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Abstract 

Robust inference of causal relationships between gene expression and complex traits using Mendelian 

Randomization (MR) approaches is confounded by pleiotropy and linkage disequilibrium (LD) between 

gene expression quantitative loci (eQTLs). Here we propose a new MR method, MR-link, that accounts 

for unobserved pleiotropy and LD by leveraging information from individual-level data. In simulations, 

MR-link shows false positive rates close to expectation (median 0.05) and high power (up to 0.89), 

outperforming all other MR methods we tested, even when only one eQTL variant is present. 

Application of MR-link to low-density lipoprotein cholesterol (LDL-C) measurements in 12,449 

individuals and eQTLs summary statistics from whole blood and liver identified 19 genes causally 

linked to LDL-C. These include the previously functionally validated SORT1 gene, and the PVRL2 gene, 

located in the APOE locus, for which a causal role in liver was yet unknown. Our results showcase the 

strength of MR-link for transcriptome-wide causal inferences. 

 

Introduction 

Mendelian randomization (MR) is a method that can infer causal relationships between two heritable 

complex traits from observational studies
1,2

. In recent years, MR has gained popularity in the 

epidemiological field and has provided valuable new insights into the risk factors that cause diseases and 

complex traits
1–3

. MR has, for example, successfully identified causal relationships between low-density 

lipoprotein cholesterol (LDL-C) and coronary artery disease, results which have informed therapeutic 

strategies
4,5

. MR analysis has also shown that a causal relationship between high density lipoprotein 

cholesterol (HDL-C) and coronary artery disease is unlikely, which is in contrast to previous 

epidemiological associations
6
. The same approach has been applied to identify molecular marks that are 

causal to disease
7–10

. Since gene expression is one of these marks, investigating its causal role in complex 
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traits is of particular interest given that complex trait loci are enriched for expression quantitative trait 

loci (eQTLs)
11

. 

MR relies on certain assumptions to correctly infer a causal relationship between an exposure (e.g. a risk 

factor) and an outcome (e.g. a complex trait). MR can leverage QTL variants of the exposure as 

instrumental variables (IVs) if three conditions are met: the IVs have to be i) associated with the 

exposure, ii) independent of any confounder of the exposure-outcome association and iii) conditionally 

independent of the outcome given the exposure and confounders. One major challenge of applying MR 

to gene expression is correcting for deviations from the third assumption, which can occur in the 

presence of linkage disequilibrium (LD) between the eQTLs used as IVs, or in the presence of pleiotropy, 

i.e. when IVs affect the outcome through pathways other than the exposure of interest. Accounting for 

LD is necessary when gene expression is the exposure trait in MR because, in contrast to the majority of 

complex traits, the genetic architecture of gene expression is characterized by the presence of strong-

acting eQTLs located proximal to their transcript (i.e. in cis), which are often correlated through LD
12,13

. 

Similarly, the presence of pleiotropy cannot be excluded a priori given that the majority of variants in 

our genome are likely to affect one or multiple phenotypes
14–16

. While there are MR-methods
7,8,10,17–21

 

that extend standard MR analysis to correct for LD and pleiotropy, the application of these methods is 

not optimal because they require either the removal of pleiotropic IVs  from the statistical model
7,20,21

 or 

that all sources of pleiotropy are measured and incorporated into the model
22,23

. These constraints limit 

robust inference of the causal role of gene expression traits as there is often only a limited number of 

IVs (i.e. eQTLs) available, and subsequent removal of outliers will substantially reduce power. Likewise, it 

is not always possible to measure all sources of pleiotropy because pleiotropy could come from 

expression of a gene in a different tissue or even from other unmeasured molecular marks or 

phenotypes. 
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Here we introduce MR-link, a novel two-sample MR method that allows robust causal inference in the 

presence of LD and unobserved pleiotropy, and without requiring the removal of pleiotropic IVs or 

measuring all sources of pleiotropy. MR-link uses summary statistics of an exposure combined with 

individual-level data on the outcome to estimates the causal effect of an exposure from IVs (i.e. eQTLs if 

the exposure is gene expression) while at the same time correcting for pleiotropic effects using genetic 

variants that are in LD with these IVs (Figure 1).  

We assessed the performance of MR-link using simulated data in 100 different scenarios that mimicked 

the genetic architecture of gene expression, information we derived by looking at eQTL association 

patterns in a large cohort of samples with genetic and transcriptomics data
13

. We then applied MR-link 

to individual-level data for LDL-C measurements in 12,449 individuals with four different eQTL summary 

statistic data sets: blood eQTLs identified in the BIOS cohort (Figure 1) and eQTLs from blood, liver and 

cerebellum identified by the GTEx Consortium
24

 (Figure 1). Our results in simulated and real data show 

that MR-link can robustly identify causal relationships between gene expression and an outcome (e.g. a 

complex trait), even when the information for causal inference is very limited (i.e. only a single 

instrumental variable is available). 

Results 

Genetic regulation of gene expression is often shared between genes through linkage disequilibrium 

To investigate how the genetic effects on gene expression are distributed in cis, we searched for eQTLs 

1.5 megabases (Mb) on both sides of the translated region of 19,960 genes (Methods). We used data 

from the BIOS cohort, a cohort of 3,503 Dutch individuals whose genome and whole blood 

transcriptome has been characterized (Figure 1), and applied a summary statistics–based stepwise linear 

regression approach (GCTA-COJO) to identify jointly significant variants, e.g. one or more variants that 

jointly associate significantly with expression changes of a gene
13,25

 (Methods). We observed that 58% of 
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the genes with an eQTL at p < 5x10
-8 

(10,831 genes) had at least one jointly significant eQTL at p < 5x10
-8

 

(Methods) (Figure 1 and Figure 2A). These genetic effects were mostly non-overlapping: only 7.0% of 

the genes have the exact same top eQTL variant.  In contrast, genetic variants regulating gene 

expression of a gene were very often in LD with other eQTL: 30% of top variants are in LD (r
2
 > 0.5) 

between genes, and this percentage increased to 58% if all jointly significant eQTLs are considered 

(Methods). These observations suggest that presence of pleiotropy between eQTLs used as IV in 

transcriptome-wide MR analyses are mostly attributable to variants in LD with the IVs (pleiotropy 

through LD), rather than to completely overlapping IVs (pleiotropy through overlap) (Figure 2).  

MR-link outperforms other MR methods in false positive rate and power 

Based on the observation that genetic variation of gene expression is mostly characterized by eQTLs that 

are in LD, but not overlapping between genes, we developed a novel MR method that infers causality 

while accounting for pleiotropy and LD (Methods, Figure 2, Supplemental Note and Supplementary 

Figure 1). We assessed the performance of MR-link and compared it to four other MR methods: Inverse 

variance weighting (IVW), which assumes absence of LD and pleiotropy, and the pleiotropy-robust 

methods MR-Egger, LDA-MR-Egger and MR-PRESSO (Table 1)
17,18,20,26

. Here we simulated causal 

relationships between an exposure and an outcome in a 5Mb region, based on LD structure estimated 

for 403 European samples from the 1000 Genomes project
27

 (Methods). We assessed all tested MR-

methods in 1,500 simulated data sets for 100 different scenarios, reflecting absence of causality, 

moderate to high causal effects, coupled with presence or absence of pleiotropic effects and different 

number of IVs. We initially evaluated two approaches to select QTL variants as IVs: GCTA-COJO and p 

value clumping (Methods)
25,28

. We observed that GCTA-COJO was best suited for IV selection because: 

(i) the median number of IVs identified by GCTA-COJO better represented the number of simulated 

causal variants (Supplemental Table 1) and (ii) the false positive rates (FPR) in the MR analysis using the 

IVW method was lower (median FPR was 0.057 using GCTA-COJO versus 0.115 using clumping) 
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(Supplemental Figure 1 and Supplemental Table 1). We therefore selected IVs for the exposure using 

the GTCA-COJO approach in subsequent analyses. 

When we simulated pleiotropy through LD with no causal effect of the known exposure (gene) on the 

outcome (Methods, Supplemental Table 2 and Figure 2C, 2D), all existing MR-methods showed inflated 

FPR (up to 0.71, 0.15, 0.13 and 0.27 for IVW, MR-Egger, LDA-MR-Egger and MR-PRESSO, respectively), 

whereas MR-link presented an FPR close to expectation (median: 0.05, maximum: 0.058). In addition, 

for LDA-MR-Egger, MR-Egger and MR-PRESSO, the FPR was undesirably dependent on the number of 

causal SNPs simulated (Figure 2D). 

In the scenarios of pleiotropy through LD and non-null causal effects (��=0.05, ��=0.1, ��=0.2 and 

��=0.4), MR-link has high detection power (up to 0.89) and strongly outperforms all other pleiotropy-

robust methods (maximum detected power was 0.28 for MR-Egger, 0.26 for LDA-MR-Egger and 0.65 for 

MR-PRESSO) (Figure 2E-F, Supplemental Table 2 and Methods). Among all the methods tested, 

including MR-link, and for all scenarios, IVW had the greatest detection power but also an inflated FPR 

(minimum FPR: 0.63), making this MR method unsuitable in such pleiotropic scenarios (Methods).  

When we simulated pleiotropy through LD for a large subset of the simulated causal SNPs (Figure 2B 

and Methods), a situation we expect to be rare in real-world scenarios based on our observation in the 

BIOS cohort, we observed that all methods including MR-link have increased FPR (up to 0.22 for MR-link, 

0.77 for IVW, 0.10 for LDA-MR-Egger, 0.13 for MR-Egger and 0.30 for MR-PRESSO) (Supplemental Table 

3). Nonetheless, MR-link remains a powerful method when a causal effect is simulated: maximum power 

was 0.79 for MR-link, 0.98 for IVW, 0.29 for MR-Egger, 0.28 for LDA-MR-Egger and 0.65 for MR-PRESSO 

(Supplemental Table 3). Although IVW here resulted, again, in the highest power (0.98), the FPR was 

likewise largely inflated (0.77) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2019. ; https://doi.org/10.1101/671537doi: bioRxiv preprint 

https://doi.org/10.1101/671537
http://creativecommons.org/licenses/by-nc-nd/4.0/


MR-link identifies known and novel causal relationships between gene expression changes and LDL-

cholesterol levels 

We applied MR-link to four separate summary statistics–based eQTL datasets combined with individual-

level genotype data and LDL-C measurements in 12,449 individuals from the Lifelines cohort
29

 (Figure 1). 

We assessed the causal effect of gene expression changes in i) whole blood using eQTLs from BIOS 

(n=3,503) and GTEx (n=369), ii) liver as the main tissue important for cholesterol metabolism (using 

eQTLs from GTEx, n=153), and iii) cerebellum tissue (using eQTLs from GTEx,n=154) as a tissue not 

involved in cholesterol metabolism but with similar sample size (and thus power) to liver tissue
24,30

. 

Transcriptome-wide application of MR-link to these eQTL datasets identified 21 significant genes whose 

variation in blood (15 using BIOS eQTLs, 2 using GTEx eQTLs) or liver (4 genes) was causally related to 

LDL-C (Table 2, Table 3, Supplemental Table 4 and Supplemental Table 5). No significant genes were 

found in cerebellum (Supplemental Table 5).  

MR analysis that used whole-blood eQTLs from GTEX was, as expected, underpowered compared to the 

analysis using BIOS eQTLs. Only two genes were found to be significant here, but they were non-

significant in the BIOS cohort, where a more robust estimate could be made thanks to higher number of 

IVs identified (Supplemental Figure 2A). Despite the limited power, we observed high concordance 

between effect sizes from the two analyses (using blood eQTLs from BIOS and GTEx) for all genes that 

showed nominal significance (p < 0.05) in the BIOS analysis, with 89.3% of genes showing the same 

effect direction (Supplemental Figure 2B).  

Several genes located in GWAS loci for cholesterol metabolism were found in the MR analysis that used 

blood eQTLs from BIOS. These include AOC1, TMEM176A and TMEM176B, which are all located in the 

same HDL-C-associated locus
31–33

, and SYCP2L, which is located in a GWAS locus for polyunsaturated 

fatty acids and related to LDL-C levels
34,35

. For the other genes identified, there was no direct evidence in 
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the literature for a direct role in cholesterol metabolism, although some interesting patterns were 

evident. For example, we observed multiple genes involved in immunoglobulin production (IGLC5, IGLC6 

and IGLV4-69) and insulin metabolism (UNC5B, DEPP1), observations at least consistent with the role of 

cholesterol in inflammation and insulin resistance
36,37

. Of note, for all 15 genes, the effect direction 

estimated by MR-link was concordant with the direction estimated by other MR-methods (Table 1, 

Table 2, Supplemental Figure 3 and Supplemental Table 6).  

In the MR analysis using eQTLs from liver, all the genes identified fall within LDL-C GWAS loci. Among 

these, we found a negative causal effect for the well-known SORT1 gene (p = 5.9x10
-9

). This gene 

encodes the protein sortilin that has been functionally proven to down-regulate lipoprotein metabolism 

and hepatic lipoprotein export in liver
31,38–40

 (Table 3 and Supplemental Table 5). We also found two 

other genes in the same GWAS locus, PSRC1 and CELSR2, but the IV (only one was found) for these 

genes was identical to that of SORT1, due to the high correlation between expression levels of these 

genes. Full overlap of one single IV in this locus makes it is impossible to discern causal from pleiotropic 

genes using MR-methods, including MR-link. The fourth gene found to be significant using liver eQTLs is 

PVRL2 (p = 3x10
-14

), which is located in the APOE locus associated to LDL-C (Table 3)
31,32

. For PVRL2, we 

estimated a positive causal effect; higher expression of PVRL2 is causally related to higher LDL-C (Table 

3). PVRL2 is 17.5kb downstream of the APOE gene, and three common missense polymorphisms in APOE 

account for a large fraction of the association signal
32

. Interestingly, in the most recent GWAS meta-

analysis for lipids, 19 jointly significant LDL-C variants were found spanning a 162Kb region that 

encompasses PVRL2
32

. This indicates that, while APOE plays a major role, other genes in this locus are 

also likely involved in LDL-C regulation and that pleiotropic effects are to be expected. Our analyses 

indicate that PVRL2 is one of the causal genes at this locus. The positive effect of PVRL2 on LDL-C was 

also seen in the analysis that used blood eQTLs from BIOS (p = 4.3x10
-5

), although it did not pass our 

significance threshold (p = 4.6x10
-6

). Of note, since LD between IVs used in the analysis of blood and liver 
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eQTLs was low (r
2
 < 0.2), the results potentially indicate a dual causal role for the gene across these two 

tissues. 

PVRL2 has mostly been studied in the context of atherosclerosis, where it has been shown to act as 

cholesterol-responsive gene involved in trans-endothelial migration of leukocytes in vascular endothelial 

cells, a key feature in atherosclerosis development
41–43

. Our results indicate a role for PVRL2 in 

modulating plasma levels of LDL-C via its expression variation not only in blood but also in the liver. 

Biologically the role in liver could be explained by increased production of very-LDL or a decreased LDL-C 

uptake (Figure 3). In line with this hypothesis, a siRNA screen in hepatic cell lines of genes in the APOE 

locus showed that down-regulation of PVRL2 gene expression promotes LDL-C uptake
44

 (Figure 3). 

Overall, our results and existing functional evidence support that PVRL2 expression is correlated with 

LDL-C levels and show, for the first time, a causal effect in liver (Figure 3).  

 

Discussion 

Identification of genes whose changes in expression are causally linked to a phenotype is crucial for 

understanding the mechanisms behind complex traits. While several methods exist that infer causal 

relationships between two phenotypes, these rely on a set of assumptions that are often violated when 

gene expression is the exposure. Specifically, the presence of LD and pleiotropy between the genetic 

variants chosen as IVs are the main cause of violations of such assumptions
17,18,20,45

. Here we 

interrogated a large gene-expression dataset and showed that the eQTLs of a gene, which can be used 

as IVs, are very likely to be in LD, but not overlapping, with eQTLs of other genes, indicating that 

potential sources of pleiotropy in transcriptome-wide MR analyses are likely from variants in LD with the 

IVs. 
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We therefore developed MR-link, a novel causal inference method that is robust to unobserved 

pleiotropy. Our in-silico results show that MR-link outperforms all the other MR methods tested and has 

well-controlled FPR and high statistical power. MR-link jointly models the outcome using jointly 

significant eQTLs as IVs, combined with variants in LD, to correct for all potential sources of pleiotropy. 

To our knowledge, this is the first time that this approach is used in a causal inference method.  

We tested MR-link’s performance with real data by applying it to LDL-C cholesterol measurements and 

eQTLs derived from blood, cerebellum and liver. This identified known and novel key player genes within 

and outside GWAS loci. For example, in liver we identified the well-known negative causal relationship 

between expression of SORT1 in liver and LDL-C
38–40

. In liver, and suggestively in blood, we detected a 

causal effect for PVRL2, a gene located in the APOE locus. While a role for this gene is mostly known for 

immune and endothelial cells and in the context of atherosclerosis
41–43

, our results indicate that 

regulation of expression of this gene in both blood and liver causally affects LDL-C levels. Given its 

established role in atherogenesis, PVRL2 has been proposed as a potential therapeutic target for 

atherosclerosis. Our study indicates that such strategies should not only take into account the effect on 

atherosclerotic plaques but also consider the hepatic function of PVRL2 in regulating plasma LDL-C levels 

in humans. 

All the genes identified in the analyses that used eQTLs from blood were different from those identified 

using eQTLs from liver. While this is partly due to statistical power, as the BIOS cohort is more than 20 

times larger than the GTEx cohort used to derive eQTLs in liver, this may also be related to tissue-

specific functions. We expect that causal genes found in whole blood will affect LDL-C through pathways 

that signal for lipid changes, whereas genes found in liver are more likely to be involved in lipid 

metabolism. 
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MR-link has several advantages over other recent MR methods developed to overcome bias from LD and 

pleiotropy
17,23

. First, MR-link can model unobserved pleiotropy, whereas sources of pleiotropy need to 

be specified in multivariate MR methods. This is particularly important because sources of pleiotropy 

may be context-dependent and may arise from a phenotype other than those being measured in a 

cohort
14,30

. Second, MR-link can derive robust causal estimates even when only one or two IVs are 

available. The majority of genes tested in our large eQTL dataset have fewer than three IVs (68%), which 

makes it impossible for MR-PRESSO, MR-Egger and LDA-MR-Egger to make causal estimates
17,18,20

.  

The application of MR-link is not restricted to gene expression; it can also be applied to other molecular 

layers that are known to have a similar genetic architecture to gene expression, such as proteins or 

metabolites. Given the increases in sharing of summary statistics from functional genomics QTL studies, 

coupled with the development of very large biobanks such as the UK biobank, the Estonian Biobank, the 

Lifelines cohort study and the Million Veteran Program cohort
46–49

, we foresee many opportunities for 

applications of MR-link to individual-level data for the identification of the molecular mechanisms 

underlying complex traits. Of note, while we have limited our simulations to quantitative traits as an 

outcome in this paper, MR-link could be applied to binary traits such as human diseases. However, we 

have not investigated its performance in detail for binary outcome phenotypes. Furthermore, as for all 

MR studies, our method can be applied to populations of any ethnicity, provided that the exposure 

summary statistics are derived from a population that is ethnically-matched with the outcome cohort.  

We foresee that many causal relationships will be discovered as highly powered causal inference 

methods such as MR-link are applied to many human traits. This could make it possible to build 

extensive causal networks similar in size and complexity to metabolic networks of small molecules, 

which would provide valuable insights into the mechanisms behind human traits and diseases. 
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Data availability: Individual level data of BIOS and Lifelines cohorts are available upon request to their 

respective biobanks (https://www.bbmri.nl/acquisition-use-analyze/bios and 

https://www.lifelines.nl/researcher). GTEx summary statistics can be downloaded from the GTEx 

website (https://gtexportal.org/home/datasets/) 

Code availability: An implementation of MR-link, the methods to recreate the simulated data and 

instructions on usage can be found at https://github.com/adriaan-vd-graaf/genome_integration . 
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Main Figures  

  

Figure 1. Graphical representation of the study  

The Biobank Integrative Omics Study (BIOS) cohort was used to identify expression quantitative trait loc

(eQTL) and characterize the genetic architecture of gene expression. Dashed outbox: Knowledge used in

a simulation scheme that mimicked gene expression traits, including linkage disequilibrium (LD)

between eQTL. We used this simulation to assess the false positive rates (FPR) and power for widely

used Mendelian randomization (MR) methods. We applied our new MR-method, MR-link, to both the

simulations and to individual-level data of low density lipoprotein cholesterol (LDL-C) in 12,449

individuals (Lifelines) and used BIOS and GTEx eQTL summary statistics to identify gene-expression

changes causal to LDL-C within or outside a genome-wide association study (GWAS) locus.  
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Figure 2. Typical scenarios of pleiotropy in causal inference using gene expression and relative

performance of different MR methods 

The top three panels display typical scenarios to consider when performing causal inference in gene

expression: (A) instrumental variables (IVs) for the same gene (exposure) are in linkage disequilibrium

(LD), (B) pleiotropy is present through overlap of IVs (pleiotropy through overlap) and (C) pleiotropy is

present through LD between IVs for different exposures (pleiotropy through LD). Bottom panels show

simulation results under the pleiotropy through linkage scenario when 1, 3, 5 or 10 causal SNPs were

simulated. (D) False positive rates (at alpha = 0.05) in scenarios where no causal relationship is

simulated. (E) Power to detect a small causal effect (at alpha = 0.05). (F) Power to detect a large causa

effect (at alpha = 0.05). Note that MR-link is the only MR method that can adjust for pleiotropy when

only one or two instruments are available. MR methods that had fewer than 100 out of 1,500 estimates
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in a scenario are not shown (Methods). Extended results depicted in panels D-F can be found in 

Supplemental Table 2.  
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Figure 3. Biological interpretation of PVRL2 

Functional and statistical evidence for the causal effect of PVRL2 in liver on low density lipoprotein

cholesterol (LDL-C) levels. The green arrow indicates a positive causal relationship between PVRL2 and

LDL-C levels in plasma – this relationship was detected in our analysis. The red arrow indicates a

negative causal relationship between PVRL2 and LDL-C uptake in hepatic cells – this relationship was

detected in small interfering RNA (si) experiments described in Blattman et al
44

.   
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Main Tables 

MR method Data required Pleiotropy 

correction 

LD 

correction 

Minimum no. of IVs 

required 

MR-link  Sumstats: E, ILD: O Yes Yes 1 

Inverse variance weighted 

(IVW)
26 

Sumstats: O, E No No 1 

LDA-MR-Egger
17

 Sumstats: O, E, LDR  Yes Yes 3 

MR-Egger
18 Sumstats: O, E Yes No 3 

MR-PRESSO 
a,20 Sumstats: O, E Yes No 3

a

 

Table 1. MR Methods assessed in this study 

MR methods assessed in our simulation, with information about the type of data needed to make a 

causal estimate, ability to correct for pleiotropy or linkage disequilibrium and the minimum number of 

instrumental variables required. Abbreviations: IVW: inverse variance weighting, sumstats: summary 

statistics, ILD: individuals level data, O: outcome, E: Exposure, LDR: linkage disequilibrium reference 

(LDR) panel. For more details, see Methods. 
a 

We refer here to the MR-PRESSO test that reports 

estimates after identifying and removing outliers, as the test without outliers generalizes to IVW 

estimates.  
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Gene Name Estimated causal effect p value #IVs Biological function and link to LDL-C  

IGLC5 -0.0531 7.85E-10 1 Immunoglobulin lambda constant 5 (IGLC5) is a 

pseudogene; two other genes in the same locus 

and belonging to the same family appear in this 

table (IGLV4-69 and IGLC6). IGLC5 does not have 

a known function in cholesterol metabolism 

KB-1460A1.5 0.1535 5.61E-09 1 KB-1460A1.5 is an RNA gene with unknown 

function in cholesterol metabolism 

MIR4482-1 -0.1008 1.47E-08 3 MicroRNA 4482 (MIR44882-1) is an RNA gene 

that does not have known function in cholesterol 

metabolism 

UNC5B -0.0124 2.15E-08 1 Unc-5 Netrin Receptor B (UNC5B) is a protein-

coding gene and a receptor for the NETRIN1 

protein. It is associated to the disease 

Hyperinsulinemic Hypoglycemia familial 3. UNC5B 

is localized in lipid rafts, membrane 

compartments that contain high levels of 

cholesterol and lipids
50

. Higher UNC5B expression 

levels are associated to insulin resistance
36,50,51

. 

While insulin resistance can be related to 

hypercholesterolemia, the direct link of this gene 

to LDL-C remains unclear. 

TMEM176B -0.0287 5.16E-08 4 Transmembrane protein 176B (TMEM176B) is a 

protein coding gene located in the TMEM176B -

TMEM176A-AOC1 GWAS locus for HDL-C
31

. Two 

IVs for TMEM176B are overlapping with IVs for 

TMEM176A. 

REEP1 -0.0218 5.78E-08 1 Receptor Accessory Protein 1 (REEP1) is a 

protein-coding gene. Mutations of the N-terminal 

of REEP1 lead to accumulation in lipid droplets in 

the endoplasmic reticulum
52

. REEP1 does not 

have a known function in cholesterol 

metabolism. 

IGLC6 -0.0768 1.18E-07 3 Immunoglobulin lambda constant 6 (IGLC6) is a 

pseudogene; two other genes in the same locus 

belonging to the same family appear in this table 

(IGLV4-69 and IGLC5). IGLC6 does not have a 

known function in cholesterol metabolism. 

AOC1 -0.0086 1.19E-07 1 Amine Oxidase, Copper Containing 1 (AOC1) is a 

protein-coding gene located in the TMEM176A-

TMEM176B-AOC1 GWAS locus for HDL-C
31

.  

IGLV4-69 0.0877 1.51E-07 1 Immunoglobulin Lambda Variable 4-69 (IGLV4-

69) is a protein-coding gene; two other genes in 

the same locus and belonging to the same family 

appear in this table (IGLC5 and IGLC6). IGLV4-69 

does not have a known function in cholesterol 

metabolism 

SYCP2L -0.0194 2.02E-07 2 Synaptonemal Complex Protein 2 Like (SYCP2L) is 

a protein-coding gene, important in oocyte cell 

survival, but also highly expressed in neutrophils. 

SYCP2L is located in a GWAS locus for 

antiphospholipid syndrome and fatty acid 

measurements. Functionally, not much is known 

about SYCP2L, and it does not have a known 

function in cholesterol metabolism
35,53

. 

C10orf10/DEPP1 -0.0689 2.35E-07 1 DEPP1 (also known as C10orf10) is an autophagy 

regulator highly expressed in adipose tissue. 

DEPP1 overexpression in mice reduces glucose 

and triglyceride levels
54

, although a direct link of 

this gene to LDL-C remains unclear.   

TMEM176A -0.0224 2.39E-07 3 Transmembrane protein 176A (TMEM176A) is a 

protein-coding gene located in the TMEM176B -

TMEM176A-AOC1 GWAS locus for HDL-C
31

. Two 

IVs for TMEM176A are overlapping with 

TMEM176B. 
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RP11-18H21.1 0.0296 2.50E-07 2 RP11-18H21.1 is a non-coding RNA gene without 

a known function in cholesterol metabolism. 

TACSTD2 -0.0186 4.48E-07 2 Tumor Associated Calcium Signal Transducer 2 

(TACSTD2) is a protein-coding gene located on 

the cell membrane involved in the superpathway 

“Ca, cAMP and Lipid Signaling”. The function of 

TACSTD2 in LDL-C metabolism is unclear. 

PRDM5 0.0666 2.73E-06 4 PR/SET Domain 5 (PRDM5) is a protein-coding 

gene and a member of the PR family of 

transcription factors. In human colon cancer cells 

and Prdm5 mutant mouse intestines, 

dysregulation of PRDM5 affects monoacylglycerol 

lipase (MGLL) expression and other genes 

involved in lipid metabolism
55

. The direct link to 

LDL-C remains unclear. 

 

Table 2. The 15 genes identified by MR-link as causal for LDL-C levels in the analysis that included 

eQTLs from the BIOS cohort. 

Gene names are according to ENSEMBL GENES 96 database (human build 37). The causal effect estimate 

represents the changes in LDL-C (mg/dL) per standard deviation increase in gene expression. Full 

summary statistics of the genes are shown in Supplemental table 4. Abbreviations: LDL-C: Low density 

lipoprotein cholesterol, HDL-C: High-density lipoprotein cholesterol GWAS: Genome wide association 

study, siRNA: small interfering RNA 
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Gene Name Estimated 

causal effect 

p value #IVs Biological function and link to LDL-C  

PVRL2 0.3177 3.0E-14 1 Poliovirus Receptor-Related 2 (PVRL2) is a protein-coding gene also known as NECTIN2. It is a 

cell-membrane protein located in the LDL-C GWAS locus APOE. siRNA experiments show that 

LDL-C uptake is increased in cells upon its downregulation
44,56

. PVRL2 knockout mice also had 

less atherosclerosis
42

. Both studies indicate a reduction in LDL-C upon downregulation of 

PVRL2. 

PSRC1 -0.0847 3.99E-09 1 Proline And Serine Rich Coiled-Coil 1 (PSRC1) is a protein-coding gene located in an LDL-C 

GWAS locus
31

. PSRC1 has not been found to have an effect on cholesterol despite being 

targeted in a specific functional study
40

. The IV for PSRC1 is overlapping with the IV for CELSR2 

and SORT1. 

SORT1 -0.0865 5.89E-09 1 Sortilin (SORT1) is a protein-coding gene located in an LDL-C GWAS locus
31

. siRNA and 

knockdown experiments have functionally validated that SORT1 has a negative effect on LDL-C 

levels
38,39,57

. The IV for SORT1 is overlapping with the IV for PSRC1 and CELCR2. 

CELSR2 -0.0993 6.8E-08 1 Cadherin EGF LAG Seven-Pass G-Type Receptor 2 (CELCR2) is a protein-coding gene located in 

an LDL-C GWAS locus
31

. CELSR2 has not been found to have an effect on cholesterol despite 

being targeted by a specific functional study
40

. The IV for CELSR2 is overlapping with the IV for 

PSRC1 and SORT1. 

 

Table 3. The four genes identified by MR-link as causal for LDL-C levels in the analysis that included 

eQTLs from liver tissue in the GTEx study. 

Gene names according to ENSEMBL GENES 96 database (human build 37). The causal effect estimate 

represents changes in LDL-C (mg/dL) per standard deviation increase in gene expression. Full summary 

statistics of these genes are shown in (Supplemental table 5). Abbreviations: LDL-C: Low density 

lipoprotein cholesterol, GWAS: Genome wide association study, siRNA: small interfering RNA 
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Methods 

BIOS consortium cohort genotype and expression analysis 

We used genotype and expression measurements on 3,746 Dutch individuals from the Biobank-based 

Integrative Omics Study (BIOS; http://www.bbmri.nl/acquisition-use-analyze/bios/), a collection of six 

different data cohorts: Lifelines DEEP
29

, Prospective ALS Study Netherlands
58

, Leiden Longevity Study
59

, 

Netherlands Twin Registry
60

, The Cohort on Diabetes and Atherosclerosis Maastricht
61

 and the 

Rotterdam Study
62

. Genotyping was performed separately per cohort (see references). All combined 

genotypes were imputed to the Haplotype reference consortium dataset
63

 using the Michigan 

imputation server
64

. We retained only biallelic SNPs and confined our analyses to variants with minor 

allele frequency (MAF) > 0.01, Hardy-Weinberg equilibrium (HWE) p value < 10�� and an imputation 

quality RSQR > 0.8. A genetic relationship matrix (GRM) was derived based on LD-pruned genotypes 

using the Plink 1.9 command “--indep 50 5 2”, and one individual was kept from all pairs of individuals 

that had a GRM value > 0.1 using the “--rel-cutoff” Plink 1.9 command
28

. Population outliers were 

identified using a principal component analysis of the GRM, and individuals more distant than three 

standard deviations from the mean of principal component 1 and principal component 2 were removed.  

RNA-seq gene expression quality control and processing has been described previously
13

. In brief, RNA 

extracted from whole blood was paired end sequenced using the Illumina HiSeq 2000 instrument. RNA-

seq read alignment was performed using STAR (version 2.3.0e)
65

. During alignment, variants with MAF < 

0.01 from the Genome of the Netherlands were masked
66

. Gene expression was quantified using 

HTSeq
67

. Samples with less than 80% of reads mapping to exons were considered of low quality and 

removed. Samples were also removed if they had less than 85% of mapped reads, or if they had a 

median 3’ bias larger than 70% or smaller than 45%. To further account for unobserved confounders, 

the expression matrix was corrected for the first 25 principal components as well as 5’ bias, 3’ bias, GC 
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content, intron base-pair percentage and sex following the procedure of Zhernakova et al.
13

. After 

genotype and expression quality control filters, 3,503 individuals with expression data of 19,960 

transcripts and genotype information of 7,838,327 SNPs were available for analyses. eQTL association 

analysis was performed for SNPs located ±1.5 Mb of the transcript using plink 1.9 and the `--assoc` 

command
28

. For 10,831 genes at least one eQTL at p < 5x10
-8 

was identified, and those genes were used 

for all the analyses described in this manuscript. 

We quantified how many genetic variants are necessary to explain gene expression using a conditional 

joint analysis approach. We identified jointly significant eQTLs by applying GCTA-COJO
25

 to eQTL 

summary statistics, using the BIOS cohort as LD reference panel, and selecting jointly significant variants 

that showed a p < 5x10
-8 

in this analysis step. To infer how often eQTLs are shared between genes, we 

assessed the percentage of genes with top eQTLs (or jointly significant variants) that have LD r
2
 > 0.5. 

  

Lifelines cohort genotype data and low-density lipoprotein cholesterol levels 

Lifelines is a multi-generational cohort study of 167,000 individuals from the north of the Netherlands. It 

was approved by the medical ethics committee of the University Medical Center Groningen and 

conducted in accordance to the Helsinki Declaration Guidelines. All participants signed an informed 

consent form prior enrollment. A subset of 13,283 samples were genotyped with cytoSNP array and 

underwent quality control as previously described
49

. After genotype quality control, samples were 

imputed using the Genome of the Netherlands reference panel
66

 and Minimac version 2012.10.3
49,68

. 

Variants were excluded if they were of bad imputation quality (RSQR < 0.3), showed deviation from HWE 

(p < 10��), or if they were absent in the set of quality controlled genotyped and imputed variants of the 

BIOS cohort. 
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Low-density lipoprotein cholesterol (LDL-C) was estimated using the Friedewald equation
69

, based on 

triglycerides, high density lipoprotein and total cholesterol levels
49

. Total cholesterol levels of individuals 

who were prescribed cholesterol-lowering medication were divided by 0.8 prior calculating LDL-C. 

Individuals with >4.52 mmol/Liter total triglycerides were removed
69

. Additionally, LDL-C levels were 

corrected for age, age squared and sex. After genotype and LDL-C quality control, 12,449 individuals and 

7,336,374 variants remained for analyses. Association analysis for additive effects on LDL-C was 

performed using linear regression on standardized genotypes, e.g. transforming genotypes into a 

distribution with mean 0 and variance 1. Summary statistics of this analysis were used to perform MR 

analyses using existing MR methods listed in Table 1. 

GTEx download and analysis 

We downloaded GTEx version 7 eQTL summary statistics, including non-significant results, from the 

GTEx website (https://gtexportal.org/home/datasets/)
24

. For every gene with at least one eQTL at p < 

5x10
-8

, conditional analysis using GCTA-COJO was performed to select secondary variants at the same 

threshold, using the BIOS cohort as an LD reference. This resulted in in 4,028, 1,557 and 1,726 genes 

with at least one jointly significant eQTL for whole blood, liver and brain (cerebellum) tissues, 

respectively.  

Simulation of genotypes 

403 non-Finnish European individuals were isolated from the 1000 Genomes phase 3 release and used 

as a starting point for genotype simulation
27

. We simulated genotype data for 25,000 individuals in a 

chromosomal region (Chromosome 2, 100Mb to 105Mb, human genome build 37) using the HAPGEN2 

program, combined with interpolated HAPMAP3 recombination rates
28,70

. The region was then reduced 

to 1Mb in length: between 102Mbp and 103Mb. Only biallelic SNPs with MAF < 0.01 were retained from 

simulated genotypes, leaving 3,101 variants in this region. Simulated individuals were separated into an 
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outcome cohort of 15,000 individuals, and into an exposure cohort and an LD reference cohort of 5,000 

individuals each. These cohort sizes were chosen to roughly represent the sizes of BIOS and Lifelines 

cohorts. 

Simulation of phenotypes  

We simulated quantitative phenotypes representing the exposures by randomly selecting SNPs from the 

simulated genetic region, and subsequently assigning these an effect. Causal SNPs were selected to 

represent both pleiotropy through LD (Figure 1C) and pleiotropy through overlap (Figure 1B). For the 

scenario of pleiotropy through LD (Figure 1C), one to ten causal SNPs were randomly selected to be 

causal to the exposure, and the same number of SNPs was selected among all SNPs in moderate LD (0.25 

< r
2
 < 0.95) for being causal to the unobserved (pleiotropic) exposure. 

When pleiotropy through overlap was simulated (Figure 1C), the causal SNPs for the observed and 

unknown exposure were selected to be identical. A combination of pleiotropy through overlap and 

pleiotropy through linkage was simulated by choosing some or all of the SNPs of the unobserved 

exposure to be overlapping and some being in LD (0.25 < r
2
 < 0.95). 

The mathematical framework is as follows. For each selected causal SNP of the exposure (subset ��), we 

simulated an effect-size from the uniform distribution ���0.5,0.5�, and then simulated the observed 

exposure as: 

�� 
 ��� � � � �� , (1) 

 where � is a genotype matrix of size � � �, with � being the number of individuals (5,000) and � the 

number of variants in the region (3,101 in the simulated data), ��  is the vector of effects 
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��,� 
 �� ���0.5,0.5� ��� � ��0 ���� !���" , #� � $1, … , � &, and � � '�0,0.5�� is a matrix of specific 

confounder per individual. Finally, �� � '�0,1�� is the measurement error of the exposure. Similarly, 

the unobserved exposure �� was simulated as: 

�� 
 ��� � � � �� , (2) 

where (� is the vector of effects defined as: ��,� 
 �� ���0.5,0.5� ��� � ��0 ���� !���" , #� � $1, … , � &, 

��  is the selection of SNPs for the unobserved exposure and �� are measurement errors distributed as 

�� . The outcome phenotype �� was then simulated as a linear combination of the observed and 

unobserved exposures: 

�� 
 ��(� � ��(� � � � ��, (3) 

where the causal effect of interest is (�  and the (unknown) pleiotropic effect is (� . Again, the 

measurement error �� is drawn from the standard normal distribution. 

The effects �� , ��, (�  and (� were randomly drawn from their respective distribution and used in both 

cohorts (exposure and outcome), while the other random variables were randomly drawn in a cohort-

specific manner. Since our model was built to account for unobserved pleiotropy, only the outcome 

phenotypes and the summary statistics of the (observed) exposure phenotype were used in the causal 

inference analysis. 

Simulation parameters and scenarios 

We simulated 1,500 runs per scenario, each with a unique outcome ()) and two exposures (* and �). 

The scenarios differed in the number of causal SNPs (which varied from one to ten for both the 

observed and unobserved exposure); the strength of the causal relationship of interest (varied from no 
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causal effect up to a large effect ((� � $0,0.05,0.1,0.2,0.4&); and the presence ( (� = 0.4) or absence ((� 

= 0.0) of the pleiotropic effect. This resulted in 10*5*2 = 100 different scenarios.  

In certain cases, an estimate cannot be made by an MR method, for instance when insufficient IVs are 

identified or a solution is not found in the estimation method. As a result, there are sometimes fewer 

estimates than expected in the final results. To ensure the stability of our FPR and power estimates, we 

have only reported results for a MR method in a specific scenario if we had more than 100 estimates out 

of the 1,500 simulated runs. 

Instrumental variable selection  

IV selection can be difficult when there is LD between association signals. In simulations, we used two IV 

selection techniques: GCTA COJO
25

 and p value clumping, using standard settings of plink 1.9 except for 

the r
2 

threshold, which was set to 0.1
28

. Both selection methods used a p value threshold of p < 5x10
-8

. 

When selecting IVs for BIOS and GTEX, we only used the GCTA-COJO technique.  

MR-link 

MR-link is a method for causal inference that is robust to the presence of LD and unknown pleiotropy. It 

is a two-sample MR approach that requires individual-level data from the outcome cohort and summary 

statistics (effect sizes, standard errors and minor allele frequencies) from an exposure. Conceptually, 

MR-link jointly models a known exposure with SNPs that are in LD with the exposure IVs (tag-SNPs). Tag-

SNPs are used to account for the unobserved pleiotropic effect present in a locus.  

We defined our model in the following manner. Let � be a genotype matrix of � x �, where � is the 

number of individuals in the outcome study and � are all the SNPs in a cis-region around the transcript 

(±1.5 Mb of the transcript), in which SNPs at indices ��  are the causal genetic variants (IVs) for the 

exposure *. If we define the exposure * and the unobserved (pleiotropic) exposure � as in equation (10 
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and (2), then the outcome phenotype �� from equation (3) can be represented as a function of * and � 

with the following equation: 

�� 
 ���(� � ���(� � ��� ��, (4) 

where (�  is the causal effect of interest of the exposure on the outcome, (� is the causal effect of the 

unobserved exposure, ��  represents some confounder and �� is the measurement error of the 

outcome. In the case of pleiotropy through overlap, all variants will be the same, thus �� 
 �� . In the 

hypothetical case that the genetic effects for both the exposure * and the pleiotropic exposure � are 

known, we can estimate (�  by solving equation (4). In a real-case scenario, only the IV(s) for the 

exposure are known, while the variants that contribute to the unknown (pleiotropic) exposure and their 

effect on the outcome are unknown.  

MR-link uses the following procedure to estimate causal effects: 

(1) After selection of �̂�  IVs for the exposure, conditional effect sizes �̂�  are determined for these 

IVs using the GCTA-COJO method
25

. A vector of effect sizes �.�  for all SNPs in the region is thus 

defined as: �.�,� 
 /�.�,� ��� � �̂�0 ���� !���" , #� � $1, … , � & .  
(2) All SNPs in LD 0.1 1  	 1 0.99 with the exposure IVs are potential tag-SNPs. These variants are 

iteratively pruned for high LD so that tag-SNPs, �
 , are always  	 1 0.95 with each other in 

order to reduce collinearity and computation time. 

(3) The following equation is solved for (�  using ridge regression: 

�� 
 3 4 4
��̂�
��

��
√��4 4 5 6 (�4��(4 7 � �, (5) 
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where �
  is the genotype matrix of the outcome containing only tagging variants as defined in 

(2) and �
  is the number of tagging variants and ��  are the number of IVs selected by the 

selection method. 

We also considered solving the equation (5) using ordinary least squares. However, due to the 

multicollinear nature of the � � �
��̂�
��

��
√��� � � matrix, this approach leads to very low detection power 

(Supplemental Table 2, Supplemental Figure 4, 5, 6 and Supplementary Note). We therefore applied 

ridge regression to solve the equation and determined a T statistic and subsequent Wald test p value for 

ridge regression
71

. Due to the over-conservative nature of the resulting p value in simulations and real 

data (Supplemental Table 2, Supplementary Figure 4, 5, 6 and Supplementary Note), we adjusted the p 

value distribution of each different scenario by fitting a beta distribution to all estimates to calibrate the 

final p values (Supplementary Note). When we report results for MR-link in simulated data, it is these 

adjusted p values that we are referring to.  

Since sparsely genotyped regions and/or highly independent IVs may affect MR-link performance 

(increased FPR) due to the reduced number of tag-SNPs that explain a residual outcome signal, we 

applied a permutation procedure to assess the robustness of significant results in applications to real 

data. Specifically, for all genes that passed the Bonferroni significance threshold, we permuted the 

outcome phenotypes (LDL-cholesterol in our case) 1000 times, recalculated causal estimates with MR-

link, and re-classified the gene as non-significant if more than 1% of permutations had a more significant 

causal effect than originally observed. 

 

Mendelian Randomization analyses  
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Causal relationships were estimated with MR-link and four other existing methods: Inverse variance 

weighting (IVW)
45

, LDA-MR-Egger regression
17

, MR-Egger regression
18

 and MR-PRESSO. All methods 

were (re-)implemented in Python and compared to present equal results when compared with their 

original implementation. The corresponding code is available https://github.com/adriaan-vd-

graaf/genome_integration . 

The IVW method is a weighted meta-analysis of causal estimates from single IVs. Specifically, a causal 

estimate (�for an IV � is estimated as (�´ 
 �́�,�
�́�,�

 , where �́�,�is the marginal effect of SNP � on the outcome 

and �́�,� is the marginal effect of the exposure. For the estimation of the causal effect, single IV causal 

estimates are combined using weights proportional to the inverse variance of such estimates using the 

two-terms definition of standard error: ��9(�´ : 
 ;����́��
�

�́�
� � �́�

�����́��
�

�́�
�  as described in

72
.  

MR-Egger regression adjusts for average pleiotropy by fitting a linear regression between the exposure 

SNP-effects and the outcome SNP-effects
18

. It assumes that <50% of the variants have a pleiotropic 

effect. MR-Egger can be applied when three or more instruments are available.  

LDA-MR-Egger is similar to MR-Egger but also recognizes LD. LDA-MR-Egger can only be used when LD 

information between the IVs is available
17,19

. 

MR-PRESSO is a method of causal inference that implements an approach to identify and remove 

outliers from the IVW framework
20

. It assumes that <50% of the variants have a pleiotropic effect. MR-

PRESSO is unable to adjust for the presence of pleiotropy if fewer than three IVs are available, of if fewer 

than two IVs are left after outlier correction. 

For these four methods we used LDL-C full GWAS summary statistics derived from the association 

carried out in the Lifelines study, as described above. 
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