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Abstract: 14 

1. The estimation of population size remains one of the primary goals and challenges in 15 

ecology and provides a basis for debate and policy in wildlife management. Despite the 16 

development of efficient non-invasive sampling methods and robust statistical tools to 17 

estimate abundance, maintenance of field sampling is still subject to economic and 18 

logistic constraints. These can result in intentional or unintentional interruptions in 19 

sampling and cause gaps in data time series, posing a challenge to abundance 20 

estimation, and ultimately conservation and management decisions.  21 

2. We applied an open population spatial capture-recapture (OPSCR) model to simulations 22 

and a real case study to test the reliability of abundance inferences models to 23 

interruption in data collection. Using individual detections occurring over consecutive 24 

sampling occasions, OPSCR models allow the estimation of abundance from individual 25 

detection data while accounting for lack of demographic and geographic closure 26 

between occasions. First, we simulated sampling data with interruptions in field 27 

sampling of different lengths and timing. We checked the performance of an OPSCR 28 

model in deriving abundance for species with slow and intermediate life history 29 

strategies. Finally, we introduced artificial sampling interruptions of various magnitudes 30 
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and timing to a five-year non-invasive monitoring data set of wolverines (Gulo gulo) in 31 

Norway and quantified the consequences for OPSCR model predictions.  32 

3. Inferences from OPSCR models were reliable even with temporal interruptions in 33 

monitoring. Interruption did not cause any systematic bias, but increased uncertainty. 34 

Interruptions occurring at occasions towards the beginning and the end of the sampling 35 

caused higher uncertainty. The loss in precision was more severe for species with a 36 

faster life history strategy.  37 

4. We provide a reliable framework to estimate abundance even in the presence of 38 

sampling interruptions. OPSCR allows monitoring studies to provide contiguous 39 

abundance estimates to managers, stakeholders, and policy makers even when data are 40 

non-contiguous. OPSCR models do not only help cope with unintentional interruptions 41 

during sampling but also offer opportunities for using intentional sampling interruptions 42 

during the design of cost-effective population surveys. 43 

  44 
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1. Introduction  45 

Estimating population size remains one of the most fundamental goals and challenges in wildlife 46 

ecology. Statistical tools that can account for imperfect detection, such as capture-recapture (CR) 47 

methods, are instrumental for estimating abundance of free-ranging populations (Seber 1982). Spatial-48 

capture recapture (SCR) models, a recent extension of CR models, enable investigators to obtain 49 

spatially-explicit estimates of abundance (Efford 2004, Borchers and Efford 2008, Royle and Young 50 

2008). SCR models estimate the location of individual activity centers (AC) using an observation model 51 

that describes the relationship between the spatial pattern of individual encounters and distance from 52 

the AC (i.e. detection probability). This allows SCR models to specify the spatial extent over which 53 

individuals occur and therefore generate spatially explicit estimates of abundance. 54 

The SCR framework is suitable for analyzing observation data derived using not only physical capture 55 

and marking, but also non-invasive approaches, such as camera trapping (Efford et al. 2009, Royle et al. 56 

2009), genetic sampling (Bischof et al. 2016a, Milleret et al. 2018), and acoustic sampling (Dawson and 57 

Efford 2009). Technical development in non-invasive methods have greatly expanded the spatial scope 58 

of monitoring and long-term studies. Many monitoring programs now collect individual detections with 59 

the aim of fitting SCR models. SCR models have, for example, been used to estimate density of brown 60 

bears (Ursus arctos) in Norway (Bischof et al. 2016a), of wolverines (Gulo gulo) in Alaska (Royle et al. 61 

2011), and wolves (Canis lupus) in Spain (López-Bao et al. 2018). However, the maintenance of long-62 

term data series, which is essential for establishing sound conservation and management plans 63 

(Lindenmayer and Likens 2009), can be subject to economic, logistic and other constraints. These can 64 

ultimately lead to intentional and unintentional interruption in sampling and thereby modify the 65 

temporal frequency of sampling (i.e. causing gaps in data time series).  66 

When individual encounter data are collected over long periods relative to the lifespan of the study 67 

species, open population CR models can be used to account for the lack of demographic closure (i.e. 68 
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death and emigration/ recruitment and immigration) between sampling occasions (i.e. generally 69 

referred to as primary occasions). Many monitoring projects are exposed to interruption in the sampling 70 

and result in gaps in CR time series.(e.g. Plummer 2003, Schmidt et al. 2007, Bears et al. 2009, Zabala et 71 

al. 2011, Zuberogoitia et al. 2016, Sanz–Aguilar et al. 2019). A gap causes unequal time intervals 72 

between primary sampling occasions. Unequal time intervals, are not a major problem in traditional CR 73 

models (Schmidt et al. 2007, Bears et al. 2009, Sanz–Aguilar et al. 2019), as it is possible to specify 74 

interval lengths when estimating demographic parameters such as survival or recruitment (Schmidt et 75 

al. 2007, Bears et al. 2009). However, when abundance estimates are the goal of the study, unequal 76 

time intervals in CR do not allow estimation of abundance during the primary period without data. . For 77 

example, the monitoring strategy for brown bears in Sweden is to conduct periodic sampling of different 78 

areas over multiple years (Kindberg et al. 2011, Swenson et al. 2017), which results in regions without 79 

detections available for inferences. Since information about annual population size is required by 80 

stakeholders, the current estimates are derived by combining periodic regional abundance estimates 81 

obtained with CR methods and an observation index collected on a yearly basis (Kindberg et al. 2011). 82 

Clearly, there is a need for methodology to cope with gaps in data time series. 83 

Although no individual detections are available during the gap in the time-series, the Markovian 84 

structure of individual survival should help estimate the hidden state of the individual (i.e. dead or 85 

alive). Indeed, by modelling demographic processes (e.g. survival and recruitment) between primary 86 

occasions (e.g. years), the individual-based information is propagated across occasions. This means that 87 

the state of individuals at each sampling occasion (e.g. alive) can be reconstructed from the time series 88 

of detections (Figure 1). Therefore, open population CR models make effective use of the information 89 

obtained from multiple primary occasions compared to a series of independent CR models. Open 90 

population SCR models (OPSCR), which are a spatial extension of open population CR models, could 91 

offer practical solutions to deal with interruptions in sampling. OPSCR models do not only use 92 
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information from individual detection collected during several occasions (such as CR models), but also 93 

use the spatial information contained in the detections and model movement of individuals between 94 

occasions (Ergon and Gardner 2014, Royle et al. 2014, Bischof et al. 2016a). In OPSCR, modelling 95 

individual movement between occasions allows estimating the probability of the individual being alive 96 

but outside of the study area, which should facilitate abundance estimates (Ergon and Gardner 2014, 97 

Gardner et al. 2018), especially during the gap years. The use of data collected over multiple occasions 98 

and propagation of individual information on spatial location and demographic status across time steps 99 

should help OPSCR bridge gaps in data collection, allowing inferences about abundance during occasions 100 

with sampling interruption. Although OPSCR models have already been used to infer abundance at 101 

occasions without individual detections (Chandler and Clark 2014, Augustine et al. 2019), there is a lack 102 

of knowledge about the quantitative consequences of sampling interruptions under different conditions 103 

(i.e. multiple interruptions, different life history characteristics).  104 

We built an OPSCR model to estimate abundance, recruitment, survival, and movement of individuals 105 

between primary sampling occasions. We then tested its reliability for inferring abundance in the 106 

presence of gaps in data collection when inferring abundance. We artificially generated sampling 107 

interruptions of various temporal configuration to assess their consequences for the precision and 108 

accuracy of abundance estimates. First, we introduced artificial sampling interruptions to simulated data 109 

sets for populations with different life history strategies (along the slow-fast continuum Stearns (1992)). 110 

Because of the low survival rate of species with a fast life history strategy, we expected sampling gaps to 111 

induce a more pronounced loss in precision compared with species with a slow life history. Most free-112 

ranging populations are subject to demographic stochasticity in vital rates, which can be challenging to 113 

model in the presence of interruption. We therefore checked the effect of demographic stochasticity in 114 

vital rates on abundance estimates by simulating populations with and without temporal stochasticity in 115 

their vital rates. We then applied the OPSCR model to data from the non-invasive monitoring program of 116 
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wolverines (Gulo gulo) in Norway as a real-life example, but with artificial gaps introduced. We provide 117 

recommendations for practitioners on how and under which conditions OPSCR can be used to obtain 118 

contiguous abundance estimates from non-contiguous monitoring data. 119 

  120 
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 121 

Figure 1. Illustration of the benefits of open population spatial capture recapture (OPSCR) models to 122 
estimate abundance when interruption in the sampling result in a gap in the data time series. The 123 
illustration is based on the detection history of one female wolverine during five winters (2013-2017) 124 
using scat-based non-invasive genetic monitoring in Norway. “Sampling” shows a timeline with a “scat 125 
emoji” at the occasion where the individual was detected and NA when not detected during the 126 
searches. In this illustration, we simulated a sampling interruption during the winter 2015 (i.e. all 127 
detections from all individuals were artificially removed during that occasion). “State” shows the 128 
individual state reconstruction during the interruption. When the individual was detected (2013, 2014, 129 
2016), the individual was certain to be alive (black wolverine silhouette), as well as during the 130 
interruption (2015) because the individual was detected alive before and after the interruption. The 131 
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probability of the individual being alive at all occasions between 2013 and 2016 (Palive,) equals to 1 from 132 
2013 to 2016 (even for the occasion with interruption), because we could reconstruct with certainty the 133 
state of the individual to alive. At the last occasion, Palive was estimated as : �1 � �� � �, the probability 134 
for the individual to survive � to the last occasion and not be detected �1 � ��. “Movement” represents 135 
the movement process that models the individual’s activity center from one occasion to the other. The 136 
three maps (2014-2016) represent aerial photo of the study area, and green to grey colors show low to 137 
high probability of the AC being located in a given pixel, as predicted by the OPSCR model, respectively. 138 
During the interruption, the individual is certain to be alive, and the model uses population-level 139 
information about AC movement patterns to predict the most likely AC location of the individual. 140 
Individual detections are represented by red dots. 141 

 142 

2. Material and methods 143 

2.1. OPSCR model  144 

We built a Bayesian OPSCR model that contained three main components: 1) an encounter model to 145 

estimate individual activity centers and account for imperfect detection of individuals (Royle et al. 2014), 146 

2) a multi-state population dynamic model to estimate recruitment and survival (Seber 1965, Schwarz 147 

and Arnason 1996), and 3) a movement model to capture the movement of AC locations between years 148 

(Ergon and Gardner 2014). We used Markov Chain Monte Carlo (MCMC) and data augmentation to 149 

analyze OPSCR models and obtain estimates of abundance (Royle et al. 2007, 2009).  150 

 151 
2.1.1. The SCR model  152 

The SCR model is the core element of our OPSCR model. SCR models use the spatial location of 153 

detections and non-detections at a set of detectors to estimate the latent locations of individual activity 154 

centers (ACs). SCR models are hierarchical state-space models combining 1) a point process model that 155 

describes the spatial distribution of individual ACs, and 2) a detection model conditional on the point 156 

process model, which describes the relationship between individual detection probability and distance 157 

to its AC. The half-normal detection model commonly used in SCR assumes that the probability p of 158 

detecting individual i at detector j and time t decreases with distance between the detector and the AC 159 

(����): 160 
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���� 	 �� . ��� �
�����

�

���
)           eqn 1 161 

 162 

where p0 represents the detection probability at the location of the AC, and � represents the width of 163 

the utilization distribution. The scale parameter σ is related to the extent of space used over the period 164 

of study.  165 

2.1.2. The multistate model  166 

Individual state membership ���  takes the value 1 if “not yet entered”, 2 if “alive”, and 3 if “dead”. State 167 

z is the result of a Markovian process and changes with time according to a categorical distribution 168 

(Gimenez et al. 2007, Kery and Schaub 2011). During the first occasion, individuals can only be 169 

designated as “not yet entered” or “alive” so that ��	~�����1 � �, �, 0�, where � represents the 170 

inclusion probability.  171 

For t≥2, ���  is conditional on the state of individual i at t-1:  172 

• If ����	 	 1, individual i is potentially available to be recruited (transition to state 2), so 173 

���~�����1 � �� , �� , 0�, where �� is the recruitment parameter and is derived as: 174 

�� 	

.�
�������


.��������
���
         eqn 3 175 

 176 
where �. ��������� represents the number of augmented individuals with the state not yet 177 

entered (i.e. individuals available for transitioning to the alive state at each occasion), and 178 

�. �������  is the number of new individuals recruited into the population: 179 

�. ������� � 	 ! " ���	        eqn 4 180 

where ! is the per capita recruitment parameter: 181 

!~��#�$�0, 5�          eqn 5 182 
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• If ����� � 2 individual i can either survive and remain ��� � 2 or die and transition to ��� � 3, so 183 

that �����~���	
0, 
, 1 � 
�, where 
 represent the survival probability.  184 

• If ����� � 3, individual i is dead and will remain in this (absorbent) state. 185 

Only individuals with the state “alive” can be detected. We therefore linked the encounter indicator y 186 

(detected, not detected) of individual i at detector j and time t with the individual’s state ���,��: 187 

����  ~ ���������
���� �  �
��� � 2��         eqn 6 188 

where � is an indicator function returning 1 for individuals in state 2, and 0 for individuals in state 1 or 3. 189 

Estimates of abundance 
��
� ) were obtained as: 190 

� � �  ∑ �
��� � 2�	
�
�            eqn 7 191 

The state z�� of an individual is a latent variable, except at occasions when the individual was detected 192 

alive where it can be set to “alive”. In certain cases, it is also possible to reconstruct with certainty the 193 

state of individuals at occasion during which they were not detected (Figure 1). For example, an 194 

individual is known to be alive in years in which it was not detected, if that period is framed by alive 195 

detections.  196 

 197 

 198 

2.1.3.  The Movement model  199 

ACs at 	 � 1 were placed according to a homogenous Binomial point process (Illian et al. 2008). Under 200 

this model, AC positions were independently and uniformly distributed in the study area (S). In order to 201 

distinguish between temporary emigration and mortality, we integrated a movement model in the 202 

OPSCR model allowing shifts of individual activity centers between occasions. This is an important 203 
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component of the OPSCR model as it can improve survival estimates and can take into account the 204 

impact of animals moving within and out of the sampled area (Ergon and Gardner 2014, Gardner et al. 205 

2018). It is a particularly important feature of the model in the context of sampling interruption, as it 206 

helps propagating spatial locations of individual across occasions. Movement was modelled as a 207 

Markovian spatial point process. The outcome of each movement event was placed according to an 208 

inhomogeneous binomial point process (Illian et al. 2008) with only a single point (AC) simulated for 209 

each movement event.  The functional form of the intensity surface that determined the location of the 210 

AC placement was a combination of an isotropic multivariate normal distribution centered around the 211 

source coordinates (location of the AC at previous occasion) with a standard deviation #, and an 212 

intensity surface representing habitat quality. For simplicity, we considered homogenous habitat quality 213 

in this study (see Supporting information 1.1).  214 

 215 

2.2. Simulations  216 

We conducted a simulation study to evaluate the performance of our model under sampling 217 

interruptions of different magnitudes and configurations. We created a spatial domain of 40 x 40 218 

distance units (du) within which we centered a 20du x20du detector grid (with a minimum distance of 219 

1.5 du between detectors). We released 50 individuals (N1) in the first occasion and sampled the 220 

location of their ACs uniformly within the spatial domain. During the subsequent occasions, we 221 

simulated individual movements as Markovian spatial point processes with the intensity surface being a 222 

multivariate normal distribution centered on the previous AC location. We simulated population 223 

dynamics assuming that the sampling occasion occurred just prior to reproduction. We drew the 224 

number of recruits (ρ) for each alive individual from a Poisson distribution. Note that if the sampling 225 

period does not start exactly after birth, ρ is a composite parameter of the number of offspring 226 
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produced by an individual and their survival rate until the start of the sampling. Each alive individual had 227 

a probability 
 to survive to the next sampling occasion.  228 

 229 

 230 

2.2.1. Population and survey characteristics 231 

We simulated individual detections occurring at five consecutive primary occasions (e.g. for simplicity, 232 

we considered a one-year time interval between instantaneous occasions) using σ=2 and p0= 0.25, 233 

which led to an overall occasion-specific detectability of 71.2% (SD=6.46). We used a multivariate 234 

normal distribution with # � 3 for the movement of ACs between occasions. We considered two stable 235 

populations (asymptotic growth rate=1) having contrasting life history characteristics along the slow-fast 236 

continuum (Stearns 1992) (Table 1). We simulated populations having a “slow” and “intermediate” life 237 

history strategy with 
=0.85 and ρ=0.15, and 
=0.65 and ρ=0.35 (Table 1), respectively. We did not 238 

consider a population having a faster life history strategy because the relative life span of individuals 239 

would be too short compared to the time interval between two consecutive occasions (a year). In 240 

addition of the stochastic realization of ��� , we also considered scenarios with larger temporal 241 

stochasticity by drawing 
�  
and $�  on a logit link from a normal distribution centered on the average 242 

values of the respective life history strategy and SD=0.2.  243 

  244 
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 245 

Table 1. Characteristics of the four simulated populations used to assess the consequences of sampling 246 

interruption on abundance estimates from open population spatial capture recapture models. Median 247 

survival time is expressed in years. Super population size represents the average number of individuals 248 

(from all simulated data sets) that were ever alive during the study. ρ and ψ are the per-capita 249 

recruitment and survival parameter, respectively. Average and min-max values represent the parameter 250 

set used from the 50 different datasets simulated for each population and scenario.  251 

Life History 
Stochasticit

y 

Median 

survival 

time 

Asymptoti

c growth 

rate 

SD 

growt

h rate 

Average 

Super 

populatio

n size 

Average ρ 

[min-max] 

Average ψ 

[min-max] 

Slow 

 

Low 4.9 1 0.07 80 
0.15 

[0.15-0.15] 

0.85 

[0.85-0.85] 

High 4.9 1 0.10 80 
0.15 

[0.01-0.32] 

0.85 

[0.68-1] 

Intermediat

e 

Low 2.1 1 0.12 119 
0.35 

[0.35-0.35] 

0.65 

[0.65-0.65] 

High 2.1 1 0.13 119 
0.35 

[0.23-0.49] 

0.65 

[0.5-0.8] 

 252 

 253 

2.2.2. Sampling interruption scenarios 254 

 255 

We created 10 different sampling interruption scenarios (Figure 2) and a scenario without interruptions 256 

over five consecutive occasions (scenario 11111; Figure 2). When no sampling occurred during occasion 257 

t, we set ����  in the OPSCR model to 0 to specify that there was no possibility of detecting any 258 

individuals during that occasion.  259 

  260 
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 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

2.3. Evaluation of model performance 282 

We simulated 50 datasets for each of the 10 scenario and each of the four populations, resulting in 2000 283 

simulated datasets. For each simulated data set, we calculated the relative bias (RB = %���
N � � N�) 284 

and the coefficient of variation (CV=  
����� �

������� �
' 100 ), where SD is the standard deviation, N  are the 285 

MCMC posterior samples of population size, and N is the true value of population size (Walther and 286 

Figure 2. Visual representation of the 10 sampling interruption 

scenarios considered in the analysis. The x-axis denotes five 

consecutive sampling primary occasions. The 10 different 

scenarios are arranged along the y axis and are coded by binary 

values corresponding to whether sampling was performed (1) 

or not (0) during each occasion and is visually represented by 

“+“ and “NA”, respectively. 
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Moore 2005). In addition, we calculated the 95% credible interval coverage as the percentage of 287 

simulations for which the credible interval contained the true value.  288 

2.4. The wolverine data 289 

We fit the OPSCR model to NGS data from the national monitoring program of wolverines in Norway 290 

(see description in (Flagstad et al. 2004, Brøseth et al. 2010, Bischof et al. 2016b, Gervasi et al. 2019)). 291 

We used data collected during five consecutive winters (January-May) between 2013 and 2017 in 292 

central Norway (Supporting information 1.2, Figure S1.2.1). The data consisted of 632 detections from 293 

126 individually identified female wolverines. Samples were collected by field personnel from the 294 

management authorities (Norwegian Nature Inspectorate) using a search-encounter method on snow. 295 

During searches, the GPS coordinates of search-tracks were recorded. We used the partially aggregated 296 

binomial observation model (Milleret et al. 2018), which divides detectors into K subdetectors and 297 

models the frequency of subdetectors with more than one detection as a binomial response with a 298 

sample size of K. We located primary detectors in the center of grid cells (4km resolution) and 299 

subdetectors in the center of subdetector grid cells (800m resolution). We only placed subdetectors 300 

when search tracks overlapped with the subdetector grids. The configuration of active grid cells changed 301 

every year to account for spatial-temporal variation in searches. We also estimated year-specific p0 to 302 

account for annual variation in sampling intensity. To increase computing efficiency, we used a local 303 

evaluation of the state-space to reduce the number of detectors considered for each individual during 304 

the model fit (Milleret et al. 2019). Searches were conducted continuously from 2013 to 2017, which 305 

allowed us to introduce different artificial gaps in the data time series, while having a reference point 306 

(scenario without gaps:  11111). We simulated sampling interruption by removing all detections from all 307 

individuals at the occasion(s) designated as interruption. We implemented the same 10 interruption 308 

scenarios as used in the simulations (Figure 2). We compared �  and its CV (i.e. obtained when excluding 309 

the buffer area, 63584km2) between the different scenarios. 310 
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 311 

2.5. Model fitting 312 

We fitted the Bayesian OPSCR models using Markov chain Monte Carlo (MCMC) with nimble (Turek et 313 

al. 2016, de Valpine et al. 2017, NIMBLE Development Team 2019) in R version 3.3.3 (R core team 2017 314 

). NIMBLE provides a new implementation of the BUGS model language coupled with the capability to 315 

add new functions, distributions, and MCMC samplers to improve computing performance. We ran four 316 

chains with 40000 iterations each following a 2000-iteration burn-in. We considered models as 317 

converged when Rhat was ≤1.1 (Gelman and Rubin 1992) for all main parameters and by visually 318 

inspecting a sample of all repetitions of all scenarios. We re-ran models that did not reach convergence 319 

for 60000 iteration per chain following a 20000-iteration burn-in, and excluded them from the results if 320 

they still did not reach convergence. R and nimble codes for the OPSCR model, related custom functions, 321 

and simulations used are provided in Supporting Information S2, and list of priors used in Supporting 322 

Information 1.3 Table S1.3.1). 323 

 324 

3. Results 325 

3.1. Simulations 326 

All models reached convergence, with the exception of scenario 10001 for species having an 327 

intermediate life history strategy (25% non-converged Supporting information 1.4, Table S1.4.1). We 328 

detected no systematic bias in � , regardless of whether sampling interruption occurred or not 329 

(Supporting information 1.5, Table S1.5.1). However, the precision in �  generally decreased towards the 330 

first and last occasions (e.g. Figure 1, scenario 11111). Regardless of when the interruption(s) occurred, 331 

the precision in �  decreased for the affected occasion(s). For example, for the scenario 11011, CV of �  332 

was on average 1.3 times higher during the third occasion (i.e. interruption) compared to the scenario 333 

without interruption in sampling (Figure3, Supporting information 1.5, Table S1.5.1). The increased 334 
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uncertainty caused by interruptions also propagated to estimates for sampled occasions, especially for 335 

those adjacent to interruption(s). Precision of �   decreased as the number of interruptions increased. 336 

CV was on average 1.8 times higher for interruptions at the beginning or at the end of the study period, 337 

than for an interruption at the third occasion. Regardless of the interruption scenario, uncertainty in �  338 

was larger for the intermediate life history scenario, but the presence of stochasticity in vital rates did 339 

not seem to amplify the depressing effect of interruptions on the precision of � . 340 

 341 

 342 

Figure 3. Violins plots (points: medians; solid colors: 95% credible interval) for the coefficient of 343 

variation (CV) of abundance estimates (N) obtained using an open population spatial capture recapture 344 

model fit to simulated datasets (50 repetitions for each scenario). Shown are results for simulations 345 

representing combinations of life history strategies (slow and intermediate), and with and without 346 

temporal stochasticity in vital rates. The five consecutive �  estimates (i.e corresponding to the five 347 

sampling occasions) are colored and grouped according to the sampling interruption scenario (x-axis). 348 

Sampling scenarios are presented by a series of 1s and 0s indicating whether sampling was considered 349 

to have occurred or not, respectively. 350 

 351 

3.2. Wolverines 352 
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All models fit to the empirical wolverine data converged, except scenario 10001 for which the standard 353 

deviation of the Gaussian dispersal kernels (#) did not reach the convergence criterion. Wolverine 354 

population size �  in the absence of sampling interruptions was relatively stable over the five 355 

consecutive years (>60 individuals, figure 4; 11111). We did not detect marked changes in �  estimates 356 

when the data set was subjected to sampling interruptions (CI of all �  overlapped with each other 357 

regardless of the scenario, figure 4). However, patterns in CV of �  in response to sampling interruptions 358 

were similar to those observed for simulated data sets, with a higher uncertainty towards the first and 359 

last occasions and with a sampling interruption (Figure 4).  360 

 361 
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 362 

Figure 4. Violin plots (points: medians; solid colors: 95% credible interval) of the posterior distribution of 363 

abundance (N) (top panel) and its coefficient of variation (CV; bottom panel) obtained using an open 364 

population spatial capture recapture model on non-invasive genetic sampling data of wolverines 365 

collected in south-central Norway. The five consecutive annual �  estimates and CV (2013-2017) are 366 

colored and grouped according to the sampling interruption scenario (x-axis). Sampling scenarios are 367 

presented by a series of 1s and 0s indicating whether sampling was considered to have occurred or not, 368 

respectively.  369 

4. Discussion 370 

Simulations and a case study on wolverines revealed that OPSCR models can be a valuable tool for 371 

abundance inferences when there are gaps in data time series. Although uncertainty in abundance 372 

estimates increased during occasions with a sampling interruption, the interruption did not seem to 373 

cause any systematic bias. Uncertainty in abundance estimates increased with the number of 374 
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interruptions and the speed of the study species’ life history. Similarly, the simulated sampling 375 

interruptions in the wolverine example (a species with an intermediate life history strategy; 
 �376 

0.7
95%-�: 0.62 � 0.78�; $ � 0.3 
95%-�: 0.21 � 0.39)) showed that interruptions caused higher 377 

uncertainty around abundance estimates, but that abundance estimates were relatively similar to those 378 

in the absence of interruptions (Figure 4). The effect of interruptions on precision was generally less 379 

pronounced when the gap in the time series was framed by several consecutive sampled occasions 380 

(11011). Although OPSCR models have already been used to infer abundance in the presence of 381 

interruptions (Chandler and Clark 2014, Augustine et al. 2019), our study is the first to explore the 382 

conditions under which reliable abundance inferences can be obtained when SCR data time series 383 

include temporal gaps in sampling. 384 

Compared to a series of independent SCR models, OPSCR models use detections and model population 385 

dynamics and individual movement between several consecutive sampling occasions. As a result, 386 

individual detections in previous and/or subsequent occasions inform the Markovian model about the 387 

spatial location and demographic status of each individual and help determine its fate (Molinari et al. 388 

(2018); Figure 1). This explains the increase precision of the estimates for gaps framed by multiple 389 

occasions with data (Figure 3, scenario 11011). Despite a loss in precision of abundance estimates, the 390 

OPSCR model, and its Markovian structure, allows the reliable estimation of abundance in the presence 391 

of interruptions. However, the presence of sampling interruption pose a greater challenge to estimation 392 

when the lifetime of the species is short compared to the time interval between consecutive surveys. 393 

Indeed, we found that for species with intermediate life histories precision of abundance estimates was 394 

lower and models took longer to converge than for species with slow life histories.( Supporting 395 

information 1.4, Table S1.4.1.) 396 

Movement of ACs between occasions is an important feature of OPSCR models and a miss-specified 397 

movement process can have important consequences for inferences (Ergon and Gardner 2014, Gardner 398 
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et al. 2018). For the purpose of this study, we developed a Markovian movement model assuming 399 

distance between consecutive individual ACs being normally distributed. The movement model is 400 

essential to distinguish between mortality and emigration (Ergon and Gardner 2014) and assists the 401 

OPSCR in predicting the fate of individuals that are not detected during interruptions in sampling (Figure 402 

1). Based on the locations of the AC at occasions prior to and following interruption(s), together with 403 

population level information about AC movement, the model makes prediction about the location of 404 

individuals ACs during occasions with missing data (e.g. prediction of the movement of individuals in and 405 

out of the study area). This is particularly useful as the OPSCR model not only yields population size 406 

estimates that bridge interruptions in sampling, but can also estimate density across the study area 407 

during years without sampling.  408 

In this analysis, we considered that interruptions occurred at random and not because of a specific 409 

event (e.g. unfavorable climatic conditions) that could have, not only prevented the occurrence of 410 

sampling, but also affected the population. Independence of the probability of interruptions from 411 

biological processes affecting parameters of interest (Nakagawa and Freckleton 2008). When it is met, 412 

key parameters (e.g. σ, 
, $) are transferable between years and the model should return unbiased 413 

abundance estimates for gap years. Otherwise, investigators should use caution when drawing 414 

inferences for gap years, as the occasions with and without observations may be confounded with 415 

differences in biological processes. 416 

The main goal of many wildlife monitoring programs is to obtain reliable estimates of population size 417 

and trends therein, but also to understand the mechanisms (e.g. recruitment, survival) involved in 418 

population size fluctuations when planning conservation and management actions. Although individual 419 

survival between occasions is informed through the reconstruction of individual states during 420 

interruptions, under some circumstances, parameter identifiability can be weak when parameters are 421 

allowed to vary over time (see Supporting information 1.6).  In order to estimate survival and 422 
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recruitment in the presence of sampling interruptions, it may be necessary to assume that these vital 423 

rates are constant over time, as we did in our example. However, estimation of time dependent vital 424 

rates, despite gaps in the data time series, may be facilitated through the use of random effects (e.g. 425 

year on survival or recruitment) or time-dependent covariates explaining temporal variation in vital 426 

rates (e.g. changes in environmental conditions, hunting intensity). In the simulations, we added un-427 

modelled temporal stochasticity in vital rates, which did not have a marked impact on inferences. This 428 

suggests that OPSCR models are relatively robust to temporal stochasticity in vital rates, as long as its 429 

magnitude remain relatively low. Additionally, the integration of other types of data (e.g. unmarked 430 

individuals (Sollmann et al. 2013, Chandler and Clark 2014), and dead recoveries (Proffitt et al. 2015)), 431 

could be used to mitigate the loss of information due to sampling interruption. 432 

Conclusion 433 

The framework described here allows ecologists to assess the impact of sampling interruptions – 434 

whether intentional or unintentional – on parameter estimates from OPSCR models. Based on our 435 

findings, we recommend that intentional interruption be restricted to species with life histories that are 436 

slow (relative to the monitoring interval) and to avoid multiple consecutive interruptions. Methods 437 

allowing the integration of different types of data (e.g. unmarked individuals, dead recoveries) into 438 

OPSCR models could help further mitigate the negative impact of interruptions on the precision of 439 

parameter estimates (see Chandler and Clark (2014) for an example). Previous studies testing the cost-440 

efficiency of non-spatial CR surveys have focused on the importance of study duration, proportion of 441 

different individuals sampled, and detection probability (Lieury et al. 2017). Unless the study species 442 

requires close monitoring due to short response times for management interventions (e.g. endangered 443 

species), the use of OPSCR model for cases with periodic interruptions in sampling could be considered 444 

as an option to distribute sampling efforts over time and make long-term population-level monitoring 445 

cost-effective (Chandler and Clark 2014).   446 
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