

**Cognitive salience of agreement features modulates
language comprehension**

Manuscript Pre-Print

R. Muralikrishnan¹, & Ali Idrissi²

¹ Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany

² Qatar University, Doha, Qatar

Contents

1	Introduction	3
1.1	Background	3
1.2	Previous studies	4
1.3	Arabic as a test case	8
1.4	The present study	9
2	Methods	10
2.1	Participants	10
2.2	Experimental Design	10
2.3	Materials	12
2.4	Tasks	12
2.5	Procedure	13
2.6	EEG recording, pre-processing and statistical analysis	15
3	Results	16
3.1	Behavioural data	16
3.2	ERP data	19
3.3	Summary of Results	38
4	Discussion	40
4.1	Hierarchical Modulation of Effects	41
4.2	Salience-weighted Feature Hierarchy	43
4.3	Language-specific Feature Weightings	45
4.4	Implications and Outlook	47
4.5	Conclusion	50

1 **Abstract**

2 The brain establishes relations between elements of an unfolding sentence in
3 order to incrementally build a representation of who is doing what based on
4 various linguistic cues. Many languages systematically mark the verb and/or
5 its arguments to imply the manner in which they are related. A common
6 mechanism to this end is subject-verb agreement, whereby the marking on
7 the verb covaries with one or more of the features such as person, number
8 and gender of the more agent-like argument in a sentence. The cross-linguistic
9 variability of these features would suggest that they may modulate language
10 comprehension differentially based on their relative weightings in a given
11 language. To test this, we investigated the processing of verb agreement in
12 simple intransitive Arabic sentences in a visual event-related brain potential
13 (ERP) study. Specifically, we examined the differences, if any, that ensue in the
14 processing of person, number and gender features during online comprehension,
15 employing sentences in which the verb either showed full agreement with
16 the subject noun (singular or plural) or did not agree in one of the features.
17 ERP responses were measured at the post-nominal verb. Results showed a
18 biphasic negativity – late-positivity effect when the verb did not agree with its
19 subject noun in either of the features, in line with similar findings from other
20 languages. Crucially however, the biphasic effect for agreement violations
21 was systematically graded based on the feature that was violated, which is
22 a novel finding in view of results from other languages. Furthermore, this
23 graded effect was qualitatively different for singular and plural subjects based
24 on the differing salience of the features for each subject-type. These results
25 suggest that agreement features, varying in their cognitive salience due to their
26 language-specific weightings, differentially modulate language comprehension.

1 1 Introduction

2 1.1 Background

3 An important evolutionary function of human language is to convey ecologically
4 relevant information, such as the state of affairs of the entities in the immediate
5 environment and event descriptions about who is doing what and to whom, so
6 as to elicit an appropriate response in the given context. In order to comprehend
7 the message, the brain thus has to be able to decipher these details incrementally
8 by establishing the relations between the various elements in the unfolding
9 utterance. Furthermore, these relationships must be constructed from the
10 linguistic input even in the presence of intervening material separating the
11 related elements.

12 Languages differ considerably in the mechanisms they employ in order to establish
13 relations between an event being described in an utterance and the participant(s)
14 of the event. One frequent device attested in many languages is to overtly
15 mark such relations on certain elements morphosyntactically (Nichols & Bickel,
16 2013), such that there is a ‘systematic covariance between a semantic or formal
17 property of one element and a formal property of another (Steele, 1978, p. 610)’,
18 commonly referred to as agreement. Agreement between a verb and its arguments
19 may be based on some or all of the properties or features of the arguments
20 concerned, such as person, number and gender of the nouns, collectively called
21 agreement features (Wechsler, 2009) or phi-features. Greenberg (1963) formulated
22 a number of generalisations based on how these features show patterns of
23 dependency and their frequency of occurrence relative to each other across
24 a number of languages of the world. One such generalisation is the Feature
25 Hierarchy shown in (1) below, which has been an important explanatory concept
26 to account for the cross-linguistic diversity in how these features co-occur.

27 (1) Feature Hierarchy: Person > Number > Gender

28 Further sub-hierarchies of these features have been proposed in accounting for

1 how they influence certain linguistic phenomena (Silverstein, 1976; Shlonsky,
2 1989; Corbett, 2000a,b) in a variety of typologically diverse languages. The
3 question of course is, whether such a hierarchy of agreement features identified
4 on a cross-linguistic basis plays a role in online language comprehension. Indeed,
5 such a systematic organisation of features is said to be a grammaticalised
6 representation of fundamental cognitive categories (Harley & Ritter, 2002),
7 with the relative position of a feature in the hierarchy reflecting the cognitive
8 salience of the feature in relation to the other features, which in turn is said
9 to correlate with dissociations in their online processing (De Vincenzi, 1999;
10 Carminati, 2005; Acuña-Fariña, 2009). For instance, Carminati (2005, p. 263)
11 proposes a Feature Strength Hypothesis mirroring the hierarchy in (1), suggesting
12 that the cognitive significance of a feature should directly correlate with its
13 relative hierarchical importance in language processing. This would imply that
14 a differential contribution, if any, of the agreement features must be observable
15 in their respective neural processing correlates.

16 **1.2 Previous studies**

17 A number of studies have examined the processing of agreement features in
18 different languages. In the behavioural domain, many studies employed a
19 completion task involving sentences with agreement errors in the context of
20 complex phrases, such as '*The key to the cabinets are on the table.*' (see for
21 instance Bock & Miller, 1991; Vigliocco, Butterworth, & Semenza, 1995; Hartsuiker,
22 Antón-Méndez, & van Zee, 2001; Eberhard, Cutting, & Bock, 2005; Haskell,
23 Thornton, & MacDonald, 2010, among others), whilst some involved a self-paced
24 reading task (Wagers, Lau, & Phillips, 2009; Lago, Shalom, Sigman, Lau, &
25 Phillips, 2015; Tucker, Idrissi, & Almeida, 2015), in some cases with eye-tracking
26 (Pearlmutter, Garnsey, & Bock, 1999; Dillon, Mishler, Sloggett, & Phillips,
27 2013). An overarching finding from this line of research is that, agreement
28 processes in sentence comprehension and production are complex, and involve
29 factors that are 'not only syntactic, not only semantic, and not only pragmatic,

1 but all of these at once' (Eberhard et al., 2005, p. 531). The cross-linguistic
2 importance of agreement as a cue to sentence interpretation was demonstrated
3 in a range of offline experiments conducted within the scope of the Competition
4 Model (e.g., MacWhinney, Bates, & Kliegl, 1984; Bates & MacWhinney, 1989;
5 Bates, 1999). These studies further showed that the strength of agreement as
6 a cue to interpretation varies across different languages (for an overview, see
7 Bates, McNew, Devescovi, & Wulfeck, 2001).

8 In order to gain insights into the neurocognitive mechanisms underlying the
9 processing of agreement features, several previous studies have employed the
10 ERP technique, which is particularly well-suited for studying language comprehension
11 in real time thanks to its excellent temporal resolution. ERP studies investigating
12 subject-verb agreement typically employ a violation paradigm, whereby the
13 verb does not agree with its subject in the feature of interest. When ERPs
14 measured at the anomalous verb are compared with those measured at the
15 verb that shows correct agreement, this then is said to shed light on the neural
16 correlates of processing the agreement feature under investigation.

17 Kutas & Hillyard (1983) reported one of the earliest ERP studies on subject-verb
18 agreement in English and found that agreement violations elicited ERP effects
19 that are different in scalp distribution to those elicited by semantic anomalies.
20 Ever since, several ERP studies on the processing of agreement features in a
21 number of languages have been reported (see Molinaro, Barber, & Carreiras,
22 2011, for a detailed review), the vast majority of which are on Indo-European
23 languages. Results from these studies show that agreement violations of various
24 types of dependencies (i.e., subject-verb, adjective-noun, article-noun etc.) generally
25 elicit a left-anterior negativity (LAN) effect around 300 to 500 ms after the
26 onset of the violation followed by a late-positivity (P600) effect in the 500 to
27 700 ms window and/or later. This is true for the number feature in Dutch
28 (Hagoort, Brown, & Groothusen, 1993; Kaan, 2002), English (Osterhout &
29 Mobley, 1995; Coulson, King, & Kutas, 1998), Finnish (Palolahti, Leino, Jokela,
30 Kopra, & Paavilainen, 2005; Leinonen, Brattico, Järvenpää, & Krause, 2008),

1 German (Roehm, Bornkessel, Haider, & Schlesewsky, 2005), Italian (Angrilli
2 et al., 2002; De Vincenzi et al., 2003) and Spanish (Barber & Carreiras, 2005;
3 Mancini, Molinaro, Rizzi, & Carreiras, 2011a); for the gender feature in German
4 (Gunter, Friederici, & Schriefers, 2000), Italian (Molinaro, Vespignani, & Joba,
5 2008) and Spanish (Barber & Carreiras, 2005; Alemán Bañón & Rothman,
6 2016); for the person feature in German (Rossi, Gugler, Hahne, & Friederici,
7 2005) and Spanish (Silva-Pereyra & Carreiras, 2007). However, there are a
8 few studies in which an N400 effect ensued instead of a LAN, or no negativity
9 effect ensued at all. These include studies that examined number violations in
10 Basque (Díaz, Sebastián-Gallés, Erdocia, Mueller, & Laka, 2011; Zawiszewski,
11 Santestegana, & Laka, 2016, no negativity in the former, N400-P600 in the
12 latter) and English (Kaan, Harris, Gibson, & Holcomb, 2000, no negativity);
13 gender violations in Dutch (Hagoort et al., 1993, N400-P600), French (Frenck-Mestre,
14 Osterhout, McLaughlin, & Foucart, 2008, no negativity), Hebrew (Deutsch &
15 Bentin, 2001, N400-P600, with an animacy interaction), Spanish (Guajardo &
16 Wicha, 2014); gender, number, and combined number-gender and person-gender
17 violations in Hindi (Nevins, Dillon, Malhotra, & Phillips, 2007, no negativity),
18 and person violations in Basque (Zawiszewski & Friederici, 2009; Zawiszewski
19 et al., 2016, N400-P600) and Spanish (Mancini et al., 2011a, N400-P600).
20 Furthermore, a handful of studies on subject-verb agreement compared a pair
21 of feature violations with each other or with a combined violation of more
22 than one feature, reporting a modulation of effects (i.e., a quantitative ERP
23 difference) based on the violating feature(s). These include the study on Basque
24 cited above, in which the late-positivity was larger for person and combined
25 person-number violations compared to number violations (Zawiszewski et al.,
26 2016), the study on Hindi mentioned above, in which the late-positivity was
27 found to be larger for combined person-gender violations versus number or
28 gender or combined number-gender violations (Nevins et al., 2007), a study
29 on Spanish that reported a larger late-positivity for combined person-number
30 violations versus person or number violations (Silva-Pereyra & Carreiras, 2007),

1 with the latter concluding that these results do not support the Feature Strength
2 Hypothesis mentioned earlier. By contrast, in another Spanish study, **Mancini**
3 **et al.** (2011a) reported a different distribution of the late-positivity in addition
4 to a qualitative difference in the negativities, namely a LAN effect for the
5 number feature and an N400 effect for the person feature.

6 To briefly summarise these findings, whilst the LAN-P600 biphasic ERP effect
7 is more common for agreement violations of many types, it is by no means
8 universal, especially for subject-verb agreement. An N400 is elicited instead
9 of a LAN in many cases, and no negativity at all ensues in some cases. Thus,
10 neurophysiological evidence or counter-evidence for a hierarchy of features
11 based on differences in their cognitive salience is inconclusive, with some
12 studies reporting processing differences between the agreement features and
13 others countering this, sometimes within the same language (compare for instance
14 **Alemán Bañón & Rothman, 2016; Silva-Pereyra & Carreiras, 2007**). Further,
15 a crucial aspect to note in this regard is that, although each feature has been
16 studied in detail in a number of languages, and in some cases combinations
17 of features compared with each other, to our knowledge, none of the studies
18 reported to date compared the processing of person, number and gender agreement
19 systematically within a single experiment. However, such a comparison would
20 be imperative in order to shed light on whether the hierarchy of features
21 postulated based on differences in their cognitive salience and distribution
22 across languages has a neural equivalent to it.

23 Does the hierarchy of agreement features indeed have a neural equivalent to
24 it? If so, what is the nature of such a dissociation in neural correlates: is it
25 a quantitative ERP difference (i.e., graded amplitude modulation of effects),
26 or a qualitative one (i.e., different ERP effects)? Do the specific syntactic
27 properties of a language interact with such a dissociation? In other words, do
28 language-specific weightings of the features matter? In the following section,
29 we argue that Arabic provides an ideal testing ground for investigating this.

1 1.3 Arabic as a test case

2 In order to investigate whether the hierarchy of agreement features postulated
3 based on differences in their cognitive salience has a neural equivalent to it,
4 certain properties appear to be crucial in determining the language of choice.
5 A first such property is that the language in question should be morphologically
6 rich such that all three agreement features, namely person, number, and gender
7 are overtly marked on the verb. A second and related property that becomes
8 relevant is that these features should be expressed independently of each other,
9 i.e., they are not fused together nor underspecified for a certain feature in
10 most cases such that the violation of each feature can be studied without
11 simultaneously violating other features. For instance, commonly studied morphologically
12 rich languages such as German or Spanish underspecify gender in verb agreement.
13 A third property that is desirable for present purposes is that the agreement
14 features are not merely formal in the language in question, i.e., the realisation
15 of one or more features is sometimes dependent upon certain structural properties
16 of an utterance, such that changes in that property give rise to a concomitant
17 change in the feature marking on the verb despite the subject being identical
18 in both instances.
19 Arabic is a case in point in this regard. A Semitic language with upwards of
20 290 million speakers (Simons & Fenning, 2017) in countries spread around a
21 great part of West Asia and North Africa, Arabic exhibits a typical example
22 of Diglossia (Ferguson, 1959), whereby a standard written variety for formal
23 purposes and a number of colloquially spoken dialects exist in parallel. Modern
24 Standard Arabic (Ryding, 2005) is the written standard taught in schools and
25 universities (and the variety used for the stimuli here). Arabic is ideally suited
26 to investigate possible processing differences between the agreement features
27 in the context of subject-verb agreement mainly due to the fact that all three
28 agreement features are marked on the verb (with a few exceptions: gender is
29 not marked in the first person). Further, verb agreement is not merely formal
30 in Arabic. Thus, agreement is always full in the subject-verb (SV) order, i.e.,

1 the verb agrees with the subject noun in all three features, whereas in the VS
2 order, if the subject noun is third-person plural and overt, number marking
3 on the verb defaults to the singular form, but if the plural subject were to be
4 dropped from the utterance, the sentence-initial verb is marked plural. That
5 is, number marking on the verb is idiosyncratic depending upon the structure
6 in which agreement is computed between a verb and its subject noun and the
7 overtness of the latter. These properties of Arabic allow investigating potential
8 differences between the agreement features in language processing not possible
9 in quite a comparable manner in many other widely-spoken languages. Furthermore,
10 neurolinguistic investigations of diverse languages are crucial for gaining a
11 broader understanding of the neural underpinnings of language (Bornkessel-Schlesewsky
12 & Schlesewsky, 2016), and as such, neurophysiological studies on Arabic are
13 an important contribution from a widely-spoken but extremely understudied
14 language.

15 **1.4 The present study**

16 We report a visual ERP study here, in which we investigated the processing
17 of subject-verb agreement in simple intransitive SV sentences in Arabic. In
18 this experiment, ERP responses were measured at the post-nominal verb as
19 participants read the stimuli in a rapid serial visual presentation. We specifically
20 examined the differences, if any, that ensue in the processing of person, number
21 and gender features during online comprehension, employing sentences in
22 which the verb either showed full agreement with the subject noun (singular
23 or plural) or did not agree in one of the features. In the following section,
24 we describe the methods, materials and procedure, and report results from the
25 study at the critical position, namely, at the verb and discuss the findings in
26 further sections below.

1 2 Methods

2 2.1 Participants

3 Thirty-four persons, most of them students at the United Arab Emirates University
4 in Al Ain, participated in the experiment after giving informed consent, and
5 received monetary compensation for their participation. All participants were
6 right-handed native Arabic speakers, with normal or corrected- to-normal vision
7 and normal hearing. Three further participants had to be excluded from the
8 final data analyses on the basis of excessive EEG artefacts and/or too many
9 errors in the behavioural control task.

10 2.2 Experimental Design

11 We employed an experimental design constituting Arabic sentences in the SV
12 order with singular and plural subject nouns. All critical sentences were of
13 the form adverb - subject - verb - prepositional phrase. The adverb was always
14 'yesterday', subject nouns were always animate and human, and the verbs were
15 in the simple past tense. The verb in each sentence was either in correct
16 agreement with its subject noun, or it did not agree in either person, or number,
17 or gender with the subject (see [Section 2.3](#) for details about the materials).
18 Note that any violation was always with one feature only. This yielded a
19 design consisting of eight critical conditions that differed based on whether the
20 subject-type (ST) was singular or plural; and whether the condition-type (CT)
21 was acceptable or person violation or number violation or gender violation.
22 [Table 1](#) provides an overview of the factors and their levels, with the condition
23 codes relevant to each level, as well as examples pertaining to each condition.
24 Such a design would enable observing the ERP effects at the position of the verb
25 when information about the subject noun is already available. Any differences
26 in ERP effects at the verb would reflect the differences in the processing of the
27 different agreement features.

Table 1: Critical factors and their individual levels, with condition codes and a complete set of corresponding example stimuli.

Factor	Level	Conditions
ST : Subject-Type	S : Singular noun	SACP, SGEN, SNUM, SPER have a human singular subject, half of them feminine and half masculine
	P : Plural noun	PACP, PGEN, PNUM, PPER have a human plural subject, half of them feminine and half masculine
CT : Condition-Type	ACP : Acceptable	SACP, PACP have a verb that shows full agreement with its subject noun
	GEN : Violation of Gender Agreement	SGEN, PGEN have a verb that violates gender agreement
	NUM : Violation of Number Agreement	SNUM, PNUM have a verb that violates number agreement
	PER : Violation of Person Agreement	SPER, PPER have a verb that violates person agreement

إلى المكان. حضرت الممرضة بالأمس
 ?l-makaan ?ilaa had^far-at ?l-mumarrid^fa bil-⁷ams
 [DEF-place] [to] [come]_{Past-3sg.F} [DEF-nurse]_{3sg.F} [yesterday]

إلى المكان. حضر الممرضة * بالأمس SGEN
 ?l-makaan ?ilaa had^far-a ?l-mumarrid^fa bil-⁷ams
 [DEF-place] [to] [come]_{Past-3sg.M} [DEF-nurse]_{3sg.F} [yesterday]

إلى المكان. حضرن الممرضة * بالأمس SNUM
 ?l-makaan ?ilaa had^far-na ?l-mumarrid^fa bil-⁷ams
 [DEF-place] [to] [come]_{Past-3pl.F} [DEF-nurse]_{3sg.F} [yesterday]

إلى المكان. حضرت الممرضة * بالأمس SPER
 ?l-makaan ?ilaa had^far-tu ?l-mumarrid^fa bil-⁷ams
 [DEF-place] [to] [come]_{Past-1sg} [DEF-nurse]_{3sg.F} [yesterday]

إلى المكان. حضرن الممرضات بالأمس PACP
 ?l-makaan ?ilaa had^far-na ?l-mumarrid^faat bil-⁷ams
 [DEF-place] [to] [come]_{Past-3pl.F} [DEF-nurses]_{3pl.F} [yesterday]

إلى المكان. حضروا الممرضات * بالأمس PGEN
 ?l-makaan ?ilaa had^fa-ruu ?l-mumarrid^faat bil-⁷ams
 [DEF-place] [to] [come]_{Past-3pl.M} [DEF-nurses]_{3pl.F} [yesterday]

إلى المكان. حضرت الممرضات * بالأمس PNUM
 ?l-makaan ?ilaa had^far-at ?l-mumarrid^faat bil-⁷ams
 [DEF-place] [to] [come]_{Past-3sg.F} [DEF-nurses]_{3pl.F} [yesterday]

إلى المكان. حضرنا الممرضات * بالأمس PPER
 ?l-makaan ?ilaa had^far-naa ?l-mumarrid^faat bil-⁷ams
 [DEF-place] [to] [come]_{Past-1pl} [DEF-nurses]_{3pl.F} [yesterday]

Singular Conditions. Right to left Arabic text with corresponding glosses.
 Intended meaning: 'Yesterday the female nurse came to the place.'
 A * before condition labels indicates ungrammaticality.

Plural Conditions. Right to left Arabic text with corresponding glosses.
 Intended meaning: 'Yesterday the female nurses came to the place.'
 A * before condition labels indicates ungrammaticality.

1 **2.3 Materials**

2 As a first step, 120 intransitive verbs were used to construct acceptable sentences
3 with singular nouns, half of which were masculine and the other half feminine.
4 The plural acceptable sentences were then generated from these such that
5 the subject nouns and verbs now marked plurality. Finally, three violation
6 conditions were generated from each of the 240 acceptable sentences such that
7 the agreement marking on the verb either violated person or number or gender
8 in each instance (i.e., never was a combination of these features violated). This
9 resulted in a total of 120 sets of sentences in eight critical conditions, thus 960
10 critical sentences.

11 Fillers were constructed to ensure that the sentence structure is not predictable
12 based on the first word alone and that the overall number of acceptable versus
13 violation sentences is counterbalanced. Thus there were sentences involving
14 subject and object relative clauses, verb-initial orders and a few semantic anomalies.
15 The 960 target sentences were distributed into five unique sets according to a
16 latin square, such that each list contained 36 sentences per critical condition.
17 Of the resulting 288 critical sentences in a given list, 72 were acceptable
18 and the rest were violations. Fillers were interspersed with these lists such
19 that, overall, each stimulus list ended up with an equal number of acceptable
20 and violation sentences, with equal number of sentences with a masculine or
21 feminine, singular or plural noun. This resulted in a total of 600 sentences
22 per stimulus list (288 critical sentences and 312 fillers). These were each
23 pseudo-randomised to obtain five stimulus lists, one of which was used for
24 every participant. The presentation of the randomised lists was counterbalanced
25 across participants.

26 **2.4 Tasks**

27 Given the use of a violation paradigm, an acceptability judgement task followed
28 the presentation of each stimulus sentence, which required 'yes' or 'no' as
29 answers. In addition, in order to ensure that participants would process the

1 sentences attentively, a probe word detection task followed the acceptability
2 judgement task. The probe task was constructed in such a way that an equal
3 number of trials required ‘yes’ or ‘no’ as answers. If the probe word was one
4 of the words that occurred in the preceding stimulus, this required a ‘yes’,
5 whereas if it was novel, it required a ‘no’.awk workshop Crucially, the word
6 position from which the probe word was chosen was equiprobable across the
7 experiment as well as within each condition, which meant that participants
8 had to be very attentive throughout stimulus presentation so as to perform the
9 task correctly.

10 **2.5 Procedure**

11 The experiment was performed in the EEG laboratory of the Department of
12 Linguistics at the United Arab Emirates University in Al Ain. The methods
13 and procedure employed in the experiment were in accordance with local
14 regulations, and followed the guidelines of the Helsinki declaration. Participants
15 filled an Edinburgh-Handedness questionnaire in Arabic, and dominant right-handers
16 alone were accepted for participation. They received printed instructions about
17 the experiment and the task they had to perform.

18 Stimuli were presented using the Presentation software (www.neurobs.com)
19 that recorded, among other things, the trial number, reaction time and the
20 button responses. The brightness and contrast settings of the monitor were
21 maintained the same for all the participants.

22 After setting up the electrode cap, the participant moved to a sound-proof
23 chamber, where they were seated on a comfortable chair and were requested
24 to avoid abrupt and drastic movements, especially of the head. Then the
25 so-called ‘resting EEG’ was recorded for possible frequency-based EEG analyses
26 later, where the participant had to sit still for two minutes with no specific
27 task to perform. Two more minutes of resting EEG was recorded, but now
28 the participant had to close their eyes. After a short pause, the experimental
29 session commenced, which consisted of a short practice followed by the actual

1 experiment.

2 The structure of each trial in the experiment was as follows. The flat-screen
3 LCD monitor was clear before the trial commenced. A fixation asterisk was
4 shown in the centre of the screen for 500 ms, after which the screen became
5 blank for 100 ms. Then the rapid serial visual presentation of the stimulus
6 sentence started. Each word or phrase appeared in the centre of the screen and
7 remained for 600 ms, after which the screen became blank for 100 ms before
8 the appearance of the next word. Phrases containing two words were presented
9 for 750 ms. After the last word of the stimulus sentence was presented, the
10 screen was blank for 500 ms. Following this, a pair of smileys appeared
11 on screen, which prompted the participant to judge the acceptability of the
12 sentence that just preceded. After a maximum of 2000 ms or after a button
13 press, whichever was earlier, the screen became blank again for 500 ms. A
14 time-out was registered when no button was pressed within 2000 ms. Then, a
15 probe word appeared in the middle of the screen for a maximum of 2000 ms,
16 within which the participant had to detect whether the word was present in
17 the preceding stimulus sentence or not. When no button was pressed within
18 2000 ms, a time-out was registered. At the end of the trial, the screen became
19 blank for 1500 ms (inter-stimulus interval) before the next trial started.

20 Before the actual experiment commenced, there was a short practice consisting
21 of twelve trials, which helped participants to get used to the task and to feel
22 comfortable about the pace of the trials and the blinking regime. For a given
23 participant, none of the experimental stimuli occurred in their practice phase.
24 The task was identical to that of the experiment phase. The EEG of the participants
25 was not recorded in this phase.

26 In the main phase of the experiment, one of the five sets of materials as mentioned
27 above was chosen to be presented in 12 blocks of 50 trials each. There were
28 equal number of probe words that required 'Yes' or 'No' as answers in each
29 block. Half the number of participants had the 'Yes' button on the right side

1 and the other half had it on the left side so as to counterbalance for any
2 right-dominance effects. The ‘Yes’ button being on the right or left was also
3 counterbalanced across the stimuli sets. There was a short pause between
4 blocks. Resting EEG was again recorded at the end of the experimental session.

5 **2.6 EEG recording, pre-processing and statistical analysis**

6 The EEG was recorded by means of 25 AgAgCl active electrodes fixed at the
7 scalp by means of an elastic cap (Easycap GmbH, Herrsching, Germany). AFZ
8 served as the ground electrode. Recordings were referenced to the left mastoid,
9 but re-referenced to the average of linked mastoids offline. The electrooculogram
10 (EOG) was monitored by means of electrodes placed at the outer canthus of each
11 eye for the horizontal EOG and above and below the participant’s right eye for
12 the vertical EOG. Electrode impedances were kept below appropriate levels
13 such as to ensure a good quality signal with minimal noise. All EEG and EOG
14 channels were amplified using a BrainAmp amplifier (Brain Products GmbH,
15 Gilching, Germany) and recorded with a digitisation rate of 250 Hz. The EEG
16 data thus collected was pre-processed for further analysis using a 0.3 – 20Hz
17 bandpass filter in order to remove slow signal drifts. The statistical analyses
18 were performed on this data, but an 8.5 Hz low-pass filter was further applied
19 on the data for achieving smoother ERP plots.

20 ERPs were calculated for each participant from 200 ms before the onset of the
21 verb until 1200 ms after onset (so -200 ms to 1200 ms). These were averaged
22 across items per condition per participant before computing the grand-average
23 ERPs across participants per condition. Repeated-measures analyses of variance
24 (ANOVAs) were computed for the statistical analysis of the ERP data, involving
25 the within-participants factors subject-type (ST) and condition-type (CT) for
26 mean amplitude values per time-window per condition in 4 lateral Regions of
27 Interest (ROIs) and 6 midline ROIs. The lateral ROIs were defined as follows:
28 LA, comprised of the left-anterior electrodes F7, F3, FC5 and FC1; LP, comprised
29 of the left-posterior electrodes P7, P3, CP5 and CP1; RA, comprised of the

1 right-anterior electrodes F8, F4, FC6 and FC2; and RP, comprised of the right-
2 posterior electrodes P8, P4, CP6 and CP2. Each of the 6 midline electrodes FZ,
3 FCZ, CZ, CPZ, PZ and POZ constituted an individual midline ROI of the same
4 name respectively.

5 The statistical analysis of the ERP data was carried out in a hierarchical manner,
6 that is to say, only interactions that are at least marginally significant were
7 resolved. To avoid excessive type 1 errors due to violations of sphericity, the
8 correction of [Huynh & Feldt \(1970\)](#) was applied when the analysis involved
9 factors with more than one degree of freedom in the numerator. Factors with
10 more than two levels, which resulted in a significant effect, were further resolved
11 by comparing their individual levels pairwise. An effect resulting from such
12 an individual pairwise comparison would be reported as significant only if it
13 was still significant after applying the modified Bonferroni correction ([Keppel,](#)
14 [1991](#)). Further, given a resolvable effect was significant both with and without
15 a ROI interaction in a certain analysis, only the interaction involving ROI was
16 resolved further.

17 **3 Results**

18 **3.1 Behavioural data**

19 The mean acceptability ratings for the stimuli, as well as the probe detection
20 accuracy for the critical conditions, shown in [Table 2](#), were calculated using the
21 behavioural data collected during the experiment. Only those trials in which
22 the acceptability judgement task following each trial was performed (i.e., not
23 timed out) were considered for the analysis. Further, the acceptability data
24 presented here pertain only to those trials in which the participants performed
25 the probe detection task correctly (see [Section 2.4](#) for details about the tasks).
26 Acceptability was highest for the conditions with no violations, whereas it was
27 the lowest for conditions with number violations. Across conditions, acceptability
28 was relatively slightly higher for conditions with a plural subject as compared

1 to the corresponding conditions with a singular subject. The overall accuracy
2 was very high across all conditions. Owing to the fact that the reaction time
3 data are not time-locked to the critical manipulation in the stimulus sentences,
4 they are not reported here (but are available from the corresponding author
5 on request).

Table 2: Acceptability and accuracy

Condition	Acceptability %	SD	Accuracy %	SD
SACP	90.51	11.86	95.74	4.54
SGEN	23.68	29.67	94.48	4.10
SNUM	25.55	28.76	94.16	5.63
SPER	47.62	22.53	95.58	3.93
PACP	91.68	7.21	95.66	4.44
PGEN	67.00	22.99	94.42	4.89
PNUM	33.91	30.82	94.91	4.45
PPER	51.83	30.02	93.57	5.22

6 The statistical analysis of the behavioural data was performed by means of
7 ANOVAs involving the within-subjects factors subject-type (ST) and condition-type
8 (CT), and the random factors participants (F1) and items (F2). The statistical
9 analysis was carried out in a hierarchical manner, that is to say, only interactions
10 that are at least marginally significant were resolved. To avoid excessive type
11 1 errors due to violations of sphericity, the correction of [Huynh & Feldt \(1970\)](#)
12 was applied when the analysis involved factors with more than one degree of
13 freedom in the numerator. Factors with more than two levels, which resulted in
14 a significant effect, were further resolved by comparing their individual levels
15 pairwise. An effect resulting from such an individual pairwise comparison
16 would be reported as significant only if it was still significant after applying
17 the modified Bonferroni correction ([Keppel, 1991](#)). Further, given a resolvable
18 effect was significant both with and without a ROI interaction in a certain
19 analysis, only the interaction involving ROI was resolved further. [Table 3](#) shows
20 a summary of effects on the behavioural data collected during the experiment.

Table 3: ANOVA: Behavioural Data

Effects on Acceptability	DF	F1:Participants	DF	F2:Items		
◆ ST	1,33	56.39	***	1,59	246.80	***
◆ CT	3,99	105.60	***	3,177	642.50	***
↳ CT = ACP+PER ◆ CT	1,33	100.70	***	1,59	747.10	***
↳ CT = ACP+NUM ◆ CT	1,33	138.20	***	1,59	2503.00	***
↳ CT = NUM+PER ◆ CT	1,33	54.05	***	1,59	115.30	***
↳ CT = ACP+GEN ◆ CT	1,33	118.10	***	1,59	1298.00	***
↳ CT = GEN+PER ◆ CT	1,33	5.40	*	1,59	8.99	**
↳ CT = NUM+GEN ◆ CT	1,33	48.57	***	1,59	130.90	***
◆ ST x CT	3,99	30.96	***	3,177	142.60	***
↳ ST = S ◆ CT	3,99	122.40	***	3,177	613.30	***
↳ CT = ACP+PER ◆ CT	1,33	100.90	***	1,59	483.80	***
↳ CT = ACP+NUM ◆ CT	1,33	141.10	***	1,59	1512.00	***
↳ CT = NUM+PER ◆ CT	1,33	80.24	***	1,59	117.50	***
↳ CT = ACP+GEN ◆ CT	1,33	138.30	***	1,59	1967.00	***
↳ CT = GEN+PER ◆ CT	1,33	108.10	***	1,59	151.00	***
↳ ST = P ◆ CT	3,99	52.95	***	3,177	315.50	***
↳ CT = ACP+PER ◆ CT	1,33	66.45	***	1,59	487.80	***
↳ CT = ACP+NUM ◆ CT	1,33	102.80	***	1,59	1077.00	***
↳ CT = NUM+PER ◆ CT	1,33	11.68	**	1,59	53.87	***
↳ CT = ACP+GEN ◆ CT	1,33	44.88	***	1,59	188.70	***
↳ CT = GEN+PER ◆ CT	1,33	14.56	***	1,59	71.44	***
↳ CT = NUM+GEN ◆ CT	1,33	48.92	***	1,59	253.80	***

¹ There were main effects of subject-type and condition-type on the acceptability
² in the analysis by participants as well as the analysis by items. Resolving the
³ effect of condition-type by comparing the condition-types pairwise showed
⁴ a significant simple effect of condition-type for all possible comparisons in
⁵ both analyses, with the largest effect for the ACP + NUM comparison. The
⁶ interaction subject-type x condition-type was significant in both the analyses,
⁷ which when resolved for subject-type showed an effect of condition-type for

1 both subject-types. This was further resolved by comparing the condition-types
2 pairwise, which showed a simple effect of condition-type for all comparisons
3 except NUM + GEN in both analyses when the subject was singular. When the
4 subject was plural, there was a simple effect of condition-type for all comparisons
5 in both analyses. There were no effects on the probe detection accuracy.

6 **3.2 ERP data**

7 The ERPs at the verb are shown in [Figure 1](#) for the singular subject conditions,
8 and in [Figure 2](#) for the plural subject conditions. [Figure 3](#) shows the topographic
9 map of the ERPs at the position of the verb in the 300 – 500 ms, 400 – 600ms
10 and 700 – 850 ms time-windows for the two subject-types in the three violation
11 conditions, after the effects for the acceptable condition in each case has been
12 subtracted. Four time-windows were chosen for analysis based on ERP components
13 that have been known to be relevant for processing agreement (See [Section 2.6](#)
14 for details regarding the statistical analysis).

15 **3.2.1 Time-window 300–500 ms**

16

17 The predominant effect in this time-window is the graded negativity for the
18 violation conditions as opposed to the acceptable conditions, with the gradedness
19 differing based on whether the subject was singular or plural. [Table 4](#) shows
20 a summary of all the effects that reached at least marginal significance at the
21 position of the verb in the 300 – 500 ms time-window.

22 There were no main effects. The interaction ROI x subject-type was significant
23 in the midline regions, which when resolved for the individual ROIs showed a
24 simple effect of subject-type in the fronto-central midline region. The interaction
25 subject-type x condition-type was significant in the lateral and midline regions.
26 This effect was resolved in the lateral regions alone (due to a ROI interaction
27 in the midline regions), which showed an effect of condition-type when the
28 subject was singular. This was resolved further by comparing the condition-types

1 pairwise, which showed a simple effect of condition-type for the comparison
2 PER + NUM alone.
3 The three-way interaction ROI x subject-type x condition-type was significant
4 in the midline regions alone, which was resolved for the individual ROIs. This
5 showed a marginal effect of subject-type x condition-type in the fronto-central
6 midline region, and the effect was significant in the central, centro-parietal,
7 parietal and parieto-occipital midline regions, which was resolved for subject-type
8 in each region. When the subject-type was singular, there was an effect of
9 condition-type in the central, centro-parietal, parietal and parieto-occipital
10 midline regions. Resolving this effect by comparing the condition-types pairwise
11 revealed the following. There was a simple effect of condition-type in the
12 central, centro-parietal and parieto-occipital midline regions for the comparison
13 ACP + NUM, and this effect was marginal in the parietal midline region.
14 Comparing PER + NUM, there was a simple effect of condition-type in the
15 centro-parietal and parieto-occipital midline regions, with this effect being
16 marginal in the central midline region. Comparing ACP + GEN, there was
17 simple effect of condition-type in the central, parietal and parieto-occipital
18 midline regions, with this effect being marginal in the centro-parietal region.
19 Comparing PER + GEN, there was a simple effect of condition-type in the
20 parieto-occipital midline region, with this effect being marginal in central,
21 centro-parietal and parietal midline regions. When the subject-type was plural,
22 there was an effect of condition-type in the fronto-central, central and centro-parietal
23 midline regions. Resolving this effect by comparing the condition-types pairwise
24 revealed the following. There was a simple effect of condition-type in the
25 fronto-central, central and centro-parietal midline regions for the comparison
26 PER + GEN. For the comparison NUM + GEN, there was a marginal effect of
27 condition-type in the central and centro-parietal midline regions.

Figure 1: ERPs at the verb: Singular subject conditions.

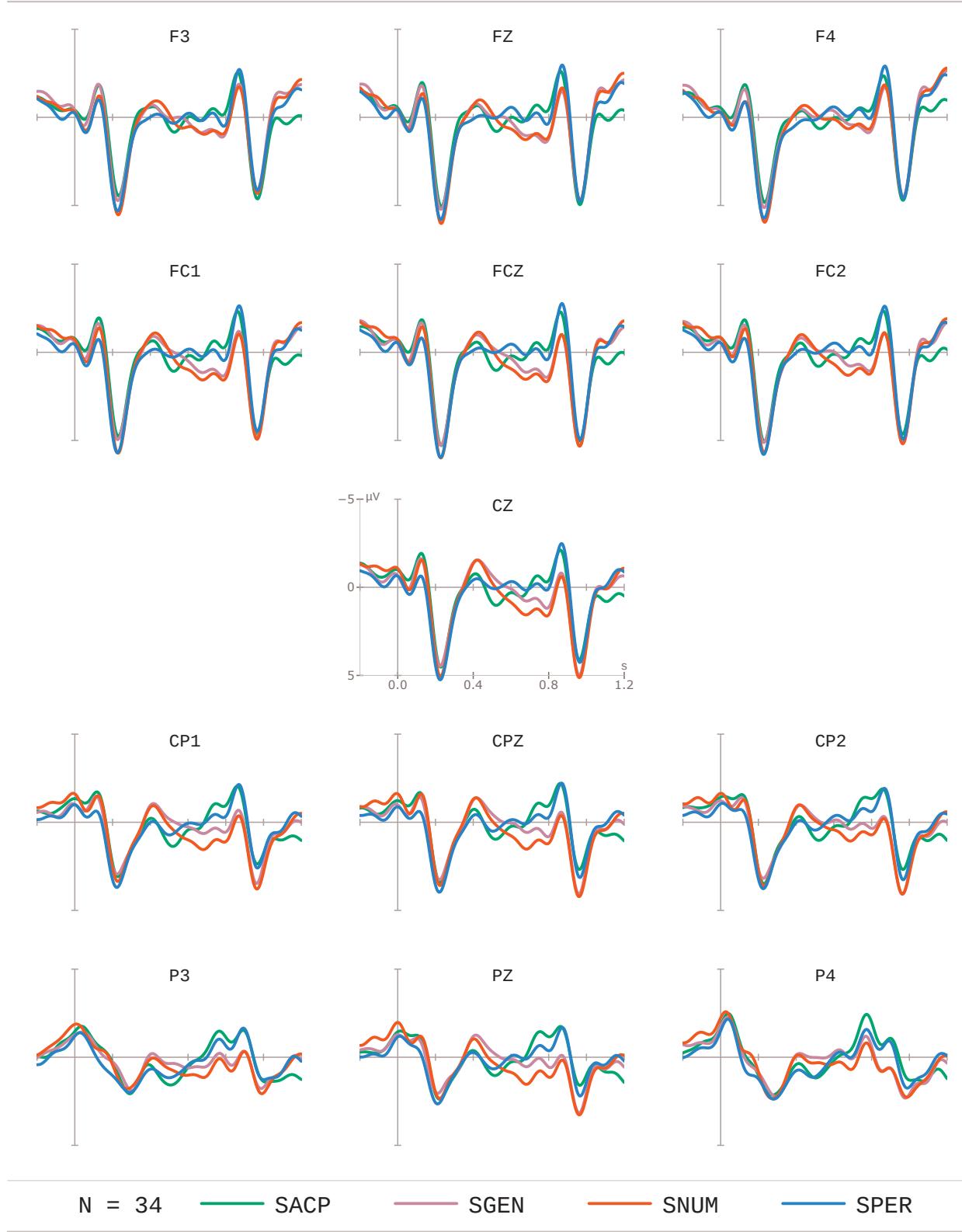


Figure 2: ERPs at the verb: Plural subject conditions.

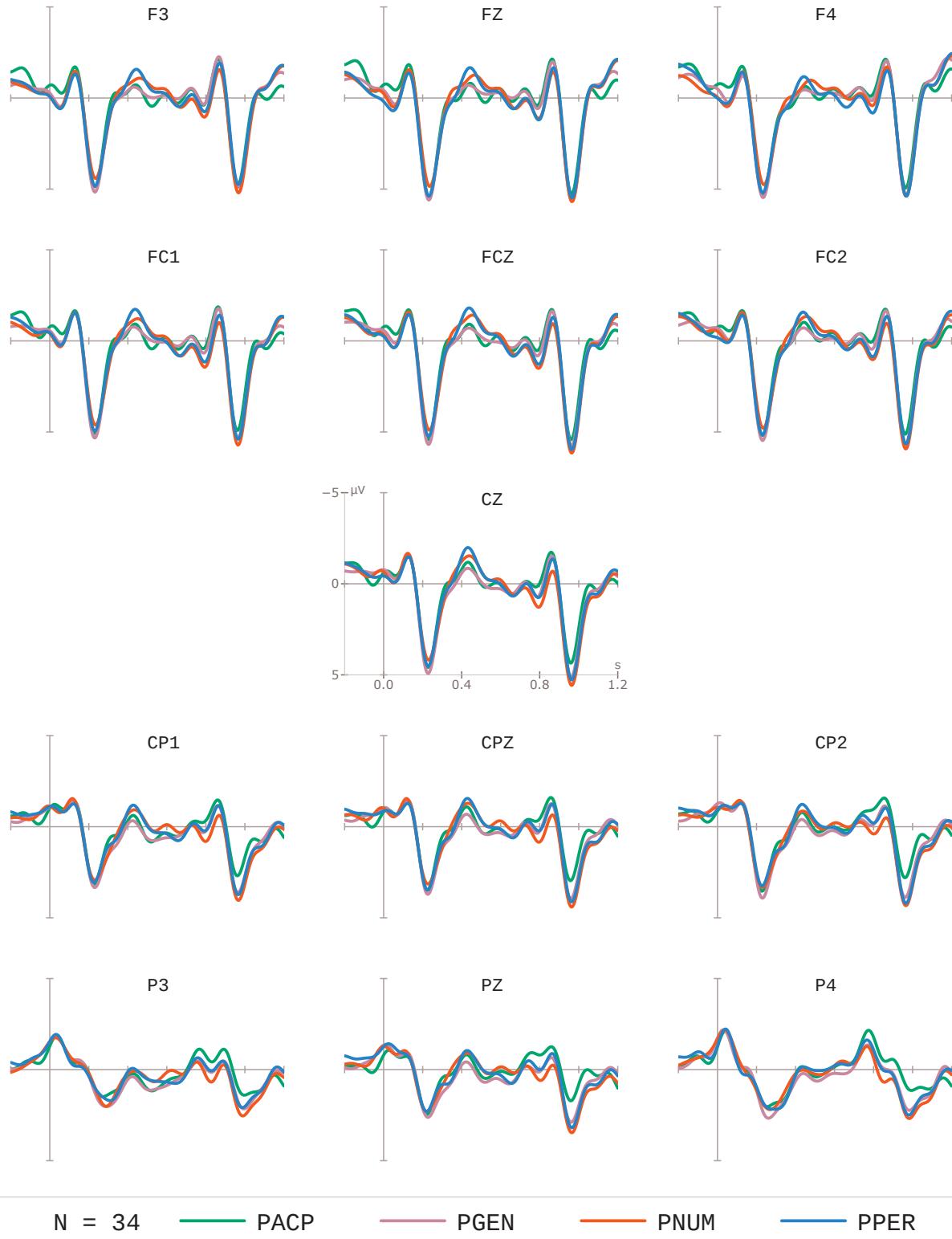


Figure 3: Topography of effects at the verb.

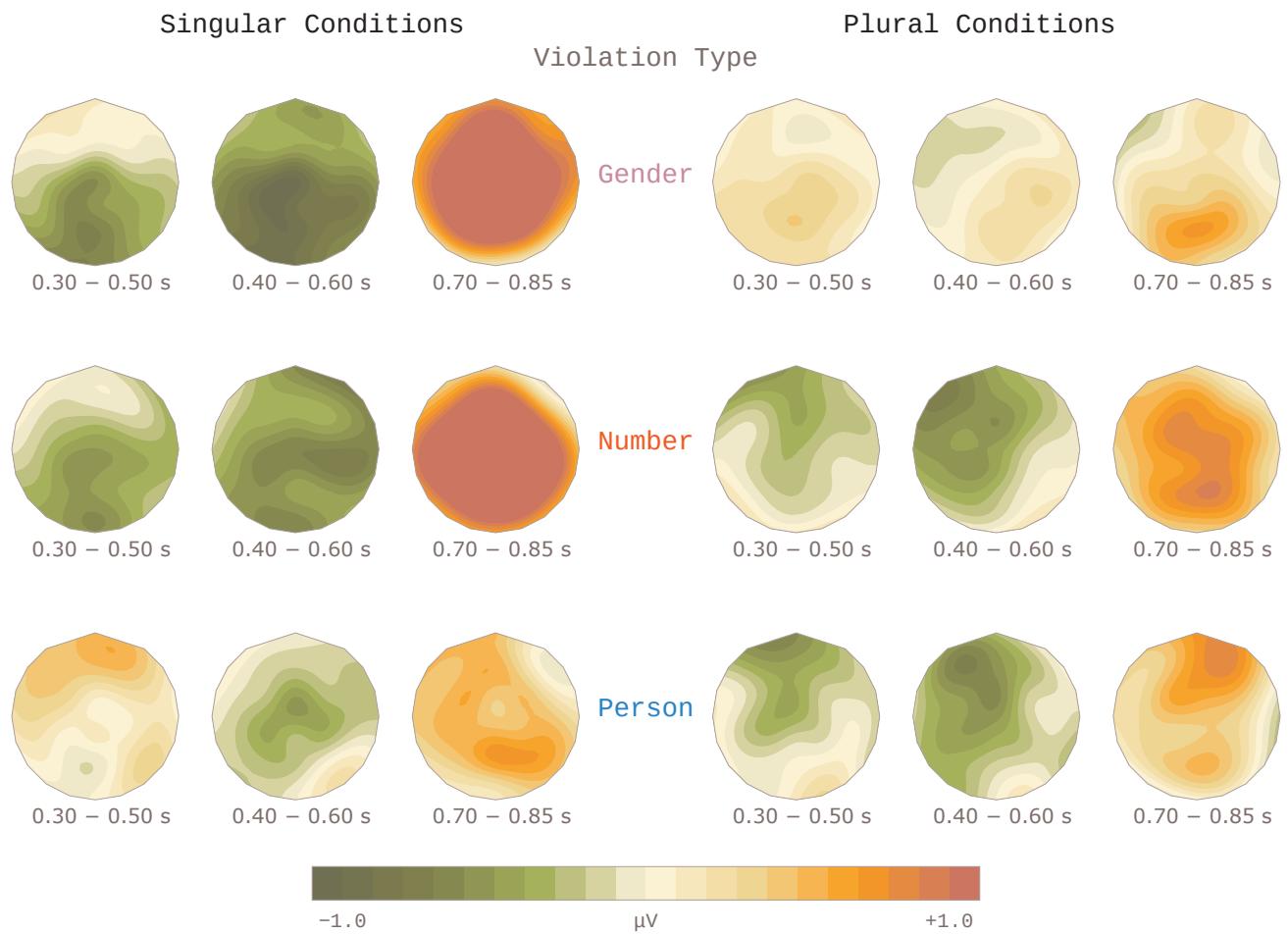


Table 4: ANOVA: ERPs at the Verb : 300 – 500 ms

Effects in time-window 300–500 ms	DF	Lateral Regions	DF	Midline Regions
♦ ROI x ST			5,165	4.56 ★
└ ROI = FCZ			1,33	4.47 ★
♦ ST x CT	3,99	2.99 ★	3,99	3.70 ★★
└ ST = S	3,99	3.02 ★	1,33	6.77 ★
♦ CT				
└ CT = PER+NUM				
♦ CT				
♦ ROI x ST x CT			15,495	3.03 ★★
└ ROI = FCZ			3,99	2.62 ★
♦ ST x CT			3,99	2.59 ★
└ ST = P			3,99	5.96 ★
♦ CT				
└ CT = PER+GEN				
♦ CT				
└ ROI = CZ			3,99	4.79 ★★
♦ ST x CT			3,99	3.89 ★★
└ ST = S			3,99	7.47 ★
♦ CT			1,33	4.88 ★
└ CT = ACP+NUM			1,33	5.86 ★
♦ CT			1,33	5.11 ★
└ CT = PER+NUM			1,33	3.11 ★
└ CT = ACP+GEN			1,33	8.46 ★
└ CT = PER+GEN			1,33	4.97 ★
└ ST = P				
♦ CT				
└ CT = PER+GEN				
└ CT = NUM+GEN				
└ ROI = CPZ			3,99	4.27 ★★
♦ ST x CT			3,99	4.38 ★★
└ ST = S			3,99	6.59 ★
♦ CT			1,33	7.38 ★
└ CT = ACP+NUM			1,33	4.78 ★
♦ CT			1,33	5.35 ★
└ CT = PER+NUM			1,33	2.43 ★
└ CT = ACP+GEN			1,33	5.85 ★
└ CT = PER+GEN			1,33	5.41 ★
└ ST = P				
♦ CT				
└ CT = PER+GEN				
└ CT = NUM+GEN				
└ ROI = PZ			3,99	4.39 ★★
♦ ST x CT			3,99	3.92 ★★
└ ST = S			3,99	5.11 ★
♦ CT			1,33	7.04 ★
└ CT = ACP+NUM			1,33	5.23 ★
♦ CT				
└ CT = ACP+GEN				
└ CT = PER+GEN				

Continued on next page ...

...Table 4 continued

Effects in time-window 300–500 ms		DF	Lateral Regions	DF	Midline Regions
$\hookrightarrow_{ROI} = POZ$	$\diamond ST \times CT$			3,99	3.72 **
$\hookrightarrow_{ST} = S$	$\diamond CT$			3,99	5.89 ***
	$\hookrightarrow_{CT} = ACP+NUM$	$\diamond CT$		1,33	8.94 **
	$\hookrightarrow_{CT} = PER+NUM$	$\diamond CT$		1,33	6.09 *
	$\hookrightarrow_{CT} = ACP+GEN$	$\diamond CT$		1,33	10.51 **
	$\hookrightarrow_{CT} = PER+GEN$	$\diamond CT$		1,33	7.52 *

1 3.2.2 Time-window 400–600 ms

2

3 As in the earlier time-window, the graded negativity effect engendered by the
4 violation conditions as opposed to the acceptable conditions is significant in
5 this time-window, with the differences in effects between the two subject-types
6 becoming much more clear. Number violations engendered a large broadly
7 distributed negativity effect regardless of subject-type. The modulation of
8 negativities evoked by person and gender violations differed based on whether
9 the subject-type was singular or plural, with gender violations evoking a larger
10 effect than person violations when the subject was singular, and person violations
11 evoking a larger effect than gender violations when the subject was plural.
12 Similarly, the topographic distribution of these negativities also varied, with
13 the effect for person violations showing a central distribution, and that for
14 gender violations showing a centro-parietal distribution. Table 5 shows a
15 summary of all the effects that reached at least marginal significance at the
16 position of the verb in the 400–600 ms time-window.

17 There was a main effect of subject-type in the lateral and midline regions. The
18 interaction ROI x subject-type was significant in the midline regions, which
19 when resolved for the individual ROIs showed a simple effect of subject-type
20 in the frontal, fronto-central and central midline regions. There was a main
21 effect of condition-type in the lateral and midline regions. This effect was
22 resolved in the lateral regions alone (due to a ROI interaction in the midline
23 regions) by comparing the condition-types pairwise, which showed a simple
24 effect of condition-type for the comparison ACP + NUM. The interaction ROI
25 x condition-type was significant in the midline regions alone, which when
26 resolved for the the individual ROIs showed an effect of condition-type in the
27 fronto-central, central, centro-parietal and parieto-occipital midline regions.
28 In these regions, the condition-types were compared pairwise, which showed a
29 simple effect of condition-type for the comparison ACP + PER in the fronto-central
30 and central midline regions. Comparing ACP + NUM revealed a simple effect

1 of condition-type in all four midline regions concerned, the effect being marginal
2 in the parieto-occipital midline region. Comparing ACP + GEN showed a
3 simple effect of condition-type in the central and parieto-occipital midline
4 regions, with the effect being marginal in the centro-parietal midline region.

5 The interaction subject-type x condition-type was significant in the lateral and
6 midline regions. The three-way interaction ROI x subject-type x condition-type
7 was likewise significant in the lateral and midline regions. Resolving the
8 interaction for the individual ROIs revealed that, there was an effect of the
9 interaction subject-type x condition-type in the left-posterior and right-posterior
10 regions as well as in the central, centro-parietal, parietal and parieto-occipital
11 midline regions. This effect was resolved for subject-type in each concerned
12 region. In the left-posterior and right-posterior regions, there was an effect of
13 condition-type when the subject was singular. Resolving this by comparing the
14 condition-type pairwise revealed that there was a simple effect of condition-type
15 for the comparisons ACP + NUM, ACP + GEN and PER + GEN in both
16 left-posterior as well as right-posterior regions. This effect reached significance
17 for the comparison PER + NUM in the right-posterior region alone. In the
18 left-posterior region, there was an effect of condition-type when the subject
19 was plural, which when resolved by comparing the condition-types pairwise
20 showed a simple effect of condition-type for the comparison NUM + GEN and
21 a marginal effect of condition-type for the comparison PER + GEN. In all the
22 midline regions concerned, there was an effect of condition-type when the
23 subject was singular. Resolving this by comparing the condition-type pairwise
24 revealed that there was a simple effect of condition-type for the comparison
25 ACP + NUM in the central and parieto-occipital midline regions, with this
26 effect being marginal in the centro-parietal midline region. Comparing ACP +
27 GEN revealed an effect of condition-type in all four midline regions concerned.
28 There was a marginal effect of condition-type for the comparison PER + NUM
29 in the parieto-occipital midline region. For the comparison PER + GEN, there
30 was a marginal effect of condition-type in the centro-parietal midline region

1 and a simple effect of condition-type in the parieto-occipital midline region. In
2 the central and centro-parietal midline regions, there was an effect of condition-type
3 when the subject was plural. Resolving this by comparing the condition-types
4 pairwise revealed that, there was a simple effect of condition-type for the
5 comparisons PER + GEN and NUM + GEN in both midline regions concerned.

Table 5: ANOVA: ERPs at the Verb : 400 – 600 ms

Effects in time-window 400–600 ms	DF	Lateral Regions		DF	Midline Regions	
♦ ST	1,33	5.55	★	1,33	6.47	★★
♦ ROI x ST				5,165	5.19	★★
└ ROI = FZ ♦ ST				1,33	10.09	★★
└ ROI = FCZ ♦ ST				1,33	12.42	★★★
└ ROI = CZ ♦ ST				1,33	5.33	★
♦ CT	3,99	3.24	★	3,99	3.09	★
└ CT = ACP+NUM ♦ CT	1,33	9.25	★★			
♦ ROI x CT				15,495	2.37	★
└ ROI = FCZ ♦ CT				3,99	3.62	★★
└ CT = ACP+PER				1,33	9.19	★★
└ CT = ACP+NUM				1,33	6.33	★
└ ROI = CZ ♦ CT				3,99	4.01	★★
└ CT = ACP+PER				1,33	7.66	★
└ CT = ACP+NUM				1,33	8.19	★
└ CT = ACP+GEN				1,33	8.17	★
└ ROI = CPZ ♦ CT				3,99	2.94	★
└ CT = ACP+NUM				1,33	7.13	★
└ CT = ACP+GEN				1,33	5.08	★
└ ROI = POZ ♦ CT				3,99	2.75	★
└ CT = ACP+NUM				1,33	4.72	★
└ CT = ACP+GEN				1,33	5.91	★
♦ ST x CT	3,99	3.03	★	3,99	3.68	★★
♦ ROI x ST x CT	9,297	2.37	★	15,495	2.13	★
└ ROI = LP ♦ ST x CT	3,99	4.54	★★			
└ ST = S ♦ CT	3,99	6.31	★★★			
└ CT = ACP+NUM ♦ CT	1,33	5.76	★			
└ CT = ACP+GEN ♦ CT	1,33	11.95	★★			
└ CT = PER+GEN ♦ CT	1,33	9.70	★★			
└ ST = P ♦ CT	3,99	2.74	★			
└ CT = PER+GEN ♦ CT	1,33	5.38	★			
└ CT = NUM+GEN ♦ CT	1,33	8.87	★★			
└ ROI = CZ ♦ ST x CT				3,99	4.22	★★

Continued on next page ...

...Table 5 continued

Effects in time-window 400–600 ms		DF Lateral Regions			DF Midline Regions	
$\hookrightarrow_{ST} = S$	◆ CT				3,99	5.16
	$\hookrightarrow_{CT} = ACP+NUM$	◆ CT			1,33	7.67
	$\hookrightarrow_{CT} = ACP+GEN$	◆ CT			1,33	12.79
	◆ CT				3,99	3.10
	$\hookrightarrow_{CT} = PER+GEN$	◆ CT			1,33	7.69
	$\hookrightarrow_{CT} = NUM+GEN$	◆ CT			1,33	6.05
	$\hookrightarrow_{ROI} = RP \parallel CPZ$	◆ ST x CT			3,99	4.07
	$\hookrightarrow_{ST} = S$	◆ CT	3,99	7.04	3,99	4.47
	$\hookrightarrow_{CT} = ACP+NUM$	◆ CT	1,33	10.25	1,33	4.48
	$\hookrightarrow_{CT} = PER+NUM$	◆ CT	1,33	6.25	*	
$\hookrightarrow_{ROI} = PZ$	$\hookrightarrow_{CT} = ACP+GEN$	◆ CT	1,33	11.48	1,33	9.97
	$\hookrightarrow_{CT} = PER+GEN$	◆ CT	1,33	10.56	1,33	5.38
	$\hookrightarrow_{ST} = P$	◆ CT			3,99	2.64
	$\hookrightarrow_{CT} = PER+GEN$	◆ CT			1,33	5.78
	$\hookrightarrow_{CT} = NUM+GEN$	◆ CT			1,33	6.45
	◆ ST x CT				3,99	5.07
	$\hookrightarrow_{ST} = S$	◆ CT			3,99	4.94
	$\hookrightarrow_{CT} = ACP+GEN$	◆ CT			1,33	9.96
	$\hookrightarrow_{CT} = PER+GEN$	◆ CT			1,33	7.18
	$\hookrightarrow_{CT} = NUM+GEN$	◆ CT			1,33	4.82
$\hookrightarrow_{ROI} = POZ$	◆ ST x CT				3,99	5.13
	$\hookrightarrow_{ST} = S$	◆ CT			3,99	7.07
	$\hookrightarrow_{CT} = ACP+NUM$	◆ CT			1,33	5.79
	$\hookrightarrow_{CT} = PER+NUM$	◆ CT			1,33	4.59
	$\hookrightarrow_{CT} = ACP+GEN$	◆ CT			1,33	13.21
	$\hookrightarrow_{CT} = PER+GEN$	◆ CT			1,33	11.94

1 **3.2.3 Time-window 500–700 ms**

2

3 The ERPs in the time-window begin to diverge such that they are more positive-going
4 for the violation conditions as opposed to the acceptable conditions. Whilst
5 differences in the positivity effect can be observed for sentences involving
6 singular subjects, no such clear pattern is apparent for sentences involving
7 plural subjects. However, a general difference between the subject-types is
8 beginning to emerge, especially in the frontal regions. **Table 6** shows a summary
9 of all the effects that reached at least marginal significance at the position of
10 the verb in the 500–700 ms time-window.

11 There was a main effect of subject-type in the lateral and midline regions. The
12 interaction ROI x subject-type was significant in the midline regions, which
13 when resolved for the individual ROIs showed an effect of subject-type in
14 the frontal and fronto-central regions. The interaction ROI x condition-type
15 reached significance in the midline regions, but did not resolve further.

16 The interaction subject-type x condition-type was significant in the midline
17 regions alone. The three-way interaction ROI x subject-type x condition-type
18 was significant in the lateral as well as midline regions, which when resolved
19 for the individual ROIs showed the interaction subject-type x condition-type
20 to be marginal in the left-posterior region, significant in the right-posterior
21 region, marginal in the fronto-central and central midline regions, and significant
22 in the centro-parietal, parietal and parieto-occipital regions. Resolving the
23 interaction in the lateral ROIs revealed an effect of condition-type in the right-
24 posterior region alone when the subject was singular. This was resolved further
25 by comparing the condition-types pairwise, which showed a marginal effect of
26 condition-type for the comparisons ACP + GEN and NUM + GEN. Resolving
27 the interaction in the midline regions showed an effect of condition-type in the
28 fronto-central, central, centro-parietal and parietal midline regions when the
29 subject was singular. This was further resolved by comparing the condition-types

- 1 pairwise, revealing a simple effect of condition-type for the comparison ACP
- 2 + PER in the fonto-central and central midline regions. Comparing PER +
- 3 NUM showed an effect of condition-type in all four midline regions concerned.
- 4 The comparison NUM + GEN revealed a simple effect of condition-type in the
- 5 central, centro-parietal and parietal regions.

Table 6: ANOVA: ERPs at the Verb : 500 – 700 ms

Effects in time-window 500–700 ms	DF	Lateral Regions	DF	Midline Regions
♦ ST	1,33	5.53 ★	1,33	5.82 ★
♦ ROI x ST			5,165	4.76 ★
└ ROI = FZ ♦ ST			1,33	14.86 ***
└ ROI = FCZ ♦ ST			1,33	10.40 **
♦ ROI x CT			15,495	2.44 ★
♦ ST x CT			3,99	2.68 ★
♦ ROI x ST x CT	9,297	3.56 ★	15,495	2.89 **
└ ROI = LP FCZ ♦ ST x CT	3,99	2.56 ★	3,99	2.40 ★
└ ST = S ♦ CT			3,99	3.94 **
└ CT = ACP+PER ♦ CT			1,33	7.02 ★
└ CT = PER+NUM ♦ CT			1,33	11.26 **
└ ROI = CZ ♦ ST x CT			3,99	2.53 ★
└ ST = S ♦ CT			3,99	3.70 **
└ CT = ACP+PER ♦ CT			1,33	6.37 ★
└ CT = PER+NUM ♦ CT			1,33	8.42 ★
└ CT = NUM+GEN ♦ CT			1,33	6.23 ★
└ ROI = RP CPZ ♦ ST x CT	3,99	3.27 ★	3,99	3.06 ★
└ ST = S ♦ CT	3,99	2.43 ★	3,99	2.67 ★
└ CT = PER+NUM ♦ CT			1,33	5.69 ★
└ CT = ACP+GEN ♦ CT	1,33	4.65 ★		
└ CT = NUM+GEN ♦ CT	1,33	4.71 ★	1,33	7.09 ★
└ ROI = PZ ♦ ST x CT			3,99	4.01 **
└ ST = S ♦ CT			3,99	3.18 ★
└ CT = PER+NUM ♦ CT			1,33	7.57 ★
└ CT = NUM+GEN ♦ CT			1,33	9.00 **
└ ROI = POZ ♦ ST x CT			3,99	2.90 ★

1 3.2.4 Time-window 700–850 ms

2

3 The predominant effect in this time-window is the late-positivity effect for
4 violation conditions as opposed to acceptable conditions. Crucially, this effect
5 is not only graded based on the violating feature, but its modulation is also
6 different based on the subject-type. The effect thus shows a four-way gradation
7 when the subject is singular, with number violations evoking the largest positivity
8 effect as opposed to acceptable sentences, followed by gender violations and
9 then by person violations. By contrast, only a three-way difference ensues for
10 plural subjects, with the largest positivity effect for number violations followed
11 by smaller but virtually identical positivities for person violations and gender
12 violations as opposed to acceptable sentences. Table 7 shows a summary of
13 all the effects that reached at least marginal significance at the position of the
14 verb in the 700–850 ms time-window.

15 There was a main effect of condition-type in the lateral and midline regions.
16 This effect was resolved by comparing the condition-types pairwise, which
17 showed a significant effect of condition-type for the comparisons ACP + PER,
18 ACP + NUM, ACP + GEN and PER + NUM in all concerned regions, with the
19 effect being marginal for the comparison NUM + GEN in the midline regions
20 alone.

21 The interaction subject-type x condition-type was significant in the lateral
22 as well as midline regions. The three-way interaction ROI x subject-type x
23 condition-type was similarly significant in the lateral and midline regions.
24 Resolving this interaction for the individual ROIs showed that the interaction
25 subject-type x condition-type was significant in the left-anterior, left-posterior
26 and right-anterior regions, and significant in all the midline regions except in
27 the parieto-occipital midline region, in which it was marginal. This interaction
28 was resolved for subject-type in all regions concerned. In the lateral regions,
29 when the subject was singular, there was an effect of condition-type in the

1 left-anterior, left-posterior and right-anterior regions, which was resolved by
2 comparing condition-types pairwise in these regions. This showed a simple
3 effect of condition-type for the comparisons ACP + NUM, ACP + GEN and PER
4 + GEN in all three regions concerned. There was an effect of condition-type
5 for the comparison PER + NUM in the left-posterior region, and the effect was
6 marginal in the right-anterior region. In the lateral regions, when the subject
7 was plural, there was an effect of condition-type only in the left-anterior region,
8 which when resolved further by comparing the condition-types pairwise revealed
9 a simple effect of condition-type for the comparisons ACP + NUM and NUM
10 + GEN. In the midline regions, when the subject was singular, there was
11 an effect of condition-type in all regions, which was resolved by comparing
12 condition-types pairwise, showing the following. There was a simple effect of
13 condition-type for the comparisons ACP + NUM, ACP + GEN, PER + NUM
14 and PER + GEN in all the midline regions, with the effect being marginal in
15 the parieto-occipital midline region for the comparison PER + GEN. For the
16 comparison ACP + PER, there was an effect of condition-type in the parietal
17 midline region alone. Comparing NUM + GEN showed a simple effect of
18 condition-type in the parietal midline region, and this effect was marginal in
19 the parieto-occipital midline region. In the midline regions, when the subject
20 was plural, there was an effect of condition-type in all regions except the
21 centro-parietal midline region, in which it was marginal. Resolving the effect
22 by comparing condition-types pairwise showed a simple effect of condition-type
23 for the comparison ACP + NUM in all regions. Comparing NUM + GEN
24 revealed a simple effect of condition-type in the frontal and fronto-central
25 midline regions, and this effect was marginal in the central midline region.
26 For the comparison ACP + PER, there was an effect of condition-type in the
27 frontal midline region. Comparing ACP + GEN showed a simple effect of
28 condition-type in the parietal and parieto-occipital midline regions.

Table 7: ANOVA: ERPs at the Verb : 700 – 850 ms

Effects in time-window 700–850 ms		DF	Lateral Regions	DF	Midline Regions		
◆ CT		3,99	10.82	***	3,99	13.64	***
└ CT = ACP+PER	◆ CT	1,33	6.44	*	1,33	5.69	*
└ CT = ACP+NUM	◆ CT	1,33	30.66	***	1,33	30.63	***
└ CT = PER+NUM	◆ CT	1,33	6.67	*	1,33	11.14	**
└ CT = ACP+GEN	◆ CT	1,33	15.24	***	1,33	22.45	***
└ CT = NUM+GEN	◆ CT				1,33	4.41	*
◆ ST x CT		3,99	3.19	*	3,99	4.85	**
◆ ROI x ST x CT		9,297	2.66	*	15,495	3.40	**
└ ROI = LA FZ	◆ ST x CT	3,99	3.51	*	3,99	5.98	***
	└ ST = S ◆ CT	3,99	6.40	***	3,99	10.75	***
	└ CT = ACP+NUM ◆ CT	1,33	12.74	**	1,33	18.18	***
	└ CT = PER+NUM ◆ CT				1,33	7.06	*
	└ CT = ACP+GEN ◆ CT	1,33	12.72	**	1,33	22.46	***
	└ CT = PER+GEN ◆ CT	1,33	5.53	*	1,33	10.61	**
	└ ST = P ◆ CT	3,99	3.74	**	3,99	3.40	*
	└ CT = ACP+PER ◆ CT				1,33	5.82	*
	└ CT = ACP+NUM ◆ CT	1,33	9.48	**	1,33	6.57	*
	└ CT = NUM+GEN ◆ CT	1,33	8.27	*	1,33	5.51	*
└ ROI = LP FCZ	◆ ST x CT	3,99	2.96	*	3,99	5.55	***
	└ ST = S ◆ CT	3,99	10.89	***	3,99	11.11	***
	└ CT = ACP+NUM ◆ CT	1,33	18.51	***	1,33	18.34	***
	└ CT = PER+NUM ◆ CT	1,33	11.08	*	1,33	10.10	**
	└ CT = ACP+GEN ◆ CT	1,33	14.93	***	1,33	22.08	***
	└ CT = PER+GEN ◆ CT	1,33	8.18	*	1,33	13.40	**
	└ ST = P ◆ CT				3,99	3.16	*
	└ CT = ACP+NUM ◆ CT				1,33	7.82	*
	└ CT = NUM+GEN ◆ CT				1,33	6.07	*
└ ROI = RA CZ	◆ ST x CT	3,99	3.64	*	3,99	3.84	**
	└ ST = S ◆ CT	3,99	6.55	***	3,99	11.06	***
	└ CT = ACP+NUM ◆ CT	1,33	7.00	*	1,33	17.33	***
	└ CT = PER+NUM ◆ CT	1,33	4.48	*	1,33	12.27	**
	└ CT = ACP+GEN ◆ CT	1,33	14.01	**	1,33	15.35	***

Continued on next page ...

...Table 7 continued

Effects in time-window 700–850 ms			DF Lateral Regions			DF Midline Regions		
		$\hookrightarrow_{CT} = PER+GEN \quad \blacklozenge CT$	1,33	9.21	**	1,33	10.35	**
		$\hookrightarrow_{ST} = P \quad \blacklozenge CT$				3,99	3.18	*
		$\hookrightarrow_{CT} = ACP+NUM \quad \blacklozenge CT$				1,33	10.74	**
		$\hookrightarrow_{CT} = NUM+GEN \quad \blacklozenge CT$				1,33	5.43	*
$\hookrightarrow_{ROI} =$	CPZ	$\blacklozenge ST \times CT$				3,99	4.60	**
		$\hookrightarrow_{ST} = S \quad \blacklozenge CT$				3,99	13.72	***
		$\hookrightarrow_{CT} = ACP+NUM \quad \blacklozenge CT$				1,33	21.72	***
		$\hookrightarrow_{CT} = PER+NUM \quad \blacklozenge CT$				1,33	13.42	**
		$\hookrightarrow_{CT} = ACP+GEN \quad \blacklozenge CT$				1,33	19.75	***
		$\hookrightarrow_{CT} = PER+GEN \quad \blacklozenge CT$				1,33	10.32	**
		$\hookrightarrow_{ST} = P \quad \blacklozenge CT$				3,99	2.52	*
		$\hookrightarrow_{CT} = ACP+NUM \quad \blacklozenge CT$				1,33	9.09	**
$\hookrightarrow_{ROI} =$	PZ	$\blacklozenge ST \times CT$				3,99	4.37	**
		$\hookrightarrow_{ST} = S \quad \blacklozenge CT$				3,99	17.01	***
		$\hookrightarrow_{CT} = ACP+PER \quad \blacklozenge CT$				1,33	5.49	*
		$\hookrightarrow_{CT} = ACP+NUM \quad \blacklozenge CT$				1,33	21.12	***
		$\hookrightarrow_{CT} = PER+NUM \quad \blacklozenge CT$				1,33	18.88	***
		$\hookrightarrow_{CT} = ACP+GEN \quad \blacklozenge CT$				1,33	20.51	***
		$\hookrightarrow_{CT} = PER+GEN \quad \blacklozenge CT$				1,33	9.79	**
		$\hookrightarrow_{CT} = NUM+GEN \quad \blacklozenge CT$				1,33	5.94	*
		$\hookrightarrow_{ST} = P \quad \blacklozenge CT$				3,99	3.58	*
		$\hookrightarrow_{CT} = ACP+NUM \quad \blacklozenge CT$				1,33	9.79	**
		$\hookrightarrow_{CT} = ACP+GEN \quad \blacklozenge CT$				1,33	9.01	**
$\hookrightarrow_{ROI} =$	POZ	$\blacklozenge ST \times CT$				3,99	2.42	*
		$\hookrightarrow_{ST} = S \quad \blacklozenge CT$				3,99	9.76	***
		$\hookrightarrow_{CT} = ACP+NUM \quad \blacklozenge CT$				1,33	15.80	***
		$\hookrightarrow_{CT} = PER+NUM \quad \blacklozenge CT$				1,33	13.36	**
		$\hookrightarrow_{CT} = ACP+GEN \quad \blacklozenge CT$				1,33	11.66	**
		$\hookrightarrow_{CT} = PER+GEN \quad \blacklozenge CT$				1,33	4.99	*
		$\hookrightarrow_{CT} = NUM+GEN \quad \blacklozenge CT$				1,33	4.71	*
		$\hookrightarrow_{ST} = P \quad \blacklozenge CT$				3,99	2.99	*
		$\hookrightarrow_{CT} = ACP+NUM \quad \blacklozenge CT$				1,33	9.22	**
		$\hookrightarrow_{CT} = ACP+GEN \quad \blacklozenge CT$				1,33	9.90	**

1 3.3 Summary of Results

2 The ERP results from our study can be summarised as follows.

3 • Violation of either of the agreement features generally elicited a biphasic
4 negativity – late-positivity effect as opposed to acceptable sentences.

5 • However, this biphasic effect was graded based on the feature that was
6 violated as well as the subject-type. Whilst number violations evoked
7 the largest effects overall, the effects for person and gender violations
8 were smaller in comparison, and showed a qualitative difference based
9 on whether the subject-type was singular or plural.

10 • In the early negativity time-window, number and gender violations evoked
11 a negativity effect with a posterior distribution as opposed to person
12 violations and acceptable conditions, when the subject was singular. When
13 the subject was plural, number and person violations evoked a negativity
14 effect as opposed gender violations and acceptable conditions. This effect
15 with an anterior distribution showed a slight left-lateral trend visually,
16 which was however not significant statistically.

17 • In the negativity time-window, a three-way distinction ensued that was
18 different for the two subject-types. Number violations evoked a large
19 broadly distributed negativity effect for both subject-types. Gender violations
20 evoked a larger negativity effect as opposed to person violations when the
21 subject was singular, with a centro-parietal maximum. Person violations
22 evoked a larger negativity effect as opposed to gender violations as well as
23 acceptable conditions when the subject was plural, with a fronto-central
24 distribution.

25 • In the late-positivity time-window, there was a four-way gradation of
26 the positivity effect when the subject was singular, whereas it was a
27 three-way gradation when the subject was plural. Number violations
28 evoked the largest positivity effect in both subject-types. Gender violations

1 evoked a larger positivity effect compared to person violations when the
2 subject was singular, but no such difference ensued when the subject was
3 plural.

4 Based on the latency and topography of effects as well as the experimental
5 conditions, the negativity effects in our study can be plausibly interpreted as
6 instances of an N400 effect and the late-positivities as instances of a P600
7 effect. Agreement violations of the sort we employed have been traditionally
8 viewed as formal morphosyntactic rule violations, which are associated with
9 concomitant LAN effects that are interpreted as indicative of the detection of
10 the morphosyntactic violation (Münte, Szentkuti, Wieringa, Matzke, & Johannes,
11 1997; Münte, Matzke, & Johannes, 1997; Friederici, 2002; Bornkessel & Schlesewsky,
12 2006). Further, the likelihood of observing a LAN has been thought to be
13 in direct proportion to the morphological richness of a language (Friederici
14 & Weissenborn, 2007), which nevertheless is said to depend upon whether
15 morphological marking is crucial for assigning syntactic roles in the given
16 language (Friederici, 2011). However, Molinaro, Barber, & Carreiras (2011)
17 draw attention to the fact that the nature of the complexities involved in
18 morphological decomposition for feature identification may dissociate whether
19 a LAN or, alternatively, an N400 ensues. Indeed, Choudhary, Schlesewsky,
20 Roehm, & Bornkessel-Schlesewsky (2009) provide converging evidence from
21 Hindi that this dissociation results from whether an interpretively relevant
22 cue is violated (in which case an N400 ensues), or alternatively the violation
23 involves a cue that is irrelevant for interpretation. In view of this, the absence
24 of a LAN effect and the presence of an N400 in our study is not surprising, given
25 that agreement computation in Arabic is not simply formal, but is dependent
26 upon specific syntactic properties of the construction involved, such as word-order
27 and whether or not the subject is overt, as well as properties at the syntax-semantic
28 interface such as humanness (see below for a detailed discussion). The P600
29 effects in our study can be plausibly interpreted as reflecting repair or reanalysis
30 processes associated with agreement violations (Friederici, 2002, 2011; Bornkessel

1 & Schlesewsky, 2006), thought to be triggered by domain-general conflict
2 monitoring processes (Van de Meerendonk, Chwilla, & Kolk, 2013).

3 Before discussing our findings further below, we briefly turn to an ongoing
4 debate in the ERP literature on morphosyntactic processing, which relates
5 to inter-participant variation of ERP effects. The claim is that most of the
6 LAN effects reported for agreement processing in the literature may simply be
7 artefactual resulting from components that partially overlap temporally and
8 spatially, which happen to be aggregated together due to the grand-averaging
9 of individual ERPs (Tanner, 2018, 2015; Tanner & Van Hell, 2014). Whilst
10 we did not find a LAN effect in our study, it is important to consider whether
11 individual variation amongst our participants might be able to explain some of
12 our results. However, several points speak against such a possibility. Firstly,
13 individual variation, if any, would have been systematic across conditions for
14 a given participant. Secondly, in view of our within-participants design, any
15 such variation would have equally contributed to all the critical conditions
16 since all of them consisted of the same type of violation, namely a violation
17 of an agreement feature between the subject and the verb. Thirdly, as Grey,
18 Tanner, & Van Hell (2017) have reported, variation in ERP effects engendered
19 during morphosyntactic processing across individuals is said to be minimal in
20 case of dominant right-handers (as opposed to left-handers). All our participants
21 were dominantly right-handed individuals (see Section 2.5). Crucially therefore,
22 given that any potential artefactual outcome resulting from the grand-averaging
23 procedure would be equally applicable to all our critical conditions, individual
24 variation may not fully account for, nor nullify, the subject-type specific differences
25 in the modulation of effects we found in our study.

26 **4 Discussion**

27 We investigated the processing of subject-verb agreement in simple intransitive
28 Arabic sentences in this ERP experiment, and present here the findings from
29 one of the first neurocognitive studies examining sentence level processes in

1 Arabic, thus providing first insights into the online processing of the language.

2 **4.1 Hierarchical Modulation of Effects**

3 As illustrated by the topographic map of effects in [Figure 3](#), our results show
4 that violations of the features not only modulate the biphasic pattern of ERPs,
5 but they also show a qualitative difference in their modulation based on whether
6 the subject was singular or plural. The modulation of effects for the violation
7 conditions as opposed to the acceptable conditions in our study can be represented
8 as a hierarchy as follows:

9 (2) Modulation of N400

10 Singular subject conditions : Number / Gender > Person
11 Plural subject conditions : Number / Person > Gender

12 (3) Modulation of P600

13 Singular subject conditions : Number > Gender > Person
14 Plural subject conditions : Number > Person / Gender

15 A handful of previous studies investigating processing differences between
16 agreement features (in the subject-verb context or otherwise) have indeed
17 reported a modulation of late-positive P600 effects, albeit for across subject-type
18 comparisons ([Kaan et al., 2000](#); [Deutsch & Bentin, 2001](#)) or for combined
19 versus single feature violations ([Nevins et al., 2007](#); [Zawiszewski et al., 2016](#);
20 [Alemán Bañón & Rothman, 2016](#)).¹ However, to our knowledge, a modulation

1. Since the focus in our study is on the differences in effects *within* a subject-type, it is not straightforward to compare our results with these studies. Nevertheless, restricting to subject-verb agreement and single feature violations, the P600 for the two subject-types in our results may be compared to at least two studies. The P600 difference in our results for the number feature between the two subject-types would be in line with a similar finding in Dutch that [Kaan et al. \(2000\)](#) reported. On the other hand, we found P600 effects for gender violations in both subject-types, whereas [Deutsch & Bentin \(2001\)](#) reported a P600 effect only when the subject was plural in Hebrew.

1 of negativities (LAN or N400) has not been reported to date in the context of
2 agreement violations², and ours may be the first study on agreement processing
3 to have observed such a hierarchical modulation of the N400 based on the
4 agreement feature involved.

5 The modulation of effects in our study, especially of the negativity, cannot be
6 satisfactorily explained simply based on differences in the complexity between
7 the conditions, nor the frequency of a certain type of violation, nor orthographic
8 salience, nor even the morphosyntactic markedness per se. Rather, we argue
9 that these results suggest that the processing system takes into account the
10 relative cognitive salience of the features in the given language. If so, this
11 would be in line with the view put forward by Molinaro, Barber, & Carreiras
12 (2011) in their exhaustive review of cross-linguistic findings on processing
13 agreement, namely that the processing of agreement dependencies is sensitive
14 to the feature involved as well as the constituents expressing the dependency,
15 and that this can result in modulations of negativity effects such as LAN and/or
16 N400 as well as of the late-positivity³. Specifically, the processing of subject-verb
17 agreement is said to involve semantic factors in addition to morphosyntactic
18 information (Molinaro, Vespiagnani, Zamparelli, & Job, 2011), and the extent to
19 which lexical-semantic factors play a role in computing subject-verb agreement
20 in a given language is said to have a direct bearing on whether a LAN or an
21 N400 effect is engendered (Molinaro, Barber, Caffarra, & Carreiras, 2015).

2. In their Basque study, Zawiszewski et al. (2016) found a significant difference in the 300-500 time-window, which they had initially interpreted as an N400 modulation for number violations as opposed to the other conditions; however, the statistics in their study as well as the topography of this effect with a posterior maximum in the P3 electrode region suggests that it is rather a P300 difference that they observe, as has been correctly pointed out by an anonymous reviewer of their manuscript. Their behavioural data also support this interpretation rather than their initial conjecture.
3. Nevertheless, we do not assume that these effects are strictly following each other in stages.

1 **4.2 Salience-weighted Feature Hierarchy**

2 In view of the agreement feature hierarchy in (1) originally proposed based
3 on cross-linguistic distribution of these features (Greenberg, 1963), the graded
4 effects in the present study are not surprising. Rather, our results provide
5 neurophysiological evidence for the idea that the relative position of a feature
6 in the hierarchy directly reflects its relative cognitive salience (Harley & Ritter,
7 2002, but see below) and thereby its relative importance in language processing
8 (Carminati, 2005) in comparison to other features. Nevertheless, the modulation
9 of effects found in our study suggests that the feature hierarchy may not be
10 identical across languages. That is, it appears to differ based on language-specific
11 properties, and may exhibit slight variations even within a given language
12 depending upon the specifics of the construction involved and general language-use
13 in the speech community. We argue below that this variation is neither an
14 aberration nor arbitrary. Rather, it is systematic based on the relative weightings
15 of the salience of a given feature in a language.

16 We postulate a hierarchy of agreement features that is language-specific rather
17 than universal. The properties of a given language as well as the relative
18 salience of the agreement features determine the hierarchy and thereby differentially
19 modulate language comprehension. If the hierarchy is flat such that there is
20 minimal difference in cognitive salience between the features, then no modulation
21 of ERP effects should be expected for single feature violations in the given
22 language. If there is a hierarchical difference in salience between the features,
23 then there would be a concomitant modulation of ERP effects, such that violating
24 a highly salient agreement feature evokes a larger effect compared to violations
25 of a less salient feature.

26 The idea that some properties in a language may be relatively more salient
27 than others for language comprehension is not new. This was first put forward
28 in the context of the Competition Model (e.g., MacWhinney et al., 1984; Bates
29 & MacWhinney, 1989; Bates, 1999), in which such linguistic properties or cues

1 with language-specific weightings interact during language comprehension.
2 Agreement is one such cue, the strength of which has been shown to vary
3 across languages (for an overview, see Bates et al., 2001). Within the domain
4 of online language processing, Bornkessel-Schlesewsky & Schlesewsky (2009)
5 have proposed that information types such as case-marking, word-order, animacy
6 etc., called prominence information, all interact during online language comprehension,
7 and that their relative prominence depends upon their language-specific weightings.
8 For instance, word-order has higher weighting in English than, say, animacy,
9 and determines the argument roles, whereas in a language like Turkish, case is
10 more prominent, and so on. Furthermore, in a recent article, Bornkessel-Schlesewsky
11 & Schlesewsky (2019) have argued for a neurobiologically plausible model,
12 whereby they posit that all the language-related negativities form a family
13 of functionally related rather than distinct negativities, and that amplitude
14 modulations of negativities are said to reflect ‘precision-weighted predictive
15 coding errors, with precision (the inverse of variance) reflecting the relevance
16 of a particular stimulus feature in a given language (Bornkessel-Schlesewsky &
17 Schlesewsky, 2019, p. 11)’.
18 We extend the idea of weightings to the domain of agreement features, such
19 that they are organised on a salience-weighted hierarchy, with differences
20 in their salience due to specific properties of the language determining their
21 position on the hierarchy. Further, this hierarchy interacts with other prominence
22 scales and discourse context such that the modulation of effects may vary
23 within the language based on the specific type of construction (Mancini et
24 al., 2011a). This proposal would parsimoniously account for the fact that
25 ERP effects for subject-verb agreement violations show a graded hierarchy in
26 certain languages / constructions, whereas such a pattern does not ensue in
27 others.

1 **4.3 Language-specific Feature Weightings**

2 In support of our proposal that the hierarchy of agreement features may very
3 well be language-specific based on the relative cognitive salience of the features
4 in the given language, we motivate here a language-internal explanation of
5 how these different weightings come about in Arabic.

6 As mentioned when motivating Arabic as a suitable language for the purpose
7 of investigating our research question, verb agreement is not merely formal
8 in Arabic. Specifically, number and gender agreement in particular involve
9 complex interactions with syntactic and semantic properties of a sentence and
10 its event participants, such that verb agreement with these features is not
11 always determined by the number and gender properties of the subject noun
12 concerned.

13 The Arabic verb agrees with its subject noun in all three features when the
14 word-order is SV, whereas it shows an idiosyncratic agreement pattern for
15 third-person plural subject nouns in the VS word-order depending upon whether
16 the subject is overt, or alternatively, covert (i.e., dropped) in a sentence. An
17 upcoming overt plural subject would require the verb to show singular agreement,
18 whereas if the plural subject were to be dropped from the utterance, the verb
19 must show plural agreement. That is, number agreement is not only dependent
20 upon the subject's number property, but also upon the relative order of the verb
21 and the subject as well as whether or not the subject is going to be overtly
22 uttered. In other words, under certain circumstances, an identical verb form
23 is sometimes correct and sometimes incorrect based on the above mentioned
24 factors that go beyond the number property of the subject noun per se. Thus, as
25 far as the processing system is concerned, the number feature provides highly
26 salient information in order to process a sentence and construct its intended
27 meaning, because a simple feature-matching between the number property of
28 the subject and the verb would not always lead to the correct interpretation.

29 Similarly, the gender feature also involves an idiosyncracy, whereby plural

1 masculine nouns require the verb to show full agreement if the noun is human,
2 whereas for non-human (animate and inanimate) masculine plural nouns, the
3 verb must show singular-feminine agreement. In effect, this means that gender
4 interacts with the animacy hierarchy (or rather, humanness to be specific) and
5 plays a crucial role in determining the correct agreement paradigm.

6 By contrast, the person feature does not exhibit any idiosyncratic variation
7 in Arabic as far as agreement is concerned. In other words, an agreement
8 violation involving the person feature is always reliably a violation, and therefore,
9 the processing system need not consider global properties of the language when
10 evaluating person agreement in Arabic.

11 Therefore, evaluating number and gender agreement involves factors beyond
12 the number and gender properties of the noun, which co-determine the processing
13 of these features.

14 In other words, number and gender, in that order, are cognitively more salient
15 in Arabic for processing subject-verb agreement than the person feature. This
16 would explain the hierarchy of effects we observed in our study for singular
17 subjects. However, results for plural subject nouns would suggest that the
18 hierarchy is qualitatively different from that for singular subjects, in that the
19 gender feature may be less salient than the person feature for plural subjects.
20 There may be at least two language-internal reasons for this difference. First,
21 when speaking about or addressing a group of individuals involving both women
22 and men, speakers of Arabic overwhelmingly tend to use masculine agreement.
23 That is, based on language-use, a verb that shows masculine agreement for a
24 group of individuals also involving women is not a violation in Arabic. Second,
25 the idiosyncracy described above, namely that non-human masculine plural
26 nouns require the verb (and adjectives etc.) to show singular feminine agreement
27 across the board, means that roughly half of the utterances involving masculine
28 plural nouns require feminine agreement. That is, a verb that shows feminine
29 agreement in the context of masculine plural subjects (albeit non-human) is not

1 always a violation either. Simply put, both mismatching paradigms, namely,
2 masculine subjects requiring feminine verb agreement and feminine subjects
3 requiring masculine verb agreement, exist in the language. As a consequence,
4 gender agreement mismatches involving plural nouns (masculine or feminine)
5 are not always violations, which explains the fact that the effects for gender
6 violations in our study were smallest for plural subjects.

7 **4.4 Implications and Outlook**

8 Previous results from morphologically rich languages such as Hindi and Basque
9 are of particular relevance here. In Hindi, in which subject-verb agreement is
10 purely based on the features of the nominative subject noun, Nevins et al.
11 (2007) have found that no modulation of effects ensued based on whether
12 number or gender is violated. Although their study did not include a pure
13 person violation, there was a combined person + number violation condition,
14 which elicited a larger P600 effect. Furthermore, the P600 effect for the
15 combined violation of person + number was larger than that for both the combined
16 number + gender violation and individual number and gender violations. A
17 potential caveat for the larger P600 in their study for person + number violations
18 may have been the relative infrequency of this condition in comparison to
19 the other violation conditions in their stimuli. Remaining ambivalent about
20 whether or not the infrequency of this condition played a role, the authors
21 attributed the larger P600 effect to the increased orthographic salience of
22 person violations in Hindi rather than an additive effect, but added that it
23 may be due to a cross-linguistically privileged status of the person feature.
24 In Basque, Zawiswewski et al. (2016) have reported a larger P600 effect for
25 person violations as opposed to number violations. By contrast, the effect for
26 a combined violation of person + number did not differ from that for a person
27 violation, with these two conditions showing an equally larger P600 effect
28 compared to number violation. This would imply that the person feature is
29 more salient in Basque, and that a combined violation of a more salient and

1 less salient feature would not lead to additive effects. In the first instance,
2 these results may appear to suggest that the person feature is somehow more
3 significant and especially salient than the other features. However, two studies
4 that specifically investigated person agreement are a case in point here. Seemingly
5 anomalous, but alternatively interpretable person agreement (the so-called
6 ‘unagreement’) in Spanish (Mancini, Molinaro, Rizzi, & Carreiras, 2011b) and
7 Basque (Mancini, Massol, Duñabeitia, Carreiras, & Molinaro, 2019) evoke negativities
8 (albeit with topographic and latency differences) but no P600 in comparison
9 to outright and irresolvable person violations. Taken together, these results
10 and the results from our study do not speak for a universal special status
11 for the person feature, but rather provide converging evidence to our claim
12 that modulation of effects correlate with language-specific differences in the
13 salience of a given feature.

14 Consequently, we argue that a parsimonious account of apparently contradictory
15 results from Hindi and Basque mentioned above on the one hand and our
16 results from Arabic on the other would be along the lines of what we propose
17 here, namely that the agreement features person, number and gender may
18 show different hierarchies (or no hierarchies at all) depending upon the specific
19 properties of a language, based on their relative salience in the given language,
20 with differences in language-specific weightings resulting from a number of
21 language-internal reasons.

22 Our proposal here is not entirely incompatible with the idea of orthographic
23 salience contributing to the larger P600 effect for the combined person + number
24 violation in Hindi. However, a more general explanation for the increased
25 salience of the person feature in Hindi may be that, whereas number and
26 gender are marked on the main verb even in the perfective aspect when the
27 agent is in ergative case, person marking is underspecified by contrast, and
28 only available from the auxiliary in the perfective aspect. In the imperfective
29 aspect, when the person feature is exclusively available on the main verb as in
30 the stimuli employed by Nevins et al. (2007), it is more prominent and salient,

1 and a violation of this highly salient feature would have led to a concomitantly
2 larger P600 effect in their study. Similarly, in the Basque study by Zawiszewski
3 et al. (2016), the word-final subject morpheme in the auxiliary verb for the
4 number violation was orthographically minimally different from that for the
5 grammatical condition (*-zue versus -zu), whereas the morpheme indicating
6 person and person + number violations were quite distinct (*-t and *-gu versus
7 -zu), and therefore much more salient visually and phonetically. This may have
8 contributed to the equally larger P600 for these latter violations as opposed to
9 number violations in that study. The behavioural data that the authors have
10 reported strongly supports this claim, such that the violations involving the
11 distinct morphemes were almost always accurately detected as such, and much
12 quicker, in comparison to number violations, which were detected with a lower
13 accuracy, and at a slower pace.

14 In sum, existing results from Hindi and Basque can be accounted for based on
15 the increased salience of the person feature (in the Hindi study, due to the
16 orthography and exclusive availability of person in their stimuli; in the Basque
17 study, due to the orthographic distinctness of the morpheme indicating person
18 violation), without having to resort to a universally privileged or significant
19 status for the person feature. In other words, the person feature is more salient
20 in Hindi and Basque, albeit due to very different reasons, leading to a similar
21 pattern of results in these languages. By contrast, the person feature seems to
22 be the least salient feature in Arabic in comparison to number or gender, as
23 explained earlier. Our proposal here of a language-specific salience-weighted
24 feature hierarchy also satisfactorily provides a general and overarching account
25 for cross-linguistic differences in the pattern of results reported for subject-verb
26 agreement violations, such as in Dutch (Kaan et al., 2000) and Hebrew (Deutsch
27 & Bentin, 2001), among others.

28 Furthermore, the concept of salience-based weightings enables generating specific
29 hypotheses about agreement processing in understudied languages. For instance,
30 whilst we do not yet have any independent evidence from Arabic for whether

1 or not multiple feature violations would lead to additive effects when the
2 features are on a hierarchy based on their salience differences, results from
3 Hindi and Basque point to the fact that an additive effect need not necessarily
4 ensue. Nevertheless, further research is necessary to investigate the question
5 in detail. Furthermore, if agreement is purely formal in a language, and there
6 are no apparent salience differences between the features, as in say a language
7 like Malayalam, then no modulation of effects should be expected, whereas
8 in languages in which the features have different salience weightings either
9 due to orthographic reasons (as in Hindi or Basque), or syntactic or semantic
10 reasons (as in Arabic), then modulations of effects should be expected.

11 Our proposal for a Salience-weighted Feature Hierarchy is generally in line
12 with the agreement feature hierarchy (Greenberg, 1963) and the Feature Strength
13 Hypothesis (Carminati, 2005), and provides neurophysiological evidence for
14 the idea that agreement processes involve syntactic, semantic and pragmatic
15 factors all at once (Eberhard et al., 2005; Vigliocco et al., 1995). However,
16 our findings do not support a universal special status for specific features
17 (say, person) across languages. Rather, the crucial difference between what
18 we postulate here and previous proposals is that, the hierarchy of features
19 may and do differ based on language-specific characteristics, whereby the
20 relative position of a feature depends upon the language-specific weighting
21 of the feature. Our proposal parsimoniously accounts for the fact that ERP
22 effects for agreement violations show a graded hierarchy in certain languages
23 / constructions, whereas such a pattern does not ensue in others.

24 **4.5 Conclusion**

25 In the study presented here, we investigated the processing differences between
26 person, number and gender agreement in Arabic, a widely-spoken but understudied
27 language. One of the first neurophysiological studies examining sentence level
28 processes in Arabic to date, the findings from our study are an important
29 addition to existing cross-linguistic results on online language comprehension.

1 Thanks to the within-language within-participants systematic comparison of all
2 three agreement features in the context of subject-verb agreement in our study,
3 we could show for the first time that the agreement features differentially
4 modulate language comprehension based on their relative cognitive salience.
5 The salience weightings of features may and do differ across languages depending
6 upon the specific properties of the language concerned, thus giving rise to a
7 hierarchy of agreement features that is language-specific rather than universal.
8 Such a Salience-weighted Feature Hierarchy, we argue, would parsimoniously
9 account for the diversity of existing cross-linguistic neurophysiological results
10 on verb agreement processing, without having to resort to a universal special
11 status for a certain feature, nor having to assume a universally static hierarchy
12 of features that does not take into account the typological properties of individual
13 languages. Furthermore, our proposal enables generating specific testable hypotheses
14 about agreement processing in languages that are as yet unstudied or understudied.
15 In this respect, our study is an important contribution towards understanding
16 how the human brain processes and comprehends vastly diverse languages
17 with equal ease and poise.

Acknowledgements

The research reported here conducted in the context of several research visits by R. Muralikrishnan was partly supported by a Research Institute grant (G1001) from New York University in Abu Dhabi to Prof. Alec Marantz, whom we should like to thank here. Ali Idrissi was at the United Arab Emirates University in Al Ain during the study.

References

Acuña-Fariña, J. C. (2009). The linguistics and psycholinguistics of agreement: A tutorial overview. *Lingua*, 119(3), 389–424. Retrieved from <https://doi.org/10.1016/j.lingua.2008.09.005> doi: 10.1016/j.lingua.2008.09.005 [Cited at p. 4]

Alemán Bañón, J., & Rothman, J. (2016). The role of morphological markedness in the processing of number and gender agreement in Spanish: an event-related potential investigation. *Language, Cognition and Neuroscience*, 31(10), 1273–1298. Retrieved from <https://doi.org/10.1080/23273798.2016.1218032> doi: 10.1080/23273798.2016.1218032 [Cited at p. 6, 7, 41]

Angrilli, A., Penolazzi, B., Vespignani, F., Vincenzi, M. D., Job, R., Ciccarelli, L., ... Stegagno, L. (2002). Cortical brain responses to semantic incongruity and syntactic violation in Italian language: an event-related potential study. *Neuroscience Letters*, 322(1), 5–8. Retrieved from [https://doi.org/10.1016/s0304-3940\(01\)02528-9](https://doi.org/10.1016/s0304-3940(01)02528-9) doi: 10.1016/s0304-3940(01)02528-9 [Cited at p. 6]

Barber, H., & Carreiras, M. (2005). Grammatical gender and number agreement in Spanish: An ERP comparison. *Journal of Cognitive Neuroscience*, 17(1), 137–153. [Cited at p. 6]

Bates, E. (1999). Processing complex sentences: A cross-linguistic study. *Language and Cognitive Processes*, 14(1), 69–123. Retrieved from <https://doi.org/10.1080/016909699386383> doi: 10.1080/016909699386383 [Cited at p. 5, 43]

Bates, E., & MacWhinney, B. (1989). Functionalism and the competition model. In B. MacWhinney & E. Bates (Eds.), *The crosslinguistic study of sentence processing* (pp. 3–76). New York: Cambridge University Press. [Cited at p. 5, 43]

Bates, E., McNew, S., Devescovi, A., & Wulfeck, B. (2001). Psycholinguistics: A cross-language perspective. *Annual Review of Psychology*, 52, 369–396. [Cited at p. 5, 44]

Bock, K., & Miller, C. A. (1991). Broken agreement. *Cognitive Psychology*, 23(1), 45–93. Retrieved from [https://doi.org/10.1016/0010-0285\(91\)90003-7](https://doi.org/10.1016/0010-0285(91)90003-7) doi: 10.1016/0010-0285(91)90003-7 [Cited at p. 4]

Bornkessel, I., & Schlesewsky, M. (2006). The Extended Argument Dependency Model: A neurocognitive approach to sentence comprehension across languages. *Psychological Review*, 113(4), 787–821. [Cited at p. 39]

Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2009). The Role of Prominence Information in the Real-Time Comprehension of Transitive Constructions: A Cross-Linguistic Approach. *Language and Linguistics Compass*, 3(1), 19–58. [Cited at p. 44]

Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2016). The importance of linguistic typology for the neurobiology of language. *Linguistic Typology*, 20(3). Retrieved from <https://doi.org/10.1515/lingty-2016-0032> doi: 10.1515/lingty-2016-0032 [Cited at p. 9]

Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2019). Toward a neurobiologically plausible model of language-related, negative Event-Related Potentials. *Frontiers in Psychology*, 10. Retrieved from <https://doi.org/10.3389/fpsyg.2019.00298> doi: 10.3389/fpsyg.2019.00298 [Cited at p. 44]

Carminati, M. N. (2005). Processing reflexes of the feature hierarchy (person > number > gender) and implications for linguistic theory. *Lingua*, 115(3), 259–285. Retrieved from <https://doi.org/10.1016/j.lingua.2003.10.006> doi: 10.1016/j.lingua.2003.10.006 [Cited at p. 4, 43, 50]

Choudhary, K. K., Schlesewsky, M., Roehm, D., & Bornkessel-Schlesewsky, I. (2009). The n400 as a correlate of interpretively relevant linguistic rules: Evidence from hindi. *Neuropsychologia*, 47(13), 3012–3022. Retrieved from <https://doi.org/10.1016/j.neuropsychologia.2009.05.009> doi: 10.1016/j.neuropsychologia.2009.05.009 [Cited at p. 39]

Corbett, G. G. (2000a). *Number*. Cambridge: Cambridge University Press. [Cited at p. 4]

Corbett, G. G. (2000b). *Number*. Cambridge: Cambridge University Press. [Cited at p. 4]

Coulson, S., King, J. W., & Kutas, M. (1998). Expect the Unexpected: Event-related Brain Response to Morphosyntactic Violations. *Language and Cognitive Processes*, 13(1), 21–58. [Cited at p. 5]

De Vincenzi, M. (1999). [Cited at p. 4] *Journal of Psycholinguistic Research*, 28(5), 537–553. Retrieved from <https://doi.org/10.1023/a:1023272511427> doi: 10.1023/a:1023272511427

De Vincenzi, M., Job, R., Matteo, R. D., Angrilli, A., Penolazzi, B., Ciccarelli, L., & Vespignani, F. (2003). Differences in the perception and time course of syntactic and semantic violations. *Brain and Language*, 85(2), 280–296.

Retrieved from [https://doi.org/10.1016/s0093-934x\(03\)00055-5](https://doi.org/10.1016/s0093-934x(03)00055-5) doi: 10.1016/s0093-934x(03)00055-5 [Cited at p. 6]

Deutsch, A., & Bentin, S. (2001). Syntactic and semantic factors in processing gender agreement in hebrew: Evidence from ERPs and eye movements. *Journal of Memory and Language*, 45(2), 200–224. Retrieved from <https://doi.org/10.1006/jmla.2000.2768> doi: 10.1006/jmla.2000.2768 [Cited at p. 6, 41, 49]

Díaz, B., Sebastián-Gallés, N., Erdocia, K., Mueller, J. L., & Laka, I. (2011). On the cross-linguistic validity of electrophysiological correlates of morphosyntactic processing: A study of case and agreement violations in basque. *Journal of Neurolinguistics*, 24(3), 357–373. Retrieved from <https://doi.org/10.1016/j.jneuroling.2010.12.003> doi: 10.1016/j.jneuroling.2010.12.003 [Cited at p. 6]

Dillon, B., Mishler, A., Sloggett, S., & Phillips, C. (2013). Contrasting intrusion profiles for agreement and anaphora: Experimental and modeling evidence. *Journal of Memory and Language*, 69(2), 85–103. Retrieved from <https://doi.org/10.1016/j.jml.2013.04.003> doi: 10.1016/j.jml.2013.04.003 [Cited at p. 4]

Eberhard, K. M., Cutting, J. C., & Bock, K. (2005). Making syntax of sense: Number agreement in sentence production. *Psychological Review*, 112(3), 531–559. Retrieved from <https://doi.org/10.1037/0033-295x.112.3.531> doi: 10.1037/0033-295x.112.3.531 [Cited at p. 4, 5, 50]

Ferguson, C. F. (1959). Diglossia. *Word*, 15(2), 325–340. [Cited at p. 8]

Frenck-Mestre, C., Osterhout, L., McLaughlin, J., & Foucart, A. (2008). The effect of phonological realization of inflectional morphology on verbal agreement in french: Evidence from ERPs. *Acta Psychologica*, 128(3),

528–536. Retrieved from <https://doi.org/10.1016/j.actpsy.2007.12.007> doi: 10.1016/j.actpsy.2007.12.007 [Cited at p. 6]

Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. *Trends in Cognitive Sciences*, 6, 78–84. [Cited at p. 39]

Friederici, A. D. (2011). The brain basis of language processing: From structure to function. *Physiological Reviews*, 91(4), 1357–1392. Retrieved from <https://doi.org/10.1152/physrev.00006.2011> doi: 10.1152/physrev.00006.2011 [Cited at p. 39]

Friederici, A. D., & Weissenborn, J. (2007). Mapping sentence form onto meaning: The syntax–semantic interface. *Brain Research*, 1146, 50–58. Retrieved from <https://doi.org/10.1016/j.brainres.2006.08.038> doi: 10.1016/j.brainres.2006.08.038 [Cited at p. 39]

Greenberg, J. H. (1963). Some universals of grammar with particular reference to the order of meaningful elements. In J. H. Greenberg (Ed.), *Universals of human language* (p. 73-113). Cambridge, Mass: MIT Press. [Cited at p. 3, 43, 50]

Grey, S., Tanner, D., & Van Hell, J. G. (2017). How right is left? handedness modulates neural responses during morphosyntactic processing. *Brain Research*, 1669, 27–43. Retrieved from <https://doi.org/10.1016/j.brainres.2017.05.024> doi: 10.1016/j.brainres.2017.05.024 [Cited at p. 40]

Guajardo, L. F., & Wicha, N. Y. (2014). Morphosyntax can modulate the N400 component: Event related potentials to gender-marked post-nominal adjectives. *NeuroImage*, 91, 262–272. Retrieved from <https://doi.org/10.1016/j.neuroimage.2013.09.077> doi: 10.1016/j.neuroimage.2013.09.077 [Cited at p. 6]

Gunter, T. C., Friederici, A. D., & Schriefers, H. (2000). Syntactic Gender and Semantic Expectancy: ERPs Reveal Early Autonomy and Late Interaction. *Journal of Cognitive Neuroscience*, 12(4), 556–568. [Cited at p. 6]

Hagoort, P., Brown, C., & Groothusen, J. (1993). The syntactic positive shift (sps) as an erp measure of syntactic processing. *Language and Cognitive Processes*, 8(4), 439–483. Retrieved from <https://doi.org/10.1080/01690969308407585> doi: 10.1080/01690969308407585 [Cited at p. 5, 6]

Harley, H., & Ritter, E. (2002). Person and number in pronouns: A feature-geometric analysis. *Language*, 78(3), 482–526. Retrieved from <https://doi.org/10.1353/lan.2002.0158> doi: 10.1353/lan.2002.0158 [Cited at p. 4, 43]

Hartsuiker, R. J., Antón-Méndez, I., & van Zee, M. (2001). Object attraction in subject-verb agreement construction. *Journal of Memory and Language*, 45(4), 546–572. Retrieved from <https://doi.org/10.1006/jmla.2000.2787> doi: 10.1006/jmla.2000.2787 [Cited at p. 4]

Haskell, T. R., Thornton, R., & MacDonald, M. C. (2010). Experience and grammatical agreement: Statistical learning shapes number agreement production. *Cognition*, 114(2), 151–164. Retrieved from <https://doi.org/10.1016/j.cognition.2009.08.017> doi: 10.1016/j.cognition.2009.08.017 [Cited at p. 4]

Huynh, H., & Feldt, L. S. (1970). Conditions under which mean square ratios in repeated measurements designs have exact f-distributions. *Journal of the American Statistical Association*, 65(332), 1582-1589. Retrieved from <http://www.tandfonline.com/doi/abs/10.1080/01621459.1970.10481187> [Cited at p. 16, 17]

Kaan, E. (2002). [Cited at p. 5] *Journal of Psycholinguistic Research*, 31(2), 165–193. Retrieved from <https://doi.org/10.1023/a:1014978917769> doi: 10.1023/a:1014978917769

Kaan, E., Harris, A., Gibson, E., & Holcomb, P. (2000). The P600 as an index of syntactic integration difficulty. *Language and Cognitive Processes*, 15(2), 159–201. [Cited at p. 6, 41, 49]

Keppel, G. (1991). *Design and analysis: A researcher's handbook* (3rd ed.). Englewood Cliffs, NY: Prentice Hall. [Cited at p. 16, 17]

Kutas, M., & Hillyard, S. A. (1983). Event-related brain potentials to grammatical errors and semantic anomalies. *Memory & Cognition*, 11(5), 539–550. Retrieved from <https://doi.org/10.3758/bf03196991> doi: 10.3758/bf03196991 [Cited at p. 5]

Lago, S., Shalom, D. E., Sigman, M., Lau, E. F., & Phillips, C. (2015). Agreement attraction in spanish comprehension. *Journal of Memory and Language*, 82, 133–149. Retrieved from <https://doi.org/10.1016/j.jml.2015.02.002> doi: 10.1016/j.jml.2015.02.002 [Cited at p. 4]

Leinonen, A., Brattico, P., Järvenpää, M., & Krause, C. M. (2008). Event-related potential (ERP) responses to violations of inflectional and derivational rules of finnish. *Brain Research*, 1218, 181–193. Retrieved from <https://doi.org/10.1016/j.brainres.2008.04.049> doi: 10.1016/j.brainres.2008.04.049 [Cited at p. 5]

MacWhinney, B., Bates, E., & Kliegl, R. (1984). Cue validity and sentence interpretation in english, german, and italian. *Journal of Verbal Learning and Verbal Behavior*, 23(2), 127–150. Retrieved from [https://doi.org/10.1016/s0022-5371\(84\)90093-8](https://doi.org/10.1016/s0022-5371(84)90093-8) doi: 10.1016/s0022-5371(84)90093-8 [Cited at p. 5, 43]

Mancini, S., Massol, S., Duñabeitia, J. A., Carreiras, M., & Molinaro, N. (2019). Agreement and illusion of disagreement: An ERP study on basque. *Cortex*, 116, 154–167. Retrieved from <https://doi.org/10.1016/j.cortex.2018.08.036> doi: 10.1016/j.cortex.2018.08.036 [Cited at p. 48]

Mancini, S., Molinaro, N., Rizzi, L., & Carreiras, M. (2011a). A person is not a number: Discourse involvement in subject–verb agreement computation. *Brain Research*, 1410, 64–76. Retrieved from <https://doi.org/10>

.1016/j.brainres.2011.06.055 doi: 10.1016/j.brainres.2011.06.055 [Cited at p. 6, 7, 44]

Mancini, S., Molinaro, N., Rizzi, L., & Carreiras, M. (2011b). When persons disagree: An ERP study of unagreement in spanish. *Psychophysiology*, 48(10), 1361–1371. Retrieved from <https://doi.org/10.1111/j.1469-8986.2011.01212.x> doi: 10.1111/j.1469-8986.2011.01212.x [Cited at p. 48]

Molinaro, N., Barber, H. A., Caffarra, S., & Carreiras, M. (2015). On the left anterior negativity (LAN): The case of morphosyntactic agreement: A reply to tanner et al. *Cortex*, 66, 156–159. Retrieved from <https://doi.org/10.1016/j.cortex.2014.06.009> doi: 10.1016/j.cortex.2014.06.009 [Cited at p. 42]

Molinaro, N., Barber, H. A., & Carreiras, M. (2011). Grammatical agreement processing in reading: Erp findings and future directions. *Cortex*, 47(8), 908-930. doi: 10.1016/j.cortex.2011.02.019 [Cited at p. 5, 39, 42]

Molinaro, N., Vespignani, F., & Joba, R. (2008). A deeper reanalysis of a superficial feature: An ERP study on agreement violations. *Brain Research*, 1228, 161–176. [Cited at p. 6]

Molinaro, N., Vespignani, F., Zamparelli, R., & Job, R. (2011). Why brother and sister are not just siblings: Repair processes in agreement computation. *Journal of Memory and Language*, 64(3), 211–232. Retrieved from <https://doi.org/10.1016/j.jml.2010.12.002> doi: 10.1016/j.jml.2010.12.002 [Cited at p. 42]

Münte, T. F., Matzke, M., & Johannes, S. (1997). Brain activity associated with syntactic incongruencies in words and pseudo-words. *Journal of Cognitive Neuroscience*, 9(3), 318–329. Retrieved from <https://doi.org/10.1162/jocn.1997.9.3.318> doi: 10.1162/jocn.1997.9.3.318 [Cited at p. 39]

Münte, T. F., Szentkuti, A., Wieringa, B. M., Matzke, M., & Johannes, S. (1997). Human brain potentials to reading syntactic errors in sentences of different complexity. *Neuroscience Letters*, 235(3), 105–108. Retrieved from [https://doi.org/10.1016/s0304-3940\(97\)00719-2](https://doi.org/10.1016/s0304-3940(97)00719-2) doi: 10.1016/s0304-3940(97)00719-2 [Cited at p. 39]

Nevins, A., Dillon, B., Malhotra, S., & Phillips, C. (2007). The role of feature-number and feature-type in processing Hindi verb agreement violations. *Brain Research*, 1164, 81–94. [Cited at p. 6, 41, 47, 48]

Nichols, J., & Bickel, B. (2013). Locus of marking: Whole-language typology. In M. S. Dryer & M. Haspelmath (Eds.), *The world atlas of language structures online*. Leipzig: Max Planck Institute for Evolutionary Anthropology. Retrieved from <http://wals.info/chapter/25> [Cited at p. 3]

Osterhout, L., & Mobley, L. A. (1995). Event-Related Brain Potentials Elicited by Failure to Agree. *Journal of Memory and Language*, 34, 739–773. [Cited at p. 5]

Palolahti, M., Leino, S., Jokela, M., Kopra, K., & Paavilainen, P. (2005). Event-related potentials suggest early interaction between syntax and semantics during on-line sentence comprehension. *Neuroscience Letters*, 384(3), 222–227. Retrieved from <https://doi.org/10.1016/j.neulet.2005.04.076> doi: 10.1016/j.neulet.2005.04.076 [Cited at p. 5]

Pearlmutter, N. J., Garnsey, S. M., & Bock, K. (1999). Agreement processes in sentence comprehension. *Journal of Memory and Language*, 41, 427–456. [Cited at p. 4]

Roehm, D., Bornkessel, I., Haider, H., & Schlesewsky, M. (2005). When case meets agreement: event-related potential effects for morphology-based conflict resolution in human language comprehension. *Neuroreport*, 16(8), 875–878. [Cited at p. 6]

Rossi, S., Gugler, M. F., Hahne, A., & Friederici, A. D. (2005). When word category information encounters morphosyntax: An ERP study. *Neuroscience Letters*, 384(3), 228–233. Retrieved from <https://doi.org/10.1016/j.neulet.2005.04.077> [Cited at p. 6]

Ryding, K. C. (2005). *A reference grammar of Modern Standard Arabic*. Cambridge University Press. [Cited at p. 8]

Shlonsky, U. (1989). The hierarchical representation of subject verb agreement. *Unpublished manuscript, University of Haifa*. Retrieved from <http://www.unige.ch/lettres/linguistique/shlonsky/readings/hierarchical.pdf> [Cited at p. 4]

Silva-Pereyra, J. F., & Carreiras, M. (2007). An ERP study of agreement features in spanish. *Brain Research*, 1185, 201–211. Retrieved from <https://doi.org/10.1016/j.brainres.2007.09.029> doi: 10.1016/j.brainres.2007.09.029 [Cited at p. 6, 7]

Silverstein, M. (1976). Hierarchy of features and ergativity. In R. M. W. Dixon (Ed.), *Grammatical categories in Australian languages* (pp. 112–171). New Jersey, NJ: Humanities Press. [Cited at p. 4]

Simons, G. F., & Fenning, C. D. (Eds.). (2017). *Ethnologue: Languages of the World. Online version*. www.ethnologue.com. Dallas, TX: SIL International. Retrieved from <https://www.ethnologue.com/language/ara> [Cited at p. 8]

Steele, S. (1978). Word order variation: a typological study. In J. H. Greenberg, C. A. Ferguson, & E. A. Moravcsik (Eds.), *Universals of human language, vol. 4: Syntax*. (pp. 585–623). Stanford University Press: Walter de Gruyter. [Cited at p. 3]

Tanner, D. (2015). On the left anterior negativity (LAN) in electrophysiological studies of morphosyntactic agreement: A commentary on “grammatical agreement processing in reading: ERP findings and future directions” by

molinaro et al., 2011. *Cortex*, 66, 149–155. Retrieved from <https://doi.org/10.1016/j.cortex.2014.04.007> doi: 10.1016/j.cortex.2014.04.007 [Cited at p. 40]

Tanner, D. (2018). Robust neurocognitive individual differences in grammatical agreement processing: A latent variable approach. *Cortex*. Retrieved from <https://doi.org/10.1016/j.cortex.2018.10.011> doi: 10.1016/j.cortex.2018.10.011 [Cited at p. 40]

Tanner, D., & Van Hell, J. G. (2014). ERPs reveal individual differences in morphosyntactic processing. *Neuropsychologia*, 56, 289–301. Retrieved from <https://doi.org/10.1016/j.neuropsychologia.2014.02.002> doi: 10.1016/j.neuropsychologia.2014.02.002 [Cited at p. 40]

Tucker, M. A., Idrissi, A., & Almeida, D. (2015). Representing number in the real-time processing of agreement: self-paced reading evidence from arabic. *Frontiers in Psychology*, 6. Retrieved from <https://doi.org/10.3389/fpsyg.2015.00347> doi: 10.3389/fpsyg.2015.00347 [Cited at p. 4]

Van de Meerendonk, N., Chwilla, D. J., & Kolk, H. H. (2013). States of indecision in the brain: Erp reflections of syntactic agreement violations versus visual degradation. *Neuropsychologia*, 51(8), 1383-1396. doi: 10.1016/j.neuropsychologia.2013.03.025 [Cited at p. 40]

Vigliocco, G., Butterworth, B., & Semenza, C. (1995). Constructing subject-verb agreement in speech: The role of semantic and morphological factors. *Journal of Memory and Language*, 34, 186–215. [Cited at p. 4, 50]

Wagers, M. W., Lau, E. F., & Phillips, C. (2009). Agreement attraction in comprehension: Representations and processes. *Journal of Memory and Language*, 61(2), 206–237. Retrieved from <https://doi.org/10.1016/j.jml.2009.04.002> doi: 10.1016/j.jml.2009.04.002 [Cited at p. 4]

Wechsler, S. (2009). Agreement features. *Language and Linguistics Compass*, 3(1), 384–405. Retrieved from <https://doi.org/10.1111/j.1469-0772.2008.01422.x>

j.1749-818x.2008.00100.x doi: 10.1111/j.1749-818x.2008.00100.x

[Cited at p. 3]

Zawiszewski, A., Santestegian, M., & Laka, I. (2016). Phi-features reloaded: An event-related potential study on person and number agreement processing. *Applied Psycholinguistics*, 37(03), 601–626. Retrieved from <https://doi.org/10.1017/s014271641500017x> doi: 10.1017/s014271641500017x [Cited at p. 6, 41, 42, 47, 49]

Zawiszewski, A., & Friederici, A. D. (2009). Processing canonical and non-canonical sentences in basque: The case of object–verb agreement as revealed by event-related brain potentials. *Brain Research*, 1284, 161–179. Retrieved from <https://doi.org/10.1016/j.brainres.2009.05.099> [Cited at p. 6]