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1 Abstract

2 To develop vaccines it is mandatory yet challenging to account for inter-individual
3 variability during immune responses. Even in laboratory mice, T cell responses of single
4 individuals exhibit a high heterogeneity that may come from genetic backgrounds, intra-
5 specific processes (e.g. antigen-processing and presentation) and immunization protocols.
6 We propose to account for inter-individual variability in CD8 T cell responses in mice
7 by using a dynamical model and a statistical, nonlinear mixed effects model. Average and
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8 individual dynamics during a CD8 T cell response are characterized in different immuniza-
9 tion contexts (vaccinia virus and tumor). We identify biological processes more likely to be
10 affected by the immunization and to generate inter-individual variability. The robustness
1 of the model is assessed by confrontation to new experimental data, and it proves able to
12 predict tumor volume dynamics as well as individual dynamics.

13 Our approach allows to investigate immune responses in various immunization contexts,
14 when measurements are scarce or missing, and contributes to a better understanding of
15 variability in CD8 T cell immune responses. In particular, the prediction of tumor volume
16 dynamics based solely on information on CD8 T cell counts may lead to tumor therapy
7 improvement.

18 Keywords: T cell response ; Inter-individual variability ; ODE dynamical model ; Nonlinear

19 mixed effects models ; Prediction of tumor evolution.

» 1 Introduction

21 The immune response is recognized as a robust system able to counteract invasion by diverse
22 pathogens (Fischer and Raussel, 2016; Wong and Germain, 2018). However, as a complex
23 biological process the dynamical behavior of its cellular components exhibits a high degree
2 of variability affecting their differentiation, proliferation or death processes. Indeed, the fre-
25 quency of antigen-specific T cells and their location relative to pathogen invasion will affect the
26 dynamic of the response (Estcourt et al., 2005; Wong and Germain, 2018; Xiao et al., 2007).
27 Similarly, the pathogen load and virulence as well as the host innate response will affect the T
25 cell response (Iwasaki and Medzhitov, 2015). Finally, at the cellular level, variation in protein
20 content can also generate heterogeneous responses (Feinerman et al., 2008). Genetic variabil-
s0 ity of the numerous genes controlling the immune response will also be a source of variability
s among individuals (Fischer and Raussel, 2016). However, even among genetically identical
32 individuals, the response to the same infection can result in highly heterogeneous dynamics
33 (Althaus et al., 2007; Grau et al., 2018; Murali-Krishna et al., 1998).

34 Cytotoxic CD8 T cells play an essential role in the fight against pathogens or tumors
35 as they are able to recognize and eliminate infected or transformed cells. Indeed, following

36 encounter, in lymphoid organs, of antigen-presenting cells loaded with pathogen or tumor
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37 derived antigens, quiescent naive CDS8 T cells will be activated. This leads to their proliferation
ss and differentiation in effector cells that have acquired the capacity to kill infected or tumoral
30 cells, and to their ultimate differentiation in memory cells (Crauste et al., 2017; Youngblood
w0 et al., 2017). The CD8 T cell immune response is a robust process that, once engaged by
a1 antigenic stimulations, will proceed up to the memory phase, even if the antigenic stimulation
22 is shortened. Hence, the auto-pilot denomination given to this process (Kaech and Ahmed,
53 2001; Stipdonk et al., 2001). However, it is highly variable as illustrated by experimental
s measurements of cell counts: dynamics of the responses (timing, cell counts) may differ from
s one individual to another (Miller et al., 2008; Precopio et al., 2007; Xiao et al., 2007), but also
s depending on the immunogen (Althaus et al., 2007; Estcourt et al., 2005; Murali-Krishna et
a7 al., 1998).

48 The role of genome variability in explaining inter-individual variations of T cell responses
s has been recently investigated (Ferraro et al., 2014; Li et al., 2016) but provided limited
so understanding of the observed heterogeneity. Li et al. (2016) focused on correlations between
51 gene expression and cytokine production in humans, and identified a locus associated with
s2 the production of IL-6 in different pathogenic contexts (bacteria and fungi). Ferraro et al.
53 (2014) investigated inter-individual variations based on genotypic analyses of human donors
s« (in healthy and diabetic conditions) and identified genes that correlate with regulatory T cell
55 Tesponses.

56 To our knowledge, inter-individual variability characterized by heterogeneous cell counts
57 has been mostly ignored in immunology, put aside by focusing on average behaviors of popu-
ss lations of genetically similar individuals. The use of such methodology, however, assumes that
so variability is negligible among genetically similar individuals, which is not true (Althaus et al.,
s 2007; Badovinac et al., 2007; Crauste et al., 2017).

61 In this work, we propose to study inter-individual variability based on CD8 T cell counts
2 with nonlinear mixed effects models (Delyon et al., 1999; Kuhn and Lavielle, 2005; Lavielle,
63 2014). In these models, instead of considering a unique set of parameter values as characteristic
64 of the studied data set, a population approach is used based on distributions of parameter
65 values. All individuals are assumed to be part of the same population, and as so they share

66 a common behavior (average behavior) while they keep individual behaviors (random effect).
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67 Nonlinear mixed effects models are well adapted to repeated longitudinal data. They aim at
es characterizing and understanding “typical behaviors”, and as a consequence inter-individual
e variations. T cell count measurements, obtained over the course of a response (few weeks),
70 and the large variability observed in them represent a case study for this approach.

7 Nonlinear mixed effects models have been used to analyze data in various fields (Davidian
72 and Giltinan, 2003), especially in pharmakokinetic studies, and more recently to model cell to
73 cell variability (Almquist et al., 2015; Llamosi et al., 2016) or to study tumor growth (Benzekry
7 et al., 2014; Ferenci et al., 2017). In immunology, Keersmaekers et al. (2018) have recently
75 studied the differences between two vaccines with nonlinear mixed effects models and ordinary
76 differential equation (ODE) models for T and B cells. Jarne et al. (2017) and Villain et al.
77 (2018) have investigated the effect of IL7 injections on HIV+ patients to stimulate the CD4
78 T cell response using also nonlinear mixed effects models and ODEs, and identified biological
79 processes accounting for inter-individual variability.

80 A number of models of the CD8 T cell response based on ODEs have been proposed
st over the years. Of particular relevance here is the work of De Boer et al. (2001), where
82 the model accounts for activated and memory cells but the influence of the immunogen is
&3 imposed. Antia et al. (2003) proposed a model based on partial differential equations, that
s includes immunogen effects and dynamics of naive, effector and memory cells. These works
85 describe different subpopulations of CD8 T cells, however most of the time only total CD8 T
ss cell counts are available to validate the models. In Crauste et al. (2017), the authors generated
87 cell counts for four subpopulations of CD8 T cells in mice that they used to identify the most
ss likely differentiation pathway of CD8 T cells after immunogen presentation. This approach
g0 has led to a model of the average CD8 T cell dynamics in mice after immunization and its
o0 representation as a set of nonlinear ODEs. The model consists in a system of ODEs describing
o1 the dynamics of naive, early effector, late effector, and memory CD8 T cell subsets and the
92 Immunogen.

93 The goal of this article is to explore the ability of a mathematical model to describe the
9¢ inter-individual variability observed in CD8 T cell responses in different immunization con-
o5 texts, by considering distributions of parameters within the population (nonlinear mixed effects

o6 model). We will first select a model of the CD8 T cell immune response dynamics accounting
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o7 for variability in cell counts by using synthetic then experimental data generated in different
98 immunization contexts. Second we will establish that the immunogen-dependent heterogeneity
o influences the early phase of the response (priming, activation of naive cells, cellular expan-
w0 sion). Finally, we will show that besides its ability to reproduce CD8 T cell response dynamics
11 our model accounts for relevant immunogen dynamics (tumor volume evolution) and is able
102 to predict dynamics of responses to similar immunizations, hence providing an efficient tool

103 for investigating CD8 T cell dynamics and inter-individual variability.

w 2 Material, Methods and Models

05 2.1 Data

s Experimental Models. C57BL/6 mice (C57BL6/J) and CD45.1+ C57BL/6 mice (B6.SJL-
107 Ptprc®PepcP /BoyCrl) were purchased from CRL. F5 TCR-tg mice recognizing the NP68 epi-
108 tope were crossed to a CD45.14+ C57BL/6 background (B6.SJL-Ptprc®Pepc? /BoyCrl-Tg(CD2-
100 TcraF5,CD2-TerbF5)1Kio/Jmar) (Jubin et al., 2012). They have been crossed at least 13 times
uo on the C57BL6/J background. All mice were homozygous adult 6-8-week-old at the beginning
1 of experiments. They were healthy and housed in our institute’s animal facility under Specific
12 Pathogen-Free conditions.

113 Age- and sex-matched litter mates or provider’s delivery groups, which were naive of any
s experimental manipulation, were randomly assigned to 4 experimental groups (of 5 mice each)
15 and co-housed at least for one week prior to experimentation. Animals were maintained in
ue ventilated enriched cages at constant temperature and hygrometry with 13hr/11hr light/dark
u7  cycles and constant access to 21 kGy-irradiated food and acid (pH = 3 4 0.5) water. All experi-
us mental procedures were approved by an animal experimentation ethics committee (CECCAPP;

19 Lyon, France), and accreditations have been obtained from French government.

120 Vaccinia Virus (VV) Immunization. 2 x 10° naive CD8 T cells from CD45.1+ F5 mice
121 were transferred by retro-orbital injection in, 6-8-week-old congenic CD45.2+ C57BL/6 mice
122 briefly anaesthetized with 3% isoflurane. The day after deeply Xylazin/ Ketamin-anaesthetized

123 recipient mice were inoculated intra-nasally with 2 x 10° pfu of a vaccinia virus expressing the
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124 NPG68 epitope (VV-NPG68) provided by Pr. A.J. McMichael (Jubin et al., 2012).

s Tumor Immunization. 2 x 10° naive CD8 T cells from CD45.14+ F5 mice were trans-
16 ferred by retro-orbital injection in 6-8-week-old congenic CD45.2+ C57BL/6 mice briefly anaes-
127 thetized with 3% isoflurane. The day after, recipients were subcutaneously inoculated with
s 2.5 x 105 EL4 lymphoma cells expressing the NP68 epitope (EL4-NP68) provided by Dr.
120 T.N.M. Schumacher (de Brito et al., 2011).

130 Phenotypic Analyses. Mice were bled at intervals of at least 7 days. Blood cell suspensions
11 were cleared of erythrocytes by incubation in ACK lysis solution (TFS). Cells were then
122 incubated with efluor780-coupled Fixable Viability Dye (eBioscience) to label dead cells. All
133 surface stainings were then performed for 45 minutes at 4°C in PBS (TFS) supplemented with
134 1% FBS (BioWest) and 0.09% NaN3 (Sigma-Aldrich). Cells were fixed and permeabilized with
135 the Foxp3-fixation and permeabilization kit (eBioscience) before intra-cellular staining for one
136 hour to overnight. The following mAbs(clones) were utilized: Bcl2(BCL/10C4), CD45.1(A20)
137 and CD45(30-F11) from Biolegend, Mki67(SolA15), CD27(LG.7F9) and CD8(53.6.7) from
s eBioscience, and CD44 (IM7.8.1) from Miltenyi. Samples were acquired on a FACS LSR

139 Fortessa (BD biosciences) and analyzed with FlowJo software (TreeStar).

1w CD8 T Cell Differentiation Stages. For both immunizations (VV and Tumor), phe-
11 notypic cell subsets based on Mki67-Bcl2 characterization (Crauste et al., 2017) have been
142 identified and the corresponding cell counts measured in blood, from day 4 post-inoculation
13 (pi) up to day 28pi, 32pi, 46pi, or 47pi depending on the experiment (VV and Tumor data
s sets 1, Table 1). Naive cells are defined as CD44-Mki67-Bcl2+ cells, early effector cells as
15 CD44+Mki67+Bcl2- cells, late effector cells as CD44+Mki67-Bcl2- cells, and memory cells as
us  CD44+MKi67-Bcel2+ cells.

147 Tumor volumes. Twenty mice inoculated with EL4 lymphoma cells had tumor volumes
us measured daily between day 4pi to 13pi (Tumor data set 3, Table 1). Tumors were subcuta-

1o mneously inoculated on the back of the animals allowing tumor volume measurements. Tumor
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Short Name Description

VV data set 1 CD8 T cell counts of 59 individual mice inoculated intra-
nasally with 2 x 10° pfu of a vaccinia virus expressing the
NP68 epitope ; naive, early and late effector, and memory
cell counts have been measured up to day 47pi

VV data set 2 Similar to VV data set 1 (15 individual mice) ; CD8 T cell
counts of naive, early and late effector, and memory cells
have been measured following VV immunization, up to day
42pi

Tumor data set 1  CD8 T cell counts of 55 individual mice subcutaneously in-
oculated with 2.5 x 10 EL4 lymphoma cells expressing the
NP68 epitope ; naive, early and late effector, and memory
cell counts have been measured up to day 47pi

Tumor data set 2 Similar to Tumor data set 1 (20 individual mice); CD8 T
cell counts of naive, early and late effector, and memory cells
have been measured following Tumor immunization, up to
day 42pi

Tumor data set 3 Tumor volumes measured daily between day 4pi to 13pi for
20 individual mice of the Tumor data set 1

Synth data set 1 ~ Synthetic data set generated with System (1), consisting
in CD8 T cell counts of naive, early and late effector, and
memory cells on days 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20,
25, 30pi for 10 individuals

Synth data set 2 Similar to Synth data set 1, except that System (2) is used

to generate the data

Table 1: Data sets (details in the text of sections 2.1, 2.4 and 2.5).
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150 length (1), width (w) and thickness (t) were measured and the tumor volume was estimated

151 with the formula mlwt/6, assuming tumors are ellipsoids (Tomayka and Reynolds, 1989).

12 2.2 Nonlinear mixed effects models

153 Nonlinear mixed effects models allow a description of inter-individual heterogeneity within
154 a population of individuals (here, mice). The main idea of the method is to consider that
155 since all individuals belong to the same population they share common characteristics. These
156 common characteristics are called “fixed effects” and characterize an average behavior of the
157 population. However, each individual is unique and thus differs from the average behavior by
158 a specific value called “random effect”.

159 This section briefly describes our main hypotheses. Details on the method can be found in
10 Delyon et al. (1999), Kuhn and Lavielle (2005), Samson and Donnet (2007), Lavielle (2014).
161 Each data set {y;j, i =1,..., Ning, 7 = 1,...,n;} is described as follows,

162 vij = f(@ij, i) + agij,

13 where y; ; is the jth observation of individual 7, N;,q is the number of individuals within the
16+ population and n; is the number of observations for the i individual.

165 The function f accounts for individual dynamics generated by a mathematical model, in
166 this work f is associated with the solution of a system of ordinary differential equations (ODE),
17 see section 2.4. The function f depends on known variables, denoted by z; ;, and parameters
16s of the i*" individual, denoted by 1);. Here, known variables are CD8 T cell subpopulations and
160 time.

170 Individual parameters v; are assumed to be split into fixed effects (population-dependent
i effects, average behavior) and random effects (individual-dependent effects). Denote ¥¥ the

12 k-th parameter characterizing individual ¢. Then

173 log(¢f) = log(pk,,) + 7F,

174 where vector ppo, = (plgop)k models the average behavior of the population, and 7; = (nF)
175 Tepresents how the individual ¢ differs from this average behavior. Variables n¥ ~ N (0,w?),

176 and they are assumed independent and identically distributed. The variance w,% quantifies the
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177 variability of the k-th parameter within the population. From now we will denote by w? the
118 vector of variances (w?)g. Parameters ¢); are assumed to follow a log-normal distribution to
179 ensure their positivity.

180 The residual errors, combining model approximations and measurement noise, are denoted
11 by ag; ;. They quantify how the model prediction is close to the observation. Residual errors
12 are assumed independent, identically and normally distributed, i.e €;; ~ N(0,1). Moreover,
13 the random effects n; and the residual errors ag; ; are mutually independent. In this work, we
184 assume a constant error model, with a constant a. This error parameter is estimated for each
155 subpopulation (naive cells - ay ; early effector cells - ag ; late effector cells - ay, ; memory cells
186 - G)f).

187 In what follows, we will write that a parameter is fized within the population if all in-
188 dividuals have the same value for this parameter. On the contrary, if the variance wl% of a

180 parameter is non-zero, then this parameter will account for inter-individual variability within

10 the population.

1 2.3 Parameter Estimation

192 Parameter values are estimated with Stochastic Approximation Expectation-Maximization

103 (SAEM) algorithm. The SAEM algorithm is available in Monolix (2018).

1« Population and individual parameters. Under the previous assumptions (section 2.2),
105 cell population dynamics (average behavior and inter-individual variability) are described by
196 parameters: ppop, w? and a. These parameters are estimated by maximizing the likelihood
17 with the SAEM algorithm.

108 Once these parameters have been estimated, each individual vector of parameters 1; is
109 estimated by maximizing the conditional probabilities P(v;|y; j; Ppop, &%, @), where # denotes
200 the estimated value of z.

201 Both estimations are performed with Monolix software (Monolix, 2018). Files to run the

202 algorithm (including all algorithm parameters) are available in Supplementary File 3.
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203 Covariates. In section 3.3, we will study whether differences observed in parameter values
24 between VV and Tumor data sets (Table 1) are only related to random sampling, or if they
205 can be explained by the immunogen. If so, then this should be reflected in the values of some
206 parameters.

207 To tackle this question, we first pool together VV and Tumor data sets 1. Second, using
208 this full data set, we estimate parameter values by assuming that fixed effects of some Tumor-
200 associated parameters are different from those of the corresponding VV-associated parameters.
210 If these differences in parameter values are significantly different from zero, then they are
211 caused by the immunogen.

212 This question is translated into the mixed effects model by introducing categorical covari-
213 ates. It assumes that a given individual parameter vector 1; follows a probability distribution

214 with a different mean depending if the individual is in Tumor or VV data set. We write

215 log(¥) = log(phyy) + Brci +nf,

216 where ¢; equals 0 if individual ¢ is in VV data set 1 and 1 for individuals in Tumor data set 1,
27 and B = (B¥); is a vector of covariate parameters (it quantifies the difference between values
218 of the mean parameter of both data sets). We test whether the estimated covariate parameter
29 [ is significantly different from zero with a Wald test, using Monolix (2018) software, and we
20 use a p-value threshold at 0.05.

21 Parameters (ppop,w2, a, ) are then characterizing cell population dynamics for both VV
22 and Tumor immunogens. If the estimated vector B is significantly different from zero, then

23 part of the experimentally observed variability could be explained by the immunogen.

20 2.4 Model selection

225 ODE model of CD8 T cells dynamics. We introduce the system of ODE that accounts
226 for each individual behavior. We use the model in Crauste et al. (2017), that describes CD8

27 T cell subpopulation dynamics as well as the immunogen load dynamics in primary immune

N

10


https://doi.org/10.1101/671891
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/671891; this version posted June 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

28 responses, as follows

N =—unxN - 6ngIN,

E  =6ngIN + pplE — [upE + 0p1) E,

L =6pLE — [ufL+ pfE+ 0] L, (1)
M =émL,
I =[piI—pfE—pkL —p) I

20 The variables N, E, L and M denote the four CD8 T cell subpopulation counts, naive, early
230 effector, late effector, and memory cells respectively (see section 2.1), and I is the immuno-
231 gen load.

232 The immunogen load dynamics are normalized with respect to the initial amount (Crauste
23 et al., 2015, 2017), so 1(0) = 1. The initial amounts of CD8 T cell counts are N (0) = 10* cells,
24 F(0) =0, L(0) =0 and M(0) =0.

235 Parameters §; are the differentiation rates, with k = NE, EL or LM for differentiation
26 from naive to early effector cells, from early effector to late effector cells and from late effector
237 to memory cells, respectively.

238 Death parameters are denoted by pug, where & = N, E and I for the death of naive,
230 early effector cells and the immunogen respectively. Notations u}/( for some mortality-related
240 parameters refer to parameters pxy in Crauste et al. (2017): the index X refers to the CD8 T
21 cell population or the immunogen that dies, and the exponent Y to the CD8 T cell population
22 responsible for inducing death.

243 Proliferation parameters of early effector cells and the immunogen are respectively denoted
24 by pg and py.

25 System (1) has been introduced and validated in Crauste et al. (2017). This system will

26 be simplified here to obtain locally identifiable parameters on ideal synthetic data.

27 Synthetic data. Using System (1), we generate a set of data associated to solutions of the
28 model, where all the parameters are drawn from known log-normal distributions. These data

229 consist of time points and CD8 T cell counts for the 4 subpopulations and the immunogen

11
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%0 load. These are called synthetic data, and this set of data is referred to as Synth data set 1
251 (Table 1).

252 In this first step, each model parameter is assumed to account for inter-individual variabil-
253 ity, so no parameter is fixed within the population, and each parameter py satisfies log(py) ~
254 N (log(my),0.2). The standard deviation is fixed to the value 0.2 to generate heterogeneity,
255 and values of medians my, are given in Table S1. In a second step, after reducing the number
256 of parameters (see section 3.1), we generate another set of synthetic data (Synth2 data set,
257 Table 1), with the same assumptions and methods.

258 We generate synthetic data for 10 individuals, whose cell counts are sampled at days 4, 5,
» 6, 7,8,9,10, 12, 14, 16, 18, 20, 25, 30pi (cf. Figure S1). In agreement with real biological
%0 data, we assume that all cell counts below 100 cells are not measured, and account for missing

261 data. For the immunogen load, values lower than 0.1 are also not considered.

22 Model selection on biological data. Using the system selected on the Synth data set 2
263 (Table 1) and experimental data presented in section 2.1 (VV data set 1, then Tumor data set

264 1, see Table 1), we perform a parameter estimation (see section 2.3).

x5 2.5 A posteriori model validation on biological data

266 In sections 3.4 and 3.5, the model selected on real biological data is compared to data that

267 were not used for parameter estimation. These data are presented hereafter.

2s  Tumor volume. Tumor volume was measured for one experiment (Tumor data set 3, Ta-
20 ble 1), as described in section 2.1. Tumors grown from EL4 lymphoma cells are known to
270 develop on one site and show almost no metastases (Boissonnas et al., 2004; Vetvicka et al.,
a1 2009). Consequently, we assume that immunogen load dynamics and the tumor volume evo-
o2 lution are related. Therefore we can compare experimentally measured tumor volumes with
273 immunogen load dynamics generated by the model.

274 Since the immunogen load dynamics remain unknown in experimental data, the initial
275 immunogen count has been normalized in the model (Crauste et al., 2015, 2017). Consequently,

76 we can only qualitatively compare immunogen load dynamics predicted by the model with

12
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277 tumor volume measurements. Features of interest are then the time when the immunogen
218 load/tumor volume reaches its maximum, as well as the elimination rate of the immunogen
279 load/tumor. To be able to compare these features of interest, tumor volumes and simulated

280 immunogen load values are normalized by their maximum value.

281 Additional experiment. In order to assess the model ability to characterize and predict
282 immune response dynamics we compare our results to additional experiments, VV data set
23 2 and Tumor data set 2 (see Table 1 and section 2.1), similar to the ones used to estimate
2ss  parameters (VV and Tumor data sets 1). CD8 T cell counts of naive, early and late effector,
255 and memory cells have been measured following VV and tumor immunizations, on days 4, 6,
2 7,8, 11,13, 15, 21, 28, 42pi.

287 The probability distribution of parameters (population-dependent, fixed effects) are known
288 since we have estimated them on VV and Tumor data sets 1 (section 2.4). Therefore we use
280 them to estimate the individual parameter values that fit individual behaviors of these new

200 data sets (see section 2.3).

3  Results

22 3.1 Model selection on synthetic data

203 Using Synth data set 1 (ideal data generated by System (1), see section 2.4), System (1) is
204 reduced in order for population parameters to be locally identifiable. Parameter estimation
205 (see section 2.3) is performed with SAEM algorithm (Monolix, 2018) on the synthetic data, and
206 it leads to a reduction of the initial 12-parameters System (1) to the 9-parameters System (2),
207 as explained herefater.

208 One way to obtain parameter identifiability is to assume known 3 parameters: the addi-
200 tional death rates of late effector cells (1F) and of the immunogen (pr, u¥). First their initial
s0 true median values are used, see Table S1. Second, we observe that setting these parameters
so0 to zero does not impair neither the quality of fit nor the parameter estimation (not shown),

302 80 they are removed from the model. Since only 9 parameters are required (see Table S1) to
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303 reproduce the expected individual dynamics, we obtain System (2),

N =—uyN —dnglN,

E  =6ngIN + pplE — [upE + 6p1) E,

L =6pLE— [urL+ M) L, (2)
M =émL,
I =lpiI—prL] 1.

ss  For the sake of simplicity the parameters are renamed in System (2): uﬁ = uy, and ,u% = li].
35 Figure 1.A displays a schematic representation of System (2).

306 Additionally, among the 9 parameters characterizing System (2), we wondered whether all
307 parameters had to vary within the population to explain the observed dynamics. Indeed, we
38 want to avoid redundant sources of variability. To our knowledge it is impossible to determine
s0  whether differentiation of CD8 T cells from one subpopulation to another one varies between
s10  individuals. Moreover, the autopilot process discovered by Kaech and Ahmed (2001) and
s Stipdonk et al. (2001) indicates that differentiation of naive in memory CD8 T cells is a robust
siz process. Therefore, we assume that the differentiation rates (parameters dyg, dpr and dpar)
313 are fixed within the population.

314 The parameter estimation is then performed on Synth data set 2 (Table 1) for System (2),
315 with 3 parameters fixed within the population over a total of 9 parameters. Results are only
s16  slightly impacted (Figure S1, black ws red curves), most individual behaviors are similarly
a1z reproduced. Some measurements are not well captured but the overall dynamics is consistent
sis - with the population behavior since population parameters are similar for both estimations (see
si9 Table S2). One may note that estimated residual errors are increased (Table S2) but remain
320 very small, attesting that this new assumption is reasonable.

321 From this study, we select the model described by System (2) with 3 parameters (dng, 0pL

s22 and dpp7) fixed within the population and 6 parameters varying between individuals (uy, pg,

323 UL, U1, PE, IOI) (Figure 1A)

14
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(A) Schematic representation of System (2)

death

death death

(B) Schematic representation of System (3)

death

pfo /J,I:
(I(¢)
[N / -
death PE 5LM
ONE N
(b0
o .<—) EL

death

Figure 1: Schematic CD8 T cell differentiation diagram following immunization. (A) Schematic
representation of System (2). (B) Schematic representation of System (3), reduced based on in
vivo data. Rectangles highlight the differences between the two models. In both cases, dashed
lines represent individual-dependent parameters while solid lines correspond to parameters

fixed within the population.
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20 3.2 A model of CD8 T cell dynamics accounting for in vivo inter-individual

325 heterogeneity

326 Parameter estimation for System (2) is performed as detailed in section 2.4 using VV data
;27 set 1 (see section 2.1). Using in vivo data to estimate parameter values provides a priori
328 less information than synthetic data. Hence, it may be necessary to reduce the number of
30 parameters, either fixed or varying, to be estimated, similarly to what has been done in the
330 previous section.

331 Contrary to the estimation performed on synthetic data in section 3.1, using real biological
332 measurements from VV data set 1 leads to an estimated value of parameter uj, close to zero
333 (10719), see Table 2, step 1. The estimation is therefore performed again with the assumption
s pr, = 0. We observe that the other parameters are not impacted (Table 2, step 2). Parameter
335 pur is hence set to zero in System (2). Setting this parameter to zero does not mean that late
336 effector cells do not die in vivo, but that the available data are not rich enough to estimate
337 this parameter value. In other words, with the information contained into the data set, this
338 parameter is not required to describe the CD8 T cell immune response.

339 Despite a non-negligible estimated standard deviation of parameter p; (Table 2, step 2), the
10 empirical standard deviation of the individual parameters p; is low (2x10~%). Consequently we
s assume that parameter py is fixed within the population. The estimation with this assumption
sz does not impact other parameter values (Table 2, step 3). Moreover, the estimated residual
a3 errors (Table 2) are the same at each step showing that the successive simplifications do not
a4 impact the estimated error of fit between observations and the system solutions.

345 From these estimations, we obtain System (3) that enables to describe VV data set 1 and
a6 the inter-individual variability it displays,

.

N = —unN —6dnglN,

E = ONpIN +pplE — [pugE +6pL) B,

L = $pLE—31umL, (3)
M = dpuL,

I = [pI—prL]1,
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Param. Units Step 1 Step 2 Step 3
System (2) + pur =0 4+ pr fixed
(9 param.) (8 param.) (8 param.)

(6 v.p.) (5 v.p.) (4 v.p.)
Population parameters
UN day ! 0.66 0.66 0.66
Wy day ! 0.3 0.3 0.3
SNE day ™! 0.0004 0.0004 0.0007
PE day ! 1.1 1.1 1.0
W day ! 0.2 0.2 0.2
LE 1076 cell=! day~! 6.4 6.2 6.0
Wyg 1076 cell™! day—! 0.8 0.8 0.9
SEIL day ! 0.1 0.1 0.1
155 1076 cell=! day~! 9.4 1079 - -
Wyy 1076 cell™! day~* 3.1 - -
o day ! 0.09 0.09 0.09
pI day ! 0.09 0.08 0.1
Wy day ! 0.03 0.03 -
L 1072 cell™! day~! 2.0 1.9 2.4
Wy 1077 cell™! day™? 1.1 1.2 1.0
Residual errors
an cell counts (logl0) 0.2 0.2 0.2
ap cell counts (log10) 0.4 0.4 0.4
ar, cell counts (logl0) 0.5 0.5 0.5
ayy cell counts (logl0) 0.3 0.3 0.3

Table 2: Steps in estimating parameter values using VV data set 1. Step 1 (third column)
shows values estimated using System (2). Step 2 (fourth column) shows values estimated when
w1, (grey) is set to zero in System (2). Step 3 (fifth column) shows values estimated with the
final modification of System (2), that is System (3), where the parameter p; is now fixed within
the population (grey). Columns 3 to 5, ‘param.’ stands for parameters, and ‘v.p.” stands for

varying parameter within population.
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37 with a bar highlighting fixed parameters within the population: parameters uy, g, ¢y and pg
as  are varying within the population, whereas py, ONE, 0pr and 0 are fixed for all individuals
s (Figure 1.B).

350 Figure 2.A shows the good agreement between model predictions and individual measure-
351 ments for each CD8 T cell subpopulation. Model predictions are the results of numerical
32 simulations of System (3) performed for each individual with the estimated individual param-
353 eter values. Except for few underestimated measurements of late effector cell counts, all cell
354 counts are well matched with the model. Parameter values are given in Table 3.

355 The five underestimated measurements of late effector cell counts correspond to day 4pi
356 measurements. They are the earliest late effector cell counts that were measured, and our
357 model underestimates them by a 10-fold factor approximately. It is noticeable that at day 4pi
358 blood is not a very good mirror of CD8 T cell dynamics since most cells are still located in
350 lymphoid organs. Hence experimental values must be considered with caution. Additionally,
0 late effector cell counts on day 4pi were not available in Crauste et al. (2017) to validate the
361 dynamical model, and that may also explain the underestimation. However, it does not impact
sz the overall estimation of CD8 T cell dynamics, especially at later time points (see Figure 2.A).
363 Figure 3 shows the estimated dynamics of early- and late-effector and memory cells of two
364 individuals. One individual (dashed curves) was monitored on day 7pi, 15pi and 47pi leading
365 to three measurements points for late effetor cells and two for early effector and memory
s6  cells. Estimated dynamics are in agreement with what is expected, especially regarding the
67 time and height of the peak of the response and the following contraction phase. The other
s individual (solid curves) had cell count measurements only on day 8pi, yet the estimated
360 dynamics correspond to an expected behavior, which could not have been obtained by fitting
a0 this individual alone. Hence we are able to simulate likely dynamics even with a small amount
sn  of data points, thanks to the use of nonlinear mixed effects models. By focusing first on the
sz population dynamics (based on a collection of individual dynamics), the method enables to
373 recover the entire individual dynamics. This is a huge advantage when data sampling frequency
a4 is low.

375 Similar good results are obtained for Tumor data set (see Figure 2.B). Therefore System

st6  (3) enables to describe inter-individual variability in different immunization contexts, here VV

18
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Figure 2: For each CD8 T cell count experimental point, the prediction obtained with Sys-
tem (3) is plotted, for (A) VV data set 1 and (B) Tumor data set 1. Dashed lines represent
differences of + 0.5 logl0 for VV and + 0.6 logl0 for tumor (maximum estimated error). In
both figures, naive (blue), early effector (red), late effector (green), and memory (purple) cell

counts are depicted, and the solid black line is the curve y = x.
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Parameters Units Estimated Values Values from
\A% Tumor  Crauste et al. (2017)
data set 1 data set 1

Parameters fixed within the population

ONE day—! 0.0007 0.018 0.009
SEL day—! 0.10 0.11 0.59
S day~—! 0.09 0.08 0.03
pr day ! 0.1 0.1 0.2
Parameters varying within the population

UN day—! 0.66 0.41 0.75
Wiy day ! 0.3 0.2 -
UE 1076 cell ™! day~! 6.0 7.3 21.5
Wi 1076 cell™! day~* 0.9 0.8 -
I 1072 cell™! day~! 2.4 2.1 1.8
Wy 1072 cell™! day~! 1.0 0.6 -
PE day—! 1.0 0.7 0.64
W day ™! 0.2 0.4 -

Residual errors

an cell counts (logl0) 0.2 0.5 -
ap cell counts (logl0) 0.4 0.4 -
ar, cell counts (logl0) 0.5 0.6 -
any cell counts (logl0) 0.3 0.6 -

Table 3: Estimated parameter values for VV and tumor data sets 1 (median of log-normal
distribution for parameters with random effects: py, pg, pr and pg) and parameter esti-
mation from Crauste et al. (2017) (VV immunization). Estimations have been performed

independently.
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Figure 3: The dynamics of three subpopulations (Early - red, Late - green, Memory - purple)
are simulated for two individuals. One individual is displayed as triangles and dashed lines
(3 measurements on days 7, 15 and 47pi) and the second as circles and solid lines (only 1
measurement on day 8pi). Although each individual is not characterized by enough exper-
imental measurements to allow parameter estimation on single individuals, nonlinear mixed

effects models provide individual fits by considering a population approach.

and Tumor immunizations, and with only few data points per individual.

The estimated parameter values obtained with System (3) for VV or Tumor data sets are
in the same range as the estimation previously performed on average cell counts on similar
experimental sets (VV immunization, Crauste et al. (2017)), see Table 3. Major differences
are observed for estimated values of differentiation rates, yet for the 3 estimations (VV data
set 1, Tumor data set 1, Crauste et al. (2017)) parameter values remain in the same order
of magnitude, indicationg a good consistency between the two studies. Estimated values of
parameter 0y g show the largest relative differences (more than 10-fold from one another). Yet,
the largest difference is observed between VV and Tumor data sets obtained with System (3),
rather than between these values and the one obtained in Crauste et al. (2017). This may

highlight a potential difference in the capacity of the two immunogens (VV and Tumor) to
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sss activate naive cells. This is investigated in the next section.

0 3.3 Immunization-dependent parameters

300 Parameter comparison between immunizations. VV and Tumor induced immuniza-
301 tions differ in many aspects. VV immunizations are virus-mediated, use the respiratory tract
32 to infect cells, and trigger an important innate response. Tumor immunizations involve eu-
303 karyotic cells bearing the same antigen, use subcutaneous routes, and induce a reduced innate
s response. From the independent estimations on VV and Tumor data sets (Table 3), differences
305 between estimated values of fixed effects can be computed. Differences between estimated val-
06 ues are large for parameters — in decreasing order — Sy (2471%), un (39%), pe (33%), pe
s (22%), and Spp (17%). These large differences may result from biological processes involved
308 in the CD8 T cell response that differ depending on the immunogen.

399 Consequently, using both data sets (VV and Tumor) as observations may highlight which

100 parameters are required to be significantly different to describe both data sets.

101 Parameters depending on immunization. To perform this analysis, we combine the VV
202 and Tumor data sets 1 and we include a categorical covariate into the model to estimate
a3 parameter values (see section 2.3). We are then able to quantify the differences in parameter
a4 values obtained when fitting CD8 T cell dynamics using different immunogens (see section 2.3).
405 The covariate allows to identify parameter values that are significantly different between a
106 response to Tumor and a response to VV. It is a parameter that is added to the fixed effects of
w7 the five parameters that showed the larger differences in the initial estimation: dnxg, un, pE,
208 g and &r. This results in the estimation of two different parameter values for parameters
w0 Onpg and Or (that are fixed within the population) and two probability distributions with
a0 different mean values for parameters py, pg and pp (that are allowed to vary within the
a1 population).

412 One may note that adding a covariate increases the number of parameters to estimate.
213 However, the number of parameters is not doubled, since we assumed that parameters without
a4 covariates are shared by both immunization groups. In addition, the data set is larger, since

a5 it combines VV and Tumor measurements. Hence the number of parameters with respect to
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Figure 4: Probability distribution of parameters with a covariate varying within the pop-
ulation, py (left) and pg (right). Since a covariate parameter has been included, the two
estimated distributions are plotted. In addition, histograms of estimated individual parameter

values are plotted (green for Tumor, red for VV).

the amount of data remains reasonable.

From this new estimation, we conclude that among the five selected parameters the co-
variates of only four of them are significantly different from zero: dxg, un, pr and o
(Wald test, see Table S3 and section 2.3). The estimation is therefore performed a second
time assuming parameter pp distribution is the same in both groups. In these conditions, the
estimated covariates for the four parameters remain significantly different from zero (Table 4).

Figure 4 shows the estimated distributions for the two parameters uy and pg that vary
within the population and for which we included a covariate. Histograms display the estimated
individual parameter values of uy and pg. For both parameters, the histograms and the
theoretical distributions are in agreement. Moreover, histograms for VV and Tumor appear
clearly distinct, which is consistent with the inclusion of a covariate.

It is noticeable that histograms of individual values for p show shrunk values for both VV
and Tumor data sets. Indeed, the empirical standard deviations of individual parameter values
are small (VV: wepmp = 0.02 ; Tumor: wepmp = 0.01). Based on this estimation, parameter py

could then be fixed within the population. Yet, when estimating parameter values on VV
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Parameters Units \'AY Tumor p-value

Parameters fized within the population

ONE day ! 0.0010 0.0156 10~%°
SEL day 1 0.1 0.1 -
EYAY: day ! 0.1 0.07 0.03
Py day ! 0.1 0.1 -
Parameters varying within the population

UN day ! 0.68 0.42 107°
Wiy day~! 0.13 013 -
UE 1076 cell™! day~! 5.9 5.9 -
Wy 1076 cell™! day~! 0.9 0.9 -
U 1075 cell™! day~! 2.6 2.6 -
Wy 107° cell ! day™* 0.8 0.8 -
PE day ! 0.9 0.67 1076
Wop day ! 0.3 0.3 -

Residual errors

an cell counts (logl0) 0.5 0.5 -
ap cell counts (logl0) 04 0.4 -
ar, cell counts (logl0) 0.5 0.5 -
any cell counts (logl0) 0.4 0.4 -

Table 4: Estimated parameter values using combined VV and Tumor data sets 1. Parameters
that do not vary within the population are shown in the upper part of the table, whereas
individual-dependent parameters are shown in the central part (mean and standard deviation
values). Parameters whose values depend on the immunogen (VV, Tumor) are highlighted in

grey, and the p-value characterizing the covariate non-zero value is shown in the last column.
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431 and Tumor data sets separately, it is not possible to remove the variability of uy which is
a2 required to describe the data (see Table 3). We decided to keep py variable within the
433 population because the model has been validated on synthetic data and on each experimental
44 set separately. Moreover, here we are interested in identifying a potential influence of the
435 immunogen rather than characterizing parameters.

436 Table 4 gives the estimated values of all parameters in both groups. Regarding parameters
s that do not vary within the population, values of § g1, and p; are the same in both groups, since
438 N0 covariate is included on these parameters. On the contrary, it is required for parameters
10 Onpg and Orys to be different to describe each data set, and this difference is accounted for
40 with a covariate parameter.

441 In summary, we identified parameters whose values are significantly different according to
42 the immunogen used to activate CD8 T cells, these parameters correspond to the dynamics
w3 of naive cells (§yg and py), the proliferation of early effector cells (pg), and differentiation
ws to memory cells (677). We hence conclude that different immunizations induce variability in
as  the CD8 T cell responses by acting on the first phase of the response (priming, activation of
ws  mnaive cells, expansion of the CD8 T cell population) as well as the development of the memory

a7 population.

ws 3.4 Predictive immunogen load dynamics

uo  Numerical simulations of System (3) give access to information that may be difficult or im-
a0 possible to measure, like immunogen load dynamics. For instance, measuring VV load over
451 time in the same mouse is not possible since it requires to kill the animal. Tumor growth, on
452 the contrary, happens locally so tumor volume can be followed for each mouse over time. For
s53  individuals with tumor volume measurements (Tumor data set 3, Table 1 and section 2.5), we
4sa can qualitatively compare tumor volume evolution with immunogen load dynamics generated
55 by System (3) using the parameter values estimated for each individual.

456 Figure 5.A shows normalized tumor volumes and simulated immunogen load values for the
ss7 20 individuals over 18 days pi, as well as the population behavior (dashed black curve). The
48 population curve peaks at the same time as experimental data, between days 6pi and 8pi. Ad-

459 ditionally, the overall dynamics of the population behavior is in agreement with experimental
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Figure 5: Tumor size volumes and simulated immunogen load dynamics. Both experimental
(Tumor data set 3) and simulated values are normalized by their maximal value, in order to
compare times at which the maximal value is reached and decay slopes. (A) All individuals
are drawn in color (points for experimental data, curves for simulated dynamics) and the

population curve in dashed black. (B) to (D) 3 individual dynamics are displayed.

26


https://doi.org/10.1101/671891
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/671891; this version posted June 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

w0 data, except for the slope of the initial increase (but this is due to a difference in values at day
w1 0, see section 2.5). Few simulated curves display dynamics with a peak after day 10pi.

162 Figures 5.B to 5.D focus on three individuals, with illustrative behaviors. Simulated dy-
463 namics in Figure 5.B show a late peak of the immunogen load, after day 10pi, when experi-
464 mental peak is on day 7pi and the tumor volume has already shrunk by day 9pi. Simulated
465 dynamics are much slower, with a slow increase followed by a rapid disappearance of the
466 immunogen load around day 13pi. On the contrary, Figures 5.C and 5.D show very good
w67 agreement between simulated curves and experimental data. Indeed, the time of the peak and
68 the decay rate of the immunogen load for the two individuals are well matched.

460 Simulated immunogen load dynamics have been ranked in increasing order according to
a0 their ability to reproduce measured tumor volumes (see Supplementary File 2). Half of in-
an dividual dynamics are well predicted by the model (as illustrated in Figures 5.C and 5.D),
a2 whereas one third of individual dynamics are badly predicted (as in Figure 5.B): the peak of
473 immunogen load is strongly delayed in these cases. Good predictions mostly correspond to
472 individuals with CD8 T cell measurements around the time of the immunogen peak, that is
475 between days 6pi and 8pi. This suggests that appropriate measurements of CD8 T cell counts
476 around the time of the peak of the response allow to correctly estimate CD8 T cell dynamics

477 which, in turn, are good predictors of tumor volume dynamics in vivo.

as 3.5 Predicting dynamics following VV and Tumor immunizations

a9 To challenge System (3) and the estimated parameters (Table 4), we compare simulated out-
40 puts to an additional data set of both VV and Tumor immunizations, VV data set 2 and
ss1 Tumor data set 2 (Table 1 and section 2.5).

482 Since we already know the probability distribution of parameters (Table 4), we only esti-
483 mate individual parameters in order to fit individual dynamics. Results are shown in Figure 6,
a4 for both VV data set 2 and Tumor data set 2. It is clear that estimated individual dynamics
g5 are consistent with previous individual dynamics estimations. Hence, we validate System (3)
486 and values estimated in both VV and Tumor immunization contexts by showing that estimated

47 parameter values allow to characterize CD8 T cell counts obtained in similar contexts.
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Figure 6: Observations vs estimated values of individual CD8 T cell counts, for (A) VV
data set 2 and (B) Tumor data set 2. In both figures, naive (blue), early effector (red), late
effector (green), and memory (purple) cell counts are depicted, and grey points correspond to
individual values from Figure 2. The black straight line is y = .
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s 4 Discussion

489 When following an in vivo immune response, experimental measurements are often limited
a0 by either ethical issues or tissue accessibility. Consequently, one often ends up measuring cell
491 counts in peripheral blood on a restricted number of time points per individual, over the dura-
a2 tion of a response (see Figure 3). With such data, estimation of all model parameters becomes
203 unlikely. Using nonlinear mixed effects models, we propose a dynamical model of CD8 T cell
404 dynamics that circumvents this difficulty by assuming that all individuals within a population
405 share the same main characteristics. The model allows the accurate description of individual
26 dynamics, even though individual measurements are scarce. Indeed, we are able to estimate
47 both good fits and relevant dynamics for individuals with only few cell count measurements, as
408 illustrated in Figure 3. These results indicate that knowledge of population dynamics parame-
109 ters and numerical simulations complement information given by experimental measurements.
500 Starting from the model described in Crauste et al. (2017) that could efficiently describe
so0 CD8 T cell dynamics, at the level of average population cell-counts present in peripheral
52 blood, we built this nonlinear mixed effects model in a stepwise fashion. The system was first
s3 reduced to ensure numerical well-posedness of the parameter estimation. We next identified
so4  parameters — hence biological processes — that vary between individuals, and parameters that
so5 are fixed within the population. Finally, by adding a covariate to some parameters we identified
s06  immunization-dependent parameters.

507 Noteworthy, from a biological point of view the removal of one parameter (for example, the
sos death rate of late effector cells) does not imply that the corresponding process is not biologically
so0 meaningful. However, based on the available data, our methodology found that some processes
s.0 were negligible in comparison with the ones described by the system’s equations. Similarly,
sii we were led to define fixed differentiation rates and immunogen proliferation rate among the
si2. population. The constancy of the differentiation rates is in good agreement with the auto-pilot
s13. model that shows that once naive CD8 T cells are activated their differentiation in memory
suu cells is a steady process (Kaech and Ahmed, 2001; Stipdonk et al., 2001). Although we cannot
515 exclude that a constant pathogen proliferation rate is due to a lack of data on the pathogen

516 counts, that would have allowed a more refined calibration of immunogen load dynamics,
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s17 this result is in good agreement with Crauste et al. (2015) that showed a great robustness
sis  of the pathogen proliferation rate. Consequently, inter-individual variability is explained only
si0 by variability in mortality rates of all cells (naive, early effector, late effector, and memory)
s20 and the immunogen, and proliferation of early effector CD8 T cells. The latter is actually in
s21 good agreement with the demonstration that in diverse infection conditions the magnitude of
s22 - antigen-specific CD8 T cell responses is primarily controlled by clonal expansion (van Heijst
s23 et al., 2009). Eventually, using nonlinear mixed effects models we were able to quantitatively
s2«  reproduce inter-individual variability in two different immunization contexts (VV and Tumor)
s2s and provide predictive population dynamics when confronted to another data set (for both
s2 immunogens). Therefore, robustness of the model is strong.

527 The addition of a covariate allowed us to identify parameters that are immunization-
s28 dependent. Interestingly they control the activation of the response (priming, differentiation
s20  of naive cells, expansion of effector cells) as well as the generation of memory cells. This is
530 again in good agreement with the biological differences that characterize the two immunogens
s used in this study. Indeed, pathogen-associated molecular patterns (PAMP) associated with
532 vaccinia virus will activate a strong innate immune response that will provide costimulatory
s33 signals that in turn will increase the efficiency of naive CD8 T cell activation (Iwasaki and
s Medzhitov, 2015). In contrast, when primed by tumor cells CD8 T cells will have access to
535 limited amount of costimulation derived from damage associated molecular patterns (Yang
s et al.,, 2017). The amount of costimulation will also control the generation of memory cells
s37  (Mescher et al., 2006). Hence the addition of covariates to the model parameters has allowed
533 to identify biologically relevant, immunogen-dependent parameters. Nevertheless, using co-
s30  variates has additional advantages. First, they allow to consider a larger data set (in our
sa0  case, the combination of two data sets) without adding too many parameters to estimate (4
sa1  covariates in our case). This is particularly adapted to situations where only some parameters
se2  are expected to differ depending on the data set (here, the immunogen). Second, and as a
53 consequence, data fits may be improved compared to the situation where data sets generated
544 with different immunogens are independently used to estimate parameters. Figure 7 illustrates
se5  this aspect: dynamics of two individuals are displayed, with and without covariate. In both

sa6  cases using the covariate (and thus a larger data set) improved the quality of individual fits,
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Figure 7: Positive side-effect of using covariates. For two illustrative individuals, accounting
for covariates allows to better estimate early effector cell dynamics: red plain curve with

covariate, blue dashed curve without covariate.

and generated more relevant dynamics with a peak of the response occurring earlier, before
day 10pi. No individual fit has been deteriorated by the use of a covariate (not shown).

The model also proved to be predictive. Indeed, for individuals with tumor volume mea-
surements, the qualitative comparison with immunogen load dynamics was good (section 3.4)
even though this immunogen data set has not been considered to estimate parameter values.
This reveals that tumor volume evolution may be predicted by CD8 T cell counts in blood
samples, provided that CD8 T cell counts are measured around the expected time of the peak
of the response (between days 6pi and 9pi). This highlights how measurements of CD8 T cell
counts at relevant times (before, around, and after the peak of the response) ensure correct
predictions of CD8 T cell dynamics (as already mentioned in Crauste et al. (2017)), and con-
sequently of tumor dynamics. Future works need to focus on this relation, and tumor therapy
may benefit from these new findings.

Finally, CD8 T cell response dynamics to both VV and Tumor immunogens were well cap-
tured for data sets that had not been used to perform parameter estimation (section 3.5). The
behavior of each individual was estimated with the prior knowledge acquired on the population
(i.e. fixed parameters values and variable parameter distributions) and proved consistent with
previous estimated individual behaviors. The correct prediction of individual behaviors by the

model, in a simple mice experiment, paves the way to personalized medicine based on numer-
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s6s  ical simulations. Indeed, once the population parameters are defined, numerical simulation of
s66 individuals can be performed from a few measurements per individual and consequently would

se7  allow to adapt personalized therapies.
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