We show that the Hybrid Swarm approach
allows for highly accurate genotyping (average 99.9% genotypic accuracy) from ultra-
low-coverage (0.005-0.05X) whole-genome individual-based sequencing. We then
perform simulated GWAS to describe the power and precision of association mapping in
the Hybrid Swarm compared to inbred lines, recombinant inbred lines, and a highly
outbred (Fs,) population. Our computational tools are capable of efficiently simulating
low-coverage reconstruction and GWAS power analysis of any model system. Together,
our results the feasibility of cost-effective high-resolution association mapping in a large

outbred population.

Methods

Generating and preparing simulated reference panels.

In order to evaluate low-coverage reconstruction for various degrees of genetic

diversity, we generated reference panels using haplotypes produced by coalescent
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models across a range of genetic diversity levels. Haplotypes were generated using the
R (R Core Team 2016) package scrm (Paul R. Staab et al. 2015) and subsequently
restructured into VCF file format (Danecek et al. 2011). We generated ten independent
panels for each of all 18 combinations of population size (N, = 10%,10°,10°), mutation
rate (u = 1072,5 x 107%,1078), and number of haplotypes (32, 128). The value for 8 for
each simulation was defined as 4N.u. We simulated a chromosome-length locus of 25
Mb with a recombination rate of 1.5 cM/Mb. SNP positions output by scrm (a decimal
within the range of 0 to 1) were converted to base pair positions by multiplying the
decimal by chromosome length (25 x108 base pairs for our simulations) and rounding
down to the nearest integer. Any sites with more than two alleles were converted to a
biallelic site by discarding tertiary or quaternary alleles. Genotype values were re-coded
as polarized signed integers: +1 for reference and -1 for alternate alleles. For every
position, reference and alternate alleles were defined by randomly selecting one of the
twelve non-repeating pairs of nucleotides. Reference genome FASTA files were
created with a custom python script that generated a 25 million length string of
nucleotide characters with weighted probability to achieve 45% GC-content, followed by

replacing variable positions with their respective reference alleles.

Preparing DGRP haplotype data

As a case study of low-coverage genome reconstruction in a model system, we
incorporated wild fruit fly genetic diversity from the Drosophila Genetic Reference Panel
(MacKay et al. 2012) DGRP freeze 2 as available from the Drosophila Genome Nexus
(Lack et al. 2015). To minimize missing data, we included the 129 lines (out of 205)
which exhibited aligned whole genome FASTA files with less than 50% of nucleotides
indicated by the ambiguity character N. We excluded insertions, deletions, fixed sites,
and sites with more than two alleles. Any heterozygous genotype calls were masked as
missing data. Diploid genotypes were re-coded as a single signed integer value, with +1
for homozygous reference, -1 for homozygous alternate, and 0 for missing data. This
resulted in a polarized VCF file containing only biallelic SNPs and only homozygous (or

missing) genotype calls.
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Simulating Mapping Populations

To generate simulated populations, we developed a forward-simulator in R that stores
ancestral haplotype block maps instead of genotypes. Our analyses necessitated a
method of storing genotype information for thousands of individuals across thousands of
simulations. To do so, we leveraged information redundancy that exists between related
individuals in recombinant populations, generating haplotype block files. We achieved
between three and four orders of magnitude of compression relative to a VCF file. For
example, for a population containing 5000 diploid genotypes at nearly four million sites,
a compressed VCF file is approximately 6.5 GB, compared to approximately 3.5 MB for
a haplotype block file. This reduced file size is what allowed us to generate and store
28,000 total independent GWAS simulations (500 each for 56 parameter combinations).
When haplotype block ancestry is known and recorded, as is possible with simulations,
genotypes must only be recorded once (for the ancestral founders). Recombinant
individual genotypes can then be reconstituted by extracting ancestral genotypes from

ancestor and base pair position indices.

We simulated Hybrid Swarms through random mating over five non-overlapping
generations at a population size of 10,000. Simulations proceeded in the following
manner: first, a subset of either 32 or 128 founders was selected. Then, of that founder
subset, 10,000 individuals were sampled with replacement. All possible founders were
chosen with equal probability and assigned male or female sex with a 1:1 ratio, where
sex was determined by the presence of a designated sex chromosome. Sexual
reproduction was simulated by random sampling of recombinant gametes from male-
female pairs. Once 10,000 recombinant progeny were generated, the parental
generation was discarded. Reproduction continued until the Fs population was
achieved. Recombination frequency was modeled as a Poisson process with an
expected value 4 = X(Morgans) per chromosome. For simulations of Drosophila
populations based on DGRP chromosomes, recombination occurred only in females,
with recombination frequency and position based on values from Comeron et al (2012).

For populations founded by simulated haplotypes, recombination occurred in both
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157  sexes, with recombination occurring uniformly across each chromosome (Supplemental
158  Figure S1).

159

160 Simulating and Mapping Sequencing Data

161  We used wgsim (Li 2011) to generate simulated reads. To achieve a desired level of
162  sequencing coverage C = 0.05or 0.005, we generated N = (C x S)/(2 X L) reads per
163 chromosome, with read length L = 100 bp and chromosome length S bp. We specified a
164  base error rate of 0.001 and an indel fraction of 0. Remaining wgsim parameters were
165 left as default.

166

167 We assembled paired end reads using PEAR (Zhang et al. 2014) and separately

168 aligned the assembled and unassembled groups to a reference genome with bwa

169  0.7.14 using the BWA-MEM algorithm (Li 2013). Reads from DGRP-derived populations
170  were mapped to the D. melanogaster reference genome v5.39, and reads from

171  coalescent-derived populations were mapped to their respective simulated reference
172  genomes. After converting mapped reads to compressed BAM format with samtools
173  1.3.1 (Li et al. 2009), we removed PCR duplicates with Picard tools 2.0.1 (Broad

174  Institute 2015a).

175

176  Most Likely Ancestors Selection

177  To make chromosome reconstructions in the hybrid swarm computationally tractable
178  (Figure 1), we developed a method of accurately selecting a subset of most likely

179  ancestors for any single chromosome. We then used that ancestor subset to reconstruct
180 haplotype blocks using the RABBIT package (Zheng et al. 2015) in Mathematica.

181  RABBIT operates as a Hidden Markov Model (HMM) using the Viterbi algorithm to

182  return the most likely series of parental combinations (hidden states) across the

183 genome (SNP positions) given the observations (sequenced alleles). For every position
184 in the genome, the Viterbi algorithm evaluates relative likelihoods of transitioning to any
185 possible hidden state. Because the hidden states in our case are ancestor

186  combinations, there will be (N? + N)/2 combinations of N haplotypes to evaluate at

187  every site. This number of evaluations is tractable at smaller values of N but grows at a
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188 quadratic rate. For example, increasing the number of founding haplotypes from 8 to
189 128 is a 16-fold increase in haplotypes, but it would incur orders of magnitude increases
190 in computational effort (Figure 1). Thus, in order to make reconstructions in RABBIT
191 computationally tractable for hybrid swarm individuals, it is necessary to identify a

192  subset of founders that accurately includes the true ancestors contributing to any given
193 chromosome.

194

195 We used the software package HARP (Kessner et al. 2013) to rank the population

196 founding lines based on likelihood of being a true ancestor of a chromosome to be

197  reconstructed. HARP was originally developed to estimate haplotype frequencies from
198 pooled sequence data, and we co-opted it to assess relative likelihood that any founder
199  contributed to a genomic window. We ran HARP with non-overlapping 100 kb windows
200  with a minimum frequency cutoff 0.0001, producing output which can be visualized as a
201  heat map of ancestor likelihood across the chromosome. A custom R script analyzed
202 this HARP output and ranked all possible founders in terms of likelihood of contribution
203 for a given chromosome. Briefly, a chromosome-wide significance threshold was

204 calculated, e.g. the 95% or 99% quantile of all likelihoods across all founders and all
205 chromosome windows. Then, every potential ancestor for each 100 kb window was
206 classified as falling above or below this threshold. Founding lines were then ranked in
207  descending order of the number of windows passing the threshold. We examined two
208 measures of effectiveness for this method across a range of quantile threshold values
209  (90%, 95%, 99%, and 99.9%) when selecting up to a maximum number of most likely
210 ancestral haplotypes. The first measure is the number of true ancestral founders

211 excluded; the second measure is the fraction of the chromosome derived from

212  ancestors missing from the selected subset.

213

214  Chromosome Reconstruction with RABBIT

215  We used the MAGIC reconstruct method of the Mathematica package RABBIT (Zheng
216 et al. 2015) to perform chromosome reconstructions, which has been shown to be

217  accurate for genotype estimation at sequencing coverage at 0.05X for a variety of
218  multiparent populations (Zheng et al. 2018). RABBIT requires three inputs: observed
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219  genotypes in the individual being reconstructed; map distance (in cM units) of the same
220 loci; and genotypes for the potential ancestors at those same loci. For DGRP-derived
221  simulated populations, we specified map distance based on values reported by

222  Comeron et al. (2012) by performing linear interpolation of cumulative map units (cM) as
223  afunction of base pair position. For populations derived from simulated haplotyopes, we
224  used a linear function of 37.5 cM over each 25 Mb chromosome. To specify genotype
225 information, we first counted reference and alternate reads using the Genome Analysis
226  Toolkit ASEReadCounter (Broad Institute 2015b). Because it is not possible to make
227 confident homozygote genotype calls from low coverage sequencing data where most
228 sites are observed only once and or twice, we only included diploid genotype

229 observations for sites where both reference and alternate alleles were observed. As
230 RABBIT allows for an ambiguous allele character, for all sites where only reference or
231  alternate reads were observed (but not both), we included one ambiguous allele.

232

233  To minimize memory and runtime requirements, we included at most 5,000 SNPs per
234 chromosome, selected for maximum ancestor-discerning information content. If an

235 observed (sequenced) allele is common, it will only slightly narrow down the possibility
236 of ancestors. If a sequenced allele is rare—at the most extreme, unique to one

237  individual—it provides greater information from which founder that site is derived. Thus,
238 we designate information-rich sites as those where the frequency of the sequenced

239 allele is the lowest with respect to the pool of most likely ancestors. In order to sample
240 sites with high information content spread throughout the chromosome, we used an

241  iterative approach. First, we included all heterozygous sites (i.e. where reference and
242  alternate alleles are both observed). Then, 10% of all SNPs were randomly sampled,
243 and we retained up to the top 0.2% most informative sites, repeating the random

244  sampling and retention until we designated 5,000 SNPs.

245

246  We ran RABBIT independently for each chromosome using the Viterbi decoding

247  function under the joint model, with all other RABBIT parameters left at default. RABBIT
248  output was converted to a phased chromosome haplotype map, which we then used to

249  extract and concatenate genotype information from a VCF file containing founder
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250 genotypes. To calculate genotype reconstruction accuracy, we first imported true

251 (simulated) and estimated (reconstructed) genotypes using a custom R script. We

252 measured the fraction of all remaining sites where the estimated diploid genotype is
253 identical to the originally simulated diploid genotype, excluding fixed sites with respect
254  to the founding haplotypes, and excluding any sites with missing genotype information.
255 Because male individuals do not possess two copies of the sex chromosome, we only
256 evaluated accuracy for autosomes.

257

258 To measure accuracy of estimated frequency of recombination events, true and

259 estimated recombination counts were first summed over both copies of each

260 chromosome in a simulated individual. This removed the possibility of introducing error
261 by comparing the wrong copies of chromosomes. Only detectable recombination events
262  were considered, i.e. those that did not occur between homologous haplotypes. We
263 then used the epi.ccc function of the R package epiR (Stevenson 2018) to calculate
264 Lin’s concordance correlation coefficient (p) between the true and estimated

265 recombination counts.

266

267 Modeling Computational Complexity of Chromosome Reconstruction

268 To estimate the rate at which computational requirements grows with data input, we
269 performed chromosome reconstructions with varying numbers of potential founders and
270 markers (SNPs). This allows us to extrapolate the runtime and memory for performing
271  the most resource intensive chromosome reconstructions (i.e. those with > 40 founding
272 lines). To generate runtime and memory usage data, we performed 900 reconstructions
273  using varying sizes of RABBIT input for a single example individual 2L chromosome.
274  Reconstructions included the four true ancestors of the simulated individual, plus 0 to 32
275 additional haplotypes (for a total of between 4 and 36 founders, in steps of 4) and a
276 random selection of marker SNPs (between 500 and 5000 in steps of 500). Ten

277  replicates, each with a unique random set of SNPs, was conducted for each

278 combination of N founding lines and S SNPs using a single core on the University of
279  Virginia computing cluster, with total runtime and peak memory usage as reported from
280 the SLURM workload manager (CPUtime and MaxRSS, respectively). We then
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281 modeled the mean runtime and memory usage (averaged across 10 replicates per
282 parameter combination) as a function of number of founding lines and number of SNPs
283 fed into RABBIT. For runtime, simulations involving 8 or fewer founding lines were

284  omitted from the regression model because they ran too quickly to resolve non-zero
285  runtime. Memory was modeled as Memory(GB) = 7.367 X 1072 x SN* + 0.0316, while
286 runtime was modeled as Runtime(Minutes) = [1.189 x 1073 x N2 + 1.038 X 107 x
287 SN? +2.649 x 107* x S]2.

288

289  Simulated GWAS

290 We performed GWAS on mapping populations produced by random sampling and

291  permutation of the previously-described forward-simulated populations. Although the
292 forward simulator we developed is efficient, it would not have been computationally
293 feasible to simulate 500 fully independent mapping populations (per parameter

294  combination) in a reasonable amount of time. Instead, we generated ten independent
295 forward-simulated populations, and for each of those, generated fifty randomly

296 permuted subsets (Figure 2). For a single simulated mapping population, we began by
297 sampling (with replacement) a random subset of 5,000 individuals, out of 10,000 total
298 individuals generated by forward-simulation. Then, we performed a permutation of

299 haplotype ancestry with a new, randomly-ordered (equally sized) subset of founders.
300 The permutation of ancestry was one-to-one, e.g. all haplotype blocks that were

301  previously derived from founder X would be translated to founder Y, and blocks

302  previously derived from Y would in turn be mapped to founder Z.

303

304 In addition to Hybrid Swarm populations, which we ran through the simulated

305 sequencing and mapping pipeline, we generated four additional types of mapping

306 populations for comparing GWAS performance: Highly outbred (Fso) populations, similar
307 to sampling wild individuals; Inbred Lines (ILs), similar to mapping with the DGRP); and
308 Recombinant Inbred Lines (RILs), similar to mapping with the DSPR.

309

310 The Fs, populations were generated in same manner as the Hybrid Swarm, except for

311 fifty non-overlapping generations of recombination instead of five generations. The ten
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312  resulting forward-simulated populations were resampled and permuted as we did with
313  the Hybrid Swarms.

314

315  We simulated ten initial sets of 800 RILs using the same forward-simulator as previously
316  described, each initialized with a random subset of eight DGRP haplotypes. Populations
317  randomly recombined at a population size of 10,000 for fifty non-overlapping

318 generations, after which 800 random male-female pairs of individuals were isogenzied
319 through 25 generations of full-sibling mating. This scenario roughly corresponds to the
320 Drosophila Synthetic Population Resource (King ef al. 2012a). For computational

321  simplicity, after the 25 generations of isogenization we removed any remaining residual
322  heterozygosity by forcing the identity of a second chromosome copy to be identical to
323 the first copy. We then sampled 5,000 draws (with replacement) of the 800 RILs

324  followed by ancestry permutation as described above.

325

326 To simulate GWAS on Inbred Lines, no forward-simulation was necessary. For a single
327  simulated population, we first randomly selected 128 DGRP lines with high coverage
328 and low levels of heterozygosity as the set of founders. Then, those 128 lines were
329 randomly sampled with replacement 5,000 times. As with hybrid swarm and RILs, for
330 any parameter combination we generated a total of 500 mapping populations.

331

332 Phenotypes were modeled as probabilistic assignment to a case or control group

333 dependent on allele dosage at a purely additive single SNP. We designated a causal
334  locus as a random autosomal biallelic SNP segregating within 0.5% of a desired minor
335 allele frequency (50%, 25%, and 12.5%). We modeled SNPs at 5% and 10% percent
336 variation explained (PVE), where reference allele homozygotes were assigned to the
337  case group with probability 50% — PVE /2, and alternate allele homozygotes were

338 assigned to the case group with probability 50% + PVE /2. Heterozygotes were equally
339 likely to be assigned case and control.

340

341  To perform many replicates of GWAS for many parameter combinations, we performed

342 asimple y? test of independence for reference and alternate allele counts between case
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343 and control groups. To do so most efficiently, we developed a method of aggregating
344  allele counts that uses a haplotype map table in conjunction with a single table of

345 founder genotypes (Figure 2). Briefly, haplotype table breakpoints across all individuals
346  were sorted in ascending order. When iterating through ascending unique start and stop
347  positions, between any pair of breakpoints, all SNPs will be comprised of the same

348 number of each founding haplotype. Haplotype IDs could then be counted and sorted in
349 the same column position order as the table containing polarized allele status (-1 for
350 alternate, +1 for reference). Multiplying the genotype table by the haplotype count vector
351 results in final allele counts, polarized negative for alternate alleles and positive for

352 reference alleles. For inbred mapping populations, we corrected for non-independent
353 allele draws by dividing the %2 value by two.

354

355 To describe the accuracy of simulated GWAS, we measured the likelihood of including
356 alocus that is near the causal site when considering a set of the top N most significant
357 SNPs. Here, ‘near’ is defined as either exact-SNP resolution, or within 1, 10, or 100 Kb.
358 In the case of 1 kb precision, we first consider the set of SNPs +/- 1 kb from the most
359 significant locus (greatest chi-square statistic). Then, we consider the second set of
360 SNPs as those within +/- 1 kb of the most significant locus outside of the window

361 already accounted for. This selection of significant clusters was repeated iteratively for
362 the top 25 regions, for window sizes of 0 (exact SNP resolution), 1 kb, 10 kb, and 100
363  kb.

364

365 We calculated genomic inflation factor (GIF, 1;499) as the value of Xg,,smd/xgxpected

366  with two degrees of freedom. Because GIF increases with sample size, we performed a
367  correction to report the level of GIF expected with a sample size of 1,000 case and

368 1,000 control individuals (Freedman et al. 2004).

369

370 Assessing counts of variable sites at appreciable frequency in the DGRP

371 There is a reduction in power to detect associations with alleles segregating at low

372  minor allele frequencies. When a population is founded by N lines, any SNP will be

373 segregating at a relative frequency of at least 1/N, given that the SNP is not fixed within
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374  the population and haplotypes are equally represented. We counted the number of sites
375 on a given chromosome arm segregating above a minor allele frequency threshold of
376  MAF=(0.05, 0.125, and 0.25) for random draws (without replacement) when sampling
377 N=(2, 4, 8, 16, 32, 64, 128) haplotypes of the 129 included DGRP lines We performed
378  this sampling 20 times for each chromosome arm.

379

380 Data Availability Statement

381 The code used to generate, process, and plot our data is available on GitHub:

382  https://github.com/cory-weller/low-coverage-genome-reconstruction

383

384 Results

385

386 Computational Complexity of Chromosome Reconstruction

387 To determine reasonable limits for numbers of SNPs and haplotypes used for

388 chromosome reconstruction with RABBIT, we modeled peak memory usage and

389 runtime across a range of input sizes. Peak memory grew linearly with number of SNPs
390 used, and at a greater-than-linear rate with haplotypes (Figure 1A, Memory =

391 7.367 X 107° X SN* + 0.0316), F = 3.534 x 10°, df = 1 & 88, R? = 1). The runtime of
392 RABBIT increased at a greater-than-linear rate for both number of SNPs and number of
393 haplotypes, though the N parameter dominates (Figure 1B, Runtime = [1.189 x 1073 X
394 N? +1.038x 107X SN?+2.649x107* x S], F = 4.316 X 10*, df =3 & 67, R* =

395 0.9995). These models allowed us to estimate resource requirements at greater

396 numbers of haplotypes (Figure 1, C & D) which would be unfeasible to measure

397 empirically.

398

399 Most-Likely-Ancestor Selection

400 To reduce computational requirements of haplotype reconstructions with RABBIT, we
401 developed and evaluated an algorithm for selecting a minimum representative set of
402 Most-Likely-Ancestors (MLAs) for chromosome reconstruction. We found a HARP

403 threshold of 0.99 (see methods) discerned a minimal subset of founding lines that

404 tended to include a given chromosome’s true ancestors (Figure 3). At this threshold,
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405 outcomes became asymptotic at the computationally tractable cap of 16 founding lines
406 (Figure 1). Thus, we performed chromosome reconstruction using up to 16 most-likely-
407 ancestors as inferred with a HARP threshold of 0.99.

408

409 In all cases, decreasing the HARP threshold from 0.95 to 0.90 further reduced

410 chromosome representation while increasing the number of extraneous founding lines
411  selected for reconstruction. While a higher HARP threshold of 0.999 yielded the

412  smallest and most computationally tractable set sizes of MLAs (N=2.4-3.5), the strict
413 threshold excluded true ancestors, resulting in a set that is least representative of

414  chromosomes to be reconstructed. For 128-founder populations, a threshold of 0.999
415 failed to identify founders constituting an average of 3.33% and 13.9% of chromosomes
416 for DGRP- and Coalescent-founded populations, respectively. In 32-founder

417  populations, the 0.999 threshold missed founders representing an average of 15.5%
418 and 29.7% of chromosomes from DGRP- and Coalescent-founded populations,

419  respectively.

420

421 Populations simulated with genetic variation derived from coalescent models described
422  above included the parameters N, = 10° and u = 5 x 10°. The effectiveness of most-
423 likely-ancestor selection for populations modeled across extended values of N, and u is
424  shown in supplemental Figures S2 and S3, respectively. Similarly, the number of most-
425 likely-ancestors chosen for reconstruction in RABBIT are shown in Figures S5 and S6.
426

427  Selected MLA set size is described in Figure S5 for 32-founder populations and Figure
428  S6 for 128-founder populations. Ancestor selection effectiveness for DGRP-derived
429 populations at two levels of sequencing coverage (0.005X and 0.05X) is shown in

430 supplemental Figure S4, and the corresponding number of most-likely-ancestors

431 chosen for reconstruction are shown in supplemental Figure S7.

432

433 Reconstruction Accuracy

434  Chromosome reconstruction of simulated F5 Hybrid Swarm genomes at 0.05X

435 sequencing coverage yielded highly accurate genotype estimates (Figure 4). The
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436 median percent of sites with correctly estimated genotypes was greater than 99.9%
437  whether the population was founded by 32 or 128 founding lines for either DGRP or
438 coalescent (N, = 10 and p = 5 x 107%) haplotypes. We additionally report

439 reconstruction accuracy in coalescent-derived populations across a range of N, and p
440 values in supplemental Figure S8.

441

442  For simulations founded by DGRP lines, 80.5% of reconstructed chromosomes from 32-
443  founder populations exhibited > 99.9% accuracy, with the remaining 19.5% of

444  reconstructions contributing to a long tail with a minimum of 84.37%. Increasing the

445 number of founding lines to 128 resulted in genotype accuracy above 99% for all cases
446  (minimum: 99.4%), with 83% of reconstructed chromosomes achieving greater than
447  99.9% accuracy.

448

449  Although median accuracy for coalescent-derived populations was equivalent to that of
450 DGRP-derived populations (99.9%), coalescent-derived populations with 32 founders
451  exhibited a greater number of low-accuracy reconstructions. While 82.5% of simulations
452  with 32 coalescent haplotypes were at least 99% accurate, the remaining 17.5% of

453 reconstructions contributing to a long tail with a minimum accuracy of 59.7%. Increasing
454  the number of founding lines to 128 resulted in 96.3% of simulations being greater than
455  99% accurate, with a minimum accuracy of 89.6%.

456

457  The number of recombination events estimated from chromosome reconstruction was
458 most accurate for populations founded by 128 lines (Table 1). Reconstructions of

459 DGRP- and Coalescent-derived chromosomes yielded recombination count estimates
460 that were 98.6% and 95.6% concordant with their respective true recombination counts
461 (Lin’s concordance correlation coefficient, p). When populations were founded by 32
462 lines, recombination count estimates were more inaccurate, with DGRP- and

463 Coalescent-derived reconstructions achieving 50.2% and 75.9% concordance with their
464  respective true recombination counts. For 32-founder populations, DGRP-derived

465 reconstructions tended to slightly overestimate recombination counts, while the same

466 counts were underestimated for coalescent-derived populations.
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467

468  Simulations that inferred an unlikely high number of recombination events tended to
469 exhibit reduced accuracy (Figure 4). All DGRP-derived simulated individuals (of 1600
470 total) exhibited < 8 recombination events, and all but three coalescent-derived simulated
471  individuals (7197 of 7200 total) exhibited < 9 recombination events. Accordingly, we
472  considered any reconstructions to be ‘hyper-recombinant estimates’ if the inferred

473 recombination count is greater than 8 for DGRP-derived populations or greater than 9
474  for coalescent-derived populations.

475

476 At 0.05X sequencing coverage, hyper-recombinant estimates did not occur for 128-

477  founder populations, and only rarely resulted from 32-founder populations. Within

478 DGRP-derived 32-founder populations, reconstructions with hyper-recombinant

479 estimates were below the sixth percentile of genotype accuracy (N=6/400 simulations,
480 genotype accuracy range=92.8%-98.8%). For coalescent-derived 32-founder

481 populations, reconstructions estimated as hyper-recombinant fell in the bottom 9% of
482  genotype accuracy (N=3/400 simulations, genotype accuracy range = 92.1%-95.6%).
483  Although hyper-recombinant estimates always fell in the bottom 10% of accuracy, the
484 least accurate reconstructions were not hyper-recombinant. For coalescent-derived 32-
485 founder populations, 4.25% (17/400) of reconstructions without hyper-recombinant

486 estimates exhibited lower genotype accuracy than the least accurate hyper-recombinant
487  simulation (range = 59.7%-92.1%). Similarly, for DGRP-derived 32-founder populations,
488 2.5% (10/400) of reconstructions without hyper-recombinant estimates exhibited lower
489 genotype accuracy than the least accurate hyper-recombinant simulation (range =

490 82.3%-92.8%).

491

492 Reducing sequencing coverage by an order of magnitude from 0.05X to 0.005X resulted
493 in more frequent hyper-recombinant reconstruction estimates, though overall median
494  genotype accuracy remained above 99% (Figure S9). Hyper-recombinant reconstructed
495 chromosomes exhibited genotype estimates with accuracy below 99%, while the

496 remaining simulations (with lower recombinant counts) achieved above 99% genotype

497  accuracy. For populations founded by 32 DGRP lines and sequenced at 0.005X
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coverage, 14% of simulations produced hyper-recombinant estimates (N=56/400), of
which only 26.8% (N=15/56) surpassed 99% genotype accuracy (median=98.5%). The
remaining 86% of simulations (N=344/400) that were not hyper-recombinant retained
greater accuracy, with 89% of simulations resulting in at least 99% genotype accuracy
(median=99.5). Increasing the number of founding DGRP lines from 32 to 128 at 0.005X
coverage failed to eliminate hyper-recombinant estimates. With 128 founding lines,
14.5% of simulations were hyper-recombinant (N=58/400), of which 24.1% (N=14/58)
surpassed 99% genotype accuracy (median=98.6%). The 85.5% of simulations that
were not hyper-recombinant (N=342/400), exhibited accurate genotype estimates, with
86.5% (296/342) of simulations achieving over 99% genotype accuracy (median=99.6).

GWAS Simulation Accuracy

To report the power of a GWAS, we must first define a “true positive” result. Consider a
putative SNP identified by GWAS that is 50 kb from the causal SNP. Such a result
would be considered a false positive if the aim is to identify the exact responsible
nucleotide, but may be a true positive with respect to to identify an associated gene. To
cover both use cases, we describe a true positive in terms of both SNP-level resolution
(requiring an exact base-pair match), or region-level resolution (allowing for tolerance
up to 100kb between putative hits and the causal SNP). Additionally, it is unrealistic to
simply evaluate the single top result of a GWAS. Rather, a set of candidate loci may be
chosen for follow-up evaluation in confirmatory studies, and the probability of including
the causal SNP will increase as a greater number of putative SNPs are evaluated. Most
distinct changes in GWAS power occurred when including between most significant to
top 10 most significant candidate loci, after which power increased at a reduced rate, if

an asymptote was not already reached.

The estimated power of GWAS using a specific type of mapping population, i.e. the
fraction of simulations with a true positive, is shown in Figure 5. For simplicity, we focus
on GWAS power when including the top 10 most significant candidate loci—a
reasonable number of putative sites that may be investigated in follow-up studies.
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529 s Hybrid Swarms founded by either 32 or 128 founding lines exhibited nearly

530 equivalent power compared to 5, outbred populations across all parameter

531 combinations. For common alleles, i.e. those segregating at 50% frequency, all outbred
532 populations achieved approximately 50% power to identify a causal variant with SNP-
533 level precision, and 70% power at the gene-level. Both inbred populations were highly
534 effective at detecting associations at the gene-level (99% and 99.8% for ILs and RILs,
535 respectively). SNP-level power was one fourth lower than gene-level power for RILs
536  (75.4%), but only marginally reduced for inbred lines (97.4%).

537

538 Power to detect associations is reduced when the causal allele is rare (segregating at
539 12.5% frequency). For such rare alleles, the gene-resolving power of ILs drops by

540 nearly half (to 54.8%), while RILs maintained high power (81.8%). All outbred

541  populations exhibited approximately 20% power to detect rare alleles at the gene-level.
542 Inbred lines were the sole frontrunner for identifying low frequency alleles with SNP-
543 level resolution (37.2%), followed by 128-founder Hybrid Swarm (10.8%), F50 outbred
544  (8.2%), 32-founder Hybrid Swarm (6%), and RILs (3.2%).

545

546 GWAS Genomic Inflation Factor

547 If individuals are assigned to case and control groups with equal probability, then the
548  resulting y? statistics should follow the expected distribution. If individuals are not sorted
549 into groups randomly, i.e. allele state at a causal SNP dictates nonrandom group

550 assignment, then y? values for that SNP should be inflated to some extent. Nonrandom
551  associations between a causal SNP and other loci can inflated test statistics across a
552  chromosome, or across a whole genome. The genome-wide inflation factor (1) can be
553 expressed as the ratio of observed and expected median y? values (Figure 6). Because
554  our simulations model a single causal SNP, 1 is a reflection of greater-than-chance

555 associations arising due to linkage with the causal SNP being modeled, which can

556 serve as a proxy for false positive rate.

557

558 Because the median expected y? statistic increases with sample size, we report 1,4y, a

559 sample-size-corrected value that is comparable across studies (Freedman et al. 2004).
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560 We calculated A as aggregated across three groups: linked, including only the

561 autosome arm containing the causal SNP; unlinked, including the unlinked autosome
562 that doesn’t contain the causal SNP; and autosomal, for all sites across both autosomes
563 two and three

564

565 Inflation factor measured across autosomes two and three was greatest for ILs, followed
566 by 32-founder Hybrid Swarm, RILs, 128-founder Hybrid Swarm, and 5, Outbred

567 populations. This order was observed whether the causal allele was common or rare,
568 though with reduced values of 1 at the lower allele frequency (Figure 7).

569

570 Only inbred populations displayed inflation on unlinked autosomes. When the causal
571  allele is common (50% frequency), inflation on unlinked sites was greater for Inbred

572 lines (median A = 1.17, interquartile range or IQR = 0.11) than for RILs (1 = 1.02,IQR =
573  0.07). There was no inflation for unlinked chromosome in outbred populations, where
574 1 = 1.0 with varying degrees of dispersion (IQR = 0.10,0.06 and 0.03, respectively, for
575  32-founder HS, 128-founder HS, and F50 outbred populations). Unlinked sites remained
576 inflated for ILs even when the causal allele was rare (1 = 1.07,IQR = 0.09). Distributions
577 for A across an extended range of autosome groups, PVE and allele frequencies are
578 shown in Figure S11.

579

580 When we dissociated phenotype from genotype with purely random case-control

581 assignment (i.e. PVE was set to 0% in our simulations), 1 was centered at 1 (Figure

582 S12). F5, outbred populations exhibited the lowest dispersion (IQR = 0.02), followed by
583  128-founder Hybrid Swarms (IQR = 0.04), RILs (IQR = 0.06), and 32-founder Hybrid
584  Swarms or ILs (IQR = 0.07 each).

585

586 Frequency of sites segregating at appreciable frequency

587 The number of SNPs segregating amongst DGRP haplotypes with at least a given MAF
588  strongly depends on the haplotype subset count for a given population (Figure 8). If only
589 considering SNPs segregating at or above a frequency of 12.5% on chromosome arm

590 2L, a population founded by 8 lines will yield approximately twice as many SNPs
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591  compared to a population founded by 128 lines (N=8 lines yields a median of 140K
592  SNPs; N=128 lines yields a median of 71k SNPs). If the minimum MAF threshold is
593 instead set to 5%, then populations with a greater number of lines exhibit a greater

594  number of SNPs—with a maximum number of segregating sites with N=16 lines

595 (median of 231.6k SNPs), nearly as many for 128 lines (median of 194k SNPs), and
596 fewer for N=8 lines (median of 133k SNPs).

597

598 Discussion

599 Herein, we examined the feasibility and statistical properties of genome-wide

600 association mapping using the Hybrid Swarm, an outbred population derived from

601 limited and random outcrossing of an arbitrary number of founding strains. We show
602 thatitis possible to accurately reconstruct whole genomes from Hybrid Swarm

603 populations using ultra-low coverage sequencing data (Figure 5). Genome-wide

604 association mapping using the Hybrid Swarm approach performs as well as mapping in
605 highly outbred F5, populations in a case-control GWAS framework (Figures 6,

606 Supplemental Figure S10). While mapping using the Hybrid Swarm approach generally
607 has reduced power compared to mapping using inbred lines (as would any outbred
608 population in general) a limited number of generations of recombination reduces false
609 positives arising from long-distance linkage disequilibrium present in founding strains
610 (Figure 7, Supplemental Figure S11). Together, our results demonstrate the feasibility
611  and potential of using the Hybrid Swarm approach for generating and genotyping

612  outbred mapping populations in a cost-effective and computationally-efficient (Figure 1)
613 manner.

614

615 Benefits of the Hybrid swarm Approach

616  The Hybrid Swarm approach is applicable to a wide variety of organisms and

617  experimental designs, conferring potential benefits over inbred reference panels. These
618 benefits are realized in three primary ways by: (1) allowing researchers to address

619 questions that require heterozygotes; 2) reducing labor and the influence of cage-effects
620 with random mating in a common environment; and 3) breaking down population

621  structure when incorporating individuals from divergent populations. These benefits are
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622 possible due to the ability to reconstruct genomes accurately and in a cost-effective
623 manner for a large number of individuals.

624

625 Note that the Hybrid Swarm method is not limited to populations founded by inbred
626 lines, as the technique can be applied to populations where phased genomes are

627 available for all outbred founders. Research systems without inbred reference panels
628 can thus make an up-front investment of fully phasing founder genomes to realize

629 downstream savings of reconstructing progeny from low-coverage sequencing data.
630 Due to the relative ease of generating phased genomes from a variety of long-read
631 sequencing technologies (Pollard et al. 2018), the Hybrid Swarm method may enable
632 association mapping in a wide variety of organisms.

633

634  Representation of heterozygotes

635 One clear difference between inbred and outbred mapping populations is the presence
636 of heterozygotes. On the one hand, the presence of heterozygotes in outbred

637 populations decreases power to detect association relative to inbred lines for an (semi-)
638 additive allele with a given effect size (Figure 6, Supplemental Figure S10). However,
639 the reduced statistical power of association mapping in outbred populations may be
640 ameliorated by reduced inbreeding depression and by the ability to assess the

641  heterozygous effects of alleles.

642

643 The ability to assess heterozygous effects of alleles will provide valuable insights into
644  several interesting aspects of biology, such as the nature of dominance and the identity
645  of regulatory polymorphisms. An increased understanding of dominance relationships
646  and regulatory polymorphisms is important for advancing our understanding of

647 quantitative trait variation and evolution. For instance, several theoretical models have
648 shown that context dependent dominance of quantitative fitness traits can underlie the
649 stable maintenance of polymorphisms subject to seasonally variable (Wittmann et al.
650 2017) or sexually antagonistic (Connallon and Chenoweth 2019) selection. The ability
651 to efficiently map loci with context dependent dominance relationships will aid in the
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understanding of the stability and abundance of polymorphisms maintained by these
forms of balancing selection.

Regulatory polymorphisms are known to underlie genetic variation in expression (Brem
et al. 2002; Cavet et al. 2003; Rockman and Kruglyak 2006) and this expression
variation can potentially be resolved to exact nucleotide differences (Grosveld et al.
1987; Rave-Harel et al. 1997; Bosma et al. 2002). The resulting differences in
expression can manifest as phenotypic changes to drive local adaptation (Kudaravalli
et al. 2009; Fraser et al. 2010; Fraser 2011, 2013). Allele-specific expression (ASE)
arising from cis-acting regulatory factors is a common mechanism to produce heritable
differences in expression (Yan et al. 2002; Cowles et al. 2002; Lo et al. 2003; Doss
2005). Because allelic expression biases are only produced (and detectable) in
heterozygotes, Hybrid Swarm populations facilitate the study of regulatory genetic
variation (i.e. ASE) as a driver of local adaptation in a variety of organisms.

Undirected outbreeding in a common environment

The Hybrid Swarm approach involves propagation of a single large outbred population
via undirected crossing. This design confers benefits over alternatives of either rearing
inbred lines separately or performing controlled crosses. First, a single population
reduces the influence of random block effects associated with rearing families or closely
related individuals in separate enclosures or defined areas. Second, random
outbreeding of a single population requires less labor compared to performing controlled
crosses or serial propagation of inbred lines. One drawback of the randomly outbred
method is susceptibility to loss of haplotypes due to genetic drift. The distribution of
haplotypes can also be skewed by line-specific differences in fitness or fecundity, with
such differences being observed for DGRP lines (Horvath and Kalinka 2016). To
attenuate haplotype dropout, it may be prudent to seed a Hybrid Swarm with a large
population of F1 hybrids produced by round-robin crosses. The F1 population would

then be followed by a limited number of generations (e.g., 4-5) of random outbreeding.
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682  Hybrid Swarm breaks down population structure and linkage disequilibrium

683 Recombination between lines in the Hybrid Swarm approach allows for greater

684 dissection of functional polymorphisms segregating between genetically structured

685 populations. If an association study incorporates haplotypes from multiple distinct

686  source populations, causal variants would segregate along with other linked variants.
687 Thus, to identify genetic mechanisms of local adaptation and trait variation in general, it
688 is necessary to minimize false positives from linked non-causal loci. Corrections due to
689 relatedness can reduce the type | error rate to some degree (Yu et al. 2006; Price et al.
690 2010; Yang et al. 2014), and can be further reduced by a greater extent of

691 recombination. Within mapping populations with many haplotypes such as the DGRP,
692 long-distance linkage disequilibrium results from correlated occurrence of rare variants
693 (Huang et al. 2014), potentially contributing to false positives in GWAS. This is reflected
694 in our simulations by genome-wide inflation of 4, even across physically unlinked

695 chromosomes, whereas five generations of recombination were sufficient to reduce this
696 inflation (Figure 7).

697

698 Most notably, Fs; Hybrid Swarm populations performed equivalently to Fs,outbred

699 population in a case-control GWAS framework. This is likely owed to the large number
700 of unique haplotypes within the Hybrid Swarm population, reducing the influence of long
701  distance LD, and in turn reducing false positive GWAS hits. One interpretation is that
702  only slightly recombinant populations comprised of a modest number of haplotypes are
703 sufficient representations of highly outbred (or wild) populations in a GWAS framework.
704  Inbred populations did exhibit greater power than outbred populations for identifying a
705 causal locus, although this result is to be expected. Because we simulated a purely
706  additive trait for which heterozygotes are equally likely to be assigned to either case or
707  control group, heterozygotes contribute no statistical signal of association. Accordingly,
708 for a causal allele segregating at 50% frequency, sample sizes for any outbred

709  populations will be effectively half that of an inbred population.

710

711 The Hybrid Swarm method is similar but distinct from advanced intercross populations

712  (AIPs), where AlPs result from crossing few lines (e.g., 8) for many generations
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(Chesler 2014; Mackay and Huang 2018) and the Hybrid Swarm from crossing dozens
to hundreds of lines for few generations. The choice to use an AIP or hybrid swarm
population will influence the number of SNPs segregating at or above a desired minor
allele frequency (Figure 8). For an association test to detect a causal variant with single-
nucleotide precision, that variant must be segregating above a minor allele frequency
required to detect phenotypic association at a given effect size and sample size. If
sample size precludes sites segregating at a minor allele frequency below 1/8, then a
population founded by 8 haplotypes would yield the greatest number of variants. If
power is sufficient to detect association with alleles segregating above a frequency of
5%, then populations founded by 16+ lines would yield a greater number of variants
(Figure 8). In cases where only few founding haplotypes are available, an AIP may be
necessary, as the breakup of linkage disequilibrium can only be accomplished with

many generations of crosses instead of leveraging greater haplotype diversity.

Computational Considerations

The simulations conducted for this analysis were made feasible by three primary
innovations. First, the haplotype block file format allowed us to leverage information
redundancy between related individuals and store highly compressed, lossless
genotype information. With nearly 1/2000th the file size of a compressed VCF file,
haplotype block files greatly reduced both the disk storage footprint and time required
for disk write operations. Second, instead of performing forward-time simulations for
every single iteration of GWAS, permuted subsets of simulated populations allowed for
more rapid GWAS simulations. The format of haplotype block files facilitated
permutations of the ancestry contained within a population’s mosaic haplotypes,
generating novel population genetic structure while preserving the forward-simulator’s
influence of drift and meiotic recombination (Figure 2). Third, instead of extracting site-
specific genotypes for every individual, we decreased the number of computational
operations by performing aggregate counts across all sites between adjacent

recombination events in the population (Figure 3).
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743  Importantly, selecting a subset of most-likely-ancestors results in maximum

744  computational complexity that remains constant with increasing number of founding
745 lines, instead of complexity increasing at a greater-than-linear rate. This means that the
746  larger the pool of unique haplotypes that an individual descends from, the greater

747  speedup of our pipeline relative to other methods. Although computational speed has
748 been shown to be reduced by haplotype pre-phasing (Howie et al. 2011), to our

749  knowledge, pre-phasing has not been demonstrated with ultra-low coverage sequencing
750 on the order of 0.005-0.05X. As a result, pre-phasing would likely require greater

751  sequencing effort, negating the benefit of low coverage reconstruction. Computational
752  search space can also be reduced if an individual’s pedigree is known with certainty,
753  however controlled crosses can be laborious, and may lead to cage-specific effects.
754

755

756  Applying the Hybrid Swarm approach

757 At minimum, the Hybrid Swarm approach requires a sequenced set of individuals for
758 founding a recombinant population. Although our simulations presented here were

759  conducted with inbred founding lines, genome reconstructions can similarly be

760 performed with any phased genomes. For example, 16 phased outbred founders could
761  be treated as 32 independent haplotypes. Phased genomes are becoming increasingly
762  accessible with the advent of long-read sequencing platforms and phasing software
763  (Chin et al. 2016; Mostovoy et al. 2016; Seo et al. 2016), allowing this technique to be
764  applied to even more systems. Optionally, a recombination rate map for the population
765 can be provided, otherwise recombination is assumed to occur with equal user-defined
766  probability across any chromosome.

767

768 As afirst step, power analyses using our rapid association test simulation pipeline will
769 inform choices of sample size and mapping population design (Figure 3). After

770 determining a feasible sample size for a given SNP of minimum percent variation

771  explained, researchers can evaluate the accuracy of low-coverage chromosome

772  reconstructions for a simulated proposed mapping population. Note that while we

773 performed association tests in a case/control framework, the relative power of the
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774  Hybrid Swarm is expected to be the same for quantitative traits, which could garner
775 additional power from sampling individuals from phenotypic extremes (D. Li, Lewinger,
776  Gauderman, Murcray, & Conti, 2011).

777

778  For our simulations, we parameterized chromosome reconstructions using a maximum
779  of N = 16 most-likely ancestors (MLAs) and S = 5000 SNPs, which required less than 3
780  GB of memory and completed in under 5 minutes on a single core. However, these

781  values may not be ideal for all systems. It may be necessary to select greater number of
782  MLAs prior to reconstruction if haplotypes are difficult to differentiate due to being less
783  divergent (i.e. exhibiting lower 6,,) than those simulated here. For example,

784  reconstruction accuracy was low for coalescent-derived mapping populations modeled
785  with 8 = 4 x 1075 (Supplemental Figure S8), which may reflect those of C. elegans

786  (Barriere and Félix 2005). Further, 5000 SNPs may be an over- or under-estimate of
787  those required in other systems. Because recombination between haplotypes can only
788 be inferred at sampled variable sites, SNP density directly influences how close inferred
789  breakpoints will be resolved with respect to their actual position. The models described
790 in Figure 1 can be used to estimate the memory and runtime required for a given

791  number of input ancestor haplotypes.

792

793 To evaluate whether low coverage sequencing data will yield accurate genotype

794  estimates for a given proposed mapping population, researchers can test reconstruction
795 accuracy in silico. We provide a convenient forward-simulation R script for this purpose
796 that generates output in the haplotype map format (Figure 2). Simulated individuals can
797  then be ran through the simulated sequencing and mapping pipeline at a desired level
798  of coverage. After generating simulated mapped individuals, researchers can optimize
799  the number of MLAs and HARP threshold that provide most effective MLA selection for
800 their mapping population (Figure 4). This step may reveal haplotypes that are

801  consistently problematic or inaccurately chosen, which can be excluded from further
802 simulations (and when generating the true mapping population). Researchers can then
803 perform chromosome reconstruction using the optimized MLA selection parameters and

804 evaluate whether accuracy is acceptable (Figure 5).
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After performing chromosome reconstructions, a quality control step may be applied
whereby troublesome regions are masked. For example, a reconstructed chromosome
with a sequence of short recombination blocks could be masked prior to evaluating
genotyping accuracy or performing association testing. In our simulations, it was
surprisingly difficult to diagnose exact factors contributing to the least accurate
reconstructions. However, these highly recombinant reconstructions still achieved 90-
99% accuracy, suggesting that accuracy may be achieved even for anomalous hyper-
recombinant individuals (Figure 5). Optimized parameters can then be applied to a
genuine mapping population akin to the simulated one.

Conclusions

An outbred high-resolution mapping population that can be generated in little time is an
attractive option for researchers, but such mapping populations have been prohibited by
genotyping costs or computational requirements to impute genotypes from ultra-low
sequencing data. Our work demonstrates the feasibility of the Hybrid Swarm as a cost-
effective method of fine-scale genetic mapping in an outbred population and provides a
computationally efficient framework for GWAS power analysis.
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994  Figure 1. Resource usage of RABBIT during haplotype reconstruction.

995  All reconstructions involve the same simulated 2L chromosome arm comprised of four

996 haplotypes. Simulations included varied numbers of founding haplotypes (N) and a

997 randomly selected set of markers (number of SNPs, S, incremented in steps of 500). All

998 simulations included, at minimum, the four true haplotypes for the simulated individual.

999 In A and B, points depict the mean of empirical values (over 10 replicates) and gray
1000 lines depict the defined regression models. Predicted peak memory usage and runtime
1001 are displayed on a log scale over a greater range for number of founding haplotypes in
1002 C and D, respectively.
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1003
1004  Figure 2. Basic structure of the forward simulator pipeline.

1005 Inbred founding lines (A) are randomly intercrossed to produce a recombinant

1006 population (B). Rapid generation of independent mapping populations is achieved by
1007 random down-sampling (C) and permutation of ancestry (D). Population genetic data is
1008 encoded in a highly compressed format (E) that references the positions of haplotype
1009 blocks instead of genotypes at every site, enabling us to generate 500 mapping

1010 populations for a given parameter combination. Individuals are probabilistically assigned
1011  to case or control groups based on genotype at a randomly chosen causal SNP

1012 segregating at a specified frequency.



https://doi.org/10.1101/671925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/671925; this version posted June 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

35
Yy X
g (ALT
4 4 4
. 4 6 2
I I 2 2 4 6 2
4 6 2
4 2 6
1 6 2
p 1 5 3
I 2 2 1 4 4
.. 1 4 4
p) 71
‘ p) 6 2
2 2 3 5
2 6 2
2 5 3
2 4 4
2 4 4
p) 5 3
1 2 6 2
2 3 5
2 5 3
p) 5 3
| 2 2 6
A. Population Haplotype Map  B. Range-Specific  C. Polarized D.BxC E. Allele
Haplotype Founder Counts
1013 Frequencies Genotypes

1014  Figure 3. Schematic for rapid association testing with the haplotype block files.

1015  For a given population represented by a haplotype map file (A), all SNPs between

1016  sorted breakpoints (indicated by dashed lines) will share identical aggregated haplotype
1017  frequencies (B). Haplotype frequencies are multiplied by a founder genotype matrix (C)
1018 where alleles are coded reference (black cells) and alternate (white cells). Conditional
1019  row sums of the resulting matrix (D) yields reference and alternate frequencies at each
1020 locus (E), to be used for y? tests of independence.
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1022  Figure 4. Optimization curves for Most-Likely-Ancestor (MLA) selection.

1023 Increasing the upper limit for the number of MLAs chosen reduces the number of true
1024  ancestors missed, similarly reducing the fraction of a given chromosome that is not
1025 represented within the selected set of MLAs. Ancestors that fail to pass the HARP
1026 threshold across all genomic windows are not selected, resulting in realized sets of
1027  MLAs (Number of Ancestors Chosen) below the upper-limit allowed (x-axis). Data
1028 shown reports means across 400 replicates made up of 100 simulated individuals (4
1029 autosomes each for coalescent simulations, 4 autosome arms each for DGRP

1030 simulations) per parameter combination. Coalescent-derived populations described
1031  here were simulated with N, = 10° and u = 5 x 10°.
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1033  Figure 5. Accuracy of genome reconstruction pipeline for simulated Fs Hybrid Swarm
1034  individuals.

1035 Reconstructions were performed for populations simulated as being founded by either
1036 32 or 128 inbred lines at 0.05X sequencing coverage with up to 16 MLAs as determined
1037  with a HARP threshold of 0.99. Accuracy, calculated as the per-chromosome fraction of
1038 variable sites with a correct diploid genotype estimate, is shown on logit-transformed
1039 scale. Values are coded depending on the number of estimated recombination events,

1040  with highly recombinant estimates (>10 recombination events) displayed as an X. Each

1041  parameter combination includes 400 reconstructed autosomes (individual circles) for
1042 100 simulated individuals. The coalescent-derived individuals displayed here were
1043  simulated with an effective population size of N, = 1 x 10° and mutation rate u =
1044 5x107°.
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1046  Figure 6. Accuracy of simulated GWAS for various mapping populations.

1047 Plots display the cumulative probability of including a causal SNP when selecting the
1048 top N most significant SNPs, or 100kb windows around those SNPs, out of 500

1049 simulated GWAS (each comprised of 5000 individuals phenotypically assigned in a
1050 case-control framework). Homozygotes for the reference allele were assigned to the
1051 case group with 45% probability, while homozygotes for the alternate allele were

1052 assigned to the case group with 55% probability (a difference of 10%), and

1053 heterozygotes are assigned to case and control groups with equal probability. ILs:

1054 inbred lines. RILs: recombinant inbred lines. HS: Hybrid Swarm populations founded by
1055 32 or 128 lines. Outbred: An Fso population founded by 128 lines.


https://doi.org/10.1101/671925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/671925; this version posted June 21, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

1056

1057
1058

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

aCC-BY-NC-ND 4.0 International license.

39

1.3 1
1.2 1 o
&
S
1.1 s
o
o
o 0.9- |
3
<
1.4
()]
o
0\0
Sl = ;! ;
D
| g
LA =le Blh Bl
ILs RILs HS 32 HS 128 Outbred

Mapping Population

E3 All autosomes BE Autosome arm with causal SNP E3 Whole autosome without causal SNP

Figure 7. Genomic Inflation Factor (GIF, 1,¢,) for simulated GWAS with a causal allele
segregating at a specified frequency.

GIF is calculated genome-wide (across all autosomes); on the autosome arm containing
the causal allele (linked); and for sites on the autosome physically unlinked to the
causal allele. 1 is calculated as the ratio of observed to expected x? values, and a
correction is performed to produce the null expectation given the sample size had
actually been 1000 individuals (see Materials and Methods for details). Data are
averaged over 500 simulated GWAS (each comprised of 5000 individuals
phenotypically assigned in a case-control framework). Homozygotes for the reference
allele were assigned to the case group with 45% probability, while homozygotes for the
alternate allele were assigned to the case group with 55% probability (a difference of
10%), and heterozygotes are assigned to case and control groups with equal
probability. Boxes represent the median and interquartile range; whiskers extending to
the lower and upper bounds of the 95% quantiles. ILs: 128 Inbred Lines. RILs: 800
Recombinant Inbred Lines. HS: Hybrid Swarm with 32 or 128 founding lines. Outbred:
Fso population founded by 128 inbred lines.
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Figure 8. Counts of variable sites depending on number of founding DGRP haplotypes
Each point represents the number of sites segregating at or above a given minor allele
frequency threshold when drawing N haplotypes, with 20 replicates per parameter
combination. With a minimum minor allele frequency (MAF) of 12.5%, a population
founded by eight haplotypes exhibits approximately double the number of variable sites
compared to a population founded by 128 haplotypes. With a minimum MAF of 5%,
populations with eight founding haplotypes present with fewer SNPs compared to
populations founded by 16 or more haplotypes.
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Population N Founders p A oy
DGRP 128 0.986 -0.015 0.25
DGRP 32 0.502 0.17 2.15
Coalescent 128 0.956 -0.17 0.44
Coalescent 32 0.759 -0.31 1.26

1084

1085 Table 1. Accuracy of estimated number of recombination events following chromosome
1086  reconstruction.

1087 A high concordance correlation coefficient (Lin’s p) indicates agreement between
1088 estimated and true recombination counts for 400 reconstructed chromosomes

1089 (coalescent-derived populations) or chromosome arms (DGRP-derived populations).
1090 Coalescent-derived populations are described across a range of values for effective
1091  population size N, and mutation rate u. A and o, denote mean and standard deviation,
1092 respectively, of difference between estimated and true recombination counts.

1093 Reconstructions were performed with a maximum of 16 most-likely-ancestors with a
1094 HARRP threshold of 0.99 (see methods for more details).
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1096 Figure S1. Recombination probability functions used for simulated individuals.

1097 Recombination is modeled as a Poisson process, with position sampled from linear
1098 interpolation of recombination rates measured in Drosophila melanogaster by Comeron
1099 et al. (2012). The frequency of recombination samples cumulative map distance (inset,
1100 e.g. a 99 cM chromosome is modeled as a Poisson variable with an expected value of
1101 1 = 0.99). For DGRP-derived individuals, recombination was simulated for full

1102 chromosomes two and three, and reconstructions were then conducted independently
1103 forarms 2L, 2R, 3L, and 3R.
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1104
1105 Figure S2. Optimization curves for Most-Likely-Ancestor inclusion, by count, in SCRM-

1106  derived Fs hybrid swarm individuals

1107  The number of missed true ancestors is shown as a function of the number of
1108 ancestors chosen across a range of HARP threshold values (0.9 to 0.999), effective
1109  population sizes (N,) and mutation rates (u). Values are averaged across 400

1110  reconstructed autosomes (from 100 individuals) per parameter combination.
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Figure S3. Optimization curves for Most-Likely-Ancestor inclusion, by chromosome
representation, in simulated SCRM-derived Fs hybrid swarm individuals.

The proportion of the chromosome not covered by the chosen ancestors is shown as a
function of the number of ancestors chosen for populations founded by either 32 or 128
inbred founding lines across a range of HARP threshold values (0.9 to 0.999), effective
population sizes (N,) and mutation rates (u). Each line summarizes the arithmetic mean
fraction of sites where the true ancestor is not included within the inferred set of Most-
Likely-Ancestors. Values are averaged across 400 reconstructed autosomes (from 100
individuals) per parameter combination.
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1121
1122  Figure S4. Optimization curves for Most-Likely-Ancestor (MLA) selection for DGRP-

1123  derived Fs hybrid swarm individuals.

1124  Effectiveness is shown for populations founded by either 32 or 128 inbred founding lines
1125 across a range of HARP threshold values (0.9 to 0.999), for two levels of sequencing
1126  coverage. Values are averaged across 400 reconstructed autosomes (from 100

1127  individuals) per parameter combination.
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1129  Figure S5. Distribution of Most-Likely-Ancestor counts for simulated, Coalescent-
1130 derived, 32-founder Fs hybrid swarm individuals.
1131 The mean value + 1 standard deviation is shown by the solid line and ribbon,
1132 respectively, across a range of HARP threshold values (0.9 to 0.999), effective
1133  population sizes (N, ) and mutation rates (u). The number of Most-Likely-Ancestors
1134  dictates the computational complexity (runtime and memory requirements) of
1135 chromosome reconstruction. Each parameter combination includes 400 chromosomes
1136  (from 100 simulated individuals) simulated with 0.05X sequencing coverage.
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1138 Figure S6. Distribution of Most-Likely-Ancestor counts for simulated, Coalescent-
1139 derived, 128-founder Fs hybrid swarm individuals.

1140  The mean value 1 standard deviation is shown by the solid line and ribbon,

1141  respectively, across a range of HARP threshold values (0.9 to 0.999), effective

1142  population sizes (N, ) and mutation rates (u). The number of Most-Likely-Ancestors
1143  dictates the computational complexity (runtime and memory requirements) of

1144  chromosome reconstruction. Each parameter combination includes 400 chromosomes
1145  (from 100 simulated individuals) simulated with 0.05X sequencing coverage.
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1146
1147  Figure S7. Distribution of Most-Likely-Ancestor counts for simulated, DGRP-derived Fs

1148  hybrid swarm individuals.

1149  The mean value 1 standard deviation is shown by the solid line and ribbon,

1150 respectively, for populations founded by either 32 or 128 inbred lines, across a range of
1151  HARRP threshold values (0.9 to 0.999) and two levels of sequencing coverage. Each
1152  parameter combination includes 400 chromosomes (from 100 simulated individuals)
1153 simulated with 0.05X sequencing coverage.

1154
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1156  Figure S8. Accuracy of genome reconstruction for simulated, coalescent-derived Fs
1157  hybrid swarm individuals.

1158 Reconstructions were performed for populations simulated as being founded by either
1159 32 or 128 inbred lines for various effective population sizes (N,) and mutation rates (u).
1160  Accuracy is represented on a logit scale, as most points occur above 90%.

1161  Reconstructed chromosomes that are predicted to exhibit >10 recombination events are
1162  denoted by an X. Each parameter combination includes 400 reconstructed

1163 chromosomes (from 100 simulated individuals).
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1165 Figure S9 Accuracy of genome reconstruction for simulated, DGRP-derived F5 hybrid
1166  swarm individuals.

1167 Reconstructions were performed for populations simulated as being founded by either
1168 32 or 128 inbred lines for two levels of ultra-low sequencing coverage. Accuracy is
1169 represented on a logit scale, as most points occur above 90%. Accuracy values are
1170  marked depending on the number of estimated recombination events, with highly

1171  recombinant estimates (>10 recombination events) displayed as an X. Each parameter

1172  combination includes 400 reconstructed chromosomes (from 100 simulated individuals).
1173
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1177  Figure S10. Probability of selecting a causal SNP (or a nearby neighbor) in simulated
1178 GWAS.
1179 Each line represents the fraction of GWAS simulations (out of 500 total GWAS, each
1180 comprised of 5000 individuals in a case-control framework) where the causal SNP is
1181  selected within N most significant regions. Case-control status was assigned based on
1182 reference allele dosage at a randomly selected causal SNP segregating with frequency
1183  of 50%, 25%, or 12.5%. For 10% PVE, homozygotes for the reference allele were
1184  assigned to the case group with 45% probability, while homozygotes for the alternate
1185 allele were assigned to the case group with 55% probability (a difference of 10%). For
1186 5% PVE, homozygotes for the reference allele were assigned to the case group with
1187  47.5% probability, while homozygotes for the alternate allele were assigned to the case
1188  group with 52.5% probability (a difference of 5%). All heterozygotes (and any individuals
1189 modeled with 0% PVE, irrespective of genotype) were equally likely to be assigned to
1190 case or control group (a difference of 0%).
1191


https://doi.org/10.1101/671925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/671925; this version posted June 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

52

Causal Allele Frequency: 0.125 Causal Allele Frequency: 0.25 Causal Allele Frequency: 0.5

3Nd %01

R-1000

3Ad %G

3\ \%()Q\ \(l%\ \q’%\

%) B o o B ol ) o o) 2 o
W P N @ & ¢ o N X & G N N
WP e oo © O\)\\pﬂ BB e W o o 5 WP e W o
Mapping Population
GIF for:

$ All autosomes

EI Autosome arm with causal SNP

EI Whole autosome with causal SNP
EI Autosome arms without causal SNP
EI Whole autosome without causal SNP

1192

1193  Figure S11. Genomic Inflation Factor (GIF, 1,40,) in simulated DGRP GWAS as a
1194  function of minor allele frequency and percent variation explained.

1195  GIF is stronger with greater PVE, and is elevated on the arms which contain (and are
1196 directly and most strongly linked to) the SNP associated with case and control status.
1197
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1200 Figure S12. Genomic Inflation Factor (GIF, 1,40,) in simulated DGRP GWAS with no
1201  genotype-phenotype link.

1202 As the percent variation explained is 0% (and thus, case and control status is randomly
1203 assigned), GIF centers around 1.0 as expected.

1204

1205


https://doi.org/10.1101/671925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/671925; this version posted June 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

54
Population Coverage N Founders N, U p A 0y
DGRP 0.005X 128 - - 0201 306  3.11
DGRP 0.005X 32 - - 0.201 3.15 2.81
DGRP 0.05X 128 - - 0.98  -0.015 0.25
DGRP 0.05X 32 - - 0.502 0.17 2.15
Coalescent 0.05X 128 10*  1x107° 0.029 -2.72 1.60
Coalescent 0.05X 32 104 1x10° 0.219 -1.84 1.50
Coalescent 0.05X 128 10° 1x10~° 0.288 -1.57 1.64
Coalescent 0.05X 32 10° 1x10~° 0.761 -0.53 0.99
Coalescent 0.05X 128 10° 1x10"° 0.742 -0.46 1.09
Coalescent 0.05X 32 10° 1x10"° 0.754 -0.42 1.22
Coalescent 0.05X 128 10 5x10"° 0.203 -2.03 1.73
Coalescent 0.05X 32 10 5x107° 0.622 -0.89 1.17
Coalescent 0.05X 128 10° 5x107° 0.652 -0.64 1.41
Coalescent 0.05X 32 10° 5x10~° 0.782 -0.26 1.16
Coalescent 0.05X 128 10° 5x10~° 0.956 -0.17 0.44
Coalescent 0.05X 32 10° 5x107° 0.759 -0.31 1.26
Coalescent 0.05X 128 10 1x10°% 0.238 -1.65 1.86
Coalescent 0.05X 32 104 1x107% 0.745 -0.66 1.05
Coalescent 0.05X 128 10° 1x107% 0.776 -0.34 1.12
Coalescent 0.05X 32 10° 1x10¢ 0.846 -0.25 0.93
Coalescent 0.05X 128 10° 1x10"% 0.937 -0.22 0.56
Coalescent 0.05X 32 10° 1x10"% 0.833 -0.32 0.95

1206 Table S1. Accuracy of estimated number of recombination events following

1207 chromosome reconstruction.

1208 A high concordance correlation coefficient (Lin’s p) indicates agreement between
1209 estimated and true recombination counts for 400 reconstructed chromosomes

1210  (coalescent-derived populations) or chromosome arms (DGRP-derived populations).
1211 Coalescent-derived populations are described across a range of values for effective
1212  population size N, and mutation rate u. A and o, denote mean and standard deviation,
1213  respectively, for difference between estimated and true recombination count.

1214  Reconstructions were performed with a maximum of 16 most-likely-ancestors with a
1215 HARRP threshold of 0.99 (see methods for more details).
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