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Abstract:

The estimation of population size remains one of the primary goals and challenges in
ecology and provides a basis for debate and policy in wildlife management. Despite the
development of efficient non-invasive sampling methods and robust statistical tools to
estimate abundance, maintenance of field sampling is still subject to economic and
logistic constraints. These can result in intentional or unintentional interruptions in
sampling and cause gaps in data time series, posing a challenge to abundance

estimation, and ultimately conservation and management decisions.

We applied an open population spatial capture-recapture (OPSCR) model to simulations
and a real case study to test the reliability of abundance inferences models to
interruption in data collection. Using individual detections occurring over consecutive
sampling occasions, OPSCR models allow the estimation of abundance from individual
detection data while accounting for lack of demographic and geographic closure
between occasions. First, we simulated sampling data with interruptions in field
sampling of different lengths and timing. We checked the performance of an OPSCR
model in deriving abundance for species with slow and intermediate life history

strategies. Finally, we introduced artificial sampling interruptions of various magnitudes
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and timing to a five-year non-invasive monitoring data set of wolverines (Gulo gulo) in

Norway and quantified the consequences for OPSCR model predictions.

3. Inferences from OPSCR models were reliable even with temporal interruptions in
monitoring. Interruption did not cause any systematic bias, but increased uncertainty.
Interruptions occurring at occasions towards the beginning and the end of the sampling
caused higher uncertainty. The loss in precision was more severe for species with a

faster life history strategy.

4. We provide a reliable framework to estimate abundance even in the presence of
sampling interruptions. OPSCR allows monitoring studies to provide contiguous
abundance estimates to managers, stakeholders, and policy makers even when data are
non-contiguous. OPSCR models do not only help cope with unintentional interruptions
during sampling but also offer opportunities for using intentional sampling interruptions

during the design of cost-effective population surveys.
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1. Introduction

Estimating population size remains one of the most fundamental goals and challenges in wildlife
ecology. Statistical tools that can account for imperfect detection, such as capture-recapture (CR)
methods, are instrumental for estimating abundance of free-ranging populations (Seber 1982). Spatial-
capture recapture (SCR) models, a recent extension of CR models, enable investigators to obtain
spatially-explicit estimates of abundance (Efford 2004, Borchers and Efford 2008, Royle and Young
2008). SCR models estimate the location of individual activity centers (AC) using an observation model
that describes the relationship between the spatial pattern of individual encounters and distance from
the AC (i.e. detection probability). This allows SCR models to specify the spatial extent over which

individuals occur and therefore generate spatially explicit estimates of abundance.

The SCR framework is suitable for analyzing observation data derived using not only physical capture
and marking, but also non-invasive approaches, such as camera trapping (Efford et al. 2009, Royle et al.
2009), genetic sampling (Bischof et al. 2016a, Milleret et al. 2018), and acoustic sampling (Dawson and
Efford 2009). Technical development in non-invasive methods have greatly expanded the spatial scope
of monitoring and long-term studies. Many monitoring programs now collect individual detections with
the aim of fitting SCR models. SCR models have, for example, been used to estimate density of brown
bears (Ursus arctos) in Norway (Bischof et al. 2016a), of wolverines (Gulo gulo) in Alaska (Royle et al.
2011), and wolves (Canis lupus) in Spain (Lopez-Bao et al. 2018). However, the maintenance of long-
term data series, which is essential for establishing sound conservation and management plans
(Lindenmayer and Likens 2009), can be subject to economic, logistic and other constraints. These can
ultimately lead to intentional and unintentional interruption in sampling and thereby modify the

temporal frequency of sampling (i.e. causing gaps in data time series).

When individual encounter data are collected over long periods relative to the lifespan of the study

species, open population CR models can be used to account for the lack of demographic closure (i.e.
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death and emigration/ recruitment and immigration) between sampling occasions (i.e. generally
referred to as primary occasions). Many monitoring projects are exposed to interruption in the sampling
and result in gaps in CR time series.(e.g. Plummer 2003, Schmidt et al. 2007, Bears et al. 2009, Zabala et
al. 2011, Zuberogoitia et al. 2016, Sanz—Aguilar et al. 2019). A gap causes unequal time intervals
between primary sampling occasions. Unequal time intervals, are not a major problem in traditional CR
models (Schmidt et al. 2007, Bears et al. 2009, Sanz—Aguilar et al. 2019), as it is possible to specify
interval lengths when estimating demographic parameters such as survival or recruitment (Schmidt et
al. 2007, Bears et al. 2009). However, when abundance estimates are the goal of the study, unequal
time intervals in CR do not allow estimation of abundance during the primary period without data. . For
example, the monitoring strategy for brown bears in Sweden is to conduct periodic sampling of different
areas over multiple years (Kindberg et al. 2011, Swenson et al. 2017), which results in regions without
detections available for inferences. Since information about annual population size is required by
stakeholders, the current estimates are derived by combining periodic regional abundance estimates
obtained with CR methods and an observation index collected on a yearly basis (Kindberg et al. 2011).

Clearly, there is a need for methodology to cope with gaps in data time series.

Although no individual detections are available during the gap in the time-series, the Markovian
structure of individual survival should help estimate the hidden state of the individual (i.e. dead or
alive). Indeed, by modelling demographic processes (e.g. survival and recruitment) between primary
occasions (e.g. years), the individual-based information is propagated across occasions. This means that
the state of individuals at each sampling occasion (e.g. alive) can be reconstructed from the time series
of detections (Figure 1). Therefore, open population CR models make effective use of the information
obtained from multiple primary occasions compared to a series of independent CR models. Open
population SCR models (OPSCR), which are a spatial extension of open population CR models, could

offer practical solutions to deal with interruptions in sampling. OPSCR models do not only use
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93 information from individual detection collected during several occasions (such as CR models), but also
94  use the spatial information contained in the detections and model movement of individuals between
95 occasions (Ergon and Gardner 2014, Royle et al. 2014, Bischof et al. 2016a). In OPSCR, modelling
96 individual movement between occasions allows estimating the probability of the individual being alive
97 but outside of the study area, which should facilitate abundance estimates (Ergon and Gardner 2014,
98 Gardner et al. 2018), especially during the gap years. The use of data collected over multiple occasions
99 and propagation of individual information on spatial location and demographic status across time steps
100  should help OPSCR bridge gaps in data collection, allowing inferences about abundance during occasions
101  with sampling interruption. Although OPSCR models have already been used to infer abundance at
102 occasions without individual detections (Chandler and Clark 2014, Augustine et al. 2019), there is a lack
103 of knowledge about the quantitative consequences of sampling interruptions under different conditions

104  (i.e. multiple interruptions, different life history characteristics).

105  We built an OPSCR model to estimate abundance, recruitment, survival, and movement of individuals
106 between primary sampling occasions. We then tested its reliability for inferring abundance in the
107  presence of gaps in data collection when inferring abundance. We artificially generated sampling
108 interruptions of various temporal configuration to assess their consequences for the precision and
109 accuracy of abundance estimates. First, we introduced artificial sampling interruptions to simulated data
110  sets for populations with different life history strategies (along the slow-fast continuum Stearns (1992)).
111 Because of the low survival rate of species with a fast life history strategy, we expected sampling gaps to
112 induce a more pronounced loss in precision compared with species with a slow life history. Most free-
113 ranging populations are subject to demographic stochasticity in vital rates, which can be challenging to
114  model in the presence of interruption. We therefore checked the effect of demographic stochasticity in
115 vital rates on abundance estimates by simulating populations with and without temporal stochasticity in

116  their vital rates. We then applied the OPSCR model to data from the non-invasive monitoring program of
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117 wolverines (Gulo gulo) in Norway as a real-life example, but with artificial gaps introduced. We provide
118 recommendations for practitioners on how and under which conditions OPSCR can be used to obtain

119 contiguous abundance estimates from non-contiguous monitoring data.

120


https://doi.org/10.1101/671461
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/671461; this version posted June 14, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Sampling
2013 2014 2015 2016 2017
&%
& )
- " ‘\
& x&
4

State
2013 2014 2015 2016 2017
Pajive=1 Pajve=1 Pajive=1 Pajive=1 Paiive=(1-P)¢
Movement
2014 2015 2016

121

122 Figure 1. lllustration of the benefits of open population spatial capture recapture (OPSCR) models to
123 estimate abundance when interruption in the sampling result in a gap in the data time series. The
124 illustration is based on the detection history of one female wolverine during five winters (2013-2017)
125 using scat-based non-invasive genetic monitoring in Norway. “Sampling” shows a timeline with a “scat
126  emoji” at the occasion where the individual was detected and NA when not detected during the
127 searches. In this illustration, we simulated a sampling interruption during the winter 2015 (i.e. all
128  detections from all individuals were artificially removed during that occasion). “State” shows the
129 individual state reconstruction during the interruption. When the individual was detected (2013, 2014,
130  2016), the individual was certain to be alive (black wolverine silhouette), as well as during the
131 interruption (2015) because the individual was detected alive before and after the interruption. The
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132 probability of the individual being alive at all occasions between 2013 and 2016 (P, ) equals to 1 from
133 2013 to 2016 (even for the occasion with interruption), because we could reconstruct with certainty the
134  state of the individual to alive. At the last occasion, P, was estimated as : (1 — p) * ¢, the probability
135  for the individual to survive ¢ to the last occasion and not be detected (1 — p). “Movement” represents
136  the movement process that models the individual’s activity center from one occasion to the other. The
137  three maps (2014-2016) represent aerial photo of the study area, and green to grey colors show low to
138 high probability of the AC being located in a given pixel, as predicted by the OPSCR model, respectively.
139 During the interruption, the individual is certain to be alive, and the model uses population-level
140  information about AC movement patterns to predict the most likely AC location of the individual.
141 Individual detections are represented by red dots.

142

143 2. Material and methods
144 2.1. OPSCR model

145  We built a Bayesian OPSCR model that contained three main components: 1) an encounter model to
146  estimate individual activity centers and account for imperfect detection of individuals (Royle et al. 2014),
147  2) a multi-state population dynamic model to estimate recruitment and survival (Seber 1965, Schwarz
148  and Arnason 1996), and 3) a movement model to capture the movement of AC locations between years
149 (Ergon and Gardner 2014). We used Markov Chain Monte Carlo (MCMC) and data augmentation to

150  analyze OPSCR models and obtain estimates of abundance (Royle et al. 2007, 2009).

151
152 2.1.1. The SCR model

153  The SCR model is the core element of our OPSCR model. SCR models use the spatial location of
154  detections and non-detections at a set of detectors to estimate the latent locations of individual activity
155 centers (ACs). SCR models are hierarchical state-space models combining 1) a point process model that
156 describes the spatial distribution of individual ACs, and 2) a detection model conditional on the point
157 process model, which describes the relationship between individual detection probability and distance
158  to its AC. The half-normal detection model commonly used in SCR assumes that the probability p of
159  detecting individual j at detector j and time t decreases with distance between the detector and the AC

160 (Dijt):
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161 = Dit
Pije = Po-exp (_3) ean 1

162

163  where pg represents the detection probability at the location of the AC, and o represents the width of
164  the utilization distribution. The scale parameter o is related to the extent of space used over the period

165  of study.

166 2.1.2. The multistate model

167 Individual state membership z;; takes the value 1 if “not yet entered”, 2 if “alive”, and 3 if “dead”. State
168  z is the result of a Markovian process and changes with time according to a categorical distribution
169 (Gimenez et al. 2007, Kery and Schaub 2011). During the first occasion, individuals can only be
170  designated as “not yet entered” or “alive” so that z;;~dcat(1 —y,y, 0), where ) represents the

171 inclusion probability.

172 Fort>2, z;, is conditional on the state of individual i at ¢t-1:

173 o If z;;_4 =1, individual i is potentially available to be recruited (transition to state 2), so

174 zig~dcat(1l — y;, s, 0), where y; is the recruitment parameter and is derived as:

N.recruits;

175 Ve = N.availables_4 eqn 3
176

177 where N.available represents the number of augmented individuals with the state not yet
178 entered (i.e. individuals available for transitioning to the alive state at each occasion), and
179 N.recruits is the number of new individuals recruited into the population:

180 N.recruits, = p X Ny_4 eqn 4
181 where p is the per capita recruitment parameter:

182 p~dunif(0,5) eqn5
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e If z;;_, = 2 individual i can either survive and remain z;; = 2 or die and transition to z;; = 3, so
that z;;_~dcat(0, ¢, 1 — ¢), where ¢ represent the survival probability.

e If z;;_1 = 3, individual i is dead and will remain in this (absorbent) state.

Only individuals with the state “alive” can be detected. We therefore linked the encounter indicator y

(detected, not detected) of individual i at detector j and time t with the individual’s state z|; ;)
Yiji ~ Bernoulli(p;j, = 1(z; = 2)) eqn 6
where [ is an indicator function returning 1 for individuals in state 2, and 0 for individuals in state 1 or 3.

Estimates of abundance (N;) were obtained as:

P

Ny = 3L 1(z = 2) ean 7

The state z;; of an individual is a latent variable, except at occasions when the individual was detected
alive where it can be set to “alive”. In certain cases, it is also possible to reconstruct with certainty the
state of individuals at occasion during which they were not detected (Figure 1). For example, an
individual is known to be alive in years in which it was not detected, if that period is framed by alive

detections.

2.1.3. The Movement model

ACs at £t = 1 were placed according to a homogenous Binomial point process (lllian et al. 2008). Under
this model, AC positions were independently and uniformly distributed in the study area (S). In order to
distinguish between temporary emigration and mortality, we integrated a movement model in the

OPSCR model allowing shifts of individual activity centers between occasions. This is an important
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204  component of the OPSCR model as it can improve survival estimates and can take into account the
205  impact of animals moving within and out of the sampled area (Ergon and Gardner 2014, Gardner et al.
206  2018). It is a particularly important feature of the model in the context of sampling interruption, as it
207 helps propagating spatial locations of individual across occasions. Movement was modelled as a
208 Markovian spatial point process. The outcome of each movement event was placed according to an
209 inhomogeneous binomial point process (lllian et al. 2008) with only a single point (AC) simulated for
210  each movement event. The functional form of the intensity surface that determined the location of the
211 AC placement was a combination of an isotropic multivariate normal distribution centered around the
212 source coordinates (location of the AC at previous occasion) with a standard deviation 7, and an
213 intensity surface representing habitat quality. For simplicity, we considered homogenous habitat quality

214  in this study (see Supporting information 1.1).

215
216 2.2. Simulations

217 We conducted a simulation study to evaluate the performance of our model under sampling
218  interruptions of different magnitudes and configurations. We created a spatial domain of 40 x 40
219 distance units (du) within which we centered a 20du x20du detector grid (with a minimum distance of
220 1.5 du between detectors). We released 50 individuals (N;) in the first occasion and sampled the
221 location of their ACs uniformly within the spatial domain. During the subsequent occasions, we
222 simulated individual movements as Markovian spatial point processes with the intensity surface being a
223 multivariate normal distribution centered on the previous AC location. We simulated population
224  dynamics assuming that the sampling occasion occurred just prior to reproduction. We drew the
225 number of recruits (p) for each alive individual from a Poisson distribution. Note that if the sampling

226 period does not start exactly after birth, p is a composite parameter of the number of offspring
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227 produced by an individual and their survival rate until the start of the sampling. Each alive individual had

228  aprobability ¢ to survive to the next sampling occasion.

229

230

231 2.2.1. Population and survey characteristics

232 We simulated individual detections occurring at five consecutive primary occasions (e.g. for simplicity,
233 we considered a one-year time interval between instantaneous occasions) using 0=2 and p0= 0.25,
234 which led to an overall occasion-specific detectability of 71.2% (SD=6.46). We used a multivariate
235  normal distribution with T = 3 for the movement of ACs between occasions. We considered two stable
236 populations (asymptotic growth rate=1) having contrasting life history characteristics along the slow-fast
237 continuum (Stearns 1992) (Table 1). We simulated populations having a “slow” and “intermediate” life
238  history strategy with ¢=0.85 and p=0.15, and ¢=0.65 and p=0.35 (Table 1), respectively. We did not
239  consider a population having a faster life history strategy because the relative life span of individuals
240  would be too short compared to the time interval between two consecutive occasions (a year). In
241 addition of the stochastic realization of z;, we also considered scenarios with larger temporal
242 stochasticity by drawing ¢, and p; on a logit link from a normal distribution centered on the average

243 values of the respective life history strategy and SD=0.2.

244
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245

246  Table 1. Characteristics of the four simulated populations used to assess the consequences of sampling
247 interruption on abundance estimates from open population spatial capture recapture models. Median
248 survival time is expressed in years. Super population size represents the average number of individuals
249 (from all simulated data sets) that were ever alive during the study. p and | are the per-capita
250  recruitment and survival parameter, respectively. Average and min-max values represent the parameter
251  setused from the 50 different datasets simulated for each population and scenario.

. . Average
. . Stochasticit Med.lan Asymptoti SD Super Averagep Average ¢
Life History survival ¢ growth growt opulatio [min-max]  [min-max]
y time rate h rate pop .
n size
0.15 0.85
Slow Low 4.9 1 0.07 80 [0.15-0.15]  [0.85-0.85]
. 0.15 0.85
High 4.9 1 0.10 80 [0.01-0.32] [0.68-1]
0.35 0.65
_ Low 2.1 1 0-12 119 [0.35-0.35]  [0.65-0.65]
Intermediat
e
. 0.35 0.65
High 2.1 1 0.13 119 [0.23-0.49] [0.5.0.8]
252
253
254 2.2.2. Sampling interruption scenarios
255

256 We created 10 different sampling interruption scenarios (Figure 2) and a scenario without interruptions
257 over five consecutive occasions (scenario 11111; Figure 2). When no sampling occurred during occasion
258  t, we set p;j; in the OPSCR model to O to specify that there was no possibility of detecting any

259 individuals during that occasion.

260
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261
262 10001 [ -
263 11110+ + + + NA
264
01111 + + + T
265
10101  + + +
266
2 11101+ + + NA +
267 5
268 8 0111 I + + +
269 11001+ 4 [ NA | [NA | o
270 10011+ NA NA + +
271 11011 + + + +
272 11111+ + < F: ik
[ T | T 1
273 1 L] 3 4 5
274 Occasions
275 Figure 2. Visual representation of the 10 sampling interruption
scenarios considered in the analysis. The x-axis denotes five
276 consecutive sampling primary occasions. The 10 different
277 scenarios are arranged along the y axis and are coded by binary
values corresponding to whether sampling was performed (1)
278 or not (0) during each occasion and is visually represented by
279 “+“and “NA”, respectively.
280
281
282 2.3. Evaluation of model performance

283  We simulated 50 datasets for each of the 10 scenario and each of the four populations, resulting in 2000

284  simulated datasets. For each simulated data set, we calculated the relative bias (RB = mode(N) — N))

SD(N)

————x 100 ), where SD is the standard deviation, N are the
mode(N)

285  and the coefficient of variation (CV=

286 MCMC posterior samples of population size, and N is the true value of population size (Walther and
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287 Moore 2005). In addition, we calculated the 95% credible interval coverage as the percentage of

288 simulations for which the credible interval contained the true value.

289 2.4. The wolverine data

290  We fit the OPSCR model to NGS data from the national monitoring program of wolverines in Norway
291 (see description in (Flagstad et al. 2004, Brgseth et al. 2010, Bischof et al. 2016b, Gervasi et al. 2019)).
292  We used data collected during five consecutive winters (January-May) between 2013 and 2017 in
293  central Norway (Supporting information 1.2, Figure S1.2.1). The data consisted of 632 detections from
294 126 individually identified female wolverines. Samples were collected by field personnel from the
295 management authorities (Norwegian Nature Inspectorate) using a search-encounter method on snow.
296 During searches, the GPS coordinates of search-tracks were recorded. We used the partially aggregated
297 binomial observation model (Milleret et al. 2018), which divides detectors into K subdetectors and
298 models the frequency of subdetectors with more than one detection as a binomial response with a
299  sample size of K. We located primary detectors in the center of grid cells (4km resolution) and
300 subdetectors in the center of subdetector grid cells (800m resolution). We only placed subdetectors
301 when search tracks overlapped with the subdetector grids. The configuration of active grid cells changed
302  every year to account for spatial-temporal variation in searches. We also estimated year-specific p0 to
303  account for annual variation in sampling intensity. To increase computing efficiency, we used a local
304  evaluation of the state-space to reduce the number of detectors considered for each individual during
305 the model fit (Milleret et al. 2019). Searches were conducted continuously from 2013 to 2017, which
306  allowed us to introduce different artificial gaps in the data time series, while having a reference point
307 (scenario without gaps: 11111). We simulated sampling interruption by removing all detections from all
308 individuals at the occasion(s) designated as interruption. We implemented the same 10 interruption
309  scenarios as used in the simulations (Figure 2). We compared N and its CV (i.e. obtained when excluding

310  the buffer area, 63584km?) between the different scenarios.
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311

312 2.5. Model fitting

313 We fitted the Bayesian OPSCR models using Markov chain Monte Carlo (MCMC) with nimble (Turek et
314 al. 2016, de Valpine et al. 2017, NIMBLE Development Team 2019) in R version 3.3.3 (R core team 2017
315 ). NIMBLE provides a new implementation of the BUGS model language coupled with the capability to
316  add new functions, distributions, and MCMC samplers to improve computing performance. We ran four
317 chains with 40000 iterations each following a 2000-iteration burn-in. We considered models as
318 converged when Rhat was <1.1 (Gelman and Rubin 1992) for all main parameters and by visually
319  inspecting a sample of all repetitions of all scenarios. We re-ran models that did not reach convergence
320 for 60000 iteration per chain following a 20000-iteration burn-in, and excluded them from the results if
321  they still did not reach convergence. R and nimble codes for the OPSCR model, related custom functions,
322 and simulations used are provided in Supporting Information S2, and list of priors used in Supporting

323 Information 1.3 Table S1.3.1).

324

325 3. Results
326 3.1. Simulations

327  All models reached convergence, with the exception of scenario 10001 for species having an
328  intermediate life history strategy (25% non-converged Supporting information 1.4, Table S1.4.1). We
329 detected no systematic bias in N, regardless of whether sampling interruption occurred or not
330  (Supporting information 1.5, Table $1.5.1). However, the precision in N generally decreased towards the
331  first and last occasions (e.g. Figure 1, scenario 11111). Regardless of when the interruption(s) occurred,
332 the precision in N decreased for the affected occasion(s). For example, for the scenario 11011, CV of N
333  was on average 1.3 times higher during the third occasion (i.e. interruption) compared to the scenario

334  without interruption in sampling (Figure3, Supporting information 1.5, Table S1.5.1). The increased
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uncertainty caused by interruptions also propagated to estimates for sampled occasions, especially for
those adjacent to interruption(s). Precision of N decreased as the number of interruptions increased.
CV was on average 1.8 times higher for interruptions at the beginning or at the end of the study period,
than for an interruption at the third occasion. Regardless of the interruption scenario, uncertainty in N
was larger for the intermediate life history scenario, but the presence of stochasticity in vital rates did

not seem to amplify the depressing effect of interruptions on the precision of N.
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Figure 3. Violins plots (points: medians; solid colors: 95% credible interval) for the coefficient of
variation (CV) of abundance estimates (N) obtained using an open population spatial capture recapture
model fit to simulated datasets (50 repetitions for each scenario). Shown are results for simulations
representing combinations of life history strategies (slow and intermediate), and with and without
temporal stochasticity in vital rates. The five consecutive N estimates (i.e corresponding to the five
sampling occasions) are colored and grouped according to the sampling interruption scenario (x-axis).
Sampling scenarios are presented by a series of 1s and Os indicating whether sampling was considered
to have occurred or not, respectively.

3.2. Wolverines
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353 All models fit to the empirical wolverine data converged, except scenario 10001 for which the standard
354  deviation of the Gaussian dispersal kernels (t) did not reach the convergence criterion. Wolverine
355 population size N in the absence of sampling interruptions was relatively stable over the five
356 consecutive years (>60 individuals, figure 4; 11111). We did not detect marked changes in N estimates
357 when the data set was subjected to sampling interruptions (Cl of all N overlapped with each other
358 regardless of the scenario, figure 4). However, patterns in CV of N in response to sampling interruptions
359  were similar to those observed for simulated data sets, with a higher uncertainty towards the first and

360 last occasions and with a sampling interruption (Figure 4).

361
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363 Figure 4. Violin plots (points: medians; solid colors: 95% credible interval) of the posterior distribution of
364  abundance (N) (top panel) and its coefficient of variation (CV; bottom panel) obtained using an open
365 population spatial capture recapture model on non-invasive genetic sampling data of wolverines
366 collected in south-central Norway. The five consecutive annual N estimates and CV (2013-2017) are
367 colored and grouped according to the sampling interruption scenario (x-axis). Sampling scenarios are
368 presented by a series of 1s and Os indicating whether sampling was considered to have occurred or not,
369 respectively.

370 4. Discussion

371 Simulations and a case study on wolverines revealed that OPSCR models can be a valuable tool for
372 abundance inferences when there are gaps in data time series. Although uncertainty in abundance
373 estimates increased during occasions with a sampling interruption, the interruption did not seem to

374  cause any systematic bias. Uncertainty in abundance estimates increased with the number of
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375 interruptions and the speed of the study species’ life history. Similarly, the simulated sampling
376  interruptions in the wolverine example (a species with an intermediate life history strategy; ¢ =
377  0.7(95%CI: 0.62 — 0.78); p = 0.3 (95%CI:0.21 — 0.39)) showed that interruptions caused higher
378 uncertainty around abundance estimates, but that abundance estimates were relatively similar to those
379  in the absence of interruptions (Figure 4). The effect of interruptions on precision was generally less
380 pronounced when the gap in the time series was framed by several consecutive sampled occasions
381 (11011). Although OPSCR models have already been used to infer abundance in the presence of
382 interruptions (Chandler and Clark 2014, Augustine et al. 2019), our study is the first to explore the
383  conditions under which reliable abundance inferences can be obtained when SCR data time series

384  include temporal gaps in sampling.

385 Compared to a series of independent SCR models, OPSCR models use detections and model population
386 dynamics and individual movement between several consecutive sampling occasions. As a result,
387 individual detections in previous and/or subsequent occasions inform the Markovian model about the
388  spatial location and demographic status of each individual and help determine its fate (Molinari et al.
389 (2018); Figure 1). This explains the increase precision of the estimates for gaps framed by multiple
390 occasions with data (Figure 3, scenario 11011). Despite a loss in precision of abundance estimates, the
391 OPSCR model, and its Markovian structure, allows the reliable estimation of abundance in the presence
392  of interruptions. However, the presence of sampling interruption pose a greater challenge to estimation
393 when the lifetime of the species is short compared to the time interval between consecutive surveys.
394  Indeed, we found that for species with intermediate life histories precision of abundance estimates was
395 lower and models took longer to converge than for species with slow life histories.( Supporting

396  information 1.4, Table S1.4.1.)

397 Movement of ACs between occasions is an important feature of OPSCR models and a miss-specified

398 movement process can have important consequences for inferences (Ergon and Gardner 2014, Gardner
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399 et al. 2018). For the purpose of this study, we developed a Markovian movement model assuming
400 distance between consecutive individual ACs being normally distributed. The movement model is
401 essential to distinguish between mortality and emigration (Ergon and Gardner 2014) and assists the
402 OPSCR in predicting the fate of individuals that are not detected during interruptions in sampling (Figure
403 1). Based on the locations of the AC at occasions prior to and following interruption(s), together with
404 population level information about AC movement, the model makes prediction about the location of
405 individuals ACs during occasions with missing data (e.g. prediction of the movement of individuals in and
406 out of the study area). This is particularly useful as the OPSCR model not only yields population size
407 estimates that bridge interruptions in sampling, but can also estimate density across the study area

408  during years without sampling.

409 In this analysis, we considered that interruptions occurred at random and not because of a specific
410 event (e.g. unfavorable climatic conditions) that could have, not only prevented the occurrence of
411  sampling, but also affected the population. Independence of the probability of interruptions from
412 biological processes affecting parameters of interest (Nakagawa and Freckleton 2008). When it is met,
413  key parameters (e.g. o, ¢, p) are transferable between years and the model should return unbiased
414  abundance estimates for gap years. Otherwise, investigators should use caution when drawing
415 inferences for gap years, as the occasions with and without observations may be confounded with

416  differences in biological processes.

417  The main goal of many wildlife monitoring programs is to obtain reliable estimates of population size
418 and trends therein, but also to understand the mechanisms (e.g. recruitment, survival) involved in
419 population size fluctuations when planning conservation and management actions. Although individual
420  survival between occasions is informed through the reconstruction of individual states during
421 interruptions, under some circumstances, parameter identifiability can be weak when parameters are

422 allowed to vary over time (see Supporting information 1.6). In order to estimate survival and
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423 recruitment in the presence of sampling interruptions, it may be necessary to assume that these vital
424  rates are constant over time, as we did in our example. However, estimation of time dependent vital
425 rates, despite gaps in the data time series, may be facilitated through the use of random effects (e.g.
426  year on survival or recruitment) or time-dependent covariates explaining temporal variation in vital
427 rates (e.g. changes in environmental conditions, hunting intensity). In the simulations, we added un-
428 modelled temporal stochasticity in vital rates, which did not have a marked impact on inferences. This
429 suggests that OPSCR models are relatively robust to temporal stochasticity in vital rates, as long as its
430 magnitude remain relatively low. Additionally, the integration of other types of data (e.g. unmarked
431 individuals (Sollmann et al. 2013, Chandler and Clark 2014), and dead recoveries (Proffitt et al. 2015)),

432  could be used to mitigate the loss of information due to sampling interruption.

433 Conclusion

434  The framework described here allows ecologists to assess the impact of sampling interruptions —
435 whether intentional or unintentional — on parameter estimates from OPSCR models. Based on our
436  findings, we recommend that intentional interruption be restricted to species with life histories that are
437 slow (relative to the monitoring interval) and to avoid multiple consecutive interruptions. Methods
438  allowing the integration of different types of data (e.g. unmarked individuals, dead recoveries) into
439 OPSCR models could help further mitigate the negative impact of interruptions on the precision of
440 parameter estimates (see Chandler and Clark (2014) for an example). Previous studies testing the cost-
441  efficiency of non-spatial CR surveys have focused on the importance of study duration, proportion of
442 different individuals sampled, and detection probability (Lieury et al. 2017). Unless the study species
443 requires close monitoring due to short response times for management interventions (e.g. endangered
444  species), the use of OPSCR model for cases with periodic interruptions in sampling could be considered
445  as an option to distribute sampling efforts over time and make long-term population-level monitoring

446 cost-effective (Chandler and Clark 2014).
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