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Abstract

Background. Genomic prediction (GP) is used in animal and plant breeding to help identify the best
genotypes for selection. One of the most important measures of the effectiveness and reliability of GP in plant
breeding is predictive accuracy. An accurate estimate of this measure is thus central to GP. Moreover,
regression models are the models of choice for analyzing field trial data in plant breeding. However, models
that use the classical likelihood typically perform poorly, often resulting in biased parameter estimates, when
their underlying assumptions are violated. This typically happens when data are contaminated with outliers.
These biases often translate into inaccurate estimates of heritability and predictive accuracy, compromising the
performance of GP. Since phenotypic data are susceptible to contamination, improving the methods for
estimating heritability and predictive accuracy can enhance the performance of GP. Robust statistical methods
provide an intuitively appealing and a theoretically well justified framework for overcoming some of the
drawbacks of classical regression, most notably the departure from the normality assumption. We compare the
performance of robust and classical approaches to two recently published methods for estimating heritability
and predictive accuracy of GP using simulation of several plausible scenarios of random and block data
contamination with outliers and commercial maize and rye breeding datasets.
Results. The robust approach generally performed as good as or better than the classical approach in
phenotypic data analysis and in estimating the predictive accuracy of heritability and genomic prediction under
both the random and block contamination scenarios. Notably, it consistently outperformed the classical
approach under the random contamination scenario. Analyses of the empirical maize and rye datasets further
reinforce the stability and reliability of the robust approach in the presence of outliers or missing data.
Conclusions. The proposed robust approach enhances the predictive accuracy of heritability and genomic
prediction while alleviating the need for performing outlier detection for a broad range of simulation scenarios
and empirical breeding datasets. Accordingly, plant breeders should seriously consider regularly using the robust
alongside the classical approach and increasing the number of replicates to three or more, to further enhance
the accuracy of the robust approach.
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Introduction
Genomic studies, whether from an association, prediction or selection perspective,

constitute a field of research with increasing statistical methodological challenges

given the growing complexity (population structure, coancestry, etc), dimension of

datasets, measurement errors and atypical observations (outliers). Outliers often

arise from atypical environments, years, field pests or other phenomena. Here, re-

gression models are the tool of choice whether in studies involving human, animal or

plant applications. However, it is well known that the performance of these models

is poor when their underlying assumptions are violated and their unknown param-

eters are estimated by the classical likelihood [49]. For example, violation of the

normality assumption – depending on its severity – may lead to both biased pa-

rameter estimates and coefficients of determination [7] and strongly interfere with
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variable selection [5]. In the case of the linear mixed model, such violation can

tamper with the estimation of variance components [24], which itself can be very

challenging even when data are normally distributed but the sample size is small.

Violation of model assumptions due to contamination of data with outliers can have

several other deleterious effects on regression models. In genomic association stud-

ies, for example, departure from normality can induce power loss in the detection

of true associations and inflate the number of detected spurious associations [22].

In plant genomics such violations of model assumptions and the associated biases

often translate into inaccurate estimates of heritability and predictive accuracy [10].

This can have significant practical consenquences because predictive accuracy is the

single most important measure of the performance of genomic prediction (GP). The

reduction of these adverse effects through the use of more robust methods is thus

of considerable practical importance [48].

Recently, [9] proposed a method for estimating heritability and predictive accu-

racy simultaneously (Method 5) and compared its performance with several con-

tending methods from the literature including a popular method in animal breeding

(Method 7). More details on Methods 5 and 7 can be found in the ’Genomic Predic-

tion’ Section. The authors concluded from these comparisons that Methods 5 and

7 consistently gave the least biased, most precise and stable estimates of predictive

accuracy across all the scenarios they considered. Additionally, Method 5 gave the

most accurate estimates of heritability [9]. Both methods are founded on the linear

mixed effects model as well as on ridge regression best linear unbiased prediction

(RR-BLUP) through a two-stage approach [34–36]. The first stage of this two-stage

approach involves phenotypic analysis and thus is likely to be adversely affected by

contaminated phenotypic plot data. In particular, contamination can undermine the

accuracy with which the adjusted means are estimated in the first stage and thus

negatively impact estimation of both heritability (only Method 5) and predictive

accuracy in the subsequent second stage where RR-BLUP is used [15]. [10] later

examined the performance of the same seven methods in the presence of one out-

lying observation under 10 simulated contamination scenarios. These simulations

reaffirmed that Methods 5 and 7 performed the best overall and produced the best

estimates of both heritability (only Method 5) and predictive accuracy across all

the contamination scenarios they considered. However, one outlying observation for

their dataset with a sample size of 698 genotypes corresponds to a level of con-

tamination of merely 0.1%. As stated by [10], outliers may arise in plant breeding

studies from measurement errors, inherent characteristics of the studied genotypes,

enviroments or even years. As the process generating the outliers may vary across

locations and/or trials, it is conceivable that a non-neglegible percentage of phe-

notypic observations may be typically contaminated when large field trial datasets

are considered. As a result, the composite effects of such substantial levels of con-

tamination on the accuracy of methods for estimating heritability and accuracy of

GP can be potentially considerable. Such outliers may not always be easy to detect

and eliminate prior to phenotypic data analysis. Therefore, using robust statistical

procedures for phenotypic data analysis of field trial datasets can help ameliorate

the adverse effects of outliers.

Robust statistical methods have been around for a long time and are designed

to be resistant to influential factors such as outlying observations, non-normality
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and other problems associated with model misspecification [17]. Therefore, the use

of robust methods has been advocated for inference in the linear and linear mixed

model setups [6, 25], as well as in ridge regression [1, 15, 26, 27, 45, 52]. As a result of

such considerations and the recent advances in computing power, it is not surprising

that there has been a strong, renewed interest in exploring these techniques to

robustify existing methods or develop new procedures robust to moderate deviations

from model specifications [24, 41].

Consequently, to tackle the problem of biased estimation of heritability and pre-

dictive accuracy due to contamination of phenotypic data with outliers, we aim to

robustify the first phase of the two-stage analysis used in GP. Such an approach

will, in addition, largely obviate the need to check for and eliminate mild or even

extreme outliers from the data prior to analysis. We use a Monte-Carlo simulation

study encompassing several contamination scenarios to assess the performance of

the proposed robust approach relative to: (i) the approach used by [35], and (ii)

simulated underlying true breeding values taken as the gold standard. These assess-

ments are carried out at each of the two stages involved in predicting breeding values

by comparing the accuracy with which the two approaches estimate true genotypic

values in phenotypic analysis. In a third stage, we compare the heritabilities (H2)

and predictive accuracies (PA) estimated by the two competing approaches using

Method 5 (H2 and PA) and Method 7 (PA only). In addition, we compare the

heritability estimated by Method 5 with the generalized heritability estimated by

Oakey’s method [29]. The latter method was not evaluated by [9].

Also, an application of the methodology to real commercial maize (Zea mays)

and rye (Secale sereale) datasets is presented and used to empirically assess the

usefulness of the proposed robust approach. Lastly, we discuss how to effectively

apply the proposed robust approach to phenotypic data analysis and the estimation

of heritability and predictive accuracy of GP in plant breeding.

The robust and the classical approaches are implemented in the R software using

the code in the supplementary materials (Additional file AppendixE Rcode.pdf).

The ASREML-R package is used to fit the models at the second stage.

Materials and Methods
Datasets

Rye dataset: The Rye data were obtained from the KWS-LOCHOW project and is

described in more detail elsewhere [2, 3]. These data consist of 150 genotypes tested

between 2009 and 2011 at several locations in Germany and Poland, using α designs

with two replicates and four checks (replicated two times in the two replicates).

Each trial was randomized independently of the others. The field layout of some

trials was not perfectly rectangular. Trials at some locations and for some years

had fewer blocks but larger size, i.e., two different sizes were used for a few trials.

Blocks were nested within rows in the field layout. The dataset has 16 anomalous

observations pertaining to distinct genotypes, that the breeders identified as outliers.

Moreover, yield was not observed for one genotype. For this example we consider

two complete datasets (320 observations): the first is the original dataset without

any corrections, which we call the ’raw’ dataset, and the second is the original

dataset with the 16 yield observations replaced with missing values, which we refer
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to as the ’processed’ dataset. In addition, we consider a cleaned version of the raw

dataset (288 observations; called cleaned dataset) obtained by removing from the

raw data the 16 outlying genotypes (32 observations) identified by both the breeders

and the criterion used for outlier detection described in the ’Example Application’

Section. We note that because the empirical rye dataset has only two replicates, a

single outlier will automatically generate an outlier with the same absolute value

of opposite sign for the other replicate of the same genotype. Consequently, we

removed a testcross genotype entirely from the cleaned dataset even if only one of

its two replicate observations was outlying. The raw, processed and cleaned datasets

comprise only 148, 148 and 132 genotypes with genomic information, respectively.

Maize dataset: The maize dataset was produced by KWS in 2010 for the Synbreed

Project. The data set has 1800 yield observations on 900 doubled haploid maize lines

and 11,646 SNP markers. Out of the 900 test crosses 698 were genotyped whereas

202 were not. The test crosses were planted in a single location (labelled RET)

on nine 10 by 10 lattices each with two replicates. Six hybrid and five line checks

connected the lattices (398 observations in total). The lines were crossed with four

testers. After performing quality control, the breeder recommended replacement of

38 yield observations with missing values. A more elaborate description of this maize

dataset is provided in [9, 11].

For this example we consider two datasets each with 1800 yield observations: the

first is the original dataset without any corrections, which we call the ’raw’ dataset,

and the second one is the original dataset with the 38 yield observations replaced

with missing values, which we refer to as the ’processed’ dataset. Furthermore,

we consider a third dataset (called cleaned raw dataset) obtained by removing 46

outliers from the raw dataset. The fourth dataset (called the cleaned and processed

dataset) is obtained by removing seven outliers from the processed dataset. All the

outliers satisfied the criterion for outliers described in the ’Example application’

Section. As with the rye dataset, we removed a testcross genotype entirely from the

raw dataset if at least one of the two replicate observations was outlying. Thus, the

raw, processed, cleaned raw and cleaned and processed datasets have 1800, 1754,

1800 and 1793 yield observations and 698, 687, 698 and 697 genotypes with genomic

information, respectively.

Genomic prediction

True correlation

The correlation between the true (g) and the predicted (ĝ) breeding values (true

correlation or true predictive accuracy) can be calculated from simulated data as

rg,ĝ =
sg,ĝ√
s2gs

2
ĝ

(1)

where sg,ĝ is the sample covariance between the true and predicted breeding values,

s2g and s2ĝ are the sample variances of the true and predicted genetic breeding values,

respectively. This correlation is often the quantity of primary interest in breeding
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studies. The simulation study therefore assesses the accuracy with which rg,ĝ is

estimated by Methods 5 and 7, whose details are described below.

Two-stage approach for predicting breeding values

[9] use the two-stage approach of [35] to predict true breeding values (g) that are

then used to estimate heritability and predictive accuracy. This approach is quite

appealing because it greatly alleviates the computational burden of the single-stage

approach [47], without compromising the accuracy of the results.

The single-stage model can be written as

y = φ1 + f (2)

where y is the vector of the observed phenotypic plot values, φ is the general mean,

f is a vector that combines all the fixed, random design and error effects (replicates,

blocks, etc.). For the simulated data f has four random effects only and is given by

f = Zgg + Zrur + Zbub + e where (i) Zg is the design matrix for the genotypes

with g ∼ N(0,ZsZ
T
s σ

2
s = G̃), Zs is the matrix of biallelic markers of the single

nucleotide polymorphisms (SNPs), coded as −1 for genotypes AA, 1 for BB and

0 for AB or missing values and σ2
s is the variance of the marker effects; (ii) Zr

is the design matrix for the replicate effects with ur ∼ N(0, σ2
rI) and σ2

r is the

variance of the replicate effects; (iii) Zb is the design matrix for the block effects with

ub ∼ N(0, σ2
r:bI) and σ2

r:b is the variance of the block effects; and (iv) e ∼ N(0,R)

are the residual errors and R is the variance-covariance matrix of the residuals. In

our model R = σ2
eI where σ2

e is the residual plot error variance.

The two-stage approach basically breaks this model into two models. In the first

stage, which we seek to robustify, we use the model

y = Xµ + f̃ (3)

where y is defined as before, X = Zg is the design matrix for the genotype means,

µ = φ1+g is the vector of unknown genotypic means and f̃ = Zrur+Zbub+e. Note

that in this first stage the genomic information regarding the SNP markers (Γ =

ZsZ
T
s ) is excluded from this analysis because genotype means µ, which comprise

the genetic effects g, are modelled as fixed. This is usually the case when stage-wise

approaches are considered, in which case the genomic information is included only

in the last stage [35].

In the second stage, the genotype means µ̂ estimated at the first stage are used

as a response variable in a model for computing the true breeding values g specified

as

µ̂ = φ1 + g + ẽ (4)

where φ is the general mean and ẽ ∼ N(0, R̃) with R̃ = var(µ̂ | φ,g).

Note that any standard varieties or checks are dropped from the dataset before the

adjusted means (µ̂) from the first stage are submitted to the second stage. The
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mixed model equations for (4) can be solved to obtain the best linear unbiased

prediction for g, BLUP(g) = ĝ, using a ridge-regression formulation of BLUP, i.e.,

RR-BLUP.

In case weights are used when fitting the second-stage model, then R̃ should be

replaced by W−1, with W being a weight matrix computed from the estimated first-

stage variance-covariance matrix R̃. In our case we used Smith’s [46] and standard

(ordinary) [35] weights. Specifically, Wsm = diag(R̃−1) for Smith’s and Wst =

(diag(R̃))−1 for standard weights, respectively.

More details on the two-stage approach can be found in [9, 35, 36].

Method 5

This method (M5) calculates predictive accuracy as

E(rg,ĝ) ≈
trace(PuCG̃)√

trace(PuG̃)trace(CTPuCV)
(5)

where V = G̃ + R̃ with V, G̃ and R̃ being the variance-covariance matrices for the

phenotypes, genotypes and residual errors of the adjusted genotypes, respectively;

Pu = 1
n−1 (I − 1

nJn), with Jn a n × n matrix of ones; C = G̃V
−1

Q, with Q =

I− 1(1TV−11)−11TV−1, and 1 denoting a vector of ones. Under this formulation,

which provides a direct estimate of the correlation between the true (g) and the

predicted (ĝ) breeding values, the RR-BLUP of g is now given by ĝ = G̃V
−1

Qµ̂

[34].

Heritability can then be computed from (5) as

H2
m5

= [E(rg,ĝ)]
2.

Method 7

This method (M7) is commonly used by animal breeders to directly compute pre-

dictive accuracy (ρ) from the mixed model equations (MME, [12, 28, 51]) by firstly

computing the squared correlation between the true (g) and predicted breeding

values (ĝ), i.e., reliability (ρ2).

Since the MME for the second-stage model (4) are given by

[
φ̂
ĝ

]
=

[
1ᵀR̃−11 1ᵀR̃−1

R̃−11 R̃−1 + G̃−1

]− [
1ᵀR̃−1µ̂

R̃−1µ̂

]
, (6)

with the variance-covariance matrix of (φ̂− φ, ĝ − g) given by

[
C11 C12

C21 C22

]
=

[
1ᵀR̃−11 1ᵀR̃−1

R̃−11 R̃−1 + G̃−1

]−
, (7)

and the variance-covariance matrix of g and ĝ given by
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[
G̃ G̃−C22

G̃−C22 G̃−C22

]
, (8)

the reliability for each genotype is computed as

ρ̂2i =
(cov(gi, ĝi))

2

var(gi)var(ĝi)
=
var(ĝi)

var(gi)
(9)

where only the diagonal elements of the matrices var(g) = G̃, var(ĝ) = G̃−C22 =

cov(g, ĝ) are extracted. The average reliability across the genotypes in each dataset

is then estimated by

ρ̂ 2
m7

=
1

n

n∑
i=1

ρ̂ 2
i (10)

where n is the total number of genotypes in the dataset. Predictive accuracy (ρ̂ m7
)

is then computed as the square root of ρ̂ 2
m7

. Alternatively, predictive accuracy can

be computed as

ρ̂ m7
=

1

n

n∑
i=1

√
ρ̂ 2
i . (11)

Further details on this derivation can be found in [36].

Oakey’s Method

[29] propose a generalized heritability measure that was recently re-expressed by

[40] as

H2 =
trace(D)

n− s
(12)

where D = In− G̃−1C22 and s is the number of zero eigenvalues of D. We also use

this method to estimate heritability and compare this estimate with the estimate

obtained by method M5.

Robust estimation

Robust estimation of the linear mixed model for phenotypic data analysis

In this section we briefly review the robust approach of [19] to linear mixed effects

models that we use in an attempt to robustify the first stage of the two-stage

approach to genomic prediction in plant breeding. This approach is implemented in

the R software package robustlmm via the function rlmer() [20, 21].

We consider the general linear mixed model

y = Xµ + Hu + e (13)
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where y is a vector of observations, X is the design matrix for the fixed effects

(intercept included), µ is the vector of unknown fixed effects, H is the design matrix

for the random effects, u ∼ N(0,U) is the vector of unknown random effects and

e ∼ N(0,R) is the vector of random plot errors. Note that for our first-stage model

Hu = Zrur + Zbub and µ = φ1 + g.

Model (13) also assumes that cov(u, e) = 0 and as such we have that

y ∼ N(Xµ,HUH′ + R).

We henceforward assume for simplicity that e ∼ N(0, σ2
eI) and u ∼ N(0, σ2

eA(θ))

where the variance matrix A of the random effects depends on the vector of un-

known variance parameters θ (this assumption can be relaxed to obtain more general

formulations, see e.g., [19]). The variance of y now simplifies to

var(y) = σ2
eHA(θ)H′ + σ2

eI = σ2
eΦ

with Φ = HA(θ)H′ + I.

Because A(θ) is a positive-definite symmetric matrix and assuming that θ is known,

one can obtain its Cholesky decomposition as chol(A(θ)) = B(θ), set u = B(θ)b

and rewrite model (13) as

y = Xµ + HB(θ)b + e, (14)

where b ∼ N(0, σ2
eI) so that we again have y ∼ N(Xµ, σ2

eΦ).

The classical log-likelihood for (14) can be written as

−2l(θ,µ, σe | y) = nlog(2π) + log | σ2
eΦ | +

+
1

σ2
e

(y −Xµ)′Φ−1(y −Xµ).
(15)

Furthermore, for a given set of θ,µ and σe (44, Chapter 7)

b∗ = bBLUP = σ2
eB(θ)′H′Φ−1(y −Xµ). (16)

From (15) and (16), an objective function that incorporates the observation-level

residuals and the random effects as separate additive terms can be derived and

expressed as

d̃(θ,µ, σe,b
∗ | y) = nlog(2π) + log | σ2

eΦ | +
1

σ2
e

(e∗
′
e∗ + b∗

′
b∗)

(17)

where

e∗ = e∗(µ,b∗) = (y −Xµ−HB(θ)b∗).
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This particular trick is crucial in order to independently control contamination at

the levels of the residual and random effects.

Assuming θ and σe are known and taking the partial derivatives of (17) with respect

to µ and b∗, we get the following estimating equations for these effects,


X′ê∗/σe = 0

(
B(θ)′H′ê∗ − b̂∗

)
/σe = 0

(18)

where

ê∗ = ê∗(µ̂, b̂∗) = (y −Xµ̂−HB(θ)b̂∗). (19)

If B(θ) is diagonal, as in our case, these equations are robustified by replacing ê∗

and b̂∗ by bounded functions ψe(ê
∗) and ψb(b̂

∗), where the ψe and ψb functions

need not be the same:
X′ψe(ê

∗/σe)/λe = 0

B(θ)′H′ψe(ê
∗/σe)/λe − ψb(b̂∗/σe)/λb = 0

(20)

where λ• = E0[ψ′• ] is required to balance the ê∗ and b̂∗ terms in case different ψ

functions are used; 1/λe and 1/λb are scaling factors (as in M-regression [17]) and

cancel out in the special case where ψe ≡ ψb.

If we let

we(e
∗) =

ψe(e∗)/e∗ if e∗ 6= 0

ψ′e(0) if ε∗ = 0
,

wb(b
∗) =

ψb(b∗)/b∗ if b∗ 6= 0

ψ′b(0) if b∗ = 0
,

Λb = λe/λb, We = Diag(we(e
∗
i /σe)) and Wb = Diag(wb(b

∗
i /σe)), and after some

simplification, equation (20) can be written as


X′Weê

∗ = 0

B(θ)′H′Weê
∗ − ΛbWbb̂

∗ = 0
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which, after expanding ê∗ with (19), yields the following system of linear equations:[
XᵀWeX XᵀWeHB(θ)

B(θ)ᵀHᵀWeX B(θ)ᵀHᵀWeHB(θ) + ΛbWb

][
µ̂

b̂∗

]
=

=

[
XᵀWey

B(θ)ᵀHᵀWey

]
. (21)

The algorithm for estimating parameters of (21) begins with a predefined set of

weights. It then alternates between computing µ̂ and b̂∗ for a given set of weights

and updating the weights for a given set of estimates. [18] and [19] provide more

details on the estimation of the scale and covariance parameters and the estimation

procedure for the non-diagonal case.

If replicate and block (nested within replicates) are the only random effects apart

from the residual error in the first-stage model (this is the case for the simulation

study for our first-stage model and for the first-stage model for the rye dataset)

then θ =
(σ2

r

σ2
e

,
σ2
r:b

σ2
e

)
, where σ2

r and σ2
r:b are the variances for the replicate and block

random effects, respectively. Also here, A(θ) is a two-block diagonal matrix (k = 2

blocks). Furthermore, because we assume ur ∼ N(0, σ2
rI) and ub ∼ N(0, σ2

r:bI) for

the first-stage model, B(θ) = [A(θ)]1/2 is a diagonal matrix.

In particular, for the simulated data consisting of 698 observations of maize yield

from 2 replicates each having 39 blocks (more details in the ’Simulation’ Section), we

compute 2 + 39 = 41 weights (Wb) for the observations at the level of the random

effects and 2 × 698 = 1396 weights (We) for the observations at the level of the

fixed effects (i.e., for the residuals).

Robust approach to phenotypic analysis

Phenotypic data derived from field trials are prone to several types of contamination

that may range from measurement errors, inherent characteristics of the genotypes

and the environments to the years in which the trials were conducted. As such, if

contaminated observations are present in the vector of phenotypes y in the first stage

of phenotypic data analysis, then they can unduly influence the estimation of the

means for the testcross genotypes (µ) in model (3), resulting in inaccurate estimates

of adjusted phenotypic means µ̂. In turn, these possibly inaccurate estimates of µ

are passed on to the second stage of the procedure (model (4); adjusted RR-BLUP)

from which the breeding values g are estimated. The possibly biased estimates of (g)

may undermine the accuracy of the estimated heritability and predictive accuracy.

To minimize bias in the estimation of heritability and predictive accuracy, we pro-

pose using the preceding robust model for the first stage of phenotypic data analysis.

The second stage then proceeds in the same way as the classical method except that,

now, the robust estimates µ̂R from the first stage are used in (4).
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Simulation
Simulated datasets

We consider a real maize dataset from the Synbreed Project (2009 − 2014). This

dataset was extracted for one location from a larger dataset and consists of 900

doubled haploid maize lines, of which only 698 testcrosses were genotyped, and

11, 646 SNP markers. Six hybrid checks and five line checks were considered and

genotypes were crossed with four testers as explained in more detail in [9]. Variance

components estimated from this dataset (σ2
r = 0, σ2

r:b = 6.27, σ2
e = 53.8715 and

σ2
s = 0.005892) were used to simulate the block and plot effects based on an α-design

(31) with two replicates and the model

yijk = φ+ rk + bjk + gi + eijk (22)

where yijk is the yield of the i-th genotype in the j-th block nested within the k-th

complete replicate, φ is the general mean, rk is the fixed effect of the k-th complete

replicate, bjk is the random effect of the j-th block nested within the k-th complete

replicate, gi is the random effect of the i-th genotype, and eijk is the residual plot

error associated with yijk. More details on (22) can be found in Table S3 in the

supplementary materials of [10].

Our simulations consider 1000 simulated Maize datasets described as follows: each

dataset consists of 698 observations of yield in 2 replicates, with the 698 geno-

types distributed over 39 blocks as in Table 1. Four out of the 39 blocks have 17

observations, whereas the remaining 35 have 18 observations.

Table 1: A sample simulated Maize dataset

l rep block genotype yield

1 1 1 267 7.416505

2 1 1 149 1.945098

. . . . .

. . . . .

. . . . .

698 1 39 459 25.097810

699 2 1 604 12.640605

. . . . .

. . . . .

. . . . .

1396 2 39 614 18.859413

Simulation of outliers

In order to simulate outliers, a percentage of phenotypic observations in the dataset

is chosen and contaminated by replacing the observed value of each selected obser-

vation by that value plus 5-, 8- or 10- times the standard deviation of the residual

error (σ) used to simulate the phenotypic datasets. Additionally, we also consider

two distinct types of data contamination:
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(i) Random contamination: 1, 3, 5, 7 and 10% of the phenotypic data in only

one of the two replicates are randomly contaminated, amounting to an overall

data contamination rate of 0.5, 1.5, 2.5, 3.5 and 5%, respectively.

(ii) Block contamination: phenotypic data in 1, 2, 3, 4 and 5 whole blocks in

only one of the two replicates are contaminated, amounting approximately to

1.3, 2.6, 3.9, 5.2 and 6.5% overall rate of data contamination, respectively.

We use the notation “% sd” to denote the random contamination scenarios cor-

responding to the contamination of a particular percentage (%) of the data with

outliers of size sd and “block sd” to refer to block contamination scenarios corre-

sponding to the contamination of a specific number of whole blocks (block) with

outliers of size sd.

First- and second-stage models

In the first stage (eq.3), we consider yield as the response variable, the genotypes

as the fixed effects and the replicates and blocks nested within replicates as the

random effects. In the second stage (eq.4), we consider the adjusted genotypic means

estimated in the first stage as the response variable, the intercept as the fixed effect

and the genotypes as the random effects with a variance-covariance structure given

by the genomic relationship matrix.

Comparing performance of the classical and robust approaches

The performance of the classical and robust approaches is evaluated in three steps,

labelled L1, L2 and L3. L1 involves a comparison of results from the first stage;

L2 entails a comparison of results from the second stage and L3 focuses on a com-

parison of the estimated heritability and predictive accuracy, which can be viewed

as constituting the third stage. For each of the three levels, we consider the null

scenario (uncontaminated datasets), random and block contamination scenarios.

Additionally, the influence of the Smith’s and standard weighting schemes used in

the second stage of the two-stage approach are considered in L2.

The following quantities are computed and used to compare the performance of the

classical and robust approaches at levels L1–L3.

L1: The mean squared deviation (MSD) of the estimated from the true genotypic

means is computed for both the classical and robust approaches as

MSDµ =
1000∑
l=1

698∑
i=1

(µ̂il − µil)2

698× 1000
(23)

where µil is the true mean of the i-th genotype in the l-th simulation run and µ̂il is

its estimate.

The estimates of MSDµ̂ for the classical (C) and robust (R) approaches are com-

pared for each scenario using

MSDµ̂ =
1000∑
l=1

698∑
i=1

(µ̂Ril − µ̂Cil )2

698× 1000
(24)
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and are expected a priori to agree for the null scenario.

It is also instructive to compute and plot

MSDi
µ =

1000∑
l=1

(µ̂il − µil)2

1000
(25)

for each genotype i = 1, ..., 698 for both approaches. Furthermore, the overall es-

timated genotypic mean (across genotypes and simulations) is also computed and

compared to the corresponding true genotypic mean. Moreover, since the rank order

of genotypes is also of great importance in plant breeding studies, the Pearson cor-

relation coefficient (rp) between the true and estimated genotypic means (predictive

accuracy) is also computed and compared between the two approaches. This yields

an estimate of the predictive accuracy for the genomic means.

L2: At this level, we compute the MSDs for the genomic breeding values g anal-

ogously to equations (23)–(25). The rp between the true and estimated breeding

values is again computed and used to compare the two methods and assess any

improvement in the estimation of g when genomic information is included in the

analysis. This provides an estimate of the accuracy of genomic prediction.

L3: Here, the methods are compared by computing the following MSDs,

MSDH =
1000∑
l=1

(Ĥ2
l − (rg,ĝ)

2)2

1000
(26)

MSDPA =

1000∑
l=1

(r̂g,ĝ,l − rg,ĝ)2

1000
(27)

where rg,ĝ is the Pearson correlation computed between the true and the estimated

breeding values and averaged across the 1000 simulations, Ĥ2
l and r̂g,ĝ,l are, re-

spectively, the heritability and predictive accuracy estimated in the s-th simulation

via the methods described earlier. These MSDs quantify the deviation of the esti-

mated from the true heritability (H2) or predictive accuracy (PA). In addition, we

provide boxplots of the estimated heritablity and predictive accuracy for the 1000

simulation runs for each scenario.

Simulation results

Null scenario

L1: The following computed MSDs

MSDµ̂ =
1000∑
l=1

698∑
i=1

(µ̂Ril − µ̂Cil )2

698× 1000
' 0.06,
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MSDC
µ =

1000∑
l=1

698∑
i=1

(µ̂Cil − µil)2

698× 1000
' 28.97 and

MSDR
µ =

1000∑
l=1

698∑
i=1

(µ̂Ril − µil)2

698× 1000
' 29.08

show, as expected, that both methods perform similarly when the data are not

contaminated (MSDµ̂ ' 0). However, the classical method performs slightly better

than the robust one (MSDC
µ . MSDR

µ ). Even so, both MSD values are not particu-

larly close to zero. Still, as these MSD values are squared deviations averaged across

all the 1000 simulation runs and 698 genotypes, they seem reasonable.

The slightly better performance of the classical relative to the robust method is

also apparent in the per-genotype MSDs (Figure 1S). The two approaches produce

virtually identical estimates for the overall mean of µ̂ (i.e., mean{µil}, i = 1, ..., 698,

l = 1, ..., 1000) and rp (Table 2).

Table 2: Estimated overall mean of µ̂ and predictive accuracy expressed as the

Pearson correlation coefficient rp obtained using the classical (CLS) and the robust

(ROB) methods (averaged across the 1000 simulations)

true mean=8.923 ROB CLS

overall mean µ̂ 8.906 8.908

rp 0.764 0.765

The two methods estimate the variances of both the random effects and the residual

errors equally well (Figure 2S).

The Smith’s and standard weights obtained in the first stage for both the classical

and robust approaches are very small (Figure 3S). Precisely, the MSD between the

two different types of weights is approximately 0.6×10−6 and the MSD between the

values of each type of weight computed by the two approaches is about 0.6× 10−5.

L2: There were no major differences between the estimated breeding values obtained

using either the standard or Smith’s weighting schemes at the second stage (MSDg '
25 for both cases). For this reason we only present results produced using Smith’s

weights.

The MSDs for the second stage

MSDĝ =

1000∑
l=1

698∑
i=1

(ĝRil − ĝCil )2

698× 1000
' 0.03

MSDR
g =

1000∑
l=1

698∑
i=1

(ĝRil − gil)2

698× 1000
' 25.55;

MSDC
g =

1000∑
l=1

698∑
i=1

(ĝCil − gil)2

698× 1000
' 25.18

show a modest improvement over the corresponding estimated genotypic means at

the first stage and that the methods continue to perform similarly as in the first
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stage. Relative to the estimates for the first stage, the per-genotype MSDs (Figure

13S) increase for about 22% but decreases for about 47% of the genotypes. This

trend is similar for both the classical and robust approaches. Additionally, for the

second stage, the mean rp = 0.903 for both approaches. This increase in rp relative

to the first stage (' 18.2%) shows that using genomic information at the second

stage improves genomic prediction and hence the ranking of genotypes. For the

overall mean of the EBVs (ĝ), it drops to ' 5 from ' 9 for both approaches (first

row, Tables 2S & 4S).

Quite interestingly, in terms of the estimation of the genetic variance, the robust

approach performs slightly better than the classical (Figure 14S).

L3: Both the classical and robust approaches produce the following MSDs for her-

itability (Method M5 only) and predictive accuracy (Methods M5 and M7):

MSDM5
H ' 0.00

MSDPA '

0.00 for M5

0.01 for M7

showing the estimates of heritability and predictive accuracy to be quite accurate.

We note that estimates of heritability and predictive accuracy were computed by

fixing the residual variance from the first stage to one as described in the ’Genomic

prediction’ Section. In general this produced more accurate estimates than the alter-

native for which the residual variance estimated in the first stage is used. Therefore

all the results displayed here for the third stage use the former implementation.

Boxplots for the estimated PA (methods M5 and M7) and H2 (method M5 only)

across the 1000 simulations for the null scenario are shown together with the ones

for the random and block contamination scenarios (Figures 19S-20S). These suggest

that method M5 produces more accurate estimates of PA than method M7.

Relative to method M5, Oakey’s heritability estimates are unacceptably lower

than the simulated true values (Figure 1). To further explore why these estimates

were remarkably smaller than those produced by M5 or the simulated true values,

we took 100 out of the 1000 simulation replicates and refitted the entire two-stage

model by setting G̃ = σ2
gI at the second stage. The heritability estimates for M5 and

Oakey’s were virtually identical (MSD' 0.1 × 10−27). This strongly suggests that

Oakey’s method works fine with independent genotypes but performs poorly when

the model used to estimate heritability has a kinship matrix. Consequently, we do

not consider Oakey’s heritability estimates further except in a few comparisons in

the ’Example application’ Section.

Random contamination scenarios

L1: The MSDµ for these scenarios are similar between approaches for each level of

contamination and size of outlier (Tables 3 and 1S). Hence for the random contami-

nation scenarios, the robust and classical approaches produce comparable estimates

for the genotypic means. The per-genotype MSDs also reaffirm the similar perfor-

mance of the two approaches (Figure 4S). Nevertheless, it is noteworthy that even

for the least extreme scenario, 1% contamination with an outlier of size 5 sd, the
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Figure 1: Estimates of heritability obtained from methodsM5 and Oakey’s for the classical
(CLS) and robust (ROB) approaches

increase in the per-genotype MSDi
µ is non-negligible relative to the corresponding

values computed by the classical method under the null scenario and used as a

benchmark (Figure 2). The per-genotype MSDs increase greatly with increase in

the percentage contamination and size of outliers (Figure 4S).

Figure 2: Boxplot of the 698 per-genotype mean squared deviations (MSDi
µ) under

the null scenario (classical as reference) against the ones obtained in the random

scenarios 1 5 for the classical (CLS) and robust (ROB) approaches

The estimated overall mean of the estimated genotypic means (µ̂) for both ap-

proaches departs increasingly from the true overall mean of µ as both the level of

contamination and size of outliers increase (Table 2S). The same trend is evident

for the rp, implying deterioration of the ranking of genotypes (Table 2S).
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Table 3: MSDµ between the estimated genotypic means and the true breeding val-

ues considering the classical (CLS) and robust (ROB) approaches and the random

contamination scenarios.
Random scenarios

CLS ROB
% cont sdt

0 - 28.97 29.08

1 5 32.44 32.51
1 8 37.83 37.78
1 10 42.80 42.64

5 5 46.26 46.39
5 8 72.98 72.87
5 10 97.50 97.25

10 5 63.30 63.65
10 8 116.40 116.67
10 10 165.22 165.30

The two methods also differ with respect to how well they estimate particular

variance components. More precisely, the classical method estimates the variance

for blocks nested within replicates (σ2
r:b) somewhat better than the robust method

does from 5% contamination upwards. However, the robust method estimates the

variances for replicates (σ2
r) and residual errors (σ2

e) far better than the classical

method does (Figures 6S–8S).

The Standard and Smith’s weights computed for both the classical and robust

approaches across the random contamination scenarios are shown in Figures 9S and

10S.

As the percentage of contamination and size of the outliers increase, the degree of

overlap of the empirical frequency distributions of the classical and robust weights

evidently reduces. In particular, the distributions do not overlap at all from the 3%

contamination level upwards for the 8− and 10−sd shift-outliers. Also, the weights

show an overall decreasing trend, which is more evident for the classical approach

and the Standard weights.

L2: The mean squared deviations (MSDg) between the EBVs and the TBVs for

the classical approach are displayed in Table 5S. The MSDg’s for the Standard

and Smith’s weights show some minor differences in favour of the latter from 7%

contamination and 8-sd shift-outliers onwards. Thus, only the second-stage results

obtained using the Smith’s weights are presented in the remainder of this section.

The robust approach tends to produce smaller MSDs between the EBVs and the

TBVs as the percentage of random contamination and the size of the shift-outliers

increase (Tables 4 & 1S). The second-stage per-genotype MSDs do not show the

increasing trend observed for the per-genotype MSDs from the first stage with values

ranging between 0 and 100 (Figure 16S). In addition, the robust method always

produces higher estimated predictive accuracy, expressed as the averaged Pearson

correlation coefficient rp, than the classical method, implying better ranking of the

genotypes (Table 2S). The overall mean EBVs (ĝ) is similar for both approaches

but drops steadily as the percentage contamination and size of outliers increase,

implying underestimation.
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Table 4: Mean squared deviation of the estimated from the true genomic breeding

values (MSDg) for the classical (CLS) and robust (ROB) approaches under the

random contamination scenarios.
Random scenarios

CLS ROB
% cont sdt

0 - 25.18 25.55

1 5 26.29 26.26
1 8 27.84 26.44
1 10 29.16 26.49

5 5 29.37 28.72
5 8 34.53 29.97
5 10 38.31 30.33

10 5 32.53 32.41
10 8 40.39 37.40
10 10 45.71 39.04

The robust approach also produces more accurate estimates of the marker-effect

variance (σ2
s) up to 10% contamination and 5-sd shift-outliers (Figure 15S). For the

10% contamination scenarios with 8- and 10-sd shift-outliers the robust estimates of

σ2
s no longer overlap with the true marker-effect variance but their boxplots show a

smaller inter-quartile range (IQR) and lower dispersion than those for the classical

approach.

L3: The robust approach produced generally more accurate estimates for both

H2 and PA for the random contamination scenarios (Figures 18S-20S). However,

both approaches tend to underestimate both parameters as the percentage con-

tamination and size of outliers increase. The MSDM5
H ranged between approximately

0.00− 0.09 and 0.00− 0.07 for the classical and robust methods, respectively. The

corresponding, MSDM5
PA ranged between approximately 0.00 − 0.02 and 0.00 − 0.01

whereas MSDM7
PA ranged between approximately 0.01−0.04 and 0.01−0.07. Overall,

method M5 performs somewhat better than method M7 in estimating predictive

accuracy (Figures 18S-20S; Table 6S).

Block contamination scenarios

L1: Although the MSDµ for the block contamination scenarios is relatively stable

for the robust approach (between 29.08 and 30.11), it increases with increasing level

of contamination and size of the outliers for the classical approach (Tables 5 & 3S).

In the worst block contamination scenario (5 10) the MSD for the classical approach

is about 1.7 times larger than that for the robust approach. The per-genotype MSDs

show even poorer performance for the classical method in estimating each of the

698 genotypic means (Figure 5S). By contrast, the robust approach maintains the

errors at roughly the same level across the contamination scenarios; a level that is

close to the one estimated for the null scenario. This is an attractive property of

this method.

Block contamination had generally less debilitating effect on the accuracy of the

estimated genotypic means than random contamination (Tables 1S & 3S). For ex-

ample, the block contamination scenario 1 5, which corresponds to an overall 1.3%
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Table 5: Mean squared deviation of the estimated genotypic means from the true

breeding values (MSDµ) for the classical (CLS) and robust (ROB) approaches under

the block contamination scenarios.
Block scenarios

CLS ROB
No. blocks sdt

0 - 28.97 29.08

1 5 30.90 29.44
1 8 30.75 29.69
1 10 31.16 29.82

3 5 32.06 29.64
3 8 35.22 29.96
3 10 38.02 30.11

5 5 35.31 29.76
5 8 43.33 29.83
5 10 50.66 29.88

data contamination, produces smaller MSDs than the random contamination sce-

nario 1 5, which corresponds to only 0.5% overall contamination (Figures 2 and 3;

Table 5).

Figure 3: Boxplot of the 698 per-genotype mean squared deviations (MSDiµ) under the
null scenario (classical as reference) against the ones obtained in the block scenarios 1 5
for the classical (CLS) and robust (ROB) approaches

The performance of the two methods also differed noticeably with respect to the

estimation of the overall mean of µ̂. For example, for the worst case scenario (block

5 10) the overall mean of µ̂ deviated from the true mean by merely 5.5% for the

robust approach but by 50.2% for the classical approach (Table 4S), indicating

superior performance of the robust approach. Nevertheless, the poor predictive per-

formance of the classical approach at the first stage does not necessarily translate

to a reduced predictive accuracy rp because it does not alter the relative ranking of

the genotypes (Table 4S). Accordingly, the ranking of the genotypes does not differ

much between the two approaches (estimated rp ' 0.76 for both approaches across

all scenarios).

An overall superior performance of the robust compared to the classical approach is

also evident for the accuracy of the estimated variance components (Figures 6S-8S).
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L2: In this case, the MSDg obtained in the second stage differ depending on

whether the Smith’s or the standard weights are used. In particular, using the

Smith’s weights produces more stable MSDg estimates across all the block con-

tamination scenarios than using the standard weights, which tend to increase with

increasing number of contaminated blocks and size of outliers (Table 5S). For this

reason, only results obtained using the Smith’s weights are presented in the remain-

der of this section.

For all levels of contamination and size of outliers, the robust overall MSDs between

the EBVs and the TBVs did not differ much and fluctuated around ' 25 (Table

5S), a value that is similar to the corresponding value for the null scenario (Table

6).

Table 6: Mean squared deviation of the estimated from the true breeding values

(MSDg) for the classical (CLS) and robust (ROB) approaches under the block

contamination scenarios.
Block scenarios

CLS ROB
No. blocks sd

0 - 25.18 25.55

1 5 25.35 25.61
1 8 25.38 25.63
1 10 25.39 25.63

3 5 25.34 25.65
3 8 25.37 25.68
3 10 25.37 25.67

5 5 25.39 25.58
5 8 25.40 25.58
5 10 25.40 25.59

The per-genotype MSDg values vary little with increasing size of outliers but

suggest that the classical method performs slightly better than the robust method

(Figure 17S).

The average estimated predictive accuracy (rp) across all scenarios was approx-

imately 0.90 for both approaches (Table 4S). Predictive accuracy thus increased

from the first to the second stage for the classical (by 17%) and robust (by 18%)

approaches, an increase comparable to that observed under the null scenario.

Finally, the robust method estimates the marker-effect variance σ2
s more accu-

rately than the classical method throughout all the block contamination scenarios

(Table 15S).

L3: MSDM5
H and MSDM5

PA were both ' 0.00 for both the classical and robust ap-

proaches across all the block contamination scenarios, with the classical produc-

ing marginally better results than the robust approach (Figures 18S and 19S).

MSDM7
PA ' 0.01 for both approaches with the robust estimates of PA obtained via

M7 showing slightly greater dispersion (Figure 20S). It is noteworthy that esti-

mates of H2 and PA are rather stable across block contamination scenarios (Figures

18S-20S), consistent with the estimated marker-effect variances (Figure 15S).

Example application
In this Section, we comparatively evaluate differences in the performances of the

classical and robust approaches on raw empirical rye and maize datasets prior to
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quality control. Substantial differences in results between the two approaches would

imply problems with the data that require closer inspection by the breeder or data

analyst. Such inspection can be followed by data cleaning, which can be a very

challenging and time-consuming task. For the two example datasets in this section,

we perform data cleaning based on a simple rule of thumb that relies on the weight

given to each observation by the robust method. Specifically, observations assigned

weights smaller than 0.5 are flagged as outliers. More sophisticated outlier detection

techniques are outside the scope of this paper [3, 23]. We apply the classical and

robust approaches to the cleaned dataset and compare the results with each other

and with the results for the raw dataset. We note that cleaning the data does

not necessarily make it conform to model assumptions such as the normality of the

errors. We note further that because empirical datasets for both examples each have

only two replicates, the robust method usually assigns the same, or very similar,

weights to both replicates. This is the reason that a testcross genotype is removed

entirely from the cleaned dataset even if only one of its two replicate observations

is outlying. This problem would be eliminated by replicating each genotype three

or more times.

We similarly analyze the empirical datasets after taking into account the recom-

mendations of the breeder based on quality control to demonstrate that quality

control alone will not always detect and eliminate all sources of data contamination

and hence does not preclude the use of robust statistical methods.

Rye dataset

In this example we consider only one trial from the Rye dataset described in the

’Materials and methods’ Section, which otherwise has the same structure as the

simulated maize data set shown in Table 1. The first- and second-stage models fitted

to the Rye data set are the same as those described in the ’Simulation’ Section.

The classical and robust approaches produced strikingly different estimates for

the residual and blocks variances at the first stage as well as for heritability and

predictive accuracy at the third stage (Table 7; CLSr and ROBr results). The robust

weights assigned to each of the 320 observations in the first stage identified 32

observations for the exact same 16 genotypes identified as outliers by the breeders.

When the 32 observations are removed from the data, which amounts to around a

10% reduction in the size of the dataset, then the classical and robust approaches

produce very similar estimates, as is expected when data conform to the model’s

assumptions (Table 7; CLSr* and ROBr* results). In particular, the distributions

of the residuals from the classical first- and second-stage models fit to the cleaned

dataset satisfy the normality assumption (Shapiro-Wilk normality test: p= 0.9771

and p= 0.6974, respectively), but the distribution of the residuals from the raw

dataset do not (Shapiro-Wilk normality test: p< 10−9). Inspection of the QQ plots

of the residuals (not shown) further reinforced the results of the normality tests.

This example clearly demonstrates how the robust approach ameliorates most of the

devastating influences of outliers on the classical method. Thus, contamination with

outliers inflates the estimated residual variance ∼ 20 times for the classical method

but only ∼ 3.6 times for the robust method. By contrast, contamination reduces

the estimated block variance from ∼ 11.5 to zero for the classical method but from
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Table 7: The estimated residual (σ2
e), replicate (σ2

r) and blocks within replicates

(σ2
r:b) variance components, genetic variance (σ2

s), heritability computed by Method

M5 (H2.M5) and predictive accuracy computed by Methods M5 (PA.M5) and

M7 (PA.M7), using the classical (CLS) and robust (ROB) approaches, for the rye

dataset.

Stage Parm† CLSr ROBr CLSqc ROBqc CLSr* ROBr*

1

σ2
e 120.1400 17.6797 5.5267 5.3369 5.5267 5.3674

σ2
r 4.4262 6.4327 5.2124 5.7228 5.2124 5.7276

σ2
b 0.0000 8.1911 11.5441 11.8846 11.5441 11.8804

2 σ2
s 41.2101 40.4765 24.6136 24.3552 21.8182 21.5183

3

H2.M5 0.4628 0.7387 0.8373 0.8339 0.8305 0.8259

H2.OK 0.1906 0.4681 0.6220 0.6160 0.6173 0.6094

PA.M5 0.6803 0.8594 0.9150 0.9132 0.9113 0.9088

PA.M7 0.6531 0.8428 0.9038 0.9018 0.8997 0.8969
† Parm=Parameter;
r refers to the raw dataset, i.e, the original dataset before quality control;
qc refers to dataset after quality control; r* refers to the cleaned raw dataset;

∼ 11.9 to ∼ 8.2 for the robust method. Lastly, contamination reduces the estimated

heritability and predictive accuracy far more strikingly for the classical than for the

robust approach. However, contamination inflates the marker-effect variance equally

by a factor of two for both approaches. Although far lower than the simulated true

values, Oakey’s heritability estimates are also shown and compared between the full

and the cleaned datasets for completeness (Table 7).

Results for the processed dataset are similar for the two approaches (Table 7

; CLSqc and ROBqc ). They are also quite similar to the results for the cleaned

dataset, except for the estimated marker-effect variances, which are smaller for

the cleaned dataset perhaps due to the decrease in the sample size at the second

stage. Interestingly, for this particular case, the residuals from the first stage of the

classical model fit satisfy the normality assumption (Shapiro-Wilk normality test:

p= 0.6974) but those from the second stage only marginally pass the normality

test (Shapiro-Wilk normality test: p= 0.0437). A quick look at the QQ plot of

these residuals reveals two residuals that deviate substantially from the equality line

(plot not shown). The robust method did not, however, assign any observation a

weight smaller than 0.5 and and hence we did not analyse the cleaned and processed

datasets. Nevertheless, if a less conservative threshold of 0.7, say, were used instead

of 0.5, then, the robust method would have flagged one observation for a check

genotype and two for one testcross genotype.

Maize dataset

In the first stage (eq.3), we consider yield as the response variable, the genotypes

as the fixed effects and the trials, the replicates nested within trials and the blocks

nested within replicates nested within trials as the random effects. In the second
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stage (eq.4), we consider the adjusted genotypic means estimated in the first stage

as the response variable, the intercept as the fixed effect and the genotypes as the

random effects with a variance-covariance structure given by the genomic relation-

ship matrix. Note that only the 698 genotypes with available genomic information

are submitted to the second stage. In addition, 46 observations of yield (amount-

ing to around 2.6% overall contamination) were identified as outliers by the robust

weights computed from the robust first-stage model using the raw dataset. Here, all

the observations assigned weights of 0.5 or less by the robust model were classified

as outliers. Among these 46 outliers, 22 corresponded to 11 genotypes with genomic

information, meaning that the second stage for the cleaned raw dataset comprised

only 687 (698 − 11) genotypes. Of the remaining 24 outliers, 18 correspond to 9

genotypes with no genomic information and 6 to 3 hybrid checks and 3 line checks.

Overall, 11 + 9 = 20 test crosses and 4 of the 6 checks are a subset of the 38 yield

observations recommended for removal (deletion) by the breeder during quality con-

trol. The robust method identified only 7 observations as outliers from the processed

maize dataset (i.e., with 38 missing yield observations). Two of the 7 observations

came from one genotyped test cross, 2 hybrid and 3 line checks. Furthermore, two

out of these 7 outliers were also identified when the raw dataset was analysed with

the robust method. A detailed treatment of outlier detection strategies is beyond

the scope of this paper and can be found elsewhere [4, 23, 39, 48].

Table 8: The estimated residual (σ2
e), trial (σ2

t ), replicates within trials (σ2
r) and

blocks within replicates within trials (σ2
b ) variance components, genetic variance

(σ2
s), heritability computed by Method M5 (H2.M5) and predictive accuracy com-

puted by Methods M5 (PA.M5) and M7 (PA.M7), using the classical (CLS) and

robust (ROB) approaches, for the maize dataset.

Stage Parm† CLSr ROBr CLSqc ROBqc CLSr* ROBr* CLSqc* ROBqc*

1

σ2
e 352.4962 56.0533 47.8927 49.1810 46.5067 48.6339 45.0147 47.9068

σ2
t 7.5289 9.7426 6.3445 10.5256 9.1892 12.0945 8.7991 12.2285

σ2
r 3.4126 3.7156 3.4067 2.9704 3.2630 3.1115 3.6797 3.0902

σ2
b 0.0000 4.8448 7.9319 6.6856 8.0854 6.5774 7.7984 6.4579

2 σ2
s 0.0008 0.0067 0.0074 0.0058 0.0096 0.0071 0.0085 0.0062

3

H2.M5 0.2573 0.8020 0.8328 0.8013 0.8634 0.8231 0.8504 0.8099

H2.OK 0.0219 0.2732 0.3139 0.2713 0.3671 0.3035 0.3420 0.2824

PA.M5 0.5073 0.8960 0.9126 0.8951 0.9292 0.9077 0.9222 0.8999

PA.M7 0.4705 0.8184 0.8338 0.8178 0.8486 0.8287 0.8426 0.8221
† Parm=Parameter; r refers to the raw dataset, i.e, the original dataset before quality control;
qc refers to dataset after quality control; r* refers to the cleaned raw dataset;
qc* refers to the cleaned ’after quality control’ dataset.

As with the Rye dataset, the classical and robust approaches produced differ-

ent results for the full dataset (Table 8; CLSr and ROBr results). The differences

between the two methods at the first and second stages translate into major differ-

ences in the estimated heritability and predictive accuracy. For the cleaned dataset

(Table 8; CLSr* and ROBr* results) the methods produce more similar estimates of

variance components, heritability and predictive accuracy, although estimates are
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not as close as the ones observed in the case of the rye dataset. In addition, the ro-

bust results for the full dataset are close to those obtained via the classical method

applied to the cleaned dataset. Note that removal of the outliers was sufficient for

the residuals from the first stage but not the second stage of the classical model

fit to conform to the normality assumption, in contrast to the results for the rye

dataset.

The results for the full dataset after quality control (Table 8; CLSqc and ROBqc)

are similar to those from the robust method (ROBr; Table 8) However, the residu-

als from the classical first-stage model fit violate the normality assumption. After

removing the 7 outliers from the processed dataset (CLSqc* and ROBqc*) the clas-

sical and robust approaches produced even more similar results (Table 8) but the

residuals still depart from the normality assumption.

As before, Oakey’s heritability estimates are also provided and compared between

the full and the cleaned datasets (Table 8).

Discussion
The simulation results showed that the classical and robust approaches perform

similarly when datasets are not contaminated and thus conform to the linear model

assumptions. This is a desirable property for any method that seeks to be an alter-

native to the classical method. Since datasets do not usually conform to all model

assumptions, we assessed the relative performance of both methods in estimating

genetic breeding values, heritability and predictive accuracy, across a range of con-

tamination scenarios with outliers, which tamper mostly with the assumptions of

normality and variance homogeneity of the residuals. All the scenarios involved ei-

ther random or block contamination (mimicking plausible field conditions), and for

each contamination type, differed only in the percentage of the observations that

were contaminated and the size of the outliers. Also, two weighting schemes were

used with each dataset in the second stage of the two-stage approach.

The simulations revealed that block contamination has a lesser impact on the es-

timated parameters than random contamination. Also, the estimated true breeding

values improve from the first to the second stage, based on the Pearson correla-

tion coefficient, reaffirming the value of using genomic information in the analyses.

In addition, the use of the Smith’s weights produces more consistent parameter

estimates from the second stage onwards and is therefore recommended for the

two-stage approach.

A comparison of the performance of the classical and robust two-stage approaches

is summarized in Table 7S. In general, the proposed robust method shows a superior

performance to the classical approach. In terms of the accuracy of heritability and

genomic prediction, the robust approach clearly outperforms the classical for the

random contamination scenarios but performs similar performance to the classical

approach for the block contamination scenarios. Also, method M5 produces more

accurate estimates of predictive accuracy of genomic prediction than method M7.

Quite surprisingly, the simulations suggest that Oakey’s method is unsuitable for

estimating heritability when using a model with a kinship matrix.

Interestingly for the block contamination scenarios, the robust method generally

outperformed the classical in both the first and second stages, but this did not
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translate into higher predictive accuracies. This is likely because the block effect

(i.e., effect of blocks within replicates) is completely confounded with the effect of

contamination within blocks. As a result, if the block effect is included in the model

at the first stage it captures the effect of contamination within the block, yielding an

inflated block variance for the classical but not the robust approach. This explains

why the performance of the classical approach improves from the first to the second

stage. It also emphasizes the need to include a random block effect in the first stage

to account for intrablock variance especially when using the classical approach.

A noteworthy observation from the simulations is that if a study design has only

two replicates, then the robust or the classical methods cannot identify only one of

the two replicate observations as an outlier. Hence, using an automated cleaning

process, one has to discard twice as many observations as the actual number of

outliers. This is because given only two replicates, a single outlier results in two

large residuals with the same absolute value but opposite signs. This makes it hard

to determine which of the two replicates is actually the outlier.

The robust method can also be useful to breeders doing variety testing for which

only the first-stage model is required. Here, the robust approach had clearly supe-

rior performance for the block contamination scenarios. For the random contamina-

tion scenarios, except for the blocks within replicates variance, the robust method

produced more accurate estimates of the variance components than the classical

method did. Moreover, because late-generation breeding trials typically use only

two replicates as breeders aim to maximize the number of different environments,

the robust method will merely downweight but not require deleting both replicate

observations if it identifies either one or both of them as outliers. This property of

the robust method is highly desirable because it enables the plant breeder to obtain

genomic predictions for all the target genotypes. By contrast, using the classical

method only would result in discarding all the genotypes for which at least one

of the two replicate observations is an outlier. This is because it is impossible to

determine which of the two replicate observations is the true outlier.

The analysis of the real datasets also furnished some insights about the perfor-

mance of the methods. For the rye dataset, for example, the 16 outliers identified

by the breeders, were also detected by the robust model. Each of the 16 outliers be-

longed to a distinct block, thus mimicking a random contamination scenario. Also,

8 outliers were observed in the first replicate and the remaining 8 on the second

replicate hence resulting in a balanced distribution of outliers at the replicate level.

The differences between the results obtained by the classical and robust approaches

for the complete dataset are consistent with the ones observed for the simulated

random contamination scenarios. Removing the outliers from the data produced a

closer agreement between the classical and the robust results but some slight dif-

ference from the results produced by the robust approach for the complete dataset

still remained. A plausible explanation for this is that removing outliers from the

data may: (i) substantially reduce sample size; (ii) alter the distribution of the data

and (iii) potentially lead to the underestimation of variances for the cleaned data.

This last point precisely matches what is observed for the estimated residuals and

marker-effect variances in the two empirical data analyses.
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The first-stage results from the analysis of the full empirical raw maize dataset

showed a huge discrepancy in the estimated residual variance component, moder-

ate disagreement in the estimated block variances and similar estimates of replicate

and trial variances between the classical and robust approaches. This result is sur-

prising and deviates from expectation based on the results of the analyses of the

simulated data sets. A possible explanation for this unexpected result may relate

to the difference in the models fitted to the simulated data and the empirical maize

data set and the nature of the outliers. In this case, the 46 observations removed

were unevenly spread across 17 out of the 20 blocks (of size 90) and amount to 3% of

all the data. Two of these 17 blocks had approximately 8− 9% contamination. The

criterion used to identify the outliers in the maize data set was the robust weights

computed from the robust model fit and was somewhat conservative as only the

observations assigned weights equal to 0.5 or less were flagged. This criterion, when

applied to the rye dataset, correctly identified the 16 outliers that had already been

identified by the breeders. However, for the maize dataset this approach to outlier

identification is probably too restrictive because the distribution of the residuals

from the classical first-stage model fit to the cleaned dataset satisfied the normal-

ity assumption but the residuals from the classical second-stage model fit did not.

This observation reinforces the view that successfully cleaning the data to elimi-

nate outliers prior to analysis, plus satisfactorily addressing the drawbacks listed

above can be exceedingly challenging. Of the 38 yield observations replaced with

missing values as recommended by the breeder based on quality control, 24 were

identified by the robust method as outliers based on the analysis of the raw dataset

and consisted of either negative or zero yield values, which are evidently anomalous.

The other 14 of the 38 deleted observations were plausible and were not identified

as outliers by the robust method. Results of the analysis of the processed maize

dataset with 38 missing yield observations set to missing were very similar between

the two approaches. In particular, the results are also quite similar to those from

the analysis of the raw dataset using the robust method. This finding emphasizes

the stability and reliability of the robust approach both in the presence of outliers

and missing observations.

Conclusion
In conclusion, we show not only the advantages of a robust approach to phenotypic

data analysis and genomic prediction but also provide new insights into the potential

problems associated with using the classical approach to phenotypic data analysis

and genotypic prediction in plant breeding. The proposed robust approach, enhances

the accuracy of genomic prediction while alleviating the need for performing outlier

detection. Accordingly, plant breeders would do well to seriously consider using

these robust methods regularly alongside the classical approach.
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Portugal. 2Centro de Matemática e Aplicações (CMA), 2829-516 Caparica, Portugal. 3Institute of Crop Science,

Biostatistics Unit, University of Hohenheim, Fruwirthstrasse 23, 70599 Stuttgart, Germany.

References
1. Arslan, O. & Billor, N. (2000). Robust Liu estimator for regression based on an M-estimator. Journal of Applied

Statistics, 27(1), 39–47.

2. Bernal-Vasquez, A. M., Utz, F. & Piepho, H. P. (2014). Outlier detection methods for generalized lattices: a

case study on the transition from ANOVA to REML.. Theoretical and Applied Genetics 129(4), 787–804.

3. Bernal-Vasquez, A.-M., H.-Friedrich Utz et al. (2016). Outlier detection methods for generalized lattices: a case

study on the transition from ANOVA to REML. Theor. Appl. Genet. 129(4), 787–804.

4. Cerioli, A., Farcomeni, A. & Riani, M. (2013). Robust distances for outlier-free goodness-of-fit testing. Comput.

Statist. Data Anal., 65, 29–45.

5. Chi, E. C. & Scott, D. W. (2014) Robust Parametric Classification and Variable Selection by a Minimum

Distance Criterion. Journal of Computational and Graphical Statistics 23(1), 111–128.

6. Copt, S. & Feser, V. (2006). High-breakdown inference for mixed linear models. Journal of the American

Statistical Association 101, 292–300.

7. Croux, C. & Dehon, C. (2003). Estimators of the multiple correlation coefficient: local robustness and confidence

intervals. Statistical Papers 44(3), 315–334.

8. Demidenko, E. (2004). Mixed Models: Theory and Applications. John Wiley & Sons, Hoboken

9. Estaghvirou, S. B. O., Ogutu, J. O., Schulz-Streeck, T., Knaak, C., Ouzunova, M., Gordillo, A. & Piepho, H. P.

(2013). Evaluation of approaches for estimating the accuracy of genomic prediction in plant breeding. BMC

genomics 14:860.

10. Estaghvirou, S. B. O., Ogutu, J. O. & Piepho, H. P. (2014). Influence of outliers on accuracy and robustness of

methods for genomic prediction in plant breeding. G3 4, 2317–2328.

11. Estaghvirou, S. B. O., Ogutu, J. O. & Piepho, H. P. (2015). How genetic variance, number of genotypes and

markers influence estimates of genomic prediction accuracy in plant breeding. Crop Science 55(5), 1911–1924.

12. Henderson C.R. (1975). Comparison of alternative sire evaluation methods. J. Anim. Sci. 41, 760–770.

13. Hoerl, A. E. & Kennard, R. W. (1970). Ridge Regression: Biased estimation for nonorthogonal problems.

Technometrics 8, 27–51.

14. Hoerl, A. E., Kennard, R. W. & Baldwin, K. F. (1975). Ridge Regression: Some Simulations. Communications

in Statistics - Theory and Methods 4, 105–123.

15. Holland, P. W. (1973). Weighted Ridge Regression: Combining Ridge and Robust Regression Methods. NBER

Working Paper Series. Working Paper No.11.

16. Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101.

17. Huber, P. J. (1972). Robust statistics: a review. Ann. Math. Stat. 43, 1041–1067.

18. Koller, M. & Stahel, W.A. (2011). Sharpening Wald-Type Inference in Robust Regression for Small Samples.

Computational Statistics & Data Analysis, 55(8), 2504–2515.

19. Koller, M. (2013). Robust estimation of Linear Mixed Models. PhD Thesis.

http://e-collection.library.ethz.ch/eserv/eth:6670/eth-6670-02.pdf

20. Koller, M. (2015). robustlmm: Robust Linear Mixed Effects Models. R package version 2.1.

http://CRAN.R-project.org/package=robustlmm

21. Koller, M. (2016). robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models. Journal of

Statistical Software, 75(6), 1–24.

22. Lourenço, V. M., Pires, A. M., Kirst, M. (2011). Robust linear regression methods in association studies.

Bioinformatics 27(6), 815–821.

23. Lourenço, V. M. & Pires, A. M. (2014). M-regression, false discovery rates and outlier detection with

application to genetic association studies. Computational Statistics and Data Analysis 78, 33–42.

24. Lourenço, V. M., Rodrigues, P. C., Pires, A. M. & Piepho, H.-P. (2017). A robust DF-REML framework for

variance components estimation in genetic studies. Bioinformatics 33(22), 3584–3594.

25. Maronna, R. A., Martin, D. R. & Yohai, V. J. (2006). Robust Statistics. Wiley, Chichester.

26. Maronna, R. A. (2011). Robust Ridge Regression for High-Dimensional Data. Technometrics 53(1), 44–53.

27. Midi, H. & Zahari, M. (2007). Estimators in the Presence of Outliers and Multicollinearity. Jurnal Teknologi

47(C), 59–74.

28. Mrode, R.A., & R. Thompson. (2005). Linear Models for the Prediction of Animal Breeding Values. 2nd

Edition. UK. Wallingford.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/671768doi: bioRxiv preprint 

https://doi.org/10.1101/671768
http://creativecommons.org/licenses/by-nc/4.0/


Lourenço et al. Page 28 of 28

29. Oakey, H., Verbyla, A., Pitchford, W. et al. (2006). Joint modelling of additive and non-additive genetic line

effects in single field trials. Theor. Appl. Genet. 113, 809–819.

30. Pen̋a, D. & Yohai, V. J. (1999). A fast procedure for outlier diagnostics in large regression problems. Journal of

the American Statistical Association 94, 434-445.

31. Petersen, R. G. (1994) Agricultural field experiments/design and analysis. Marcel Dekker, New York.
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