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Abstract

Background. Genomic prediction (GP) is used in animal and plant breeding to help identify the best
genotypes for selection. One of the most important measures of the effectiveness and reliability of GP in plant
breeding is predictive accuracy. An accurate estimate of this measure is thus central to GP. Moreover,
regression models are the models of choice for analyzing field trial data in plant breeding. However, models
that use the classical likelihood typically perform poorly, often resulting in biased parameter estimates, when
their underlying assumptions are violated. This typically happens when data are contaminated with outliers.
These biases often translate into inaccurate estimates of heritability and predictive accuracy, compromising the
performance of GP. Since phenotypic data are susceptible to contamination, improving the methods for
estimating heritability and predictive accuracy can enhance the performance of GP. Robust statistical methods
provide an intuitively appealing and a theoretically well justified framework for overcoming some of the
drawbacks of classical regression, most notably the departure from the normality assumption. We compare the
performance of robust and classical approaches to two recently published methods for estimating heritability
and predictive accuracy of GP using simulation of several plausible scenarios of random and block data
contamination with outliers and commercial maize and rye breeding datasets.

Results. The robust approach generally performed as good as or better than the classical approach in
phenotypic data analysis and in estimating the predictive accuracy of heritability and genomic prediction under
both the random and block contamination scenarios. Notably, it consistently outperformed the classical
approach under the random contamination scenario. Analyses of the empirical maize and rye datasets further
reinforce the stability and reliability of the robust approach in the presence of outliers or missing data.
Conclusions. The proposed robust approach enhances the predictive accuracy of heritability and genomic
prediction while alleviating the need for performing outlier detection for a broad range of simulation scenarios
and empirical breeding datasets. Accordingly, plant breeders should seriously consider regularly using the robust
alongside the classical approach and increasing the number of replicates to three or more, to further enhance
the accuracy of the robust approach.
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Introduction

Genomic studies, whether from an association, prediction or selection perspective,
constitute a field of research with increasing statistical methodological challenges
given the growing complexity (population structure, coancestry, etc), dimension of
datasets, measurement errors and atypical observations (outliers). Outliers often
arise from atypical environments, years, field pests or other phenomena. Here, re-
gression models are the tool of choice whether in studies involving human, animal or
plant applications. However, it is well known that the performance of these models
is poor when their underlying assumptions are violated and their unknown param-
eters are estimated by the classical likelihood [49]. For example, violation of the
normality assumption — depending on its severity — may lead to both biased pa-
rameter estimates and coefficients of determination [7] and strongly interfere with
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variable selection [5]. In the case of the linear mixed model, such violation can
tamper with the estimation of variance components [24], which itself can be very
challenging even when data are normally distributed but the sample size is small.
Violation of model assumptions due to contamination of data with outliers can have
several other deleterious effects on regression models. In genomic association stud-
ies, for example, departure from normality can induce power loss in the detection
of true associations and inflate the number of detected spurious associations [22].
In plant genomics such violations of model assumptions and the associated biases
often translate into inaccurate estimates of heritability and predictive accuracy [10].
This can have significant practical consenquences because predictive accuracy is the
single most important measure of the performance of genomic prediction (GP). The
reduction of these adverse effects through the use of more robust methods is thus
of considerable practical importance [48].

Recently, [9] proposed a method for estimating heritability and predictive accu-
racy simultaneously (Method 5) and compared its performance with several con-
tending methods from the literature including a popular method in animal breeding
(Method 7). More details on Methods 5 and 7 can be found in the ’Genomic Predic-
tion’ Section. The authors concluded from these comparisons that Methods 5 and
7 consistently gave the least biased, most precise and stable estimates of predictive
accuracy across all the scenarios they considered. Additionally, Method 5 gave the
most accurate estimates of heritability [9]. Both methods are founded on the linear
mixed effects model as well as on ridge regression best linear unbiased prediction
(RR-BLUP) through a two-stage approach [34-36]. The first stage of this two-stage
approach involves phenotypic analysis and thus is likely to be adversely affected by
contaminated phenotypic plot data. In particular, contamination can undermine the
accuracy with which the adjusted means are estimated in the first stage and thus
negatively impact estimation of both heritability (only Method 5) and predictive
accuracy in the subsequent second stage where RR-BLUP is used [15]. [10] later
examined the performance of the same seven methods in the presence of one out-
lying observation under 10 simulated contamination scenarios. These simulations
reaffirmed that Methods 5 and 7 performed the best overall and produced the best
estimates of both heritability (only Method 5) and predictive accuracy across all
the contamination scenarios they considered. However, one outlying observation for
their dataset with a sample size of 698 genotypes corresponds to a level of con-
tamination of merely 0.1%. As stated by [10], outliers may arise in plant breeding
studies from measurement errors, inherent characteristics of the studied genotypes,
enviroments or even years. As the process generating the outliers may vary across
locations and/or trials, it is conceivable that a non-neglegible percentage of phe-
notypic observations may be typically contaminated when large field trial datasets
are considered. As a result, the composite effects of such substantial levels of con-
tamination on the accuracy of methods for estimating heritability and accuracy of
GP can be potentially considerable. Such outliers may not always be easy to detect
and eliminate prior to phenotypic data analysis. Therefore, using robust statistical
procedures for phenotypic data analysis of field trial datasets can help ameliorate
the adverse effects of outliers.

Robust statistical methods have been around for a long time and are designed
to be resistant to influential factors such as outlying observations, non-normality
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and other problems associated with model misspecification [17]. Therefore, the use
of robust methods has been advocated for inference in the linear and linear mixed
model setups [6, 25], as well as in ridge regression [1, 15, 26, 27, 45, 52]. As a result of
such considerations and the recent advances in computing power, it is not surprising
that there has been a strong, renewed interest in exploring these techniques to
robustify existing methods or develop new procedures robust to moderate deviations
from model specifications [24, 41].

Consequently, to tackle the problem of biased estimation of heritability and pre-
dictive accuracy due to contamination of phenotypic data with outliers, we aim to
robustify the first phase of the two-stage analysis used in GP. Such an approach
will, in addition, largely obviate the need to check for and eliminate mild or even
extreme outliers from the data prior to analysis. We use a Monte-Carlo simulation
study encompassing several contamination scenarios to assess the performance of
the proposed robust approach relative to: (i) the approach used by [35], and (ii)
simulated underlying true breeding values taken as the gold standard. These assess-
ments are carried out at each of the two stages involved in predicting breeding values
by comparing the accuracy with which the two approaches estimate true genotypic
values in phenotypic analysis. In a third stage, we compare the heritabilities (H?)
and predictive accuracies (PA) estimated by the two competing approaches using
Method 5 (H? and PA) and Method 7 (PA only). In addition, we compare the
heritability estimated by Method 5 with the generalized heritability estimated by
Oakey’s method [29]. The latter method was not evaluated by [9].

Also, an application of the methodology to real commercial maize (Zea mays)
and rye (Secale sereale) datasets is presented and used to empirically assess the
usefulness of the proposed robust approach. Lastly, we discuss how to effectively
apply the proposed robust approach to phenotypic data analysis and the estimation
of heritability and predictive accuracy of GP in plant breeding.

The robust and the classical approaches are implemented in the R software using
the code in the supplementary materials (Additional file AppendixE_Rcode.pdf).
The ASREML-R package is used to fit the models at the second stage.

Materials and Methods

Datasets

Rye dataset: The Rye data were obtained from the KWS-LOCHOW project and is
described in more detail elsewhere [2, 3]. These data consist of 150 genotypes tested
between 2009 and 2011 at several locations in Germany and Poland, using o designs
with two replicates and four checks (replicated two times in the two replicates).
Each trial was randomized independently of the others. The field layout of some
trials was not perfectly rectangular. Trials at some locations and for some years
had fewer blocks but larger size, i.e., two different sizes were used for a few trials.
Blocks were nested within rows in the field layout. The dataset has 16 anomalous
observations pertaining to distinct genotypes, that the breeders identified as outliers.
Moreover, yield was not observed for one genotype. For this example we consider
two complete datasets (320 observations): the first is the original dataset without
any corrections, which we call the 'raw’ dataset, and the second is the original
dataset with the 16 yield observations replaced with missing values, which we refer
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to as the 'processed’ dataset. In addition, we consider a cleaned version of the raw
dataset (288 observations; called cleaned dataset) obtained by removing from the
raw data the 16 outlying genotypes (32 observations) identified by both the breeders
and the criterion used for outlier detection described in the ’Example Application’
Section. We note that because the empirical rye dataset has only two replicates, a
single outlier will automatically generate an outlier with the same absolute value
of opposite sign for the other replicate of the same genotype. Consequently, we
removed a testcross genotype entirely from the cleaned dataset even if only one of
its two replicate observations was outlying. The raw, processed and cleaned datasets
comprise only 148, 148 and 132 genotypes with genomic information, respectively.

Maize dataset: The maize dataset was produced by KWS in 2010 for the Synbreed
Project. The data set has 1800 yield observations on 900 doubled haploid maize lines
and 11,646 SNP markers. Out of the 900 test crosses 698 were genotyped whereas
202 were not. The test crosses were planted in a single location (labelled RET)
on nine 10 by 10 lattices each with two replicates. Six hybrid and five line checks
connected the lattices (398 observations in total). The lines were crossed with four
testers. After performing quality control, the breeder recommended replacement of
38 yield observations with missing values. A more elaborate description of this maize
dataset is provided in [9, 11].

For this example we consider two datasets each with 1800 yield observations: the
first is the original dataset without any corrections, which we call the 'raw’ dataset,
and the second one is the original dataset with the 38 yield observations replaced
with missing values, which we refer to as the ’processed’ dataset. Furthermore,
we consider a third dataset (called cleaned raw dataset) obtained by removing 46
outliers from the raw dataset. The fourth dataset (called the cleaned and processed
dataset) is obtained by removing seven outliers from the processed dataset. All the
outliers satisfied the criterion for outliers described in the "Example application’
Section. As with the rye dataset, we removed a testcross genotype entirely from the
raw dataset if at least one of the two replicate observations was outlying. Thus, the
raw, processed, cleaned raw and cleaned and processed datasets have 1800, 1754,
1800 and 1793 yield observations and 698, 687, 698 and 697 genotypes with genomic
information, respectively.

Genomic prediction

True correlation

The correlation between the true (g) and the predicted (g) breeding values (true
correlation or true predictive accuracy) can be calculated from simulated data as

s~
T9.g = g;g > (1)
5252

where s, 5 is the sample covariance between the true and predicted breeding values,

sg and s% are the sample variances of the true and predicted genetic breeding values,

respectively. This correlation is often the quantity of primary interest in breeding
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studies. The simulation study therefore assesses the accuracy with which 7,5 is
estimated by Methods 5 and 7, whose details are described below.

Two-stage approach for predicting breeding values

[9] use the two-stage approach of [35] to predict true breeding values (g) that are
then used to estimate heritability and predictive accuracy. This approach is quite
appealing because it greatly alleviates the computational burden of the single-stage
approach [47], without compromising the accuracy of the results.

The single-stage model can be written as
y=o¢l+f (2)

where y is the vector of the observed phenotypic plot values, ¢ is the general mean,
f is a vector that combines all the fixed, random design and error effects (replicates,
blocks, etc.). For the simulated data f has four random effects only and is given by
f =Z,g+ Z,u, + Zyu, + e where (i) Z, is the design matrix for the genotypes
with g ~ N(0,Z,ZT02 = G), Z, is the matrix of biallelic markers of the single
nucleotide polymorphisms (SNPs), coded as —1 for genotypes AA, 1 for BB and
0 for AB or missing values and o2 is the variance of the marker effects; (i) Z,
is the design matrix for the replicate effects with u, ~ N(0,02I) and o2 is the
variance of the replicate effects; (iii) Zj is the design matrix for the block effects with
u, ~ N(0,02,I) and 02, is the variance of the block effects; and (iv) e ~ N(0,R)
are the residual errors and R is the variance-covariance matrix of the residuals. In
our model R = oI where o2 is the residual plot error variance.

The two-stage approach basically breaks this model into two models. In the first
stage, which we seek to robustify, we use the model

y=Xpu+f (3)

where y is defined as before, X = Z,, is the design matrix for the genotype means,
[ = ¢1+g is the vector of unknown genotypic means and f = Z,u, +Z,u, +e. Note
that in this first stage the genomic information regarding the SNP markers (I' =
Z,Z7) is excluded from this analysis because genotype means p, which comprise
the genetic effects g, are modelled as fixed. This is usually the case when stage-wise
approaches are considered, in which case the genomic information is included only
in the last stage [35].

In the second stage, the genotype means pi estimated at the first stage are used
as a response variable in a model for computing the true breeding values g specified
as

fi=¢l+g+é )

where ¢ is the general mean and € ~ N (0, R) with R = var(fu | ¢,g).

Note that any standard varieties or checks are dropped from the dataset before the
adjusted means (@) from the first stage are submitted to the second stage. The


https://doi.org/10.1101/671768
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/671768; this version posted June 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Lourenco et al. Page 6 of 28

mixed model equations for (4) can be solved to obtain the best linear unbiased
prediction for g, BLUP(g) = g, using a ridge-regression formulation of BLUP, i.e.,
RR-BLUP.

In case weights are used when fitting the second-stage model, then R should be
replaced by W1, with W being a weight matrix computed from the estimated first-
stage variance-covariance matrix R. In our case we used Smith’s [46] and standard
(ordinary) [35] weights. Specifically, Wy, = diag(R™') for Smith’s and W, =
(diag(R))~" for standard weights, respectively.

More details on the two-stage approach can be found in [9, 35, 36].

Method 5
This method (M5) calculates predictive accuracy as

trace(P,CG)

E(rgg) ~ =
\/trace(PuG)trace(CTPuCV)

()

where V = G + R with V, G and R being the variance-covariance matrices for the
phenotypes, genotypes and residual errors of the adjusted genotypes, respectively;
P, = ﬁ(I — %Jn), with J,, a n X n matrix of ones; C = é‘:VﬁlQ7 with Q =
I-1(17V~11)"117V~! and 1 denoting a vector of ones. Under this formulation,
which provides a direct estimate of the correlation between the true (g) and the
predicted (g) breeding values, the RR-BLUP of g is now given by g = GV_lQﬁ
[34].

Heritability can then be computed from (5) as
H72n5 = [E(Tg.ﬁ)]Q-
Method 7
This method (M7) is commonly used by animal breeders to directly compute pre-
dictive accuracy (p) from the mixed model equations (MME, [12, 28, 51]) by firstly

computing the squared correlation between the true (g) and predicted breeding
values (g), i.e., reliability (p?).

Since the MME for the second-stage model (4) are given by
m Rt R | (1R (6)
g - R_ll R—l_'_é—l f{_lﬁ )

with the variance-covariance matrix of ((ﬁ — ¢,8 — g) given by

Ci1 Ci2] _ 1TR!1 1TR! - (7)
C21 Ca22] | R!1 RI4G 1|

and the variance-covariance matrix of g and g given by
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the reliability for each genotype is computed as

o (cov(gi,gi))* _ war(g:) (9)

P = =

var(g;)var(g;)  wvar(g;)

where only the diagonal elements of the matrices var(g) = G, var(g) = G — Cagy =
cov(g, g) are extracted. The average reliability across the genotypes in each dataset
is then estimated by

~2 1 - ~2
—,E ; 10
pm7 ni:1p1 ( )

where 7 is the total number of genotypes in the dataset. Predictive accuracy (p ,,.)
is then computed as the square root of p 3n7. Alternatively, predictive accuracy can
be computed as

- 1~ /[~
R SN )
i=1
Further details on this derivation can be found in [36].

Oakey’s Method
[29] propose a generalized heritability measure that was recently re-expressed by
[40] as

_ trace(D)

n—s

H? (12)
where D =1, — é’ngz and s is the number of zero eigenvalues of D. We also use

this method to estimate heritability and compare this estimate with the estimate
obtained by method MS5.

Robust estimation
Robust estimation of the linear mixed model for phenotypic data analysis

In this section we briefly review the robust approach of [19] to linear mixed effects
models that we use in an attempt to robustify the first stage of the two-stage
approach to genomic prediction in plant breeding. This approach is implemented in
the R software package robustimm via the function rimer () [20, 21].

We consider the general linear mixed model

y=Xp+Hu+e (13)
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where y is a vector of observations, X is the design matrix for the fixed effects
(intercept included), w is the vector of unknown fixed effects, H is the design matrix
for the random effects, u ~ N (0, U) is the vector of unknown random effects and
e ~ N(0,R) is the vector of random plot errors. Note that for our first-stage model
Hu =7Z,u, +Zyuy and pu = ¢1 +g.

Model (13) also assumes that cov(u, e) = 0 and as such we have that
y ~ N(Xu, HUH' + R).

We henceforward assume for simplicity that e ~ N(0,02I) and u ~ N(0,02A(6))
where the variance matrix A of the random effects depends on the vector of un-
known variance parameters 6 (this assumption can be relaxed to obtain more general
formulations, see e.g., [19]). The variance of y now simplifies to

var(y) = o HA(O)H' + 0?1 = 02 ®

with ® = HA(6)H' + 1.

Because A(0) is a positive-definite symmetric matrix and assuming that € is known,
one can obtain its Cholesky decomposition as chol(A(0)) = B(0), set u = B(0)b
and rewrite model (13) as

y =Xp +HB(@)b +e, (14)

where b ~ N(0,02I) so that we again have y ~ N(Xpu,02®).

The classical log-likelihood for (14) can be written as

—20(0, 0. | y) = nlog(27) + log | 02® | +

1 R (15)
t (v = Xp)@  (y — Xp).
Furthermore, for a given set of 6, u and o, (44, Chapter 7)
b* = bBLUP = O’SB(O)/HIQ_l(y — X[,I,). (16)

From (15) and (16), an objective function that incorporates the observation-level
residuals and the random effects as separate additive terms can be derived and

expressed as

d(6. p. 0. b" | y) = nlog(2) + log | 02® | +
1

o2
Ue

(e*'e* + b* b*)

where

e" =e"(u,b") = (y — Xu —HB(0)b").
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This particular trick is crucial in order to independently control contamination at

the levels of the residual and random effects.

Assuming 6 and o, are known and taking the partial derivatives of (17) with respect

to p and b*, we get the following estimating equations for these effects,

X' /o, =0
(18)
(B(B)’H’E* - B*) Joe =0
where
& =" (fi,b") = (y — Xfi — HB(0)b"). (19)

If B(0) is diagonal, as in our case, these equations are robustified by replacing e*
and b* by bounded functions . (€*) and ¢b(g*)7 where the v, and v, functions

need not be the same:

X'tpe(€*/oc)/Ae =0

B(6)H'1b (6" /o) /Ae — Up(b* /) /A = 0

where A\, = Eg[¢)!] is required to balance the €* and b* terms in case different P
functions are used; 1/A. and 1/X, are scaling factors (as in M-regression [17]) and

cancel out in the special case where 1, = .

If we let
Ye(e*)/e* if e* #0
we(€e*) = ;
1(0) if & =0
B GO

)(0) if b* =0

Ay = Ao/, W, = Diag(we(ef/o.)) and W, = Diag(wy(b} /o)), and after some
simplification, equation (20) can be written as

X'W.e*r =0

B(6)H'W.&* — A,W,b* =0
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which, after expanding €* with (19), yields the following system of linear equations:

XTW,X XTW_HB(6) m
B()'H'W.X B(0)TH'W.HB(0) + A,W, | |b*

X7 W.y
= . (21)
B(B)THT W.y

The algorithm for estimating parameters of (21) begins with a predefined set of
weights. It then alternates between computing g and b* for a given set of weights
and updating the weights for a given set of estimates. [18] and [19] provide more
details on the estimation of the scale and covariance parameters and the estimation
procedure for the non-diagonal case.

If replicate and block (nested within replicates) are the only random effects apart
from the residual error in the first-stage model (this is the case for the simulation

study for our first-stage model and for the first-stage model for the rye dataset)

then 6 = (i’z’ G%b
o2’ o

e e

random effects, respectively. Also here, A(0) is a two-block diagonal matrix (k = 2

), where 02 and o2, are the variances for the replicate and block

blocks). Furthermore, because we assume u, ~ N(0,02I) and u, ~ N(0,02,1) for
the first-stage model, B(0) = [A(0)]'/? is a diagonal matrix.

In particular, for the simulated data consisting of 698 observations of maize yield
from 2 replicates each having 39 blocks (more details in the ’Simulation’ Section), we
compute 2 + 39 = 41 weights (W) for the observations at the level of the random
effects and 2 x 698 = 1396 weights (W.) for the observations at the level of the
fixed effects (i.e., for the residuals).

Robust approach to phenotypic analysis

Phenotypic data derived from field trials are prone to several types of contamination
that may range from measurement errors, inherent characteristics of the genotypes
and the environments to the years in which the trials were conducted. As such, if
contaminated observations are present in the vector of phenotypes y in the first stage
of phenotypic data analysis, then they can unduly influence the estimation of the
means for the testcross genotypes (u) in model (3), resulting in inaccurate estimates
of adjusted phenotypic means fi. In turn, these possibly inaccurate estimates of u
are passed on to the second stage of the procedure (model (4); adjusted RR-BLUP)
from which the breeding values g are estimated. The possibly biased estimates of (g)
may undermine the accuracy of the estimated heritability and predictive accuracy.

To minimize bias in the estimation of heritability and predictive accuracy, we pro-
pose using the preceding robust model for the first stage of phenotypic data analysis.
The second stage then proceeds in the same way as the classical method except that,
now, the robust estimates f1 from the first stage are used in (4).
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Simulation

Simulated datasets

We consider a real maize dataset from the Synbreed Project (2009 — 2014). This
dataset was extracted for one location from a larger dataset and consists of 900
doubled haploid maize lines, of which only 698 testcrosses were genotyped, and
11,646 SNP markers. Six hybrid checks and five line checks were considered and
genotypes were crossed with four testers as explained in more detail in [9]. Variance
components estimated from this dataset (02 = 0, 02, = 6.27, 02 = 53.8715 and
02 = 0.005892) were used to simulate the block and plot effects based on an a-design

(31) with two replicates and the model
Yijk = ¢ + 7k + bjk + gi + €ijk (22)

where y;;, is the yield of the i-th genotype in the j-th block nested within the k-th
complete replicate, ¢ is the general mean, r is the fixed effect of the k-th complete
replicate, b, is the random effect of the j-th block nested within the k-th complete
replicate, g; is the random effect of the i-th genotype, and e;;;, is the residual plot
error associated with y;;,. More details on (22) can be found in Table S3 in the
supplementary materials of [10].

Our simulations consider 1000 simulated Maize datasets described as follows: each
dataset consists of 698 observations of yield in 2 replicates, with the 698 geno-
types distributed over 39 blocks as in Table 1. Four out of the 39 blocks have 17
observations, whereas the remaining 35 have 18 observations.

Table 1: A sample simulated Maize dataset

/ rep block genotype yield

1 1 1 267 7.416505

2 1 1 149 1.945098
698 1 39 459 25.097810
699 2 1 604 12.640605
139 | 2 39 614 18.859413

Simulation of outliers

In order to simulate outliers, a percentage of phenotypic observations in the dataset
is chosen and contaminated by replacing the observed value of each selected obser-
vation by that value plus 5-, 8- or 10- times the standard deviation of the residual
error (o) used to simulate the phenotypic datasets. Additionally, we also consider

two distinct types of data contamination:
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(i) Random contamination: 1, 3, 5, 7 and 10% of the phenotypic data in only
one of the two replicates are randomly contaminated, amounting to an overall
data contamination rate of 0.5, 1.5, 2.5, 3.5 and 5%, respectively.

(ii) Block contamination: phenotypic data in 1, 2, 3, 4 and 5 whole blocks in
only one of the two replicates are contaminated, amounting approximately to
1.3, 2.6, 3.9, 5.2 and 6.5% overall rate of data contamination, respectively.

We use the notation “%_sd” to denote the random contamination scenarios cor-
responding to the contamination of a particular percentage (%) of the data with
outliers of size sd and “block_sd” to refer to block contamination scenarios corre-
sponding to the contamination of a specific number of whole blocks (block) with
outliers of size sd.

First- and second-stage models

In the first stage (eq.3), we consider yield as the response variable, the genotypes
as the fixed effects and the replicates and blocks nested within replicates as the
random effects. In the second stage (eq.4), we consider the adjusted genotypic means
estimated in the first stage as the response variable, the intercept as the fixed effect
and the genotypes as the random effects with a variance-covariance structure given
by the genomic relationship matrix.

Comparing performance of the classical and robust approaches

The performance of the classical and robust approaches is evaluated in three steps,
labelled L1, L2 and L3. L1 involves a comparison of results from the first stage;
L2 entails a comparison of results from the second stage and L3 focuses on a com-
parison of the estimated heritability and predictive accuracy, which can be viewed
as constituting the third stage. For each of the three levels, we consider the null

scenario (uncontaminated datasets), random and block contamination scenarios.

Additionally, the influence of the Smith’s and standard weighting schemes used in
the second stage of the two-stage approach are considered in L2.

The following quantities are computed and used to compare the performance of the

classical and robust approaches at levels L1-L3.

L1: The mean squared deviation (MSD) of the estimated from the true genotypic
means is computed for both the classical and robust approaches as

1000 698 (@t — pa)®
MSD,, ki : 2
S Z — 698 x 1000 (23)

where p;; is the true mean of the «-th genotype in the l-th simulation run and fi; is
its estimate.

The estimates of MSDy; for the classical (C) and robust (R) approaches are com-
pared for each scenario using

1000 698 AR ZZ
MSD; = (g = Frg)* 24
> Z z:: 698 x 1000 (24)


https://doi.org/10.1101/671768
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/671768; this version posted June 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Lourenco et al. Page 13 of 28

and are expected a priori to agree for the null scenario.

It is also instructive to compute and plot

i -« (//;l H'l)2
MSD], = —_— 25
8 ; 1000 (@)

for each genotype i = 1,...,698 for both approaches. Furthermore, the overall es-
timated genotypic mean (across genotypes and simulations) is also computed and
compared to the corresponding true genotypic mean. Moreover, since the rank order
of genotypes is also of great importance in plant breeding studies, the Pearson cor-
relation coefficient (r,) between the true and estimated genotypic means (predictive
accuracy) is also computed and compared between the two approaches. This yields
an estimate of the predictive accuracy for the genomic means.

L2: At this level, we compute the MSDs for the genomic breeding values g anal-
ogously to equations (23)-(25). The r, between the true and estimated breeding
values is again computed and used to compare the two methods and assess any
improvement in the estimation of g when genomic information is included in the

analysis. This provides an estimate of the accuracy of genomic prediction.

L3: Here, the methods are compared by computing the following MSDs,

1000 , 75
(H} = (rg.9)*)*
MSDy = Y L edl (26)
£ 1000
1000 (? = ,\)2
MSDPA — § 97971000979 (27)

where 7, 5 is the Pearson correlation computed between the true and the estimated
breeding values and averaged across the 1000 simulations, I;Tlg and 7,5, are, re-
spectively, the heritability and predictive accuracy estimated in the s-th simulation
via the methods described earlier. These MSDs quantify the deviation of the esti-
mated from the true heritability (H?) or predictive accuracy (PA). In addition, we
provide boxplots of the estimated heritablity and predictive accuracy for the 1000

simulation runs for each scenario.

Simulation results
Null scenario

L1: The following computed MSDs

1000 698 AR ﬁ )
MSD; = sl TS~ ),
S Z Z 698 <1000 ~ 0%
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1000 698 AC

MSDS = i = 1) 58 07 and
Zi: 698 x 1000 a

1000 698 AR _y
MSDF = it) ~ 29.08
Z Z 698 % 1000

show, as expected, that both methods perform similarly when the data are not
contaminated (MSDy; ~ 0). However, the classical method performs slightly better
than the robust one (MSDS S MSDS”). Even so, both MSD values are not particu-
larly close to zero. Still, as these MSD values are squared deviations averaged across
all the 1000 simulation runs and 698 genotypes, they seem reasonable.

The slightly better performance of the classical relative to the robust method is
also apparent in the per-genotype MSDs (Figure 1S). The two approaches produce
virtually identical estimates for the overall mean of @i (i.e., mean{p;}, i =1, ...,698,
[=1,...,1000) and r, (Table 2).

Table 2: Estimated overall mean of g and predictive accuracy expressed as the
Pearson correlation coefficient r,, obtained using the classical (CLS) and the robust
(ROB) methods (averaged across the 1000 simulations)
true mean=8.923 ROB CLS
overall mean i 8.906 8.908
Tp 0.764 0.765

The two methods estimate the variances of both the random effects and the residual
errors equally well (Figure 2S).

The Smith’s and standard weights obtained in the first stage for both the classical
and robust approaches are very small (Figure 3S). Precisely, the MSD between the
two different types of weights is approximately 0.6 x 107¢ and the MSD between the
values of each type of weight computed by the two approaches is about 0.6 x 1072.

L2: There were no major differences between the estimated breeding values obtained
using either the standard or Smith’s weighting schemes at the second stage (MSD, ~
25 for both cases). For this reason we only present results produced using Smith’s
weights.

The MSDs for the second stage

1000 698 AR

MSD; = Mt = 9i)_ 9it ~ 0.03
Z Z_: 698 x 1000
1000 698 AR — g l
MSDR ©_ ~ 95.55:
ZZ_: Z_; 698 x 1000 ’

1000 698 -
MSDY = it) ~ 95.1
5 Z Z 698 <1000 ~ 2018

show a modest improvement over the corresponding estimated genotypic means at
the first stage and that the methods continue to perform similarly as in the first
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stage. Relative to the estimates for the first stage, the per-genotype MSDs (Figure
13S) increase for about 22% but decreases for about 47% of the genotypes. This
trend is similar for both the classical and robust approaches. Additionally, for the
second stage, the mean r, = 0.903 for both approaches. This increase in 7, relative
to the first stage (~ 18.2%) shows that using genomic information at the second
stage improves genomic prediction and hence the ranking of genotypes. For the
overall mean of the EBVs (g), it drops to ~ 5 from ~ 9 for both approaches (first
row, Tables 2S & 4S).

Quite interestingly, in terms of the estimation of the genetic variance, the robust
approach performs slightly better than the classical (Figure 145).

L3: Both the classical and robust approaches produce the following MSDs for her-
itability (Method M5 only) and predictive accuracy (Methods M5 and MT7):

MSD}® ~ 0.00

0.00 for M5

0.01 for M7
showing the estimates of heritability and predictive accuracy to be quite accurate.

MSDPA ~

We note that estimates of heritability and predictive accuracy were computed by
fixing the residual variance from the first stage to one as described in the 'Genomic
prediction’ Section. In general this produced more accurate estimates than the alter-
native for which the residual variance estimated in the first stage is used. Therefore
all the results displayed here for the third stage use the former implementation.

Boxplots for the estimated PA (methods M5 and M7) and H? (method M5 only)
across the 1000 simulations for the null scenario are shown together with the ones
for the random and block contamination scenarios (Figures 19S-20S). These suggest
that method M5 produces more accurate estimates of PA than method M7.

Relative to method M5, Oakey’s heritability estimates are unacceptably lower
than the simulated true values (Figure 1). To further explore why these estimates
were remarkably smaller than those produced by M5 or the simulated true values,
we took 100 out of the 1000 simulation replicates and refitted the entire two-stage
model by setting G = 05271 at the second stage. The heritability estimates for M5 and
Oakey’s were virtually identical (MSD= 0.1 x 10~27). This strongly suggests that
Oakey’s method works fine with independent genotypes but performs poorly when
the model used to estimate heritability has a kinship matrix. Consequently, we do
not consider Oakey’s heritability estimates further except in a few comparisons in

the ’Example application’ Section.

Random contamination scenarios

L1: The MSD,, for these scenarios are similar between approaches for each level of
contamination and size of outlier (Tables 3 and 1S). Hence for the random contami-
nation scenarios, the robust and classical approaches produce comparable estimates
for the genotypic means. The per-genotype MSDs also reaffirm the similar perfor-
mance of the two approaches (Figure 4S). Nevertheless, it is noteworthy that even

for the least extreme scenario, 1% contamination with an outlier of size 5 sd, the
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Figure 1: Estimates of heritability obtained from methods M5 and Oakey’s for the classical
(CLS) and robust (ROB) approaches

increase in the per-genotype MSDZ is non-negligible relative to the corresponding
values computed by the classical method under the null scenario and used as a
benchmark (Figure 2). The per-genotype MSDs increase greatly with increase in

the percentage contamination and size of outliers (Figure 45).

| m reference °
O CLS
| ROB

40

35

MSD
L .
!

30

o |
(aY]

=

Figure 2: Boxplot of the 698 per-genotype mean squared deviations (MSDZ) unde
the null scenario (classical as reference) against the ones obtained in the random
scenarios 1_5 for the classical (CLS) and robust (ROB) approaches

The estimated overall mean of the estimated genotypic means (z) for both ap-
proaches departs increasingly from the true overall mean of p as both the level of
contamination and size of outliers increase (Table 2S). The same trend is evident
for the r,, implying deterioration of the ranking of genotypes (Table 2S).
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Table 3: MSD,, between the estimated genotypic means and the true breeding val-
ues considering the classical (CLS) and robust (ROB) approaches and the random

contamination scenarios.
Random scenarios

% cont sdt CLs ROB
0 - 28.97 29.08
1 5 3244 3251
1 8 37.83 37.78
1 10 42.80 42 .64
s 5 4626  46.39
5 8 72.98 72.87
5 10 97.50 97.25
10 5 6330 63.65
10 8 116.40 116.67
10 10 165.22 165.30

The two methods also differ with respect to how well they estimate particular
variance components. More precisely, the classical method estimates the variance
for blocks nested within replicates (02,) somewhat better than the robust method
does from 5% contamination upwards. However, the robust method estimates the
variances for replicates (02) and residual errors (02) far better than the classical
method does (Figures 65-8S).

The Standard and Smith’s weights computed for both the classical and robust
approaches across the random contamination scenarios are shown in Figures 9S and
10S.

As the percentage of contamination and size of the outliers increase, the degree of
overlap of the empirical frequency distributions of the classical and robust weights
evidently reduces. In particular, the distributions do not overlap at all from the 3%
contamination level upwards for the 8— and 10—sd shift-outliers. Also, the weights
show an overall decreasing trend, which is more evident for the classical approach
and the Standard weights.

L2: The mean squared deviations (MSDg) between the EBVs and the TBVs for
the classical approach are displayed in Table 5S. The MSDg’s for the Standard
and Smith’s weights show some minor differences in favour of the latter from 7%
contamination and 8-sd shift-outliers onwards. Thus, only the second-stage results
obtained using the Smith’s weights are presented in the remainder of this section.

The robust approach tends to produce smaller MSDs between the EBVs and the
TBVs as the percentage of random contamination and the size of the shift-outliers
increase (Tables 4 & 1S). The second-stage per-genotype MSDs do not show the
increasing trend observed for the per-genotype MSDs from the first stage with values
ranging between 0 and 100 (Figure 16S). In addition, the robust method always
produces higher estimated predictive accuracy, expressed as the averaged Pearson
correlation coeflicient r,, than the classical method, implying better ranking of the
genotypes (Table 2S). The overall mean EBVs (g) is similar for both approaches
but drops steadily as the percentage contamination and size of outliers increase,

implying underestimation.
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Table 4: Mean squared deviation of the estimated from the true genomic breeding
values (MSDg) for the classical (CLS) and robust (ROB) approaches under the

random contamination scenarios.
Random scenarios

% cont sdt CcLs ROB
0 - 25.18 25.55
1 5 2629 2626
1 8 27.84 26.44
1 10 29.16 26.49
S5 5 2937 2872
5 8 3453 29.97
5 10 38.31 30.33
S 10 5 3253 3241
10 8 40.39 37.40
10 10 4571 39.04

The robust approach also produces more accurate estimates of the marker-effect
variance (02) up to 10% contamination and 5-sd shift-outliers (Figure 15S). For the
10% contamination scenarios with 8- and 10-sd shift-outliers the robust estimates of
o2 no longer overlap with the true marker-effect variance but their boxplots show a
smaller inter-quartile range (IQR) and lower dispersion than those for the classical
approach.

L3: The robust approach produced generally more accurate estimates for both
H? and PA for the random contamination scenarios (Figures 18S-20S). However,
both approaches tend to underestimate both parameters as the percentage con-
tamination and size of outliers increase. The MSDE5 ranged between approximately
0.00 — 0.09 and 0.00 — 0.07 for the classical and robust methods, respectively. The
corresponding, MSD%}? ranged between approximately 0.00 — 0.02 and 0.00 — 0.01
whereas MSD};Z ranged between approximately 0.01 —0.04 and 0.01 — 0.07. Overall,
method M5 performs somewhat better than method M7 in estimating predictive
accuracy (Figures 185-20S; Table 6S).

Block contamination scenarios

L1: Although the MSD,, for the block contamination scenarios is relatively stable
for the robust approach (between 29.08 and 30.11), it increases with increasing level
of contamination and size of the outliers for the classical approach (Tables 5 & 3S).
In the worst block contamination scenario (5-10) the MSD for the classical approach
is about 1.7 times larger than that for the robust approach. The per-genotype MSDs
show even poorer performance for the classical method in estimating each of the
698 genotypic means (Figure 5S). By contrast, the robust approach maintains the
errors at roughly the same level across the contamination scenarios; a level that is
close to the one estimated for the null scenario. This is an attractive property of
this method.

Block contamination had generally less debilitating effect on the accuracy of the
estimated genotypic means than random contamination (Tables 1S & 3S). For ex-

ample, the block contamination scenario 1_5, which corresponds to an overall 1.3%
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Table 5: Mean squared deviation of the estimated genotypic means from the true
breeding values (MSD,,) for the classical (CLS) and robust (ROB) approaches under

the block contamination scenarios.
Block scenarios

No. blocks sdt CcLs ROB

0 - 28.97 29.08
1 5 3090 2944

1 8 30.75 29.69

1 10 31.16 29.82

o1 o1 o
(o]
N
w
w
N
(o]
(o]
w

data contamination, produces smaller MSDs than the random contamination sce-
nario 1.5, which corresponds to only 0.5% overall contamination (Figures 2 and 3;

Table 5).
@ reference o .
O CLS
S1m ROB, . °

o

32

MSD

30

28

Figure 3: Boxplot of the 698 per-genotype mean squared deviations (MSD?,) under the
null scenario (classical as reference) against the ones obtained in the block scenarios 1.
for the classical (CLS) and robust (ROB) approaches

t

The performance of the two methods also differed noticeably with respect to the
estimation of the overall mean of pi. For example, for the worst case scenario (block
5_.10) the overall mean of [ deviated from the true mean by merely 5.5% for the
robust approach but by 50.2% for the classical approach (Table 4S), indicating
superior performance of the robust approach. Nevertheless, the poor predictive per-
formance of the classical approach at the first stage does not necessarily translate
to a reduced predictive accuracy r, because it does not alter the relative ranking of
the genotypes (Table 4S). Accordingly, the ranking of the genotypes does not differ
much between the two approaches (estimated 7, ~ 0.76 for both approaches across
all scenarios).

An overall superior performance of the robust compared to the classical approach is
also evident for the accuracy of the estimated variance components (Figures 6S-8S).


https://doi.org/10.1101/671768
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/671768; this version posted June 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Lourenco et al. Page 20 of 28

L2: In this case, the MSDg obtained in the second stage differ depending on

whether the Smith’s or the standard weights are used. In particular, using the
Smith’s weights produces more stable MSD, estimates across all the block con-
tamination scenarios than using the standard weights, which tend to increase with
increasing number of contaminated blocks and size of outliers (Table 5S). For this
reason, only results obtained using the Smith’s weights are presented in the remain-
der of this section.
For all levels of contamination and size of outliers, the robust overall MSDs between
the EBVs and the TBVs did not differ much and fluctuated around ~ 25 (Table
5S), a value that is similar to the corresponding value for the null scenario (Table
6).

Table 6: Mean squared deviation of the estimated from the true breeding values
(MSDg) for the classical (CLS) and robust (ROB) approaches under the block
contamination scenarios.

Block scenarios

No. blocks sd CLs ROB

0 - 25.18 25.55
1 5 2535 2561

1 8 25.38 25.63

1 10 25.39 25.63

1 o1 o
[e¢]
N
o1 o ¢
>
o
N
o1
&)
[e¢]

The per-genotype MSD, values vary little with increasing size of outliers but
suggest that the classical method performs slightly better than the robust method
(Figure 17S).

The average estimated predictive accuracy (r,) across all scenarios was approx-
imately 0.90 for both approaches (Table 4S). Predictive accuracy thus increased
from the first to the second stage for the classical (by 17%) and robust (by 18%)
approaches, an increase comparable to that observed under the null scenario.

Finally, the robust method estimates the marker-effect variance o2 more accu-

rately than the classical method throughout all the block contamination scenarios
(Table 15S).

L3: MSD¥® and MSD¥; were both ~ 0.00 for both the classical and robust ap-
proaches across all the block contamination scenarios, with the classical produc-
ing marginally better results than the robust approach (Figures 18S and 19S).
MSD#¥! ~ 0.01 for both approaches with the robust estimates of PA obtained via
M7 showing slightly greater dispersion (Figure 20S). It is noteworthy that esti-
mates of H2 and PA are rather stable across block contamination scenarios (Figures
18S-20S), consistent with the estimated marker-effect variances (Figure 15S).

Example application
In this Section, we comparatively evaluate differences in the performances of the
classical and robust approaches on raw empirical rye and maize datasets prior to
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quality control. Substantial differences in results between the two approaches would
imply problems with the data that require closer inspection by the breeder or data
analyst. Such inspection can be followed by data cleaning, which can be a very
challenging and time-consuming task. For the two example datasets in this section,
we perform data cleaning based on a simple rule of thumb that relies on the weight
given to each observation by the robust method. Specifically, observations assigned
weights smaller than 0.5 are flagged as outliers. More sophisticated outlier detection
techniques are outside the scope of this paper [3, 23]. We apply the classical and
robust approaches to the cleaned dataset and compare the results with each other
and with the results for the raw dataset. We note that cleaning the data does
not necessarily make it conform to model assumptions such as the normality of the
errors. We note further that because empirical datasets for both examples each have
only two replicates, the robust method usually assigns the same, or very similar,
weights to both replicates. This is the reason that a testcross genotype is removed
entirely from the cleaned dataset even if only one of its two replicate observations
is outlying. This problem would be eliminated by replicating each genotype three
or more times.

We similarly analyze the empirical datasets after taking into account the recom-
mendations of the breeder based on quality control to demonstrate that quality
control alone will not always detect and eliminate all sources of data contamination
and hence does not preclude the use of robust statistical methods.

Rye dataset
In this example we consider only one trial from the Rye dataset described in the
"Materials and methods’ Section, which otherwise has the same structure as the
simulated maize data set shown in Table 1. The first- and second-stage models fitted
to the Rye data set are the same as those described in the ’Simulation’ Section.
The classical and robust approaches produced strikingly different estimates for
the residual and blocks variances at the first stage as well as for heritability and
predictive accuracy at the third stage (Table 7; CLS™ and ROB” results). The robust
weights assigned to each of the 320 observations in the first stage identified 32
observations for the exact same 16 genotypes identified as outliers by the breeders.
When the 32 observations are removed from the data, which amounts to around a
10% reduction in the size of the dataset, then the classical and robust approaches
produce very similar estimates, as is expected when data conform to the model’s
assumptions (Table 7; CLS™ and ROB"* results). In particular, the distributions
of the residuals from the classical first- and second-stage models fit to the cleaned
dataset satisfy the normality assumption (Shapiro-Wilk normality test: p= 0.9771
and p= 0.6974, respectively), but the distribution of the residuals from the raw
dataset do not (Shapiro-Wilk normality test: p< 10~?). Inspection of the QQ plots
of the residuals (not shown) further reinforced the results of the normality tests.
This example clearly demonstrates how the robust approach ameliorates most of the
devastating influences of outliers on the classical method. Thus, contamination with
outliers inflates the estimated residual variance ~ 20 times for the classical method
but only ~ 3.6 times for the robust method. By contrast, contamination reduces
the estimated block variance from ~ 11.5 to zero for the classical method but from
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2

2) and blocks within replicates

Table 7: The estimated residual (02), replicate (o
(02,) variance components, genetic variance (02), heritability computed by Method
M5 (H2.M5) and predictive accuracy computed by Methods M5 (PA.M5) and

M7 (PA.M7), using the classical (CLS) and robust (ROB) approaches, for the rye

dataset.
Stage Parmf CLS" ROB" CLS? ROB¢4¢ CLS"™* ROB"*
O'g 120.1400 17.6797 5.5267 5.3369; 5.5267 5.3674
1 03 4.4262 6.4327 5.2124 5.7228: 5.2124 5.7276
Ug 0.0000 8.1911 11.5441 11.8846 L 11.5441 11.8804
|
2 o2 41.2101 40.4765 24.6136 24.3552 : 21.8182 21.5183

PA.M7 0.6531 0.8428 0.9038 0.9018 !
t Parm=Parameter:

" refers to the raw dataset, i.e, the original dataset before quality control;
¢ refers to dataset after quality control; "* refers to the cleaned raw dataset;

~ 11.9 to ~ 8.2 for the robust method. Lastly, contamination reduces the estimated
heritability and predictive accuracy far more strikingly for the classical than for the
robust approach. However, contamination inflates the marker-effect variance equally
by a factor of two for both approaches. Although far lower than the simulated true
values, Oakey’s heritability estimates are also shown and compared between the full
and the cleaned datasets for completeness (Table 7).

Results for the processed dataset are similar for the two approaches (Table 7
; CLS?¢ and ROB? ). They are also quite similar to the results for the cleaned
dataset, except for the estimated marker-effect variances, which are smaller for
the cleaned dataset perhaps due to the decrease in the sample size at the second
stage. Interestingly, for this particular case, the residuals from the first stage of the
classical model fit satisfy the normality assumption (Shapiro-Wilk normality test:
p= 0.6974) but those from the second stage only marginally pass the normality
test (Shapiro-Wilk normality test: p= 0.0437). A quick look at the QQ plot of
these residuals reveals two residuals that deviate substantially from the equality line
(plot not shown). The robust method did not, however, assign any observation a
weight smaller than 0.5 and and hence we did not analyse the cleaned and processed
datasets. Nevertheless, if a less conservative threshold of 0.7, say, were used instead
of 0.5, then, the robust method would have flagged one observation for a check

genotype and two for one testcross genotype.

Maize dataset
In the first stage (eq.3), we consider yield as the response variable, the genotypes
as the fixed effects and the trials, the replicates nested within trials and the blocks

nested within replicates nested within trials as the random effects. In the second
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stage (eq.4), we consider the adjusted genotypic means estimated in the first stage
as the response variable, the intercept as the fixed effect and the genotypes as the
random effects with a variance-covariance structure given by the genomic relation-
ship matrix. Note that only the 698 genotypes with available genomic information
are submitted to the second stage. In addition, 46 observations of yield (amount-
ing to around 2.6% overall contamination) were identified as outliers by the robust
weights computed from the robust first-stage model using the raw dataset. Here, all
the observations assigned weights of 0.5 or less by the robust model were classified
as outliers. Among these 46 outliers, 22 corresponded to 11 genotypes with genomic
information, meaning that the second stage for the cleaned raw dataset comprised
only 687 (698 — 11) genotypes. Of the remaining 24 outliers, 18 correspond to 9
genotypes with no genomic information and 6 to 3 hybrid checks and 3 line checks.
Overall, 11 + 9 = 20 test crosses and 4 of the 6 checks are a subset of the 38 yield
observations recommended for removal (deletion) by the breeder during quality con-
trol. The robust method identified only 7 observations as outliers from the processed
maize dataset (i.e., with 38 missing yield observations). Two of the 7 observations
came from one genotyped test cross, 2 hybrid and 3 line checks. Furthermore, two
out of these 7 outliers were also identified when the raw dataset was analysed with
the robust method. A detailed treatment of outlier detection strategies is beyond

the scope of this paper and can be found elsewhere [4, 23, 39, 48].

Table 8: The estimated residual (02), trial (o}), replicates within trials (o2) and
blocks within replicates within trials (Jg) variance components, genetic variance
(02), heritability computed by Method M5 (H2.M5) and predictive accuracy com-
puted by Methods M5 (PA.M5) and M7 (PA.MT7), using the classical (CLS) and

robust (ROB) approaches, for the maize dataset.

Stage Parmf CLS" ROB” CLS ROB‘ ' CLS"* ROB"* CLS‘* ROB*

352.4962 56.0533 47.8927 49.1810
75289  9.7426  6.3445 10.5256

2 46.5067 48.6339 45.0147  47.9068
P

o2 3.4126  3.7156  3.4067  2.9704
2
b

9.1892 12.0945  8.7991  12.2285

PA.M5 05073  0.8960  0.9126  0.8951
PA.M7 0.4705 0.8184 0.8338  0.8178

r

I
I
1 I
: 3.2630  3.1115  3.6797 3.0902
o} 0.0000 4.8448 79319 6.6856 1 8.0854 6.5774  7.7984 6.4579
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [E G S S et
I
2 o; 0.0008  0.0067  0.0074  0.0058 : 0.0096  0.0071  0.0085 0.0062
I
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e o .
H2.M5 0.2573  0.8020 0.8328  0.8013 1 0.8634  0.8231  0.8504 0.8099
3 H2.0K 0.0219  0.2732  0.3139  0.2713 : 0.3671  0.3035  0.3420 0.2824
I
I
I

0.8486  0.8287  0.8426 0.8221
refers to the raw dataset, i.e, the original dataset before quality control;

T Parm=Parameter;
¢ refers to dataset after quality control; "* refers to the cleaned raw dataset;
ac* refers to the cleaned 'after quality control’ dataset.

As with the Rye dataset, the classical and robust approaches produced differ-
ent results for the full dataset (Table 8; CLS" and ROB" results). The differences
between the two methods at the first and second stages translate into major differ-
ences in the estimated heritability and predictive accuracy. For the cleaned dataset
(Table 8; CLS™ and ROB”* results) the methods produce more similar estimates of

variance components, heritability and predictive accuracy, although estimates are
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not as close as the ones observed in the case of the rye dataset. In addition, the ro-
bust results for the full dataset are close to those obtained via the classical method
applied to the cleaned dataset. Note that removal of the outliers was sufficient for
the residuals from the first stage but not the second stage of the classical model
fit to conform to the normality assumption, in contrast to the results for the rye
dataset.

The results for the full dataset after quality control (Table 8; CLS9¢ and ROB?°)
are similar to those from the robust method (ROB"; Table 8) However, the residu-
als from the classical first-stage model fit violate the normality assumption. After
removing the 7 outliers from the processed dataset (CLS?* and ROB?°¥*) the clas-
sical and robust approaches produced even more similar results (Table 8) but the
residuals still depart from the normality assumption.

As before, Oakey’s heritability estimates are also provided and compared between
the full and the cleaned datasets (Table 8).

Discussion

The simulation results showed that the classical and robust approaches perform
similarly when datasets are not contaminated and thus conform to the linear model
assumptions. This is a desirable property for any method that seeks to be an alter-
native to the classical method. Since datasets do not usually conform to all model
assumptions, we assessed the relative performance of both methods in estimating
genetic breeding values, heritability and predictive accuracy, across a range of con-
tamination scenarios with outliers, which tamper mostly with the assumptions of
normality and variance homogeneity of the residuals. All the scenarios involved ei-
ther random or block contamination (mimicking plausible field conditions), and for
each contamination type, differed only in the percentage of the observations that
were contaminated and the size of the outliers. Also, two weighting schemes were
used with each dataset in the second stage of the two-stage approach.

The simulations revealed that block contamination has a lesser impact on the es-
timated parameters than random contamination. Also, the estimated true breeding
values improve from the first to the second stage, based on the Pearson correla-
tion coefficient, reaffirming the value of using genomic information in the analyses.
In addition, the use of the Smith’s weights produces more consistent parameter
estimates from the second stage onwards and is therefore recommended for the
two-stage approach.

A comparison of the performance of the classical and robust two-stage approaches
is summarized in Table 7S. In general, the proposed robust method shows a superior
performance to the classical approach. In terms of the accuracy of heritability and
genomic prediction, the robust approach clearly outperforms the classical for the
random contamination scenarios but performs similar performance to the classical
approach for the block contamination scenarios. Also, method M5 produces more
accurate estimates of predictive accuracy of genomic prediction than method MT.
Quite surprisingly, the simulations suggest that Oakey’s method is unsuitable for
estimating heritability when using a model with a kinship matrix.

Interestingly for the block contamination scenarios, the robust method generally
outperformed the classical in both the first and second stages, but this did not
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translate into higher predictive accuracies. This is likely because the block effect
(i.e., effect of blocks within replicates) is completely confounded with the effect of
contamination within blocks. As a result, if the block effect is included in the model
at the first stage it captures the effect of contamination within the block, yielding an
inflated block variance for the classical but not the robust approach. This explains
why the performance of the classical approach improves from the first to the second
stage. It also emphasizes the need to include a random block effect in the first stage
to account for intrablock variance especially when using the classical approach.

A noteworthy observation from the simulations is that if a study design has only
two replicates, then the robust or the classical methods cannot identify only one of
the two replicate observations as an outlier. Hence, using an automated cleaning
process, one has to discard twice as many observations as the actual number of
outliers. This is because given only two replicates, a single outlier results in two
large residuals with the same absolute value but opposite signs. This makes it hard
to determine which of the two replicates is actually the outlier.

The robust method can also be useful to breeders doing variety testing for which
only the first-stage model is required. Here, the robust approach had clearly supe-
rior performance for the block contamination scenarios. For the random contamina-
tion scenarios, except for the blocks within replicates variance, the robust method
produced more accurate estimates of the variance components than the classical
method did. Moreover, because late-generation breeding trials typically use only
two replicates as breeders aim to maximize the number of different environments,
the robust method will merely downweight but not require deleting both replicate
observations if it identifies either one or both of them as outliers. This property of
the robust method is highly desirable because it enables the plant breeder to obtain
genomic predictions for all the target genotypes. By contrast, using the classical
method only would result in discarding all the genotypes for which at least one
of the two replicate observations is an outlier. This is because it is impossible to
determine which of the two replicate observations is the true outlier.

The analysis of the real datasets also furnished some insights about the perfor-
mance of the methods. For the rye dataset, for example, the 16 outliers identified
by the breeders, were also detected by the robust model. Each of the 16 outliers be-
longed to a distinct block, thus mimicking a random contamination scenario. Also,
8 outliers were observed in the first replicate and the remaining 8 on the second
replicate hence resulting in a balanced distribution of outliers at the replicate level.
The differences between the results obtained by the classical and robust approaches
for the complete dataset are consistent with the ones observed for the simulated
random contamination scenarios. Removing the outliers from the data produced a
closer agreement between the classical and the robust results but some slight dif-
ference from the results produced by the robust approach for the complete dataset
still remained. A plausible explanation for this is that removing outliers from the
data may: (i) substantially reduce sample size; (ii) alter the distribution of the data
and (iii) potentially lead to the underestimation of variances for the cleaned data.
This last point precisely matches what is observed for the estimated residuals and

marker-effect variances in the two empirical data analyses.
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The first-stage results from the analysis of the full empirical raw maize dataset
showed a huge discrepancy in the estimated residual variance component, moder-
ate disagreement in the estimated block variances and similar estimates of replicate
and trial variances between the classical and robust approaches. This result is sur-
prising and deviates from expectation based on the results of the analyses of the
simulated data sets. A possible explanation for this unexpected result may relate
to the difference in the models fitted to the simulated data and the empirical maize
data set and the nature of the outliers. In this case, the 46 observations removed
were unevenly spread across 17 out of the 20 blocks (of size 90) and amount to 3% of
all the data. Two of these 17 blocks had approximately 8 — 9% contamination. The
criterion used to identify the outliers in the maize data set was the robust weights
computed from the robust model fit and was somewhat conservative as only the
observations assigned weights equal to 0.5 or less were flagged. This criterion, when
applied to the rye dataset, correctly identified the 16 outliers that had already been
identified by the breeders. However, for the maize dataset this approach to outlier
identification is probably too restrictive because the distribution of the residuals
from the classical first-stage model fit to the cleaned dataset satisfied the normal-
ity assumption but the residuals from the classical second-stage model fit did not.
This observation reinforces the view that successfully cleaning the data to elimi-
nate outliers prior to analysis, plus satisfactorily addressing the drawbacks listed
above can be exceedingly challenging. Of the 38 yield observations replaced with
missing values as recommended by the breeder based on quality control, 24 were
identified by the robust method as outliers based on the analysis of the raw dataset
and consisted of either negative or zero yield values, which are evidently anomalous.
The other 14 of the 38 deleted observations were plausible and were not identified
as outliers by the robust method. Results of the analysis of the processed maize
dataset with 38 missing yield observations set to missing were very similar between
the two approaches. In particular, the results are also quite similar to those from
the analysis of the raw dataset using the robust method. This finding emphasizes
the stability and reliability of the robust approach both in the presence of outliers

and missing observations.

Conclusion

In conclusion, we show not only the advantages of a robust approach to phenotypic
data analysis and genomic prediction but also provide new insights into the potential
problems associated with using the classical approach to phenotypic data analysis
and genotypic prediction in plant breeding. The proposed robust approach, enhances
the accuracy of genomic prediction while alleviating the need for performing outlier
detection. Accordingly, plant breeders would do well to seriously consider using
these robust methods regularly alongside the classical approach.
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