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Abstract 
Muscle stem cells (MuSCs) are an essential adult stem cell population with the capacity to self-renew 

and regenerate muscle tissue. Functionally heterogeneous subpopulations of MuSCs have been 

identified based on their expression of myogenic regulatory factors and surface markers. However, a 

unified organization of muscle stem and progenitor cells and their subpopulations remains unresolved. 

Here, we performed temporal analysis of skeletal muscle regeneration using single-cell RNA-sequencing 

(scRNA-seq) of myotoxin-injured adult mouse hindlimb muscles. We generated over 34,000 single-cell 

transcriptomes spanning four muscle regeneration time-points and identified 15 distinct cell types, 

including a heterogeneous population of MuSCs and progenitor cells. Our analysis provides a hierarchical 

map of myogenic cell populations and identifies stage-specific regulatory programs that govern their 

contributions to muscle regeneration. In this transcriptomic atlas, we observed cell type-specific 

regenerative dynamics, exemplified by waves of transient amplification and diversification of multiple 

immune cell types and, subsequently, myogenic cells. Unbiased trajectory inference organized the 

myogenic cell populations within the atlas into a continuum, consisting of a hierarchy of quiescent MuSCs, 

cycling progenitors, committed myoblasts, and terminally differentiated myocytes. This myogenic 

trajectory matched prior understanding and also revealed that MuSC stages are defined by synchronous 

changes in regulatory factors, cell cycle-associated, and surface receptor gene expression. Lastly, we 

analyzed the transcriptomic atlas to identify over 100 candidate heterotypic communication signals 

between myogenic and non-myogenic cell populations, including many involving the fibroblast growth 

factor (FGF), Notch, and Syndecan receptor families and their associated ligands. Syndecan receptors 

were implicated in a large fraction of these cell communication interactions and were observed to exhibit 

transcriptional heterogeneity within the myogenic continuum. Using multiparameter mass cytometry 

(CyTOF), we confirmed that cycling MuSCs exhibit diversified Syndecan-1/2 expression, which suggests 

that dynamic alterations in Syndecan signaling interactions may coordinate stage-specific myogenic cell 

fate regulation. This scRNA-seq reference atlas provides a resolved hierarchical organization of 

myogenic subpopulations as a resource to investigate cell-cell interactions that regulate myogenic stem 

and progenitor cell fates in muscle regeneration.  
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Introduction 
Muscle stem cells (MuSCs), also known as satellite cells, are essential for skeletal muscle homeostasis 

and regeneration throughout lifespan (Blau et al., 2015; Wang and Rudnicki, 2011). MuSCs are found at 

the periphery of the muscle myofibers and are sheltered inside a niche microenvironment where they are 

maintained in a quiescent state. In response to injury, MuSCs activate, self-renew, and differentiate into 

progenitors capable of myofiber repair. This regenerative process is orchestrated by a network of 

interactions with a variety of cell types including immune cells, endothelial cells, and fibro/adipogenic 

progenitors (FAPs) (Wosczyna and Rando, 2018). For example, FAPs secrete fibronectin, insulin-like 

growth factor-1, and other matrix proteins and growth factors to coordinate muscle tissue repair through 

the regulation of myogenic cell fates and the clearance of cellular debris (Heredia et al., 2013; Joe et al., 

2010; Lukjanenko et al., 2016).  

A continuum of myogenic stem and progenitor cell populations are present in regenerating muscle 

(Motohashi and Asakura, 2014; Tierney and Sacco, 2016). MuSCs are quiescent Pax7-expressing cells 

in homeostasis and, following injury, progress in the cell cycle and exhibit an activated myogenic 

expression program marked by expression of Myf5 (Wang and Rudnicki, 2011). Following cell division, 

their progeny either self-renew to replenish the Pax7+ MuSC pool or differentiate into MyoD+ myogenic 

progenitors (myoblasts), which later commit to fusion-competent Myogenin+ myocytes. This concept of 

the myogenic cell lineage was largely derived from lineage tracing and prospective isolation studies using 

myogenic regulatory factors and cell cycle to define cell states (Biressi and Rando, 2010). Myogenic 

stem/progenitor cells populations, purified through surface antigen profiles and/or transgenic reporters, 

exhibit substantial molecular and functional heterogeneity throughout adulthood (Chakkalakal et al., 

2014; Cornelison and Wold, 1997; Cosgrove et al., 2014; Kuang et al., 2007; Porpiglia et al., 2017; 

Rocheteau et al., 2012; Sacco et al., 2008; Sousa-Victor et al., 2014; Tierney et al., 2018). These findings 

suggest that myogenic stem/progenitor cell lineage can be interpreted as a continuum of hierarchical cell 

states. However, it remains an unresolved challenge how global profiles in cell cycle mediators, 

regulatory factors and surface markers define this myogenic continuum. 

Recent advances in single-cell analyses and algorithms provide potent new strategies to infer cell 

differentiation trajectories (Hwang et al., 2018; Wagner et al., 2016). Here, we generated a single-cell 

transcriptomic atlas of mouse muscle regeneration to describe the myogenic continuum and multicellular 

communication networks involved in muscle repair in mice. We used droplet-based single-cell RNA-

sequencing (scRNA-seq) to collect a multi-cell-type transcriptomic reference time-course, spanning four 

time-points and over single-cell 34,000 transcriptomes, of the regenerating muscle tissue in mice. We 

analyze this atlas to identify the compositional and gene expression dynamics of the cellular constituents 

of muscle repair in a manner not biased by prior knowledge or lineage tracing. Using trajectory inference, 
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we organized more than 3,200 individual myogenic cell transcriptomes in a pseudo-time continuum to 

reveal their hierarchical organization and identify regulatory factor and surface marker expression profiles 

unique to distinct myogenic subpopulations. Finally, we used a ligand-receptor synchronous co-

expression model to identify cell communication interactions between non-myogenic cells and distinct 

myogenic subpopulations involved the muscle repair process. 

 

Results 

A single-cell RNA-sequencing atlas of muscle regeneration 
Skeletal muscle regeneration in response to local tissue damage depends on the coordinated interactions 

of multiple myogenic and non-myogenic cell types over a time-course of weeks (Wosczyna and Rando, 

2018). To gather a comprehensive view of this process, we generated transcriptomic atlas of adult mouse 

hindlimb muscle regeneration using droplet-based single-cell 3’ RNA-sequencing (scRNA-seq) on the 

10X Chromium platform. We collected tibialis anterior (TA) muscles of healthy adult (4-6 month) C57BL6 

mice at 0, 2, 5, and 7 days following injection of the myotoxin notexin to induce myofiber damage (n=2-3 

mice per time-point). We dissected and then enzymatically digested the TA muscles into single-cell 

suspensions and then filtered to remove cellular debris and, in some samples, applied red blood cells 

(RBC) lysis before performing scRNA-seq (Fig. 1A). 

We used the Seurat package for scRNA-seq data filtering and processing (see Methods). We 

removed cells with fewer than 200 genes detected, fewer than 1000 UMIs, or with more than 20% of 

UMIs mapped to mitochondrial genes (Fig. S1-1A-B). Applying these filters eliminated erythroblasts to 

levels similar to those observed in samples where RBC lysis was performed, suggesting that the RBC 

step could be omitted (Fig. S1-1D). We found that the use of Calcein-AM based FACS sorting to enrich 

for viable cells altered the cellular composition. Specifically, cell sorting based on Calcein-AM positivity 

decreased the incidence of myogenic (MuSCs and progenitors) and anti-inflammatory macrophage 

populations (Fig. S1-2). This is could be due to biases introduced by viability selection, perhaps owing to 

reduced metabolism of Calcein-AM by quiescent cells. Based on this observation, we omitted FACS 

viability sorting in the collection of these scRNA-seq data. 

After filtering, the scRNA-seq datasets each contained on average 3,444 ± 1,286 cells. We 

compared time-point replicate datasets generated from different mice (n=2-3) to evaluate batch effects 

and mouse-to-mouse variability. We observed only minor differences, most notably a small variation in 

the incidence of macrophage population in day 7 post-injury samples (Fig. S1-1C), suggesting that these 

datasets contained minimal batch effects. Thus, for subsequent analyses, we combined time-point 

biological replicates, without batch correction, to improve cell sample size and statistical power. Initially, 

the samples were assembled into a unified transcriptomic atlas containing 34,438 cells, expressing a  
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Figure 1 (previous page). Assembly and curation of a scRNA-seq atlas of muscle regeneration. (A) 
Experimental design overview. Cell suspensions were collected from digested tibialis anterior (TA) muscles of adult 
mice at various time points (0, 2, 5, and 7 days) following notexin injury (n=2-3) and subjected to scRNA-seq and 
mass cytometry (CyTOF), followed by downstream analyses. (B) Complete 34,438 cell transcriptomic atlas 
assembled from all sample time-points. Data is presented as a UMAP projection used to visualize variation in single-
cell transcriptomes. Unsupervised SNN clustering resolved at least 12 distinct types of cells (color-coded in legend). 
More resolved cell type clusters, distinguishing Neural/Glial from Schwann cells, immature B from cytotoxic T cells, 
were evident when analyzing time-points individually (see Fig. 2A). (C) Identification of cell types from SNN clusters 
based on cluster-average expression of canonical genes. Dot size represents the percentage of cells with a non-
zero expression level and color-scale represents the average expression level across all cells within cluster. 
 

total of 19,584 detectable genes (Figs. 1B and S1-1A). We next annotated the cell types involved in this 

muscle regeneration atlas. We employed uniform manifold approximation and projection (UMAP) to 

visualize the individual transcriptomes of all cells in the unified dataset (Fig. 1B) (Becht et al., 2018). 

Independently, we performed unsupervised shared nearest neighbor (SNN) clustering, which partitioned 

cells into 12 groups based on their transcriptomic programs (Fig. 1B). We observed more refined groups, 

potentially revealing additional subtypes and cell states, when SNN clustering was applied to samples 

collected at individual time-points (see Fig. 2). In examining the full atlas, we interpreted the clusters as 

broadly defining 12 different cell populations. To identify these populations, we examined the normalized 

expression level and frequency of canonical cell type genes and named them based on their exclusivity 

in these expression patterns (Fig. 1C). To discriminate more ambiguous populations, especially in the 

immune subpopulation, we performed differential expression analysis using a negative binomial model 

between cells within the cluster and all other cells in the atlas (Figs. S1-3 and S2-1). 

We observed a population of myogenic progenitors, containing MuSCs and myoblasts, which 

expressed the myogenic transcription factors Pax7 and Myod1 (Wang and Rudnicki, 2011). We detected 

a population of mature myocytes and/or myofibers, which expressed Myh1 (myosin heavy chain 1) and 

Acta1 (skeletal muscle alpha actin 1), both proteins involved in the contractile function of terminally 

differentiated skeletal muscle cells (Lyons et al., 1990). The limited incidence of this population is likely 

due to the size-filtering out of multinucleated myofibers during the cell isolation protocol. Acta1 is also 

expressed, but at a lower level and frequency, in other cell types, which is not surprising given that it is a 

common component of the cytoskeleton and plays a role in cell migration. We also identified a population 

of Pdgfra-expressing fibro/adipogenic progenitor cells (FAPs) (Uezumi et al., 2011) and tendon progenitor 

cells (tenocytes), which express the tenogenic transcription factor Scx (scleraxis), and glycoprotein 

encoding genes Fmod (fibromodulin) and Tnmd (tenomodulin) (see Fig. S2) (Docheva et al., 2005; 

Schweitzer et al., 2001). Two closely related Pecam1 (cell adhesion molecule CD31)-expressing 

populations were identified as, first, smooth muscle cells (SMCs) and mesenchymal progenitors that 

exclusively express Myl9 (myosin light chain 9) (Gaylinn et al., 1989) and, second, endothelial cells that 

express Cdh5 (cadherin 5) (Christov et al., 2007; Zordan et al., 2014). We also find a mixed group of 
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neuro-muscular cells, which are enriched for expression of the Schwann cell marker Mpz (myelin protein 

zero) and the neuronal gene Ptn (pleiotrophin) (Liu et al., 2015). 

The cumulatively largest and most ambiguous group are immune cells, which dynamically 

infiltrate muscle and mediate inflammatory regulation of tissue repair. We observed substantial overlap 

in immune cell marker gene expression (Fig. 1C), which agrees with the immune cell phenotype 

continuum model (Novak and Koh, 2013). We therefore examined multiple gene signatures to subdivide 

immune cell clusters (Figs. S1-4 and S2-1) based on prior literature (Chazaud, 2016; Tidball, 2017). One 

immune cluster contains resident macrophages and antigen presenting cells (APCs), as identified by 

expression of Cd74 and other MHCII complex encoding genes. A second immune cluster contains a 

general group of monocytes, macrophages, and platelets, marked by expression of Cd68 (common 

immune glycoprotein CD68) and Pf4 (platelet factor 4). A third immune cluster contains activated (pro-

inflammatory) macrophages as identified by expression of the inflammatory neutrophil and macrophage 

markers including Ccl6 (chemokine C-C motif ligand 6). A fourth immune cluster contains anti-

inflammatory macrophages, as identified by expression of C1qa, which encodes for part of the C1 

complement complex. A fifth immune cluster contains immature and mature B- and T-lymphocytes and 

NK cells, as identified by expression of the common lymphocyte gene Ptprc (protein tyrosine 

phosphatase receptor type C, or CD45) and Nkg7 (natural killer cell granule protein 7). This annotated 

scRNA-seq dataset provides a reference atlas to examine the cell populations and gene expression 

dynamics during muscle regeneration. 

 

Cell type and gene expression dynamics of muscle regeneration at single-cell resolution 
Next, we analyzed the transcriptomic atlas to assess how these populations are dynamically altered in 

incidence and gene expression activity following muscle injury. Overall, we discerned between 5-12 

distinct cell populations via SNN clustering at each time-point (Fig. 2A-B). Uninjured muscles (day 0) 

were largely composed of endothelial cells, FAPs, and mature myocytes/myonuclei, with other cell 

populations detected infrequently. After injury, we observed a transient increase in multiple immune cell 

types and a concomitant decline in non-immune populations. By day 5, the immune cell population 

diversified while the myogenic populations recovered. By day 7, most cell populations approached their 

day 0 frequencies and gene expression states (Figs. 2C, S2-1, and S2-2), revealing a return to 

homeostasis. 

Pecam1-expressing endothelial cells were the most abundant cell population at day 0 (38%) and 

exhibited only minor changes in detection frequency and gene expression heterogeneity throughout the 

time-course (Christov et al., 2007). In contrast, Pdgfra-expressing FAPs exhibited compositional and 

expression variability. FAPs were a substantial cell fraction of uninjured muscles (31%) and expressed  
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Figure 2 (previous page). Cell composition and gene expression dynamics of muscle regeneration. (A) UMAP 
projections of muscle single-cell transcriptomes split by time-points post-injury containing, respectively, 7,025, 
5,524, 14,240, and 7,646 cells for day 0, 2, 5, and 7 days post-notexin injury. Fourteen total cell types were identified 
using SNN clustering applied to each time-point. Cells from other time-points are in gray. (B) Compositional 
dynamics of cell types throughout the regeneration time course. Immune cells are grouped together (top) or 
separated (bottom). (C) Violin plots presenting the heterogeneous gene expression changes for a selection of 
differentially expressed genes within the endothelial, FAP, and MuSC/myogenic progenitors populations at each 
time-point. MuSCs and myogenic progenitor cells were too rare at day 2 to analyze. 
 

the ECM genes Col3a1, Dcn, and Gsn in homeostasis (Fig. 2A-C, S2-1, and S2-2). At day 2 post-injury, 

FAPs also express Ccl7, Cxcl5, and Cxcl1, chemokines that attract monocytes and neutrophils. FAPs 

have elevated expression of Col1a1, Col1a2 and Mt and diminished expression of Gsn and Dcn, 

suggesting an “activated” or “remodeling” state (Fig. S2-2). At day 5, FAPs have further elevated 

expression of Col1a1 and Col1a2 and also express Postn, Bgn, and Sparc (Fig. 2C). At day 7, the FAP 

expression profile resembles the uninjured samples, albeit with more heterogeneity, indicating a 

resolution to homeostasis (Fig. S2-2).  

Likewise, the immune cell populations within this atlas exhibit notable dynamics. At day 0, we 

detect that immune cell populations comprise 5% of the uninjured muscle, and can be subdivided into a 

more defined group of Cd79+ Ly6d+ immature myeloblasts, Cd3+ T-cells, and a group of resident 

macrophages and APCs expressing Lyz2, Cd74, and Ccl6 (Fig. S1-2, S1-3). At day 2, the inflammatory 

response initiates, as reflected by a dramatic increase in the frequency (84%) of immune cells detected 

(Fig. 2A). This early-response immune compartment can be divided into three populations. First, we 

observed APCs characterized by expression of MHC class II proteins such as Cd74 and the H2 family. 

Within this group we distinguish small populations of Cd7+ mature T-cells, Klrd1+ NK cells, and Cd209a+ 

dendritic cells. Second, we identified pro-inflammatory macrophages (including activated M1-like 

macrophages) that express Ccl9 (a chemokine that attracts Cd11b+ Ccr1+ dendritic cells), Ccr2 (a 

chemokine involved in monocyte chemotaxis), and Ly6c2. Third, we observed a less defined group of 

cells that express a wide variety of markers including Cd68+ monocytes and Pf4+ platelets (Fig. S1-4, 
S2-1). At day 5 post-injury, immune cells still are remain prevalent (64%) (Fig. 2A).  We observed 

however a shift in the macrophage population from a pro-inflammatory to an anti-inflammatory 

phenotype. We found that these macrophages express C1q complement genes as well as Apoe, 

characteristic of the M2-like anti-inflammatory phenotype (Baitsch et al., 2011; Ho et al., 2016). We detect 

some Aif1+ macrophages and/or dendritic cells that have been reported to modulate muscle repair 

(Kuschel et al., 2000). We found elevated frequencies of APCs, Lsp1+ Ccr7+ B-cells, Ccl5+ Xcl1+ T-cells 

and Nkg7+ Klrd1+ NK cells. (Fig. S2-1). At day 7, immune cells were more infrequent (17%) and started 

to resemble their day 0 cell type composition, with some M2-like macrophages, T-lymphocyte and NK-

cells remaining. 
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The myogenic cell populations exhibited a temporal profile inverted in abundance relative to the 

immune cells and transcriptionally heterogeneous. At day 0, we detected a small population (2%) of 

MuSCs and progenitor cells expressing Pax7, Sdc4, Vcam1, and Myod1, and also detected Acta1+ Myl1+ 

mature myocytes and/or myofiber nuclei (9%). At day 2, we did not detect any MuSCs or progenitors 

though they are reported to be in an activated state following notexin injury. This surprising finding is 

likely due the relative rarity of myogenic cells compared immune cells providing a sampling challenge at 

this time-point. At day 5, we observed a large expansion of the MuSC and progenitor population (12%) 

and decline of the myocyte population (1%) as expected. This population heterogeneously expresses 

lower levels of Pax7, Vcam1, and Sdc4, higher levels of Myod1, Des, Mest, and the mitotic gene Cdkn1c, 

suggesting they include more frequent cells in an activated and/or proliferating state (Fig. 2C). This 

population also induces expression of Igfbp5, known to regulate myogenic differentiation (Ren et al., 

2008). At day 7, the myogenic cell population remains in a heterogeneously activated and differentiation 

state with some recovery of Pax7+ MuSC population (Fig. 2C). 

Lastly, some cell populations were almost exclusively found at days 0 and 7. We observed a small 

(3%) population of tenocytes that express the canonical marker Scx (scleraxis) as well as Tnmd 

(tenomodulin), Fmod (fibromodulin), and Thbs4 (thrombospondin) (Giordani et al., 2019) (Fig. S1-3). We 

also observed two closely related populations of mesenchymal progenitors and smooth muscle cells, 

which were distinguished based on their expression of Myh11 and Acta2. In a similar manner, Schwann 

cells (enriched for Mpz, Mbp, Fxyd3, and Prx) were distinguished from other related neural and glial cells 

(enriched for Ptn, Postn, Cadm1, Lyz2 and Col20a1) (Fig. S1-3).  
 

Single-cell trajectory inference organizes a myogenic cell continuum involved in muscle 
regeneration 

The consensus model of adult muscle regeneration states that a subset of MuSCs leave quiescence after 

tissue damage and enter an activated cycling state to generate progeny through a combination of 

asymmetric and symmetric division events (Wang and Rudnicki, 2011). These myogenic progenies adopt 

multiple fate trajectories, including return to Pax7+ quiescent MuSCs, differentiation into a proliferative 

Pax7– Myf5+ Myod1+ myoblast progenitors, or commitment into Myog+ fusion-competent myocytes. We 

asked whether unbiased analyses could reconstruct this consensus model and provide into new insights 

into the continuum of myogenic cell-states.  

First, we explored the cellular heterogeneity within the cumulative myogenic cell population by 

selecting the MuSCs, progenitors, and mature myocytes from the unified transcriptomic atlas. Unbiased 

SNN clustering revealed five sub-populations of myogenic cells (Fig. S3A). These subpopulations clarify 

the myogenic heterogeneity in two ways: across post-injury time-points and within the stage of  
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Figure 3 (previous page). Inferring a muscle stem/progenitor cell hierarchy using Monocle pseudo-time 
model. (A) All cells within the muscle stem/progenitor and mature myocyte cell clusters (3,276 total cells) from day 
0, 5, and 7 post-injury (top left) were selected and re-analyzed with SNN/UMAP (bottom left) and Monocle reverse 
graph embedding (right). Graph embedding results are presented with cells color-coded by day and labeled with 
cluster identities. (B) Heatmap showing four clusters of “pseudo-synchronous” genes that are differentially 
expressed along the Monocle pseudo-time axis. The color-scale presents the spline-fit relative expression of each 
gene. Mitotic genes are labeled in red. (C) A refined analysis of muscle stem and progenitor sub-populations, after 
removal of mature myocytes, by Monocle trajectory inference. Monocle feature plots are presented showing three 
branch groups (Qu, Cy, Co) connected by a learned manifold (black lines). Same colors are used to associate 
individual cells with branch groups in (C, top left) and (D). The abundance of Pax7, Myog, and Cdk1 transcripts are 
plotted for individual cells using a Z-score normalized color-scale. (D) Pseudo-time ordered single-cell expression 
trajectories for genes enriched in the quiescence (Qu) cluster (Pax7, Btg2), in the cycling (Cy) cluster (Cdk1, Cdc20), 
and in the commitment (Co) cluster (Myog, Cdkn1c). Overlaid lines correspond to inferred cell trajectories 
associated with ending in the cycling (hatched) and commitment (solid) clusters. 
 

differentiation (Fig. S3B). Cluster 5 is comprised of terminally differentiated myocytes expressing 

elevated levels of Acta1 and Myh1 from all time-points, whereas clusters 1-4 represent a heterogeneous 

population of MuSCs and their progeny. Cluster 1 contains cells from both from days 0 and 7 post-injury 

and is largely enriched for Pax7, Sdc4, Vcam1, and Cd34 transcripts, therefore are likely quiescent 

MuSCs (Fig. S3C). Clusters 2, 3, and 4 contain cells from days 5 and 7 post-injury and that 

heterogeneously express the myogenic activation and commitment markers Myf5, Myod1, and Myog and 

have reduced expression of MuSC markers, suggesting these each contain a mixture of activated MuSC 

and myoblasts. Notably, clusters 2-4 likely represent a varied but sequential transition towards myogenic 

commitment, which is exemplified by stepwise elevation in Myog expression (Fig. S3C). Therefore, we 

conclude that cluster 4 is comprised of committed myoblasts whereas clusters 2 and 3 primarily contain 

activated MuSCs. These clusters describe an organized partitioning of the myogenic cell population.  

Next, given that SNN clustering lacks hierarchical structure, we sought to organizing these 

subpopulations using a trajectory inference model to delineate their interrelatedness. We applied 

Monocle reverse graph embedding (Qiu et al., 2017) to the cumulative myogenic cell population within 

the atlas to infer a hierarchical trajectory (Figs. 3A). The Monocle analysis focused on differentially 

expressed genes within one of these five myogenic clusters and aligns cells into a one-dimensional 

“pseudo-time” axis. The pseudo-time trajectory presented an organized, branched progression of cells 

from quiescent MuSCs to cycling and differentiating progenitors to terminally differentiated myocytes, 

which can be seen by labelling individual cells using the cell population annotations from the unified atlas 

(Fig. 1B). Both the beginning and ending branches within the trajectory are composed of cells from days 

0 and 7 post-injury, indicated they consist of Pax7hi quiescent MuSCs and Acta1hi terminally differentiated 

myocytes, respectively, which are both absent at intermediate time-points (Fig. 3A). A subset of cells 

diverts at the central node into a third branch comprised of day 5 and 7 post-injury cells enriched for Cdk1 

and Cdc20, indicating that they are actively cycling myoblasts. Near the central node, we observed day 

5 and 7 post-injury cells that expressed myoblast and myocyte markers such as Myog and Myod1 (not 
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shown). We interpret this branch structure as a bidirectional trajectory in which activated and cycling 

progenitors (predominantly from day 5 post-injury) can bifurcate either towards further commitment into 

terminal myocytes needed for myofiber repair or towards a return to quiescence.  

Then, we performed a differential expression analysis along the pseudo-time axis in order to 

identify genes that explain this myogenic cell progression (Fig. 3B). The top 86 differentially expressed 

genes partition in four clusters that are distinguished by their pseudo-temporal gene expression patterns 

(see Methods). The “early” gene cluster contains quiescence-associated MuSC genes, including Pax7, 

Id3 (a direct target of Pax7 and inhibitor of myogenic activation differentiation), Mt2, Klf4 (a potent inhibitor 

of smooth muscle differentiation), and cell cycle inhibitor Btg2 (which has been shown to interact with Id3 

to regulate neural progenitor cell differentiation) (Farioli-Vecchioli et al., 2009; Kumar et al., 2009). The 

first “intermediate” gene cluster group contains activation- and cycling-associated genes, including 

Myod1, Hmgb2 (regulates MuSC differentiation through Igf2), as well as multiple mitotic genes such as 

the cyclin-dependent kinases Cks2 and Cdk1, Smc4 (essential to condense chromatin), and the anti-

apoptotic gene Birc5. The second “intermediate” gene cluster contains commitment-associated genes 

such as the cyclin-dependent kinase inhibitor Cdkn1c, the myogenic differentiation regulator Igfbp5 (Ren 

et al., 2008), and genes encoding transmembrane proteins Cdh15, Itm2a, Cd82 and Cd63. The “late” 

gene cluster contains terminal differentiation-associated genes such as Myl1, the troponin family complex 

members (e.g., Tnni2), and metabolic enzymes Gyg and Ak1 (Janssen et al., 2000).  

Last, we analyzed the trajectory of the myogenic stem/progenitor cell population (other cell types 

excluded from this analysis, Fig. 3C-D and S3D). This refined trajectory model identifies three branches 

of immature myogenic cells within the transcriptomic atlas (Fig. 3C-D), distinguished by their quiescent 

(“Qu”), cycling (“Cy”), and non-cycling committed (“Co”) signatures. The “Qu” branch is enriched for Btg2 

and Id3 expression, whereas the “Cy” branch is enriched for G2-state mitotic genes Cdk1, Cdc20, and 

Ccnb2, and the “Co” branch, is enriched for the cell cycle inhibitory genes Cdkn1c and Myog (Fig. 3D 
and S3E). When visualized with respect to the pseudo-time progression axis, these genes help 

distinguish between cells likely to project into “cycling” and “committed” cell fates (Fig. 3D). In conclusion, 

Monocle analysis of the myogenic component of the transcriptomic atlas of regeneration confirms the 

generally accepted model of adult myogenesis and provides a hierarchy of intermediate myogenic 

progenitor populations based on cell cycle and commitment gene expression patterns. The clustering 

and trajectory model together suggest that Sdc4, Id3, and Btg2 are transcriptional markers that aid 

decomposition MuSC heterogeneity and may regulate distinct MuSC states. 
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Figure 4. Ligand-receptor model reveals diversification of communication signals through Syndecan family 
receptors during muscle regeneration. (A) Chord plot summarizing the significant pairwise interactions between 
receptor genes that are differentially expressed in the myogenic stem/progenitor population and ligand genes 
expressed by other cell types within the transcriptomic atlas. Left, uninjured (day 0) samples. Right, injured (day 5 
and 7 post-injury) samples. Differentially expressed receptor genes outside of the Syndecan family are in grey. For 
a given receptor-ligand pair, we only represent interactions whose score (Fig. S4) is greater than the 50th percentile 
across all cell types. (B) Sdc1/2/3/4 and Ccnb1 (Cyclin-B1) transcript averages across all non-mature myogenic 
cells within the transcriptomic atlas, split by days post-injury (see Fig. 3C). p-values listed if differentially expressed 
across time-points when modeled using a negative binomial distribution. (D, left) CyTOF atlas, consisting of 19,028 
cells collected from regenerating (day 5 post-injury) muscles and stained with a panel of 35 antibodies (see Table 
S1) including Syndecan-1/2/3/4 and Cyclin-B1. UMAP and unsupervised SNN clustering identified 11 populations 
including a population of Pax7+ MuSCs (orange) and Myog+ myogenic progenitors (blue). These two myogenic 
clusters were grouped for further analysis. (D, right) Cyclin-B1 versus Pax7 scatter plots. Top coded using CyTOF 
SNN cluster identifiers. Bottom, coded by sub-population gates: Cyclin-B1– Pax7+ quiescent cells (Qu; pink), Cyclin-
B1+ cycling progenitors (Cy; blue), and Cyclin-B1– Pax7– committed myocytes (Co; green). (E) expression 
histograms for Syndecan-1/2/3/4 and other myogenic markers for the three subpopulations identified in (D).  
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Diversification of Syndecan receptor expression in myogenic stem and progenitors provides 
stage-specific heterotypic cell communication channels 
Cell communication signals, acting through secreted ligands binding to receptors on muscle stem and 

progenitor cells, govern a multitude of cell-fate regulation mechanisms critical for muscle homeostasis 

and regeneration (Yin et al., 2013). To explore the dynamic cell communication network governing 

muscle repair, we generated a model that scores for interactions between receptors expressed by non-

mature myogenic cells and ligands expressed by other cell types. We reasoned that this model could 

identify ligand-receptor co-expression pairs that provide “insulated” heterotypic cell-cell interactions 

potentially influencing cell-fate outcomes in myogenic cells but no other cell types in muscle. First, we 

considered possible ligand-receptor pairs from a database containing 2,009 mouse intercellular 

interaction signals (Skelly et al., 2018). Second, we identified receptor genes from this list that are 

differentially expressed in the myogenic stem/progenitor cell populations relative to all other cells within 

the transcriptomic atlas at any time-point. Third, we calculated interaction scores by multiplying the 

average transcript expression value of each differentially expressed receptor gene in the myogenic 

stem/progenitor cell populations by the expression value of each cognate ligand gene (averaged over all 

cells within each other annotated cell population). We note this model does not consider spatial proximity 

between cell types, whether proteins are expressed, or whether the putative interaction pairs are 

documented specifically within myogenic cells. 

Our model identifies 63 and 158 ligand-receptor pairs for the uninjured and injured (days 5 and 7 

post-injury, combined) muscles, respectively, and 87 of these pairs were unique to injured samples (Fig. 
S4). We only select interactions where the receptor is differentially expressed in the MuSC and progenitor 

population. Moreover, for each pair, we consider the interaction significant when the score is greater than 

the 50th percentile when compared to all cell types. We represent significant interactions by a pairwise 

chord plot (Fig. 4A). In uninjured muscles, the majority of these pairs involve myogenic cell expression 

of receptor genes Fgfr1, Fgfr4, Sdc4, Tgfbr3, Cd63 or Cd82, consistent with findings that MuSCs express 

diverse members of the FGFR, Syndecan (Sdc), TGF-β and tetraspanin families (Pawlikowski et al., 

2017). Notably, Fgfr1 and Fgfr4 interactions are mediated by a diverse set of 15 FGF ligand genes 

expressed across multiple cell types (mature skeletal myocytes, FAPs, tenocytes, and 

neural/glial/Schwann cells), suggesting broad redundancy in FGFR signaling interactions in uninjured 

muscles (Fig. S4). This ligand-receptor promiscuity is also exemplified by the pairs involving Sdc4, the 

only Sdc gene differentially expressed by myogenic cells with uninjured muscles, which involve multiple 

ligand genes from various cell types including Ccl5 (myeloid progenitors), Thbs1 and Tnc (tenocytes), 

Fgf2, Tfpi, Mdk, and Rspo3 (FAPs), Tgm2 and Cxcl12 (SMCs), and Adam12 (neural/glial cells), and Fgf6 

(mature myocytes). In the injured muscle we observed a diversification in the ligand-ligand interaction 
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landscape, highlighted by inclusion of additional myogenic cell receptor genes (Sdc1, Sdc2, Notch1, 

Notch3, and Cd151) within the interaction pairs. 

Given the observed frequent and diverse involvement of Sdc receptor genes in these co-

expressed ligand-receptor scores and their documented role in MuSC regulation (Pisconti et al., 2012), 

we asked whether Sdc genes exhibit stage-specific expression patterns within the myogenic 

compartment of the transcriptomic atlas. We performed differential expression testing on the non-mature 

myogenic cell populations within the transcriptomic atlas between the day 0, 5, and 7 samples, and found 

that Sdc1 and Sdc2 were elevated at day 5 post-injury (along with the cycling MuSC gene Ccnb1), and 

Sdc4 was elevated in the uninjured muscle (Fig. 4B). Further, Sdc1 and Sdc2 have enhanced expression 

in the Ccnb1hi “Cy” branch of the Monocle trajectory (Fig. 4C). 

We validated Syndecan expression variation at different stages of the myogenic hierarchy through 

an independent analysis based on multiparameter mass cytometry (CyTOF). We immunostained a 

single-cell suspension from digested muscles at 5 days post-notexin injury using a panel of 35 antibodies 

(including the four Sdcs) to label myogenic and other cell types. After gating for live cells and removing 

debris (Fig. S5), the CyTOF data was analyzed using a similar bioinformatic pipeline as for scRNA-seq 

datasets. Unsupervised SNN clustering revealed 11 subpopulations of cells including endothelial cells, 

FAPs, macrophages, lymphocytes, mesenchymal progenitors, an unresolved group of Cd9+ cells, and 

two myogenic populations (Fig. 4D). One myogenic population consists of Pax7+ MuSCs whereas the 

other consists of Myog+ myoblasts and myocytes (Fig. 4D). These myogenic populations were merged, 

and sub-populations were gated into Cyclin-B1– Pax7+ quiescent cells, Cyclin-B1+ cycling progenitors, 

and Cyclin-B1– Pax7– committed myocytes (Fig. 4E). We observed that these three sub-populations 

uniformly express the myogenic surface marker Integrin-ɑ7 but have heterogeneous expression of Sdcs. 

In particular, Sdc-1hi and -2hi cells are enriched in the cycling progenitor sub-populations. Taken together, 

these observations suggest that the transient induction of Sdc-1 and -2 in cycling (Cyclin-B1+) muscle 

progenitors may allow for diversified engagement with an exclusive set heterotypically secreted ligands 

in regenerating, but not uninjured, muscles. 

 

Discussion 
Combined with the development of increasingly complex computational methods, scRNA-seq has 

emerged as a powerful tool to profile the transcriptome of thousands of individual cells in one experiment 

(Stuart and Satija, 2019). scRNA-seq analysis permits an unbiased survey of cellular complexity and 

heterogeneity with substantial experimental scope. Here, we leverage these recent developments to build 

a comprehensive temporal atlas of muscle tissue repair with over 34,000 single-cell transcriptomes, 

adding to the growing repository of single-cell skeletal muscle datasets.  
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To date, a handful muscle-focused scRNA-seq projects have been reported. The first study was 

performed on FACS-sorted Pax7-tdTomato+ MuSCs using the Fluidigm C1 system (Cho and Doles, 

2017). Though limited to 21 single MuSCs, it provided a transcriptomic view of MuSC heterogeneity, 

highlighted enriched levels of Cd34 and Sdc4 transcripts. The study also highlighted some technical 

limitations, low recovery of Pax7 transcripts, which motivates the need to generate greater numbers of 

single-cell transcriptomes to allow more robust statistical analyses. Recently, Giordani et al. presented a 

transcriptomic atlas of 12,441 muscle-resident cells (Giordani et al., 2019). Their study identified 10 

distinct types of cells, including a population of Itga7+ Vcam1– smooth muscle and mesenchymal cells 

that enhance MuSC engraftment when co-transplanted in mice. Their findings illustrated the potential of 

high-throughput single-cell analysis to reveal poorly described populations and to generate new 

hypotheses. Whereas the Giordani et al. study focused on homeostatic mouse muscle tissue, another 

recent scRNA-seq study focused on regenerating muscle. Dell’Orso et al. presented a transcriptomic 

atlas of about 3,500 FACS-sorted MuSCs and progenitor cells from homeostatic and notexin-injured 

muscles (Dell'Orso et al., 2019). They identified two subpopulations of MuSCs with distinct yet 

overlapping gene expression profiles corresponding to a quiescent and activated state. In addition, they 

aligned in pseudo-time injured, uninjured MuSCs, and primary myoblasts to reveal 7 classes of genes, 

including of mitochondrial and glycolytic origin, from which they inferred dynamics in metabolic 

reprogramming activity. Though the first report to describe the dynamics of MuSCs activation and 

differentiation by scRNA-seq, their analysis was limited to FACS-sorted cells and a single time-point post-

injury (60 hours), which might omit the cellular and temporal complexity of muscle regeneration. Finally, 

using a CyTOF dataset composed of 23 markers, Porpiglia et al. built a trajectory model using the X-shift 

algorithm of myogenic differentiation post-injury (Porpiglia et al., 2017). They identified two new surface 

markers, CD9 and CD104, that were used to describe two subpopulations of muscle progenitors, 

demonstrating how trajectory models from single-cell data can be used to discover new combinations of 

surface markers for the prospective isolation of MuSCs and their progeny. 

 Here, we present a unified and annotated single-cell transcriptomic reference atlas of muscle 

regeneration in adult mice. Our scRNA-seq and CyTOF analyses confirm prior consensus regarding the 

cell populations involved in the temporal response to muscle injury, and providing a deeper annotation of 

additional cell types, sub-populations and states with more resolved dynamics, compared to prior scRNA-

seq studies. We present comprehensive scRNA-seq dataset compendium describing a total of 34,438 

cells (15 different cell types via SNN clustering) including 3,276 from MuSCs and mature muscle cells 

(Figs. 1 and 2). The complexity of this transcriptomic atlas powered development of a hierarchical 

continuum model of myogenic cell populations and receptor-ligand cell communication analysis (Figs. 3 

and 4). We also presented a CyTOF dataset composed of 35 markers to provide an orthogonal validation 
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of myogenic sub-populations and their surface receptor expression variability. Trajectory analysis allowed 

us to parse the myogenic differentiation lineage post-injury in four distinct groups: quiescent MuSCs, 

cycling progenitors, committed progenitors, and mature skeletal muscle, with distinct gene expression 

signatures (Fig. 3). Here we resolved that Id3 and Btg2 are both enriched in quiescent MuSCs with their 

expression decreasing following injury-induced MuSC activation and differentiation. Id3 is a DNA binding 

protein that has been found to be a direct target of Pax7 (Kumar et al., 2009). Id3 is robustly expressed 

in quiescent MuSCs and blocks differentiation either by directly blocking the activity of pro-myogenic 

transcription factors such as Myf5, MyoD or by maintaining high levels of Hes1 (Kumar et al., 2009). The 

role of Btg2 has not yet been previously described in myogenic cells. In hematopoietic and neural 

lineages, Btg2 promotes differentiation by inhibiting both Id3 and cyclin D1 to restrict cell cycle 

progression (Yuniati et al., 2019). Though we did not identify the mechanism of Btg2 regulation of 

myogenic differentiation, these data suggest Btg2 and Id3 are distinct transcriptional markers of quiescent 

MuSCs. 

 We developed a cell communication model that allowed us to map interactions between MuSC 

receptors and ligands expressed by other cell types during muscle repair, which highlighted the complex 

role of Syndecan receptors in coordinating muscle progenitor heterogeneity. Syndecans (Sdcs) are 

transmembrane heparan sulfate proteoglycans that have been characterized as regulators of muscle 

development, homeostasis, and regeneration (Pisconti et al., 2012). Previous studies have found that 

Sdc1 is only expressed in developing muscle, while the other muscle Sdcs (Sdc2, Sdc3, Sdc4) are 

expressed in MuSCs with differing post-injury expression dynamics specific to each receptor (Pisconti et 

al., 2012). Sdc3 plays a role in maintaining MuSC quiescence, as Sdc3–/– muscles have do not atrophy, 

despite showing a loss in MuSC number, but have a homeostasis defect (Pisconti et al., 2016; Pisconti 

et al., 2010). Sdc4, in contrast, seems to play a role in MuSCs activation through regulating FGF and 

HGF signaling (Cornelison et al., 2004). Both our scRNA-seq and CyTOF data suggest that these four 

Sdcs are expressed heterogeneously with quiescent, cycling, and committed myogenic stem/progenitor 

cells (Fig. 4). Sdc1, though previously thought not to be expressed in postnatal muscle, was detected 

both at the transcription and protein level, by scRNA-seq and CyTOF respectively, in activated cycling 

muscle progenitors and committed cells but not in MuSCs. Moreover, Sdc2 was expressed in some 

quiescent MuSCs and activated progenitors, Sdc3 expression was restricted to cycling MuSCs 

progenitors, and Sdc4 expressed in quiescent MuSCs and cycling progenitors alike. Together, these 

Sdcs provide a significant fraction of the heterotypic cell communication interactome, suggesting that 

temporal heterogeneity in Sdc expression may enable myogenic stage-specific fate regulation to a shared 

set of Sdc-binding ligands. 
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 Though clustering and visualization approaches presented here and by others can be used to 

identify new cell types and biomarkers, we urge caution on how cell types are defined from these data. 

First, single-cell data is not immune to technical imperfections such as doublets or sequencing reads that 

misalign (Stuart and Satija, 2019). Second, single-cell data is sensitive to sample preparation methods, 

especially from the solid tissue sources. For example, we observed significant variability in the inclusion 

of tenocytes based on muscle-tendon resection precision (data not shown). We also found other biases 

introduced in the scRNA-seq composition introduced by FACS sorting can select for metabolically active 

immune cells. Furthermore, since scRNA-seq is based on RNA detection, some quiescent cell types such 

as MuSCs are challenging to unambiguously detect and will be benefited from in vivo transcript recovery 

advances (Machado et al., 2017; van Velthoven et al., 2017). Even with these limitations, our scRNA-

seq study provides a view that discards some prior assumptions on the boundaries between myogenic 

cell types and suggests a myogenic continuum that is endowed with a plasticity of cell-cycle and 

commitment states. This annotated temporal scRNA-seq atlas of muscle regeneration may provide 

reference resource to examine the role cellular diversity and communication in aging, disease, and across 

species. 
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Methods	
	

Mice and single-cell isolation. The Cornell University Institutional Animal Care and Use Committee 

(IACUC) approved all animal protocols and experiments were performed in compliance with its 

institutional guidelines. Adult C57BL/6J mice were obtained from Jackson Laboratories (#000664, Bar 

Harbor, ME) and were used at 4-5 months of age. To induce muscle injury, both tibialis anterior muscles 

received a single 10 µL intramuscular injection of notexin (10 µg/ml; Latoxan, France). At either 2, 5, or 

7 days post-injury, one tibialis anterior muscle per mouse was collected to generate single-cell 

suspensions. Muscle were digested with 2.5 mg/ml Collagenase D (Roche) and 0.04 U/ml Dispase II 

(Roche) followed by manual dissociation, filtration, and red blood cell lysis to generate a single-cell 

suspension, as previously described (Cosgrove et al., 2014; Sacco et al., 2008). 

	

FACS sorting. We used a fluorescence-activated cell sorter (FACS ARIA Fusion, BD Biosciences) to 

enrich the single-cell suspension for Calcein-AM+ propidium iodide– viable cells. The single-cell 

suspension was stained with Calcein-AM (1 µg per 100,000 cells) and PI for 30 min in PBS. Live cells 

were sorted selecting for Calcein-AM+ and debris were removed using a standard FSC/SSC gating 

strategy.	

	

Single-cell RNA-sequencing. After digestion, single-cells were washed and resuspended in 0.04% BSA 

in PBS at a concentration of at least 400 cells/μL. Cells were counted manually with a hemocytometer in 

order to determine the concentration. The single-cell RNA-sequencing library was then prepared using 

the Chromium Single Cell 3' reagent kit v2 (10X Genomics) in accordance with the manufacturer’s 

protocol. Briefly, the cells were diluted into the Chromium Single Cell A Chip as to yield a recovery of 

~6,000 single-cell transcriptomes with <5% doublet rate. Following the library preparation, the libraries 

were sequenced in multiplex (n=2 per sequencing run) on the NextSeq 500 sequencer (Illumina) to 

produce between 200 and 250 million reads per library and on average a minimum of 30,000 reads per 

single-cell.	

	

Analysis of scRNA-seq data. Sequencing reads were processed with the Cell Ranger version 3.0.1 

(10X Genomics) using the mouse reference transcriptome mm10. From the gene expression matrix, the 

downstream analysis was carried out with R version 3.5.1 (2018-07-02). Quality control, filtering, data 

clustering and visualization, and the differential expression analysis was carried out using Seurat version 

2.3.4 R package (Butler et al., 2018) with some custom modifications to the standard pipeline. Each of 

the 9 datasets were first analyzed independently before combining datasets from the same timepoint 
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together for an integrated analysis. For each individual dataset, genes expressed in less that 3 cells as 

well as cells <1000 UMIs and <200 genes were removed from the gene expression matrix. In addition, 

we removed any single-cell with >20% UMIs mapped to mitochondrial genes, as well as obvious outliers 

in number of UMIs (cell doublets). After log-normalizing the data, the expression of each gene was scaled 

regressing out the number of UMI and the percent mitochondrial gene expressed in each cell. We 

performed PCA on the gene expression matrix and used the first 15 principal components for clustering 

and visualization. Unsupervised shared nearest neighbor (SSN) clustering was performed with a 

resolution of 0.4 and visualization was done using uniform manifold approximation and projection (UMAP) 

(Becht et al., 2018). Finally, differential expression analysis was achieved using Seurat’s “FindAllMarkers” 

function using a likelihood ratio test that assumes the data follows a negative binomial distribution and 

only considering genes with >log2(0.25) fold-change and expressed in at least 25% of cells in the cluster.	

 To analyze datasets merged from the same timepoint, we performed canonical correlation 

analysis (CCA) between datasets followed by data alignment using nonlinear dynamic time warping. We 

used the CCA matrix instead of PCA for visualization and clustering, and consequently, the differential 

expression analysis between clustered cells. The CCA space allows us to highlight shared patterns in 

gene expression profile between datasets. In addition, we did not observe significant differences in results 

between working in the CCA or PCA space, thus indicating little batch effect between samples from the 

same timepoint.	We finally combined the 9 datasets into a uniform UMAP atlas using the CCA scores 

calculated from all the datasets. However, we retain the labels identified independently at each timepoint 

and the data was not re-clustered.	

	

Monocle trajectory analysis. We used the Monocle version 2.8.0 R package (Qiu et al., 2017) to 

organize cells in pseudo-time and infer new trajectories of MuSCs subpopulations post-injury. First, we 

subsetted the cells labeled as MuSCs and progenitor cells and Mature skeletal muscle from the Seurat 

dataset and across all timepoints and samples. Second, we performed unsupervised SNN clustering in 

order to identify new subpopulations in the data, from which we then used the Seurat “FindAllClusters” 

function (as described above) to find differentially expressed genes that characterize the subpopulations. 

We then selected the top 150 genes based on fold-change expression with a minimum of log2(0.8) and 

adjusted p-value of 0.1. This list genes of differentially expressed genes is then used by Monocle for 

clustering and ordering cells using the DDRTree method and reverse graph embedding. To identify genes 

that are differentially expressed across Monocle branches (States), we transferred the labels back to the 

Seurat dataset and performed differential expression analysis as described above. 
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Ligand-receptor cell communication model. The model aims at scoring potential receptor-ligand 

interactions between MuSCs (receptor) and other cell types (ligand). We used the receptor-ligand 

interaction database from Skelly et al. (Skelly et al., 2018). To calculate the score for a given receptor-

ligand pair, we multiply the average receptor expression in MuSCs with the average ligand expression 

per other cell type (including MuSCs to consider for autocrine interactions). We only considered receptors 

that are differentially expressed in MuSCs at any given time-point post-injury. 

	

CyTOF sample preparation and staining. Most of the cell surface markers were obtained from Fluidigm 

and few others were conjugated in-house using the Maxpar X8 Multimetal Labeling Kit (see Table S1 for 

complete antibody list). The cells were stained with 50 μl of the antibody cocktail (100 μl of total staining 

volume) for 30 minutes at RT with intermittent vortexing. Following 2 washes (300g, 5 mins, RT), the cells 

were fixed with freshly prepared 1.6% PFA for 10 minutes. Thereafter, the cells were incubated for 30 

minutes in 1 mL of the Nuclear Antigen Staining Buffer working solution. Then the cells were washed with 

2 ml of Nuclear Antigen Staining Perm at 800g, 5 minutes, RT. 50 μl of nuclear antigen antibody cocktail 

was added to 50 μl of cell pellet solution and incubated for 45 minutes at RT. Following antibody staining, 

the cells were also stained with Cell-ID Intercalator-Ir-125 μM diluted to 1:1000 with MaxPar Fix and Perm 

buffer for 1 hour at RT. In addition, cells were also stained with 10 μl of Cisplatin for viability in 1 mL of 

pre-warmed serum free medium for 5 minutes at RT. Finally, cells were also stained with IdU (5-Iodo-2-

deoxyuridine) to label the S-phase at a concentration of 50 μM for 30 minutes at 37oC. 

 
CyTOF data acquisition and analysis. Cells were washed twice with staining buffer and then with MilliQ 

water. After the final wash, the cells were adjusted to a concentration of 106 cells/mL with 1:10 EQ beads 

to MilliQ water solution. Prior to the acquisition, the instrument was tuned and calibrated using the EQ 

standard beads. The acquisition speed of the sample was maintained within 400 events/seconds to avoid 

doublets and ion cloud fusion errors in the data. The output FCS files were normalized using the Fluidigm 

normalizer algorithm that is embedded within the CyTOF software (Version 6.7.1014).	The CyTOF data 

was first gated using the Cytobank software in order to exclude debris, dead cells and doublets (Kotecha 

et al., 2010). The resulting FCS file was then converted into a gene expression matrix using the Cytofkit 

R package using an inverse hyperbolic sine transformation (Chen et al., 2016). The gene expression 

matrix was then analyzed with a Seurat-based custom pipeline, which allowed for SSN clustering and 

UMAP visualization. 
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Reagents and Resources 

Antibodies 
Anti-Mouse CD8a (53-6.7) Fluidigm 3153012B 

  
Anti-Mouse CD9 (KMC8) Fluidigm 3158009B 
Anti-Mouse CD11b (M1/70) Fluidigm 3143015B 
Anti-Mouse CD3e (145-2C11) Fluidigm 3152004B 
Anti-Mouse CD4 (RM4-5) Fluidigm 3145002B 
Anti-Mouse CD45.2 (104) Fluidigm 3147004B 
Anti-Mouse CD206/MMR 
(C068C2) 

Fluidigm 3169021B 

Anti-Mouse CD80 (16-10A1) Fluidigm 3171008B 
Anti-Mouse CD31/PECAM-1 
(390) 

Fluidigm 3165013B 

Anti-Mouse CD140a (APA5) Fluidigm 3148018B 
Anti-Mouse CD140b (APB5) Fluidigm 3151017B 
Anti-CyclinB1 (GNS-1) Fluidigm 3164010A 
Cell-ID™ IdU Fluidigm 201127 
Anti-Mouse CD15 (mc-480) Lederer Lab -- 

Harvard Medical 
School 

http://ledererlab.bwh.harvard.edu/cytof-core/ 

Anti-Mouse CD29 (HMB1-1) Lederer Lab -- 
Harvard Medical 
School 

http://ledererlab.bwh.harvard.edu/cytof-core/ 

Anti-Mouse CD34 (MEC14.7) Lederer Lab -- 
Harvard Medical 
School 

http://ledererlab.bwh.harvard.edu/cytof-core/ 

Anti-Mouse CD106/VCAM-1 
(429) 

Lederer Lab -- 
Harvard Medical 
School 

http://ledererlab.bwh.harvard.edu/cytof-core/ 

Anti-Mouse Integrin alpha 7 R&D Systems MAB3518 
Anti-Human/Mouse/Rat/Chicken 
Pax7 

R&D Systems MAB1675 

Anti-Human/Mouse Myogenin R&D Systems MAB6686 
Anti-Human/Mouse Myosin 
Heavy Chain Antibody 

R&D Systems MAB4470 

Anti-Mouse VE-Cadherin R&D Systems MAB1002 
Anti-Mouse Laminin alpha 1 R&D Systems MAB4656 
Anti-Mouse Sca-1/Ly6 R&D Systems AF1226 
Anti-Mouse C1q R1/CD93 R&D Systems MAB1696 
Anti-Human/Mouse CX3CR1 R&D Systems AF5825 
Anti-Mouse Mouse Syndecan-
2/CD362 

R&D Systems AF6585 
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Anti-Human/Mouse MyoD (5.8A) Novus Biologicals NB100-56511 
Anti-Human/Mouse/Rat CD82  Thermo Fisher 

Scientific 
PA5-20356 

Anti-Mouse COL1A1 (3G3) Santa Cruz 
Biotechnology 

sc-293182 

Anti-Mouse Syndecan-3 
Antibody (G-2) 

Santa Cruz 
Biotechnology 

sc-398194 

Anti-Mouse CD138/Sdc1 (281-
2) 

BD 553712 

Anti-Mouse Syndecan-4 
(KY/8.2) 

BD 550350 

Anti-Mouse Scx (N-term) Abgent AW5469-U100 
Anti-Mouse Fibromodulin 
(3E9D10) 

Proteintech 60108-1-Ig 

	

Reagents 
Cell-ID Intercalator-Ir Fluidigm 201192A 
Cell-ID IdU Fluidigm 201127 
Cell-ID Cisplatin Fluidigm 201064 
Maxpar Cell Staining Buffe Fluidign 201068 
Dispase II (neutral protease, 
grade II) 

Sigma-Aldrich 04942078001 

Collagenase D, from Clostridium 
histolyticum 

Sigma-Aldrich 11088866001 

 

Commercial kits 
Chromium Single Cell 3' Library 
& Gel Bead Kit v2 

10X Genomics CG00052 (protocol) 

Maxpar X8 Multimetal Labeling 
Kit 

Fluidigm 201300 

 

Deposited data 
Mouse ligand-receptor database Skelly et al., 2018 https://www.ncbi.nlm.nih.gov/pubmed/293467

60 
scRNA-seq data This paper  
CyTOF data This paper  

 

Software packages and algorithms 
Cytofkit Chen et al., 2016 https://github.com/JinmiaoChenLab/cytofkit 
Cell Ranger 3.0 10X Genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/downloads/latest 
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CyTOF Software 6.7 Fluidigm https://www.fluidigm.com/software 
Cytobank Cytobank, Inc. https://www.cytobank.org 
Seurat 2.3.4 Butler et al., 2018 https://github.com/satijalab/seurat 
Monocle 2.8.0 Qiu et al., 2017 https://github.com/cole-trapnell-lab/monocle-

release 
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Supplementary Material 
	

 
	
Figure S1-1. Technical and quality control measures for scRNA-seq datasets. (A) Sequencing reads 
processing statistics from the 10X Cell Ranger pipeline. The samples originated from 9 individual female mice at 4-
6 months of age. Samples are color-coded by time-point. Differences in sample quality were addressed by applying 
a quality control (QC) filter in Seurat. The last column represents the number of cells that were used for the analysis 
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after QC. A total number of 34,438 cells expressing 19,584 unique genes were used for the downstream analysis. 
(B) Number of unique molecular identifiers (UMIs) and genes per cell per sample after QC filtering. On average 
cells have more UMIs and genes detected for injured samples (day 2 and 5 post-injury). The samples are color-
coded as in (A). (C) Technical effect and differences in population number across samples from the same timepoint. 
Single-cell transcriptomes were projected on a UMAP plot using cross-correlation analysis (CCA) scores between 
samples. Some divergences in cell number can be observed for the immune cluster between D7_A and D7_B. (D) 
Distribution of the number of genes per Erythroblast cell type with or without red blood cell (RBC) lysis during the 
single-cell suspension preparation. Erythroblasts express a small number of genes and were removed from the 
analysis after applying a 200-gene minimum filter. RBC lysis also removed all detectable Erythroblasts. RBC lysis 
was applied to all samples in this study expect D0_A and D0_B.  
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 17, 2019. ; https://doi.org/10.1101/671032doi: bioRxiv preprint 

https://doi.org/10.1101/671032
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

33 

 
 
 
 

 
 

Figure S1-2. Evaluation of selection biases and resulting cell type abundances introduced by FACS filtering 
prior to scRNA-seq. UMAP projection of single-cell transcriptomes obtained by either the standard cell isolation 
protocol (see Methods) or to one that included a Calcein-AM+ enrichment of live cells and removal of debris by 
FACS. FACS selection introduces measurable biases in cell population number for smooth muscle cells, MuSCs, 
and mature skeletal muscle in the uninjured muscle and various immune cell types in the injured muscle. 
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Figure S1-3. Top differentially expressed genes per cluster in the uninjured (day 0) muscle. Normalized 
expression (Z-score) heatmap for top differentially expressed genes in the 11 subpopulations identified by SNN at 
the uninjured (day 0) time-point. The columns represent cells and are organized by cell type as color-coded. 
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Figure S1-4. Expression of immune markers identified by differential expression analysis. Average 
expression of immune genes identified by differential expression analysis in the combined dataset (Fig. 1B). These 
markers allowed delineation of 5 different immune cell populations pre and post-injury. The dot size represents the 
percentage of cells within a group with an expression level >0.  
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Figure S2-1. Top differentially expressed genes in immune subpopulations across days post-injury. 
Normalized expression (Z-Score) heatmap for top differentially expressed genes in 5 subpopulations of immune 
cells identified by SNN post-injury. The columns represent cells and are organized first by cell type and then by day 
post-injury as color-coded. 
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Figure S2-2. Gene expression dynamics of FAPs markers post-injury. (A) UMAP projection of single-FAP 
transcriptome colored by day post-injury. (B) Expression level of key FAP genes that describe the shift in gene 
expression profile post-injury. 
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Figure S3 (previous page). MuSCs heterogeneity in gene expression pre- and post-injury. (A) UMAP projection 
of MuSC and mature skeletal muscle single-cell transcriptomes (3,276 total cells from day 0, 5, 7) labeled by 
unsupervised SNN clustering. Clustering reveals 5 subpopulations of cells, including mature skeletal muscle cells 
(5) and MuSCs (1-4) that are composed of cells from different days post-injury. (B) UMAP projection of cells in (A) 
labeled by day post-injury. (C) Violin plots representing the expression level of key muscle genes in the 
subpopulations identified by SNN clustering (A). (D) Single-cell feature plot visualization of pseudo-time progression 
model of MuSC activation and commitment. (E) Top 75 genes differentially expressed in the three branches of the 
MuSC trajectory identified by Monocle (Fig. 3B) and ordered by branch and then pseudo-time progression. 
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Figure S4. Ligand-receptor interaction score heatmap. The heatmap represents score between receptors 
differentially expressed in MuSCs and progenitor cells and ligands on other cell types. Columns represent the cell 
type expressing the ligand and includes MuSCs and progenitors for autocrine interactions. Rows represent the 
ligand-receptor pair in the format LIGAND_RECEPTOR. The score for each pair has been normalized across ligand 
cell types with a positive value indicating that the pair has a high score for a particular ligand and cell type compared 
to other cell types.  
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Figure S5. Mass cytometry (CyTOF) atlas of uninjured and injured muscle-tissue cells. Gating strategy before 
generation of a gene expression matrix. Cells were discriminated from debris using 140Ce beads, then from 
doublets by the event length, and finally from dead cells using a viability marker (198Pt-negative). The resulting 
gated FCS file was transformed into a gene expression matrix scaling by an inverse hyperbolic sine transformation.  
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Antibody (clone) Vendor Metal tag 
CD8a (53-6.7) Fluidigm 153Eu 
CD9 (KMC8) Fluidigm 158Gd 
CD11b (M1/70) Fluidigm 143Nd 
CD3e (145-2C11) Fluidigm 152Sm 
CD4 (RM4-5) Fluidigm 145Nd 
CD45.2 (104) Fluidigm 147Sm 
CD206/MMR (C068C2) Fluidigm 169Ti 
CD80 (16-10A1) Fluidigm 171Yb 
CD31/PECAM-1 (390) Fluidigm 165Ho 
CD140a (APA5) Fluidigm 148Nd 
CD140b (APB5) Fluidigm 151Eu 
CyclinB1 (GNS-1) Fluidigm 164Dy 
Cell-ID™ IdU Fluidigm 

 

CD15 (mc-480) Lederer Lab, Harvard Medical School 159Tb 
CD29 (HMB1-1) Lederer Lab, Harvard Medical School 175Lu 
CD34 (MEC14.7) Lederer Lab, Harvard Medical School 166Er 
CD106/VCAM-1 (429) Lederer Lab, Harvard Medical School 155Gd 
Integrin alpha 7 R&D Systems 161Dy 
Pax7 R&D Systems 156Gd 
Myogenin R&D Systems 167Er 
Myosin Heavy Chain  R&D Systems 172Yb 

VE-Cadherin R&D Systems 145Nd 
Laminin alpha 1 R&D Systems 160Gd 
Sca-1/Ly6 R&D Systems 170Er 
C1q R1/CD93 R&D Systems 149Sm 
CX3CR1 R&D Systems 154Sm 
Syndecan-2/CD362 R&D Systems 162Dy 
MyoD (5.8A) Novus Biologicals 150Nd 
CD82  Thermo Fisher Scientific 144Nd 
COL1A1 (3G3) Santa Cruz Biotechnology 141Pr 
Syndecan-3 (G-2) Santa Cruz Biotechnology 174Yd 
Scx (N-term) Abgent 163Dy 
Fibromodulin (3E9D10) Proteintech 142Nd 
CD138/Sdc1 (281-2) BD 176Yb 
Syndecan-4 (KY/8.2) BD 172Yd 
	
Table S1. CyTOF reagent panel used for Figs 4 and S5. 
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