

Investigation of Inter-Individual Variability in CD8 T Cell Responses with Nonlinear Mixed Effects Models

Chloé Audebert^{1,2,3,*}, Daphné Laubreton⁴, Christophe Arpin⁴,
Olivier Gandrillon^{1,5}, Jacqueline Marvel^{4,†}, Fabien Crauste^{1,6,†}

¹ Inria Dracula, Villeurbanne, France

² Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions UMR 7598, F-75005 Paris, France.

³ Sorbonne Université, CNRS, Institut de biologie Paris-Seine (IBPS), Laboratoire de Biologie Computationnelle et Quantitative UMR 7238, F-75005 Paris, France.

⁴ Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France

⁵ Laboratory of Biology and Modelling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 allée d'Italie, Site Jacques Monod, 69007 Lyon, France

⁶ Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400, Talence, France

1 **Abstract**

2 To develop vaccines it is mandatory yet challenging to account for inter-individual
3 variability during immune responses. Even in laboratory mice, T cell responses of single
4 individuals exhibit a high heterogeneity that may come from genetic backgrounds, intra-
5 specific processes (*e.g.* antigen-processing and presentation) and immunization protocols.

6 We propose to account for inter-individual variability in CD8 T cell responses in mice
7 by using a dynamical model and a statistical, nonlinear mixed effects model. Average and

^{*}corresponding author: chloe.audebert@sorbonne-universite.fr

[†]co-last authors

8 individual dynamics during a CD8 T cell response are characterized in different immuniza-
9 tion contexts (vaccinia virus and tumor). We identify biological processes more likely to be
10 affected by the immunization and to generate inter-individual variability. The robustness
11 of the model is assessed by confrontation to new experimental data, and it proves able to
12 predict tumor volume dynamics as well as individual dynamics.

13 Our approach allows to investigate immune responses in various immunization contexts,
14 when measurements are scarce or missing, and contributes to a better understanding of
15 variability in CD8 T cell immune responses. In particular, the prediction of tumor volume
16 dynamics based solely on information on CD8 T cell counts may lead to tumor therapy
17 improvement.

18 *Keywords:* T cell response ; Inter-individual variability ; ODE dynamical model ; Nonlinear
19 mixed effects models ; Prediction of tumor evolution.

20 1 Introduction

21 The immune response is recognized as a robust system able to counteract invasion by diverse
22 pathogens (Fischer and Raussel, 2016; Wong and Germain, 2018). However, as a complex
23 biological process the dynamical behavior of its cellular components exhibits a high degree
24 of variability affecting their differentiation, proliferation or death processes. Indeed, the fre-
25 quency of antigen-specific T cells and their location relative to pathogen invasion will affect the
26 dynamic of the response (Estcourt et al., 2005; Wong and Germain, 2018; Xiao et al., 2007).
27 Similarly, the pathogen load and virulence as well as the host innate response will affect the T
28 cell response (Iwasaki and Medzhitov, 2015). Finally, at the cellular level, variation in protein
29 content can also generate heterogeneous responses (Feinerman et al., 2008). Genetic variabil-
30 ity of the numerous genes controlling the immune response will also be a source of variability
31 among individuals (Fischer and Raussel, 2016). However, even among genetically identical
32 individuals, the response to the same infection can result in highly heterogeneous dynamics
33 (Althaus et al., 2007; Grau et al., 2018; Murali-Krishna et al., 1998).

34 Cytotoxic CD8 T cells play an essential role in the fight against pathogens or tumors
35 as they are able to recognize and eliminate infected or transformed cells. Indeed, following
36 encounter, in lymphoid organs, of antigen-presenting cells loaded with pathogen or tumor

37 derived antigens, quiescent naive CD8 T cells will be activated. This leads to their proliferation
38 and differentiation in effector cells that have acquired the capacity to kill infected or tumoral
39 cells, and to their ultimate differentiation in memory cells (Crauste et al., 2017; Youngblood
40 et al., 2017). The CD8 T cell immune response is a robust process that, once engaged by
41 antigenic stimulations, will proceed up to the memory phase, even if the antigenic stimulation
42 is shortened. Hence, the auto-pilot denomination given to this process (Kaech and Ahmed,
43 2001; Stipdonk et al., 2001). However, it is highly variable as illustrated by experimental
44 measurements of cell counts: dynamics of the responses (timing, cell counts) may differ from
45 one individual to another (Miller et al., 2008; Precopio et al., 2007; Xiao et al., 2007), but also
46 depending on the immunogen (Althaus et al., 2007; Estcourt et al., 2005; Murali-Krishna et
47 al., 1998).

48 The role of genome variability in explaining inter-individual variations of T cell responses
49 has been recently investigated (Ferraro et al., 2014; Li et al., 2016) but provided limited
50 understanding of the observed heterogeneity. Li et al. (2016) focused on correlations between
51 gene expression and cytokine production in humans, and identified a locus associated with
52 the production of IL-6 in different pathogenic contexts (bacteria and fungi). Ferraro et al.
53 (2014) investigated inter-individual variations based on genotypic analyses of human donors
54 (in healthy and diabetic conditions) and identified genes that correlate with regulatory T cell
55 responses.

56 To our knowledge, inter-individual variability characterized by heterogeneous cell counts
57 has been mostly ignored in immunology, put aside by focusing on average behaviors of popu-
58 lations of genetically similar individuals. The use of such methodology, however, assumes that
59 variability is negligible among genetically similar individuals, which is not true (Althaus et al.,
60 2007; Badovinac et al., 2007; Crauste et al., 2017).

61 In this work, we propose to study inter-individual variability based on CD8 T cell counts
62 with nonlinear mixed effects models (Delyon et al., 1999; Kuhn and Lavielle, 2005; Lavielle,
63 2014). In these models, instead of considering a unique set of parameter values as characteristic
64 of the studied data set, a population approach is used based on distributions of parameter
65 values. All individuals are assumed to be part of the same population, and as so they share
66 a common behavior (average behavior) while they keep individual behaviors (random effect).

67 Nonlinear mixed effects models are well adapted to repeated longitudinal data. They aim at
68 characterizing and understanding “typical behaviors”, and as a consequence inter-individual
69 variations. T cell count measurements, obtained over the course of a response (few weeks),
70 and the large variability observed in them represent a case study for this approach.

71 Nonlinear mixed effects models have been used to analyze data in various fields (Davidian
72 and Giltinan, 2003), especially in pharmacokinetic studies, and more recently to model cell to
73 cell variability (Almquist et al., 2015; Llamosi et al., 2016) or to study tumor growth (Benzekry
74 et al., 2014; Ferenci et al., 2017). In immunology, Keersmaekers et al. (2018) have recently
75 studied the differences between two vaccines with nonlinear mixed effects models and ordinary
76 differential equation (ODE) models for T and B cells. Jarne et al. (2017) and Villain et al.
77 (2018) have investigated the effect of IL7 injections on HIV+ patients to stimulate the CD4
78 T cell response using also nonlinear mixed effects models and ODEs, and identified biological
79 processes accounting for inter-individual variability.

80 A number of models of the CD8 T cell response based on ODEs have been proposed
81 over the years. Of particular relevance here is the work of De Boer et al. (2001), where
82 the model accounts for activated and memory cells but the influence of the immunogen is
83 imposed. Antia et al. (2003) proposed a model based on partial differential equations, that
84 includes immunogen effects and dynamics of naive, effector and memory cells. These works
85 describe different subpopulations of CD8 T cells, however most of the time only total CD8 T
86 cell counts are available to validate the models. In Crauste et al. (2017), the authors generated
87 cell counts for four subpopulations of CD8 T cells in mice that they used to identify the most
88 likely differentiation pathway of CD8 T cells after immunogen presentation. This approach
89 has led to a model of the average CD8 T cell dynamics in mice after immunization and its
90 representation as a set of nonlinear ODEs. The model consists in a system of ODEs describing
91 the dynamics of naive, early effector, late effector, and memory CD8 T cell subsets and the
92 immunogen.

93 The goal of this article is to explore the ability of a mathematical model to describe the
94 inter-individual variability observed in CD8 T cell responses in different immunization con-
95 texts, by considering distributions of parameters within the population (nonlinear mixed effects
96 model). We will first select a model of the CD8 T cell immune response dynamics accounting

97 for variability in cell counts by using synthetic then experimental data generated in different
98 immunization contexts. Second we will establish that the immunogen-dependent heterogeneity
99 influences the early phase of the response (priming, activation of naive cells, cellular expan-
100 sion). Finally, we will show that besides its ability to reproduce CD8 T cell response dynamics
101 our model accounts for relevant immunogen dynamics (tumor volume evolution) and is able
102 to predict dynamics of responses to similar immunizations, hence providing an efficient tool
103 for investigating CD8 T cell dynamics and inter-individual variability.

104 2 Material, Methods and Models

105 2.1 Data

106 **Experimental Models.** C57BL/6 mice (C57BL6/J) and CD45.1+ C57BL/6 mice (B6.SJL-
107 Ptprc^aPepc^b/BoyCrl) were purchased from CRL. F5 TCR-tg mice recognizing the NP68 epi-
108 tope were crossed to a CD45.1+ C57BL/6 background (B6.SJL-Ptprc^aPepc^b/BoyCrl-Tg(CD2-
109 TcraF5,CD2-TcrbF5)1Kio/Jmar) (Jubin et al., 2012). They have been crossed at least 13 times
110 on the C57BL6/J background. All mice were homozygous adult 6-8-week-old at the beginning
111 of experiments. They were healthy and housed in our institute's animal facility under Specific
112 Pathogen-Free conditions.

113 Age- and sex-matched litter mates or provider's delivery groups, which were naive of any
114 experimental manipulation, were randomly assigned to 4 experimental groups (of 5 mice each)
115 and co-housed at least for one week prior to experimentation. Animals were maintained in
116 ventilated enriched cages at constant temperature and hygrometry with 13hr/11hr light/dark
117 cycles and constant access to 21 kGy-irradiated food and acid (pH = 3 ± 0.5) water. All experi-
118 mental procedures were approved by an animal experimentation ethics committee (CECCAPP;
119 Lyon, France), and accreditations have been obtained from French government.

120 **Vaccinia Virus (VV) Immunization.** 2×10^5 naive CD8 T cells from CD45.1+ F5 mice
121 were transferred by retro-orbital injection in, 6-8-week-old congenic CD45.2+ C57BL/6 mice
122 briefly anaesthetized with 3% isoflurane. The day after deeply Xylazin/ Ketamin-anaesthetized
123 recipient mice were inoculated intra-nasally with 2×10^5 pfu of a vaccinia virus expressing the

124 NP68 epitope (VV-NP68) provided by Pr. A.J. McMichael (Jubin et al., 2012).

125 **Tumor Immunization.** 2×10^5 naive CD8 T cells from CD45.1+ F5 mice were trans-
126 ferred by retro-orbital injection in 6-8-week-old congenic CD45.2+ C57BL/6 mice briefly anaes-
127 thetized with 3% isoflurane. The day after, recipients were subcutaneously inoculated with
128 2.5×10^6 EL4 lymphoma cells expressing the NP68 epitope (EL4-NP68) provided by Dr.
129 T.N.M. Schumacher (de Brito et al., 2011).

130 **Phenotypic Analyses.** Mice were bled at intervals of at least 7 days. Blood cell suspensions
131 were cleared of erythrocytes by incubation in ACK lysis solution (TFS). Cells were then
132 incubated with efluor780-coupled Fixable Viability Dye (eBioscience) to label dead cells. All
133 surface stainings were then performed for 45 minutes at 4°C in PBS (TFS) supplemented with
134 1% FBS (BioWest) and 0.09% NaN3 (Sigma-Aldrich). Cells were fixed and permeabilized with
135 the Foxp3-fixation and permeabilization kit (eBioscience) before intra-cellular staining for one
136 hour to overnight. The following mAbs(clones) were utilized: Bcl2(BCL/10C4), CD45.1(A20)
137 and CD45(30-F11) from Biolegend, Mki67(SolA15), CD27(LG.7F9) and CD8(53.6.7) from
138 eBioscience, and CD44 (IM7.8.1) from Miltenyi. Samples were acquired on a FACS LSR
139 Fortessa (BD biosciences) and analyzed with FlowJo software (TreeStar).

140 **CD8 T Cell Differentiation Stages.** For both immunizations (VV and Tumor), phe-
141 notypic cell subsets based on Mki67-Bcl2 characterization (Crauste et al., 2017) have been
142 identified and the corresponding cell counts measured in blood, from day 4 post-inoculation
143 (pi) up to day 28pi, 32pi, 46pi, or 47pi depending on the experiment (VV and Tumor data
144 sets 1, Table 1). Naive cells are defined as CD44-Mki67-Bcl2+ cells, early effector cells as
145 CD44+Mki67+Bcl2- cells, late effector cells as CD44+Mki67-Bcl2- cells, and memory cells as
146 CD44+Mki67-Bcl2+ cells.

147 **Tumor volumes.** Twenty mice inoculated with EL4 lymphoma cells had tumor volumes
148 measured daily between day 4pi to 13pi (Tumor data set 3, Table 1). Tumors were subcuta-
149 neously inoculated on the back of the animals allowing tumor volume measurements. Tumor

Short Name	Description
VV data set 1	CD8 T cell counts of 59 individual mice inoculated intranasally with 2×10^5 pfu of a vaccinia virus expressing the NP68 epitope ; naive, early and late effector, and memory cell counts have been measured up to day 47pi
VV data set 2	Similar to VV data set 1 (15 individual mice) ; CD8 T cell counts of naive, early and late effector, and memory cells have been measured following VV immunization, up to day 42pi
Tumor data set 1	CD8 T cell counts of 55 individual mice subcutaneously inoculated with 2.5×10^6 EL4 lymphoma cells expressing the NP68 epitope ; naive, early and late effector, and memory cell counts have been measured up to day 47pi
Tumor data set 2	Similar to Tumor data set 1 (20 individual mice); CD8 T cell counts of naive, early and late effector, and memory cells have been measured following Tumor immunization, up to day 42pi
Tumor data set 3	Tumor volumes measured daily between day 4pi to 13pi for 20 individual mice of the Tumor data set 1
Synth data set 1	Synthetic data set generated with System (1), consisting in CD8 T cell counts of naive, early and late effector, and memory cells on days 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30pi for 10 individuals
Synth data set 2	Similar to Synth data set 1, except that System (2) is used to generate the data

Table 1: Data sets (details in the text of sections 2.1, 2.4 and 2.5).

150 length (l), width (w) and thickness (t) were measured and the tumor volume was estimated
151 with the formula $\pi lwt/6$, assuming tumors are ellipsoids (Tomayka and Reynolds, 1989).

152 2.2 Nonlinear mixed effects models

153 Nonlinear mixed effects models allow a description of inter-individual heterogeneity within
154 a population of individuals (here, mice). The main idea of the method is to consider that
155 since all individuals belong to the same population they share common characteristics. These
156 common characteristics are called “fixed effects” and characterize an average behavior of the
157 population. However, each individual is unique and thus differs from the average behavior by
158 a specific value called “random effect”.

159 This section briefly describes our main hypotheses. Details on the method can be found in
160 Delyon et al. (1999), Kuhn and Lavielle (2005), Samson and Donnet (2007), Lavielle (2014).

161 Each data set $\{y_{i,j}, i = 1, \dots, N_{ind}, j = 1, \dots, n_i\}$ is described as follows,

162
$$y_{i,j} = f(x_{i,j}, \psi_i) + a\varepsilon_{i,j},$$

163 where $y_{i,j}$ is the j^{th} observation of individual i , N_{ind} is the number of individuals within the
164 population and n_i is the number of observations for the i^{th} individual.

165 The function f accounts for individual dynamics generated by a mathematical model, in
166 this work f is associated with the solution of a system of ordinary differential equations (ODE),
167 see section 2.4. The function f depends on known variables, denoted by $x_{i,j}$, and parameters
168 of the i^{th} individual, denoted by ψ_i . Here, known variables are CD8 T cell subpopulations and
169 time.

170 Individual parameters ψ_i are assumed to be split into fixed effects (population-dependent
171 effects, average behavior) and random effects (individual-dependent effects). Denote ψ_i^k the
172 k -th parameter characterizing individual i . Then

173
$$\log(\psi_i^k) = \log(p_{pop}^k) + \eta_i^k,$$

174 where vector $p_{pop} = (p_{pop}^k)_k$ models the average behavior of the population, and $\eta_i = (\eta_i^k)_k$
175 represents how the individual i differs from this average behavior. Variables $\eta_i^k \sim \mathcal{N}(0, \omega_k^2)$,
176 and they are assumed independent and identically distributed. The variance ω_k^2 quantifies the

177 variability of the k -th parameter within the population. From now we will denote by ω^2 the
178 vector of variances $(\omega_k^2)_k$. Parameters ψ_i are assumed to follow a log-normal distribution to
179 ensure their positivity.

180 The residual errors, combining model approximations and measurement noise, are denoted
181 by $a\varepsilon_{i,j}$. They quantify how the model prediction is close to the observation. Residual errors
182 are assumed independent, identically and normally distributed, *i.e* $\varepsilon_{i,j} \sim \mathcal{N}(0, 1)$. Moreover,
183 the random effects η_i and the residual errors $a\varepsilon_{i,j}$ are mutually independent. In this work, we
184 assume a *constant* error model, with a constant a . This error parameter is estimated for each
185 subpopulation (naive cells - a_N ; early effector cells - a_E ; late effector cells - a_L ; memory cells
186 - a_M).

187 In what follows, we will write that a parameter is *fixed within the population* if all in-
188 dividuals have the same value for this parameter. On the contrary, if the variance ω_k^2 of a
189 parameter is non-zero, then this parameter will account for inter-individual variability within
190 the population.

191 2.3 Parameter Estimation

192 Parameter values are estimated with Stochastic Approximation Expectation-Maximization
193 (SAEM) algorithm. The SAEM algorithm is available in Monolix (2018).

194 **Population and individual parameters.** Under the previous assumptions (section 2.2),
195 cell population dynamics (average behavior and inter-individual variability) are described by
196 parameters: p_{pop} , ω^2 and a . These parameters are estimated by maximizing the likelihood
197 with the SAEM algorithm.

198 Once these parameters have been estimated, each individual vector of parameters ψ_i is
199 estimated by maximizing the conditional probabilities $\mathbb{P}(\psi_i|y_{i,j}; \hat{p}_{pop}, \hat{\omega}^2, \hat{a})$, where \hat{x} denotes
200 the estimated value of x .

201 Both estimations are performed with Monolix software (Monolix, 2018). Files to run the
202 algorithm (including all algorithm parameters) are available in Supplementary File 3.

203 **Covariates.** In section 3.3, we will study whether differences observed in parameter values
204 between VV and Tumor data sets (Table 1) are only related to random sampling, or if they
205 can be explained by the immunogen. If so, then this should be reflected in the values of some
206 parameters.

207 To tackle this question, we first pool together VV and Tumor data sets 1. Second, using
208 this full data set, we estimate parameter values by assuming that fixed effects of some Tumor-
209 associated parameters are different from those of the corresponding VV-associated parameters.
210 If these differences in parameter values are significantly different from zero, then they are
211 caused by the immunogen.

212 This question is translated into the mixed effects model by introducing categorical covari-
213 ates. It assumes that a given individual parameter vector ψ_i follows a probability distribution
214 with a different mean depending if the individual is in Tumor or VV data set. We write

215
$$\log(\psi_i^k) = \log(p_{pop}^k) + \beta^k c_i + \eta_i^k,$$

216 where c_i equals 0 if individual i is in VV data set 1 and 1 for individuals in Tumor data set 1,
217 and $\beta = (\beta^k)_k$ is a vector of covariate parameters (it quantifies the difference between values
218 of the mean parameter of both data sets). We test whether the estimated covariate parameter
219 $\hat{\beta}$ is significantly different from zero with a Wald test, using Monolix (2018) software, and we
220 use a p -value threshold at 0.05.

221 Parameters $(p_{pop}, \omega^2, a, \beta)$ are then characterizing cell population dynamics for both VV
222 and Tumor immunogens. If the estimated vector $\hat{\beta}$ is significantly different from zero, then
223 part of the experimentally observed variability could be explained by the immunogen.

224 **2.4 Model selection**

225 **ODE model of CD8 T cells dynamics.** We introduce the system of ODE that accounts
226 for each individual behavior. We use the model in Crauste et al. (2017), that describes CD8
227 T cell subpopulation dynamics as well as the immunogen load dynamics in primary immune

228 responses, as follows

$$\begin{cases} \dot{N} = -\mu_N N - \delta_{NE} I N, \\ \dot{E} = \delta_{NE} I N + \rho_E I E - [\mu_E E + \delta_{EL}] E, \\ \dot{L} = \delta_{EL} E - [\mu_L^L L + \mu_L^E E + \delta_{LM}] L, \\ \dot{M} = \delta_{LM} L, \\ \dot{I} = [\rho_I I - \mu_I^E E - \mu_I^L L - \mu_I] I. \end{cases} \quad (1)$$

229 The variables N , E , L and M denote the four CD8 T cell subpopulation counts, naive, early
 230 effector, late effector, and memory cells respectively (see section 2.1), and I is the immuno-
 231 gen load.

232 The immunogen load dynamics are normalized with respect to the initial amount (Crauste
 233 et al., 2015, 2017), so $I(0) = 1$. The initial amounts of CD8 T cell counts are $N(0) = 10^4$ cells,
 234 $E(0) = 0$, $L(0) = 0$ and $M(0) = 0$.

235 Parameters δ_k are the differentiation rates, with $k = NE$, EL or LM for differentiation
 236 from naive to early effector cells, from early effector to late effector cells and from late effector
 237 to memory cells, respectively.

238 Death parameters are denoted by μ_k , where $k = N$, E and I for the death of naive,
 239 early effector cells and the immunogen respectively. Notations μ_X^Y for some mortality-related
 240 parameters refer to parameters μ_{XY} in Crauste et al. (2017): the index X refers to the CD8 T
 241 cell population or the immunogen that dies, and the exponent Y to the CD8 T cell population
 242 responsible for inducing death.

243 Proliferation parameters of early effector cells and the immunogen are respectively denoted
 244 by ρ_E and ρ_I .

245 System (1) has been introduced and validated in Crauste et al. (2017). This system will
 246 be simplified here to obtain locally identifiable parameters on ideal synthetic data.

247 **Synthetic data.** Using System (1), we generate a set of data associated to solutions of the
 248 model, where all the parameters are drawn from known log-normal distributions. These data
 249 consist of time points and CD8 T cell counts for the 4 subpopulations and the immunogen

250 load. These are called *synthetic data*, and this set of data is referred to as Synth data set 1
251 (Table 1).

252 In this first step, each model parameter is assumed to account for inter-individual variabil-
253 ity, so no parameter is fixed within the population, and each parameter p_k satisfies $\log(p_k) \sim$
254 $\mathcal{N}(\log(m_k), 0.2)$. The standard deviation is fixed to the value 0.2 to generate heterogeneity,
255 and values of medians m_k are given in Table S1. In a second step, after reducing the number
256 of parameters (see section 3.1), we generate another set of synthetic data (Synth2 data set,
257 Table 1), with the same assumptions and methods.

258 We generate synthetic data for 10 individuals, whose cell counts are sampled at days 4, 5,
259 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30pi (cf. Figure S1). In agreement with real biological
260 data, we assume that all cell counts below 100 cells are not measured, and account for missing
261 data. For the immunogen load, values lower than 0.1 are also not considered.

262 **Model selection on biological data.** Using the system selected on the Synth data set 2
263 (Table 1) and experimental data presented in section 2.1 (VV data set 1, then Tumor data set
264 1, see Table 1), we perform a parameter estimation (see section 2.3).

265 2.5 A posteriori model validation on biological data

266 In sections 3.4 and 3.5, the model selected on real biological data is compared to data that
267 were not used for parameter estimation. These data are presented hereafter.

268 **Tumor volume.** Tumor volume was measured for one experiment (Tumor data set 3, Ta-
269 ble 1), as described in section 2.1. Tumors grown from EL4 lymphoma cells are known to
270 develop on one site and show almost no metastases (Boissonnas et al., 2004; Vetticka et al.,
271 2009). Consequently, we assume that immunogen load dynamics and the tumor volume evo-
272 lution are related. Therefore we can compare experimentally measured tumor volumes with
273 immunogen load dynamics generated by the model.

274 Since the immunogen load dynamics remain unknown in experimental data, the initial
275 immunogen count has been normalized in the model (Crauste et al., 2015, 2017). Consequently,
276 we can only qualitatively compare immunogen load dynamics predicted by the model with

277 tumor volume measurements. Features of interest are then the time when the immunogen
278 load/tumor volume reaches its maximum, as well as the elimination rate of the immunogen
279 load/tumor. To be able to compare these features of interest, tumor volumes and simulated
280 immunogen load values are normalized by their maximum value.

281 **Additional experiment.** In order to assess the model ability to characterize and predict
282 immune response dynamics we compare our results to additional experiments, VV data set
283 2 and Tumor data set 2 (see Table 1 and section 2.1), similar to the ones used to estimate
284 parameters (VV and Tumor data sets 1). CD8 T cell counts of naive, early and late effector,
285 and memory cells have been measured following VV and tumor immunizations, on days 4, 6,
286 7, 8, 11, 13, 15, 21, 28, 42pi.

287 The probability distribution of parameters (population-dependent, fixed effects) are known
288 since we have estimated them on VV and Tumor data sets 1 (section 2.4). Therefore we use
289 them to estimate the individual parameter values that fit individual behaviors of these new
290 data sets (see section 2.3).

291 **3 Results**

292 **3.1 Model selection on synthetic data**

293 Using Synth data set 1 (ideal data generated by System (1), see section 2.4), System (1) is
294 reduced in order for population parameters to be locally identifiable. Parameter estimation
295 (see section 2.3) is performed with SAEM algorithm (Monolix, 2018) on the synthetic data, and
296 it leads to a reduction of the initial 12-parameters System (1) to the 9-parameters System (2),
297 as explained herefater.

298 One way to obtain parameter identifiability is to assume known 3 parameters: the addi-
299 tional death rates of late effector cells (μ_L^E) and of the immunogen (μ_I , μ_I^E). First their initial
300 true median values are used, see Table S1. Second, we observe that setting these parameters
301 to zero does not impair neither the quality of fit nor the parameter estimation (not shown),
302 so they are removed from the model. Since only 9 parameters are required (see Table S1) to

303 reproduce the expected individual dynamics, we obtain System (2),

$$\left\{ \begin{array}{l} \dot{N} = -\mu_N N - \delta_{NE} I N, \\ \dot{E} = \delta_{NE} I N + \rho_E I E - [\mu_E E + \delta_{EL}] E, \\ \dot{L} = \delta_{EL} E - [\mu_L L + \delta_{LM}] L, \\ \dot{M} = \delta_{LM} L, \\ \dot{I} = [\rho_I I - \mu_I L] I. \end{array} \right. \quad (2)$$

304 For the sake of simplicity the parameters are renamed in System (2): $\mu_L^L = \mu_L$ and $\mu_I^L = \mu_I$.

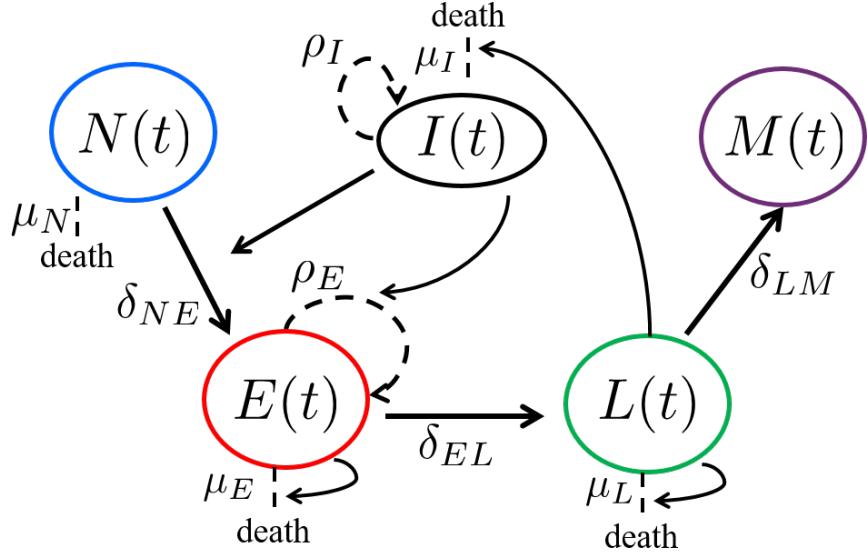
305 Figure 1.A displays a schematic representation of System (2).

306 Additionally, among the 9 parameters characterizing System (2), we wondered whether all
 307 parameters had to vary within the population to explain the observed dynamics. Indeed, we
 308 want to avoid redundant sources of variability. To our knowledge it is impossible to determine
 309 whether differentiation of CD8 T cells from one subpopulation to another one varies between
 310 individuals. Moreover, the autopilot process discovered by Kaech and Ahmed (2001) and
 311 Stipdonk et al. (2001) indicates that differentiation of naive in memory CD8 T cells is a robust
 312 process. Therefore, we assume that the differentiation rates (parameters δ_{NE} , δ_{EL} and δ_{LM})
 313 are fixed within the population.

314 The parameter estimation is then performed on Synth data set 2 (Table 1) for System (2),
 315 with 3 parameters fixed within the population over a total of 9 parameters. Results are only
 316 slightly impacted (Figure S1, black *vs* red curves), most individual behaviors are similarly
 317 reproduced. Some measurements are not well captured but the overall dynamics is consistent
 318 with the population behavior since population parameters are similar for both estimations (see
 319 Table S2). One may note that estimated residual errors are increased (Table S2) but remain
 320 very small, attesting that this new assumption is reasonable.

321 From this study, we select the model described by System (2) with 3 parameters (δ_{NE} , δ_{EL}
 322 and δ_{LM}) fixed within the population and 6 parameters varying between individuals (μ_N , μ_E ,
 323 μ_L , μ_I , ρ_E , ρ_I) (Figure 1.A).

(A) Schematic representation of System (2)



(B) Schematic representation of System (3)

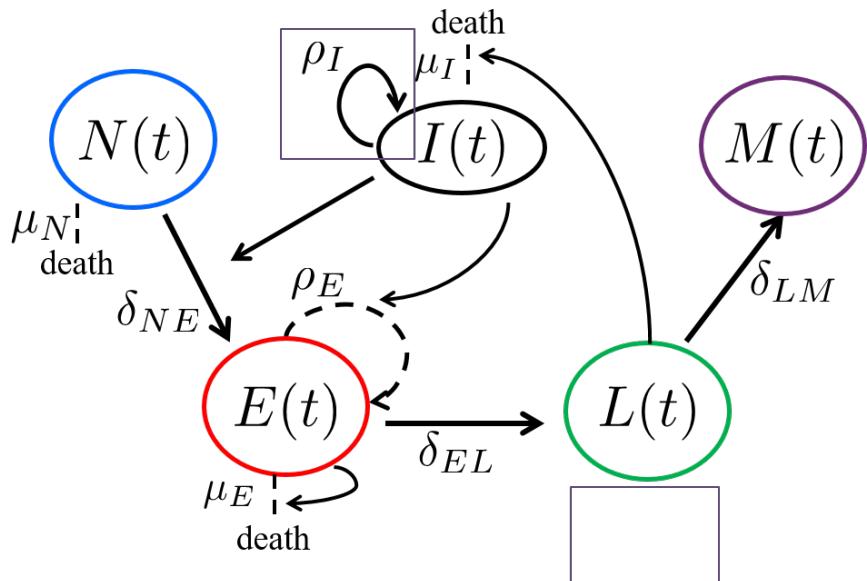


Figure 1: Schematic CD8 T cell differentiation diagram following immunization. (A) Schematic representation of System (2). (B) Schematic representation of System (3), reduced based on *in vivo* data. Rectangles highlight the differences between the two models. In both cases, dashed lines represent individual-dependent parameters while solid lines correspond to parameters fixed within the population.

324 **3.2 A model of CD8 T cell dynamics accounting for *in vivo* inter-individual
325 heterogeneity**

326 Parameter estimation for System (2) is performed as detailed in section 2.4 using VV data
327 set 1 (see section 2.1). Using *in vivo* data to estimate parameter values provides a priori
328 less information than synthetic data. Hence, it may be necessary to reduce the number of
329 parameters, either fixed or varying, to be estimated, similarly to what has been done in the
330 previous section.

331 Contrary to the estimation performed on synthetic data in section 3.1, using real biological
332 measurements from VV data set 1 leads to an estimated value of parameter μ_L close to zero
333 (10^{-10}), see Table 2, step 1. The estimation is therefore performed again with the assumption
334 $\mu_L = 0$. We observe that the other parameters are not impacted (Table 2, step 2). Parameter
335 μ_L is hence set to zero in System (2). Setting this parameter to zero does not mean that late
336 effector cells do not die *in vivo*, but that the available data are not rich enough to estimate
337 this parameter value. In other words, with the information contained into the data set, this
338 parameter is not required to describe the CD8 T cell immune response.

339 Despite a non-negligible estimated standard deviation of parameter ρ_I (Table 2, step 2), the
340 empirical standard deviation of the individual parameters ρ_I is low (2×10^{-4}). Consequently we
341 assume that parameter ρ_I is fixed within the population. The estimation with this assumption
342 does not impact other parameter values (Table 2, step 3). Moreover, the estimated residual
343 errors (Table 2) are the same at each step showing that the successive simplifications do not
344 impact the estimated error of fit between observations and the system solutions.

345 From these estimations, we obtain System (3) that enables to describe VV data set 1 and
346 the inter-individual variability it displays,

$$\left\{ \begin{array}{l} \dot{N} = -\mu_N N - \bar{\delta}_{NE} I N, \\ \dot{E} = \bar{\delta}_{NE} I N + \rho_E I E - [\mu_E E + \bar{\delta}_{EL}] E, \\ \dot{L} = \bar{\delta}_{EL} E - \bar{\delta}_{LM} L, \\ \dot{M} = \bar{\delta}_{LM} L, \\ \dot{I} = [\bar{\rho}_I I - \mu_I L] I, \end{array} \right. \quad (3)$$

Param.	Units	Step 1	Step 2	Step 3
		System (2)	$+\mu_L = 0$	$+\rho_I$ fixed
		(9 param.)	(8 param.)	(8 param.)
		(6 v.p.)	(5 v.p.)	(4 v.p.)
<i>Population parameters</i>				
μ_N	day ⁻¹	0.66	0.66	0.66
ω_{μ_N}	day ⁻¹	0.3	0.3	0.3
δ_{NE}	day ⁻¹	0.0004	0.0004	0.0007
ρ_E	day ⁻¹	1.1	1.1	1.0
ω_{ρ_E}	day ⁻¹	0.2	0.2	0.2
μ_E	10^{-6} cell ⁻¹ day ⁻¹	6.4	6.2	6.0
ω_{μ_E}	10^{-6} cell ⁻¹ day ⁻¹	0.8	0.8	0.9
δ_{EL}	day ⁻¹	0.1	0.1	0.1
μ_L	10^{-6} cell ⁻¹ day ⁻¹	$9.4 \cdot 10^{-5}$	-	-
ω_{μ_L}	10^{-6} cell ⁻¹ day ⁻¹	3.1	-	-
δ_{LM}	day ⁻¹	0.09	0.09	0.09
ρ_I	day ⁻¹	0.09	0.08	0.1
ω_{ρ_I}	day ⁻¹	0.03	0.03	-
μ_I	10^{-5} cell ⁻¹ day ⁻¹	2.0	1.9	2.4
ω_{μ_I}	10^{-5} cell ⁻¹ day ⁻¹	1.1	1.2	1.0
<i>Residual errors</i>				
a_N	cell counts (log10)	0.2	0.2	0.2
a_E	cell counts (log10)	0.4	0.4	0.4
a_L	cell counts (log10)	0.5	0.5	0.5
a_M	cell counts (log10)	0.3	0.3	0.3

Table 2: Steps in estimating parameter values using VV data set 1. Step 1 (third column) shows values estimated using System (2). Step 2 (fourth column) shows values estimated when μ_L (grey) is set to zero in System (2). Step 3 (fifth column) shows values estimated with the final modification of System (2), that is System (3), where the parameter ρ_I is now fixed within the population (grey). Columns 3 to 5, ‘param.’ stands for parameters, and ‘v.p.’ stands for varying parameter within population.

347 with a bar highlighting fixed parameters within the population: parameters μ_N , μ_E , μ_I and ρ_E
348 are varying within the population, whereas $\bar{\rho}_I$, $\bar{\delta}_{NE}$, $\bar{\delta}_{EL}$ and $\bar{\delta}_{LM}$ are fixed for all individuals
349 (Figure 1.B).

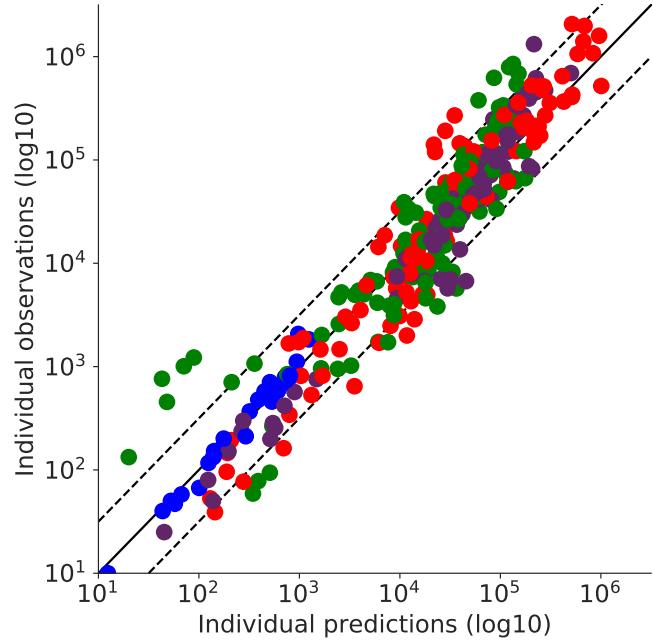
350 Figure 2.A shows the good agreement between model predictions and individual measure-
351 ments for each CD8 T cell subpopulation. Model predictions are the results of numerical
352 simulations of System (3) performed for each individual with the estimated individual param-
353 eter values. Except for few underestimated measurements of late effector cell counts, all cell
354 counts are well matched with the model. Parameter values are given in Table 3.

355 The five underestimated measurements of late effector cell counts correspond to day 4pi
356 measurements. They are the earliest late effector cell counts that were measured, and our
357 model underestimates them by a 10-fold factor approximately. It is noticeable that at day 4pi
358 blood is not a very good mirror of CD8 T cell dynamics since most cells are still located in
359 lymphoid organs. Hence experimental values must be considered with caution. Additionally,
360 late effector cell counts on day 4pi were not available in Crauste et al. (2017) to validate the
361 dynamical model, and that may also explain the underestimation. However, it does not impact
362 the overall estimation of CD8 T cell dynamics, especially at later time points (see Figure 2.A).

363 Figure 3 shows the estimated dynamics of early- and late-effector and memory cells of two
364 individuals. One individual (dashed curves) was monitored on day 7pi, 15pi and 47pi leading
365 to three measurements points for late effector cells and two for early effector and memory
366 cells. Estimated dynamics are in agreement with what is expected, especially regarding the
367 time and height of the peak of the response and the following contraction phase. The other
368 individual (solid curves) had cell count measurements only on day 8pi, yet the estimated
369 dynamics correspond to an expected behavior, which could not have been obtained by fitting
370 this individual alone. Hence we are able to simulate likely dynamics even with a small amount
371 of data points, thanks to the use of nonlinear mixed effects models. By focusing first on the
372 population dynamics (based on a collection of individual dynamics), the method enables to
373 recover the entire individual dynamics. This is a huge advantage when data sampling frequency
374 is low.

375 Similar good results are obtained for Tumor data set (see Figure 2.B). Therefore System
376 (3) enables to describe inter-individual variability in different immunization contexts, here VV

(A) VV



(B) Tumor

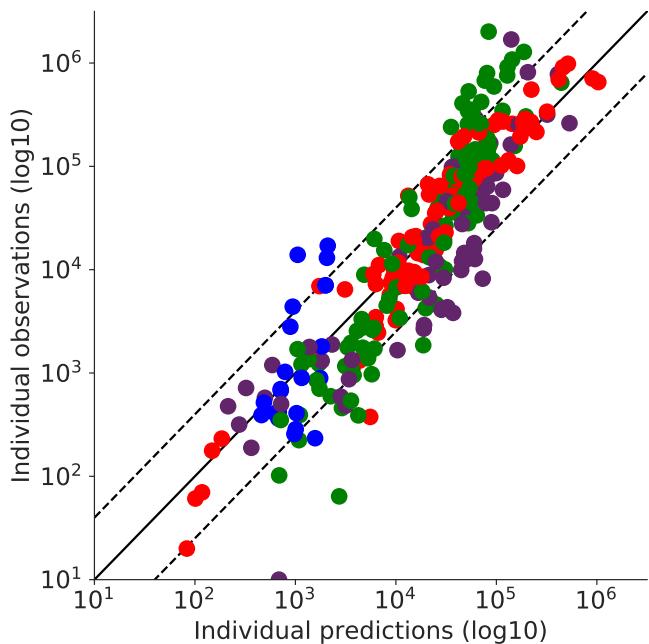


Figure 2: For each CD8 T cell count experimental point, the prediction obtained with System (3) is plotted, for (A) VV data set 1 and (B) Tumor data set 1. Dashed lines represent differences of $\pm 0.5 \log_{10}$ for VV and $\pm 0.6 \log_{10}$ for tumor (maximum estimated error). In both figures, naive (blue), early effector (red), late effector (green), and memory (purple) cell counts are depicted, and the solid black line is the curve $y = x$.

Parameters	Units	Estimated Values		Values from Crauste et al. (2017)	
		VV	Tumor		
data set 1		data set 1			
<i>Parameters fixed within the population</i>					
$\bar{\delta}_{NE}$	day ⁻¹	0.0007	0.018	0.009	
$\bar{\delta}_{EL}$	day ⁻¹	0.10	0.11	0.59	
$\bar{\delta}_{LM}$	day ⁻¹	0.09	0.08	0.03	
$\bar{\rho}_I$	day ⁻¹	0.1	0.1	0.2	
<i>Parameters varying within the population</i>					
μ_N	day ⁻¹	0.66	0.41	0.75	
ω_{μ_N}	day ⁻¹	0.3	0.2	-	
μ_E	10 ⁻⁶ cell ⁻¹ day ⁻¹	6.0	7.3	21.5	
ω_{μ_E}	10 ⁻⁶ cell ⁻¹ day ⁻¹	0.9	0.8	-	
μ_I	10 ⁻⁵ cell ⁻¹ day ⁻¹	2.4	2.1	1.8	
ω_{μ_I}	10 ⁻⁵ cell ⁻¹ day ⁻¹	1.0	0.6	-	
ρ_E	day ⁻¹	1.0	0.7	0.64	
ω_{ρ_E}	day ⁻¹	0.2	0.4	-	
<i>Residual errors</i>					
a_N	cell counts (log10)	0.2	0.5	-	
a_E	cell counts (log10)	0.4	0.4	-	
a_L	cell counts (log10)	0.5	0.6	-	
a_M	cell counts (log10)	0.3	0.6	-	

Table 3: Estimated parameter values for VV and tumor data sets 1 (median of log-normal distribution for parameters with random effects: μ_N , μ_E , μ_I and ρ_E) and parameter estimation from Crauste et al. (2017) (VV immunization). Estimations have been performed independently.

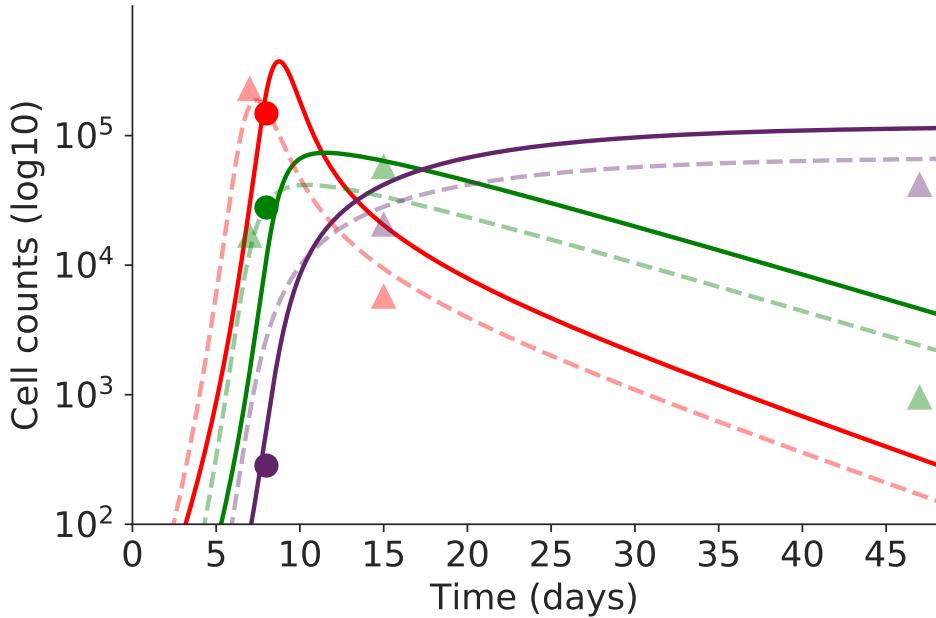


Figure 3: The dynamics of three subpopulations (Early - red, Late - green, Memory - purple) are simulated for two individuals. One individual is displayed as triangles and dashed lines (3 measurements on days 7, 15 and 47pi) and the second as circles and solid lines (only 1 measurement on day 8pi). Although each individual is not characterized by enough experimental measurements to allow parameter estimation on single individuals, nonlinear mixed effects models provide individual fits by considering a population approach.

377 and Tumor immunizations, and with only few data points per individual.

378 The estimated parameter values obtained with System (3) for VV or Tumor data sets are
 379 in the same range as the estimation previously performed on average cell counts on similar
 380 experimental sets (VV immunization, Crauste et al. (2017)), see Table 3. Major differences
 381 are observed for estimated values of differentiation rates, yet for the 3 estimations (VV data
 382 set 1, Tumor data set 1, Crauste et al. (2017)) parameter values remain in the same order
 383 of magnitude, indicating a good consistency between the two studies. Estimated values of
 384 parameter $\bar{\delta}_{NE}$ show the largest relative differences (more than 10-fold from one another). Yet,
 385 the largest difference is observed between VV and Tumor data sets obtained with System (3),
 386 rather than between these values and the one obtained in Crauste et al. (2017). This may
 387 highlight a potential difference in the capacity of the two immunogens (VV and Tumor) to

388 activate naive cells. This is investigated in the next section.

389 3.3 Immunization-dependent parameters

390 **Parameter comparison between immunizations.** VV and Tumor induced immuniza-
391 tions differ in many aspects. VV immunizations are virus-mediated, use the respiratory tract
392 to infect cells, and trigger an important innate response. Tumor immunizations involve eu-
393 karyotic cells bearing the same antigen, use subcutaneous routes, and induce a reduced innate
394 response. From the independent estimations on VV and Tumor data sets (Table 3), differences
395 between estimated values of fixed effects can be computed. Differences between estimated val-
396 ues are large for parameters – in decreasing order – $\bar{\delta}_{NE}$ (2471%), μ_N (39%), ρ_E (33%), μ_E
397 (22%), and $\bar{\delta}_{LM}$ (17%). These large differences may result from biological processes involved
398 in the CD8 T cell response that differ depending on the immunogen.

399 Consequently, using both data sets (VV and Tumor) as observations may highlight which
400 parameters are required to be significantly different to describe both data sets.

401 **Parameters depending on immunization.** To perform this analysis, we combine the VV
402 and Tumor data sets 1 and we include a categorical covariate into the model to estimate
403 parameter values (see section 2.3). We are then able to quantify the differences in parameter
404 values obtained when fitting CD8 T cell dynamics using different immunogens (see section 2.3).

405 The covariate allows to identify parameter values that are significantly different between a
406 response to Tumor and a response to VV. It is a parameter that is added to the fixed effects of
407 the five parameters that showed the larger differences in the initial estimation: $\bar{\delta}_{NE}$, μ_N , ρ_E ,
408 μ_E and $\bar{\delta}_{LM}$. This results in the estimation of two different parameter values for parameters
409 $\bar{\delta}_{NE}$ and $\bar{\delta}_{LM}$ (that are fixed within the population) and two probability distributions with
410 different mean values for parameters μ_N , ρ_E and μ_E (that are allowed to vary within the
411 population).

412 One may note that adding a covariate increases the number of parameters to estimate.
413 However, the number of parameters is not doubled, since we assumed that parameters without
414 covariates are shared by both immunization groups. In addition, the data set is larger, since
415 it combines VV and Tumor measurements. Hence the number of parameters with respect to

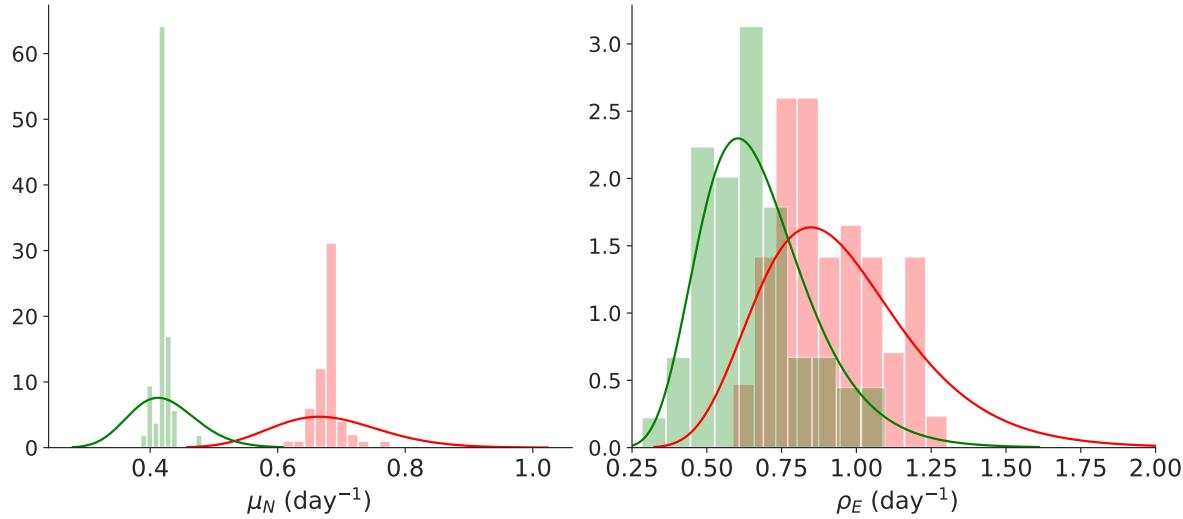


Figure 4: Probability distribution of parameters with a covariate varying within the population, μ_N (left) and ρ_E (right). Since a covariate parameter has been included, the two estimated distributions are plotted. In addition, histograms of estimated individual parameter values are plotted (green for Tumor, red for VV).

416 the amount of data remains reasonable.

417 From this new estimation, we conclude that among the five selected parameters the co-
 418 variates of only four of them are significantly different from zero: $\bar{\delta}_{NE}$, μ_N , ρ_E and $\bar{\delta}_{LM}$
 419 (Wald test, see Table S3 and section 2.3). The estimation is therefore performed a second
 420 time assuming parameter μ_E distribution is the same in both groups. In these conditions, the
 421 estimated covariates for the four parameters remain significantly different from zero (Table 4).

422 Figure 4 shows the estimated distributions for the two parameters μ_N and ρ_E that vary
 423 within the population and for which we included a covariate. Histograms display the estimated
 424 individual parameter values of μ_N and ρ_E . For both parameters, the histograms and the
 425 theoretical distributions are in agreement. Moreover, histograms for VV and Tumor appear
 426 clearly distinct, which is consistent with the inclusion of a covariate.

427 It is noticeable that histograms of individual values for μ_N show shrunk values for both VV
 428 and Tumor data sets. Indeed, the empirical standard deviations of individual parameter values
 429 are small (VV: $\omega_{emp} = 0.02$; Tumor: $\omega_{emp} = 0.01$). Based on this estimation, parameter μ_N
 430 could then be fixed within the population. Yet, when estimating parameter values on VV

Parameters	Units	VV	Tumor	<i>p</i> -value
<i>Parameters fixed within the population</i>				
$\bar{\delta}_{NE}$	day ⁻¹	0.0010	0.0156	10^{-15}
$\bar{\delta}_{EL}$	day ⁻¹	0.1	0.1	-
$\bar{\delta}_{LM}$	day ⁻¹	0.1	0.07	0.03
$\bar{\rho}_I$	day ⁻¹	0.1	0.1	-
<i>Parameters varying within the population</i>				
μ_N	day ⁻¹	0.68	0.42	10^{-5}
ω_{μ_N}	day ⁻¹	0.13	0.13	-
μ_E	10^{-6} cell ⁻¹ day ⁻¹	5.9	5.9	-
ω_{μ_E}	10^{-6} cell ⁻¹ day ⁻¹	0.9	0.9	-
μ_I	10^{-5} cell ⁻¹ day ⁻¹	2.6	2.6	-
ω_{μ_I}	10^{-5} cell ⁻¹ day ⁻¹	0.8	0.8	-
ρ_E	day ⁻¹	0.9	0.67	10^{-6}
ω_{ρ_E}	day ⁻¹	0.3	0.3	-
<i>Residual errors</i>				
a_N	cell counts (log10)	0.5	0.5	-
a_E	cell counts (log10)	0.4	0.4	-
a_L	cell counts (log10)	0.5	0.5	-
a_M	cell counts (log10)	0.4	0.4	-

Table 4: Estimated parameter values using combined VV and Tumor data sets 1. Parameters that do not vary within the population are shown in the upper part of the table, whereas individual-dependent parameters are shown in the central part (mean and standard deviation values). Parameters whose values depend on the immunogen (VV, Tumor) are highlighted in grey, and the *p*-value characterizing the covariate non-zero value is shown in the last column.

431 and Tumor data sets separately, it is not possible to remove the variability of μ_N which is
432 required to describe the data (see Table 3). We decided to keep μ_N variable within the
433 population because the model has been validated on synthetic data and on each experimental
434 set separately. Moreover, here we are interested in identifying a potential influence of the
435 immunogen rather than characterizing parameters.

436 Table 4 gives the estimated values of all parameters in both groups. Regarding parameters
437 that do not vary within the population, values of $\bar{\delta}_{EL}$ and $\bar{\rho}_I$ are the same in both groups, since
438 no covariate is included on these parameters. On the contrary, it is required for parameters
439 $\bar{\delta}_{NE}$ and $\bar{\delta}_{LM}$ to be different to describe each data set, and this difference is accounted for
440 with a covariate parameter.

441 In summary, we identified parameters whose values are significantly different according to
442 the immunogen used to activate CD8 T cells, these parameters correspond to the dynamics
443 of naive cells ($\bar{\delta}_{NE}$ and μ_N), the proliferation of early effector cells (ρ_E), and differentiation
444 to memory cells ($\bar{\delta}_{LM}$). We hence conclude that different immunizations induce variability in
445 the CD8 T cell responses by acting on the first phase of the response (priming, activation of
446 naive cells, expansion of the CD8 T cell population) as well as the development of the memory
447 population.

448 3.4 Predictive immunogen load dynamics

449 Numerical simulations of System (3) give access to information that may be difficult or im-
450 possible to measure, like immunogen load dynamics. For instance, measuring VV load over
451 time in the same mouse is not possible since it requires to kill the animal. Tumor growth, on
452 the contrary, happens locally so tumor volume can be followed for each mouse over time. For
453 individuals with tumor volume measurements (Tumor data set 3, Table 1 and section 2.5), we
454 can qualitatively compare tumor volume evolution with immunogen load dynamics generated
455 by System (3) using the parameter values estimated for each individual.

456 Figure 5.A shows normalized tumor volumes and simulated immunogen load values for the
457 20 individuals over 18 days pi, as well as the population behavior (dashed black curve). The
458 population curve peaks at the same time as experimental data, between days 6pi and 8pi. Ad-
459 ditionally, the overall dynamics of the population behavior is in agreement with experimental

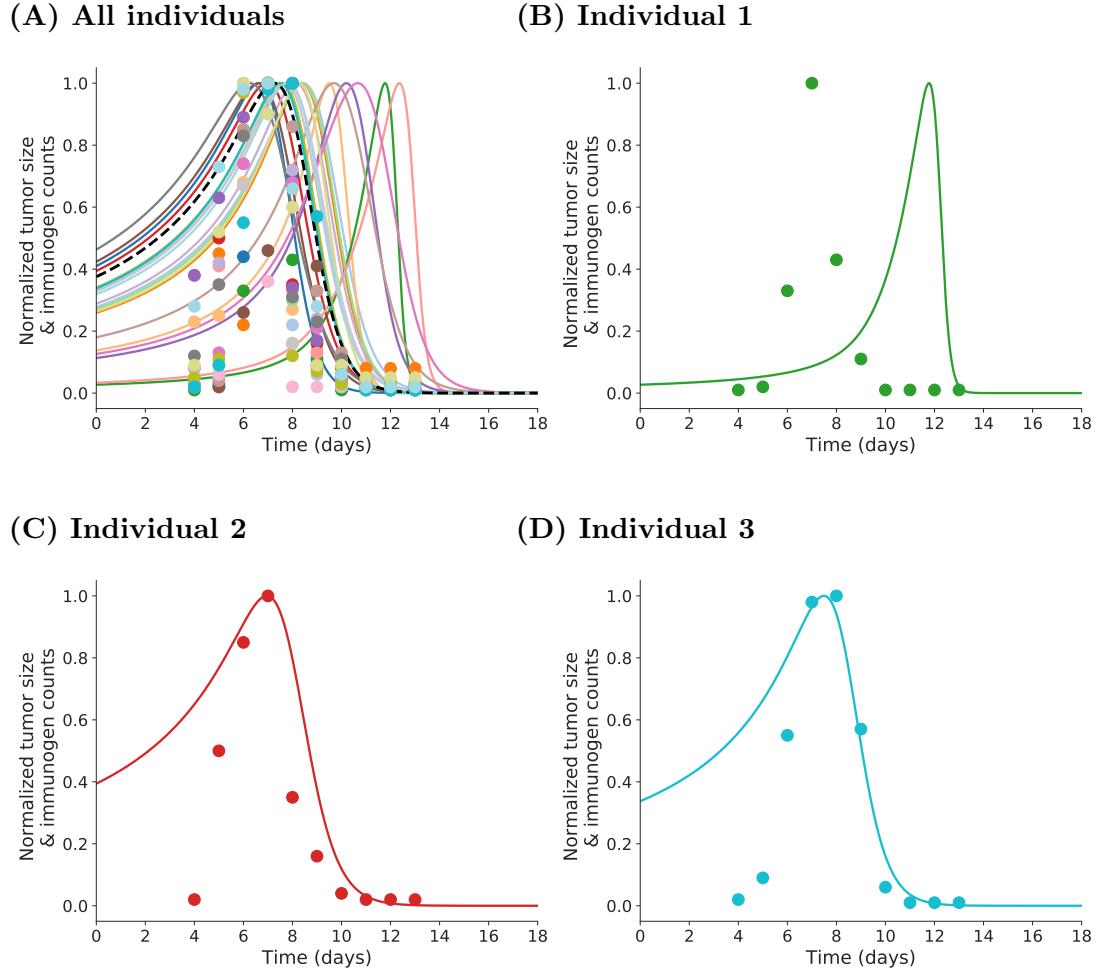


Figure 5: Tumor size volumes and simulated immunogen load dynamics. Both experimental (Tumor data set 3) and simulated values are normalized by their maximal value, in order to compare times at which the maximal value is reached and decay slopes. (A) All individuals are drawn in color (points for experimental data, curves for simulated dynamics) and the population curve in dashed black. (B) to (D) 3 individual dynamics are displayed.

460 data, except for the slope of the initial increase (but this is due to a difference in values at day
461 0, see section 2.5). Few simulated curves display dynamics with a peak after day 10pi.

462 Figures 5.B to 5.D focus on three individuals, with illustrative behaviors. Simulated dy-
463 namics in Figure 5.B show a late peak of the immunogen load, after day 10pi, when experi-
464 mental peak is on day 7pi and the tumor volume has already shrunk by day 9pi. Simulated
465 dynamics are much slower, with a slow increase followed by a rapid disappearance of the
466 immunogen load around day 13pi. On the contrary, Figures 5.C and 5.D show very good
467 agreement between simulated curves and experimental data. Indeed, the time of the peak and
468 the decay rate of the immunogen load for the two individuals are well matched.

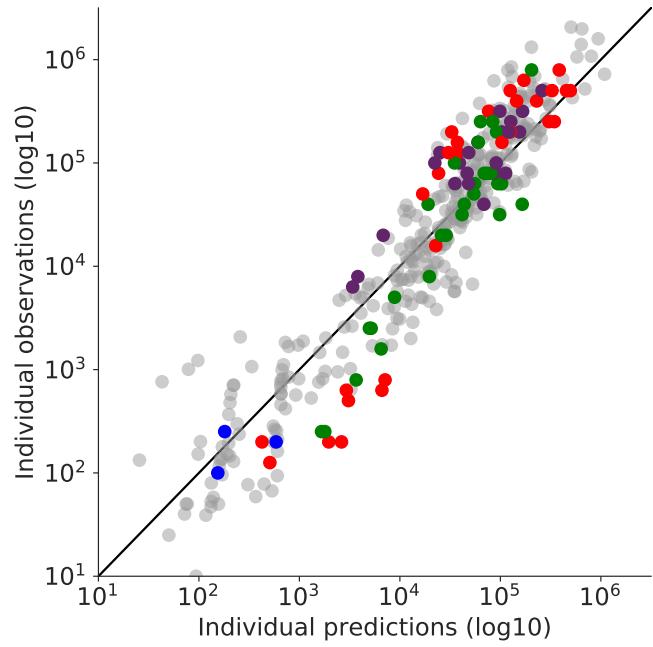
469 Simulated immunogen load dynamics have been ranked in increasing order according to
470 their ability to reproduce measured tumor volumes (see Supplementary File 2). Half of in-
471 dividual dynamics are well predicted by the model (as illustrated in Figures 5.C and 5.D),
472 whereas one third of individual dynamics are badly predicted (as in Figure 5.B): the peak of
473 immunogen load is strongly delayed in these cases. Good predictions mostly correspond to
474 individuals with CD8 T cell measurements around the time of the immunogen peak, that is
475 between days 6pi and 8pi. This suggests that appropriate measurements of CD8 T cell counts
476 around the time of the peak of the response allow to correctly estimate CD8 T cell dynamics
477 which, in turn, are good predictors of tumor volume dynamics *in vivo*.

478 3.5 Predicting dynamics following VV and Tumor immunizations

479 To challenge System (3) and the estimated parameters (Table 4), we compare simulated out-
480 puts to an additional data set of both VV and Tumor immunizations, VV data set 2 and
481 Tumor data set 2 (Table 1 and section 2.5).

482 Since we already know the probability distribution of parameters (Table 4), we only esti-
483 mate individual parameters in order to fit individual dynamics. Results are shown in Figure 6,
484 for both VV data set 2 and Tumor data set 2. It is clear that estimated individual dynamics
485 are consistent with previous individual dynamics estimations. Hence, we validate System (3)
486 and values estimated in both VV and Tumor immunization contexts by showing that estimated
487 parameter values allow to characterize CD8 T cell counts obtained in similar contexts.

(A) VV



(B) Tumor

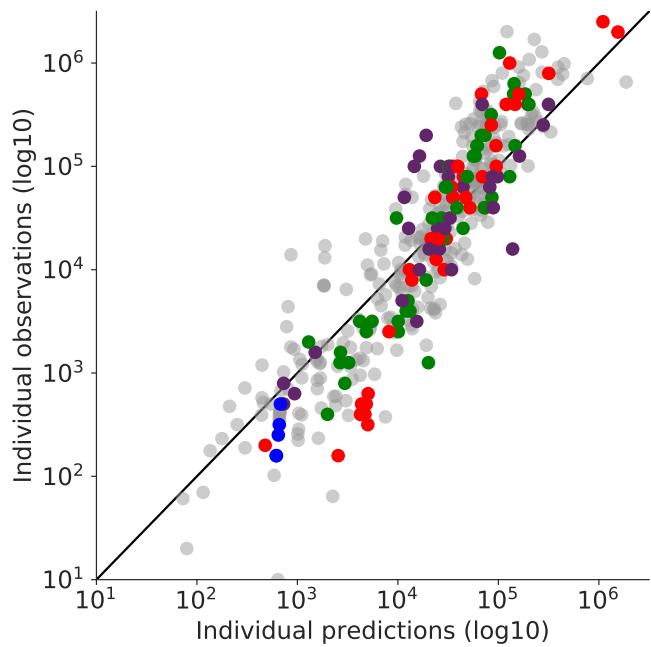


Figure 6: Observations *vs* estimated values of individual CD8 T cell counts, for (A) VV data set 2 and (B) Tumor data set 2. In both figures, naive (blue), early effector (red), late effector (green), and memory (purple) cell counts are depicted, and grey points correspond to individual values from Figure 2. The black straight line is $y = x$.

488 4 Discussion

489 When following an *in vivo* immune response, experimental measurements are often limited
490 by either ethical issues or tissue accessibility. Consequently, one often ends up measuring cell
491 counts in peripheral blood on a restricted number of time points per individual, over the dura-
492 tion of a response (see Figure 3). With such data, estimation of all model parameters becomes
493 unlikely. Using nonlinear mixed effects models, we propose a dynamical model of CD8 T cell
494 dynamics that circumvents this difficulty by assuming that all individuals within a population
495 share the same main characteristics. The model allows the accurate description of individual
496 dynamics, even though individual measurements are scarce. Indeed, we are able to estimate
497 both good fits and relevant dynamics for individuals with only few cell count measurements, as
498 illustrated in Figure 3. These results indicate that knowledge of population dynamics parame-
499 ters and numerical simulations complement information given by experimental measurements.

500 Starting from the model described in Crauste et al. (2017) that could efficiently describe
501 CD8 T cell dynamics, at the level of average population cell-counts present in peripheral
502 blood, we built this nonlinear mixed effects model in a stepwise fashion. The system was first
503 reduced to ensure numerical well-posedness of the parameter estimation. We next identified
504 parameters – hence biological processes – that vary between individuals, and parameters that
505 are fixed within the population. Finally, by adding a covariate to some parameters we identified
506 immunization-dependent parameters.

507 Noteworthy, from a biological point of view the removal of one parameter (for example, the
508 death rate of late effector cells) does not imply that the corresponding process is not biologically
509 meaningful. However, based on the available data, our methodology found that some processes
510 were negligible in comparison with the ones described by the system's equations. Similarly,
511 we were led to define fixed differentiation rates and immunogen proliferation rate among the
512 population. The constancy of the differentiation rates is in good agreement with the auto-pilot
513 model that shows that once naive CD8 T cells are activated their differentiation in memory
514 cells is a steady process (Kaech and Ahmed, 2001; Stipdonk et al., 2001). Although we cannot
515 exclude that a constant pathogen proliferation rate is due to a lack of data on the pathogen
516 counts, that would have allowed a more refined calibration of immunogen load dynamics,

517 this result is in good agreement with Crauste et al. (2015) that showed a great robustness
518 of the pathogen proliferation rate. Consequently, inter-individual variability is explained only
519 by variability in mortality rates of all cells (naive, early effector, late effector, and memory)
520 and the immunogen, and proliferation of early effector CD8 T cells. The latter is actually in
521 good agreement with the demonstration that in diverse infection conditions the magnitude of
522 antigen-specific CD8 T cell responses is primarily controlled by clonal expansion (van Heijst
523 et al., 2009). Eventually, using nonlinear mixed effects models we were able to quantitatively
524 reproduce inter-individual variability in two different immunization contexts (VV and Tumor)
525 and provide predictive population dynamics when confronted to another data set (for both
526 immunogens). Therefore, robustness of the model is strong.

527 The addition of a covariate allowed us to identify parameters that are immunization-
528 dependent. Interestingly they control the activation of the response (priming, differentiation
529 of naive cells, expansion of effector cells) as well as the generation of memory cells. This is
530 again in good agreement with the biological differences that characterize the two immunogens
531 used in this study. Indeed, pathogen-associated molecular patterns (PAMP) associated with
532 vaccinia virus will activate a strong innate immune response that will provide costimulatory
533 signals that in turn will increase the efficiency of naive CD8 T cell activation (Iwasaki and
534 Medzhitov, 2015). In contrast, when primed by tumor cells CD8 T cells will have access to
535 limited amount of costimulation derived from damage associated molecular patterns (Yang
536 et al., 2017). The amount of costimulation will also control the generation of memory cells
537 (Mescher et al., 2006). Hence the addition of covariates to the model parameters has allowed
538 to identify biologically relevant, immunogen-dependent parameters. Nevertheless, using co-
539 variates has additional advantages. First, they allow to consider a larger data set (in our
540 case, the combination of two data sets) without adding too many parameters to estimate (4
541 covariates in our case). This is particularly adapted to situations where only some parameters
542 are expected to differ depending on the data set (here, the immunogen). Second, and as a
543 consequence, data fits may be improved compared to the situation where data sets generated
544 with different immunogens are independently used to estimate parameters. Figure 7 illustrates
545 this aspect: dynamics of two individuals are displayed, with and without covariate. In both
546 cases using the covariate (and thus a larger data set) improved the quality of individual fits,

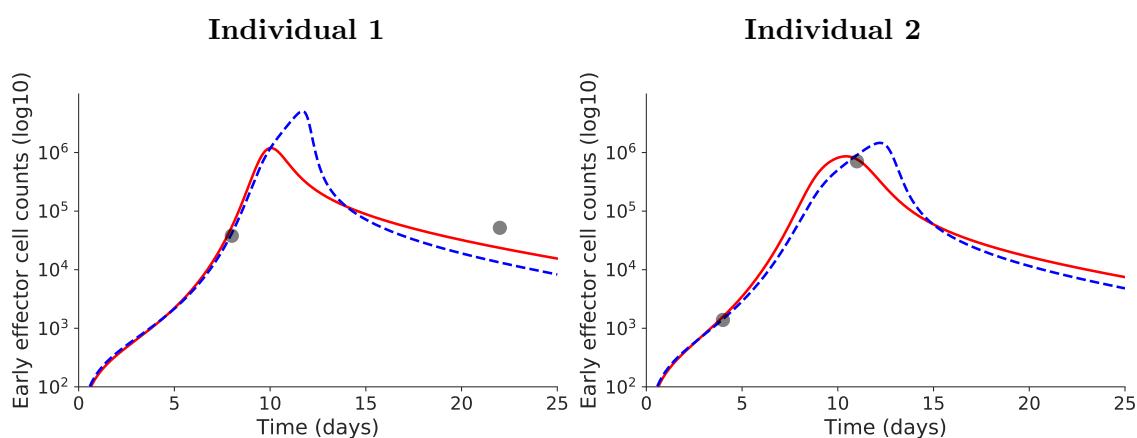


Figure 7: Positive side-effect of using covariates. For two illustrative individuals, accounting for covariates allows to better estimate early effector cell dynamics: red plain curve with covariate, blue dashed curve without covariate.

547 and generated more relevant dynamics with a peak of the response occurring earlier, before
 548 day 10pi. No individual fit has been deteriorated by the use of a covariate (not shown).

549 The model also proved to be predictive. Indeed, for individuals with tumor volume mea-
 550 surements, the qualitative comparison with immunogen load dynamics was good (section 3.4)
 551 even though this immunogen data set has not been considered to estimate parameter values.
 552 This reveals that tumor volume evolution may be predicted by CD8 T cell counts in blood
 553 samples, provided that CD8 T cell counts are measured around the expected time of the peak
 554 of the response (between days 6pi and 9pi). This highlights how measurements of CD8 T cell
 555 counts at relevant times (before, around, and after the peak of the response) ensure correct
 556 predictions of CD8 T cell dynamics (as already mentioned in Crauste et al. (2017)), and con-
 557 sequently of tumor dynamics. Future works need to focus on this relation, and tumor therapy
 558 may benefit from these new findings.

559 Finally, CD8 T cell response dynamics to both VV and Tumor immunogens were well cap-
 560 tured for data sets that had not been used to perform parameter estimation (section 3.5). The
 561 behavior of each individual was estimated with the prior knowledge acquired on the population
 562 (i.e. fixed parameters values and variable parameter distributions) and proved consistent with
 563 previous estimated individual behaviors. The correct prediction of individual behaviors by the
 564 model, in a simple mice experiment, paves the way to personalized medicine based on numer-

565 ical simulations. Indeed, once the population parameters are defined, numerical simulation of
566 individuals can be performed from a few measurements per individual and consequently would
567 allow to adapt personalized therapies.

568 Acknowledgements

569 The authors are grateful to Pr. Adeline Leclercq Samson for sharing her expertise on nonlinear
570 mixed effects models. We thank the BioSyL Federation and the LabEx Ecofect (ANR-11-
571 LABX-0048) of the University of Lyon for inspiring scientific events. This work was supported
572 by Inria PRE MEMOIRE grant and by the ANR predivac grant (ANR-12-RPIB-0011-01). We
573 acknowledge the contributions of SFR Biosciences (UMS3444/CNRS, US8/Inserm, ENS de
574 Lyon, UCBL) and of the CELPHEDIA Infrastructure (<http://www.celphedia.eu/>), especially
575 the center AniRA in Lyon (AniRA-PBES and AniRA-Cytometrie facilities).

576 Competing Interests

577 The authors have no competing interests.

578 References

- 579 Antia R, Bergstrom CT, Pilyugin SS, Kaech SM, Ahmed R (2003) Models of CD8 + responses:
580 1. What is the antigen-independent proliferation program. *J Theor Biol* 221, 585–598.
- 581 Almquist J, Bendrioua L, Adiels CB, Goksör M, Hohmann S, Jirstrand M (2015) A Nonlinear
582 Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in
583 Yeast. *PLoS ONE* 10 (4), e0124050.
- 584 Althaus CL, Ganusov VV, De Boer RJ (2007) Dynamics of CD8+ T cell responses during acute
585 and chronic lymphocytic choriomeningitis virus infection. *J Immunol* 179(5), 2944–2951.
- 586 Badovinac VP, Haring JS, Harty JT (2007) Initial T cell receptor transgenic cell precursor
587 frequency dictates critical aspects of the CD8(+) T cell response to infection. *Immunity*
588 26(6), 827–841.

- 589 Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JML, Hlatky L, Hahnfeldt P (2014) Classical
590 Mathematical Models for Description and Prediction of Experimental Tumor Growth. PLoS
591 Comput Biol 10(8), e1003800.
- 592 Boissonnas A, Combadiere C, Lavergne E, Maho M, Blanc C, Debré P, Combadiere B (2004)
593 Antigen distribution drives programmed antitumor CD8 cell migration and determines its
594 efficiency. J Immunol 173(1), 222–229.
- 595 Crauste F, Terry E, Le Mercier I, Mafille J, Djebali S, Andrieu T, Mercier B, Kaneko G,
596 Arpin C, Marvel J, Gandrillon O (2015) Predicting pathogen-specific CD8 T cell immune
597 responses from a modeling approach. J Theoret Biol 374, 66–82
- 598 Crauste F, Mafille J, Boucinha L, Djebali S, Gandrillon O, Marvel J, Arpin C (2017) Iden-
599 tification of nascent Memory CD8 T cells and modeling of their ontogeny. Cell Syst 4(3),
600 306–317.
- 601 Davidian M, Giltinan DM (2003) Nonlinear models for repeated measurement data: An
602 overview and update. J Agric Biol Environ Stat 8, 387–419.
- 603 De Boer RJ, Oprea M, Antia R, Murali-Krishna K, Ahmed R, Perelson AS (2001) Recruitment
604 times, proliferation, and apoptosis rates during the CD8 + T-cell response to lymphocytic
605 choriomeningitis virus. J Virol 75, 10663–10669.
- 606 de Brito C, Tomkowiak M, Ghittoni R, Caux C, Leverrier Y, Marvel J (2011) CpG promotes
607 cross-presentation of dead cell-associated antigens by pre-CD8a+ dendritic cells [corrected].
608 J Immunol 186, 1503–1511.
- 609 Delyon B, Lavielle M, Moulines E (1999) Convergence of a stochastic approximation version
610 of the EM algorithm. The Annals of Stat 27(1), 94–128.
- 611 Estcourt MJ, Létourneau S, McMichael AJ, Hanke T (2005) Vaccine route, dose and type of
612 delivery vector determine patterns of primary CD8+ T cell responses. Eur J Immunol 35,
613 2532–2540.

- 614 Feinerman O, Veiga J, Dorfman JR, Germain RN, Altan-Bonnet G (2008) Variability and
615 robustness in T cell activation from regulated heterogeneity in protein levels. *Science* 321,
616 1081–1084.
- 617 Ferenci T, Sápi J, Kovács L (2017) Modelling tumor growth under angiogenesis inhibition with
618 mixed-effects models. *Acta Polytechnica Hungarica* 14, 221–234.
- 619 Ferraro A, D'Alise AM, Raj T, Asinovski N, Phillips R, Ergun A, Replogle JM, Bernier A,
620 Laffel L, Stranger BE, De Jager PL, Mathis D, Benoist C (2014) Interindividual variation
621 in human T regulatory cells. *Proc Nat Acad Sci* 111(12), 1111–1120.
- 622 Fischer A, Rausell A (2016) Primary immunodeficiencies suggest redundancy within the human
623 immune system. *Sci Immunol* 1, eaah5861.
- 624 Grau M, Valsesia S, Mafille J, Djebali S, Tomkowiak M, Mathieu AL, Laubreton D, de Bernard
625 S, Jouve PE, Ventre E, Buffat L, Walzer T, Leverrier Y, Marvel J (2018) Antigen-Induced
626 but Not Innate Memory CD8 T Cells Express NKG2D and Are Recruited to the Lung
627 Parenchyma upon Viral Infection. *J Immunol* 200(10), 3635–3646.
- 628 Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system.
629 *Nat Immunol* 16, 343–353.
- 630 Jarne A, Commenges D, Prague M, Levy Y, Thiébaut R (2017) Modeling CD4+ T cells
631 dynamics in HIV-infected patients receiving repeated cycles of exogenous Interleukin 7. *The
632 Annals of Applied Statistics* 11(3), 1593–1616.
- 633 Jubin V, Ventre E, Leverrier Y, Djebali S, Mayol K, Tomkowiak M, Mafille J, Teixeira M, Teoh
634 DYL, Lina B, et al. (2012) T inflammatory memory CD8 T cells participate to antiviral
635 response and generate secondary memory cells with an advantage in XCL1 production.
636 *Immunol Res* 52, 284–293.
- 637 Kaech S, Ahmed R (2001) Memory CD8+ T cell differentiation : initial antigen encounter
638 triggers a developmental program in nave cells. *Nat Immunol* 2, 415–422.

- 639 Keersmaekers N, Ogunjimi B, Van Damme P, Beutels P, Hens N (2018) An ODE-based mixed
640 modelling approach for B- and T-cell dynamics induced by Varicella-Zoster Virus vaccines
641 in adults shows higher T-cell proliferation with Shingrix compared to Varilrix. bioRxiv, Cold
642 Spring Harbor Laboratory, 348284, doi: <https://doi.org/10.1101/348284>
- 643 Kuhn E, Lavielle M (2005) Maximum likelihood estimation in nonlinear mixed effects models.
644 Computational Statistics and Data Analysis 49(4), 1020–1038.
- 645 Lavielle M (2014) Mixed effects models for the population approach. Models, Tasks, Methods
646 and Tools. Chapman and Hall/CRC , 383p.
- 647 Li Y, Oosting M, Deelen P, Ricaño-Ponce I, Smeekens S, Jaeger M, Matzarakis V, Swertz
648 MA, Xavier RJ, Franke L, Wijmenga C, Joosten L, Kumar V, Netea MG (2016) Inter-
649 individual variability and genetic influences on cytokine responses to bacteria and fungi.
650 Nature medicine 22(8), 952.
- 651 Llamosi A, Gonzalez-Vargas A.M, Versari C, Cinquemani E, Ferrari-Trecate G, Hersen P, Batt,
652 G (2016) What Population Reveals about Individual Cell Identity: Single-Cell Parameter
653 Estimation of Models of Gene Expression in Yeast. PLoS Comput Biol 12(2), 1553-7358.
- 654 Mescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, Hammerbeck CD, Popescu
655 F, Xiao Z (2006) Signals required for programming effector and memory development by
656 CD8+ T cells. Immunol Rev 211, 81-92.
- 657 Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna
658 K, Mahar PL, Edupuganti S, Lalor S, Germon S, Del Rio C, Mulligan MJ, Staprans SI,
659 Altman JD, Feinberg MB, Ahmed R (2008) Human effector and memory CD8+ T cell
660 responses to smallpox and yellow fever vaccines. Immunity 28(5), 710–722.
- 661 Monolix version 2018R1. Antony, France: Lixoft SAS, 2018.
- 662 Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Slansky J, Ahmed
663 R (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation
664 during viral infection. Immunity 8(2), 177-187.

- 665 Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, Asher TE, Douek DC,
666 Harari A, Pantaleo G, Bailer R, Graham BS, Roederer M, Koup RA (2007) Immunization
667 with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell
668 responses. *J Exp Med* 204(6), 1405–1416.
- 669 Samson A, Donnet S (2007) Estimation of parameters in incomplete data models defined by
670 dynamical systems. *Journal of Statistical Planning and Inference* 137 (9), 2815–2831.
- 671 Stipdonk MV, Lemmens E, Schoenberger S (2001) Naive CTLs require a single brief period of
672 antigenic stimulation for clonal expansion and differentiation. *Nat Immunol* 2, 423–429.
- 673 Tomayko MM, Reynolds CP (1989) Determination of subcutaneous tumor size in athymic
674 (nude) mice. *Cancer Chemother Pharmacol*, 24 (3), 148–54.
- 675 van Heijst JW, Gerlach C, Swart E, Sie D, Nunes-Alves C, Kerkhoven RM, Arens R, Correia-
676 Neves M, Schepers K, Schumacher TN (2009) Recruitment of antigen-specific CD8+ T cells
677 in response to infection is markedly efficient. *Science* 325(5945), 1265–1269.
- 678 Vetticka D, Hovorka O, Kovar L, Rihova B (2009) Establishment of imageable model of T-cell
679 lymphoma growing in syngenic mice. *Anticancer Res* 29(11), 4513-4517.
- 680 Villain L, Commenges D, Pasin C, Prague M, Thiébaut R (2018) Adaptive protocols based
681 on predictions from a mechanistic model of the effect of IL7 on CD4 counts. *Statistics in
682 Medicine* 38(2), 221–235.
- 683 Wong HS, Germain RN (2018) Robust control of the adaptive immune system. *Semin. Im-
684 munol.* 36, 17–27.
- 685 Woodberry T, Gardner J, Elliott SL, Leyrer S, Purdie DM, Chaplin P, Suhrbier A (2003) Prime
686 boost vaccination strategies: CD8 T cell numbers, protection, and Th1 bias. *J Immunol* 170
687 (5), 2599–2604.
- 688 Xiao Z, Curtsinger JM, Prlic M, Jameson SC, Mescher MF (2007) The CD8 T cell response
689 to vaccinia virus exhibits site-dependent heterogeneity of functional responses. *Int Immunol*
690 19, 733–743.

- 691 Yang D, Han Z, Oppenheim JJ (2017) Alarmins and immunity. Immunol Rev 280, 41–56.
- 692 Youngblood B, Hale JS, Kissick HT, Ahn E, Xu X, Wieland A, Araki K, West EE, Ghoneim
693 HE, Fan Y, Dogra P, Davis CW, Konieczny BT, Antia R, Cheng X, Ahmed R (2017) Effector
694 CD8 T cells dedifferentiate into long-lived memory cells. Nature 552(7685), 404–409.