

1 **Title:** Context-dependent activation of SIRT3 is necessary for anchorage-independent survival
2 and metastasis of ovarian cancer cells.

3

4 **Running Title:** Context-dependent role of SIRT3 in ovarian cancer.

5

6 Yeon Soo Kim^{1,*}, Piyushi Gupta-Vallur^{1,*}, Victoria M. Jones¹, Beth L. Worley¹, Sara Shimko¹,
7 Dong-Hui Shin¹, LaTaijah C. Crawford¹, Chi-Wei Chen², Katherine M. Aird², Thomas Abraham³,
8 Trevor G. Shepherd⁴, Joshua I. Warrick⁵, Nam Y. Lee⁶, Rebecca Phaeton⁷, Karthikeyan
9 Mythreya^{8,\$}, and Nadine Hempel^{1,\$}

10

11 **Author Affiliation:**

12 ¹ Department of Pharmacology, Pennsylvania State University, College of Medicine, Hershey
13 PA, USA

14 ² Department of Cellular and Molecular Physiology, Pennsylvania State University, College of
15 Medicine, Hershey PA, USA

16 ³ Department of Neural and Behavioral Sciences, Pennsylvania State University, College of
17 Medicine, Hershey PA, USA

18 ⁴ The Mary & John Knight Translational Ovarian Cancer Research Unit, Departments of
19 Obstetrics & Gynecology, Oncology and Anatomy & Cell Biology, Western University, London
20 ON Canada

21 ⁵ Department of Pathology, Pennsylvania State University, College of Medicine, Hershey PA,
22 USA

23 ⁶ Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.

24 ⁷ Department of Obstetrics and Gynecology, and Microbiology and Immunology, Pennsylvania
25 State University, College of Medicine, Hershey PA, USA

26 ⁸ Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA.

27

28 * equal authorship

29

30 **\$ Corresponding Authors contact details:**

31 Nadine Hempel, Ph.D.

32 Department of Pharmacology

33 Penn State University College of Medicine

34 MC R130, 500 University Drive

35 Hershey PA 17033-0850

36 Ph: 717-531-4037

37 Email: nhempel@psu.edu

38

39 Mythreye Karthikeyan, Ph.D.

40 Department of Chemistry and Biochemistry

41 University of South Carolina

42 631 Sumter Street

43 Columbia SC 29208

44 Ph: 803-576-5806

45 Email: mythreye@sc.edu

46

47 **Financial Support:** This work was supported by NIH grants R00CA143229 (N.H.),

48 R01CA230628 (N.H. & M.K.), S100D018124 (T.A.), by the Rivkin Center for Ovarian Cancer

49 (NH), an equipment grant from Agilent (N.H.), and the Penn State Cancer Institute

50 Developmental Fund Award (N.H.). Collection of ascites was partially supported by DoD Pilot

51 award W81XWH-16-1-0117 (N.H.).

52 **ABSTRACT**

53 Cells must alter their antioxidant capacity for maximal metastatic potential. However, the
54 antioxidant adaptations required for transcoelomic metastasis, which is the passive
55 dissemination of cancer cells in the peritoneal cavity as seen in ovarian cancer, have largely
56 remained unexplored. Contradicting the need for oxidant scavenging by tumor cells is the
57 observation that expression of the nutrient stress sensor and regulator of mitochondrial
58 antioxidant defenses, SIRT3, is suppressed in many primary tumors. We discovered that this
59 mitochondrial deacetylase is however, upregulated in a context-dependent manner in cancer
60 cells. SIRT3 activity and expression transiently increased following ovarian cancer cell
61 detachment and in tumor cells derived from malignant ascites of high-grade serous
62 adenocarcinoma patients. Mechanistically, SIRT3 prevents mitochondrial superoxide surges in
63 detached cells by regulating the manganese superoxide dismutase SOD2. This mitochondrial
64 stress response is under dual regulation by SIRT3. SIRT3 rapidly increases SOD2 activity as an
65 early adaptation to cellular detachment, which is followed by SIRT3-dependent transcriptional
66 increases in SOD2 during sustained anchorage-independence. In addition, SIRT3 inhibits
67 glycolytic capacity in anchorage-independent cells thereby contributing to metabolic changes in
68 response to detachment. While manipulation of SIRT3 expression has few deleterious effects
69 on cancer cells in attached conditions, SIRT3 up-regulation and SIRT3-mediated oxidant
70 scavenging following matrix detachment are required for anoikis resistance *in vitro*, and both
71 SIRT3 and SOD2 are necessary for colonization of the peritoneal cavity *in vivo*. Our results
72 highlight the novel context-specific, pro-metastatic role of SIRT3 in ovarian cancer.

73 **Introduction**

74 Epithelial ovarian cancer (EOC) remains the most deadly gynecological malignancy, with
75 a five year survival rate of less than 29% for patients diagnosed with advanced stage metastatic
76 disease [1]. During transcoelomic spread the peritoneal fluid facilitates the dissemination of
77 detached ovarian cancer cells to peritoneal cavity organs, including the omentum [2, 3]. This is
78 evident by malignant ascites accumulation in most advanced stage patients [3]. Thus evasion of
79 anchorage-independent cell death (anoikis) upon detachment from the primary tumor is a likely
80 critical step for ovarian cancer metastasis [4]. A feature of anoikis is the surge in oxidative stress
81 elicited by cell detachment. Adaptations to oxidative stress are therefore necessary for
82 successful hematological metastatic spread, as demonstrated in melanoma and breast cancer
83 [5-7]. Moreover, administration of compounds that facilitate oxidant scavenging, such as N-
84 acetyl-cysteine, can promote metastasis *in vivo* [8]. However, it remains largely unexplored if
85 adaptations to oxidative stress are required by ovarian cancer cells for successful transcoelomic
86 metastasis.

87 Contradicting the need of tumor cells for oxidant scavenging is the observation that
88 expression of the nutrient stress sensor and regulator of mitochondrial antioxidant defenses, the
89 Sirtuin deacetylase SIRT3 [9-12], is suppressed in many primary tumors [13-17]. Moreover,
90 several studies have demonstrated that SIRT3 knock-down promotes proliferation and
91 tumorigenesis in tumor models of breast [12, 18], mantle cell lymphoma [19] and liver cancer
92 [16], promoting investigators to initially characterize SIRT3 as a tumor suppressor. However, it
93 is becoming increasingly clear that the role of SIRT3 in tumor biology is complex [17, 20, 21].
94 Pro-tumorigenic properties of SIRT3 have conversely been reported in oral squamous cell
95 carcinoma [22], and colorectal cancer [23], with increased SIRT3 expression being associated
96 with poor outcome in colon and non-small cell lung cancer patients [17]. In addition, SIRT3
97 promotes glioblastoma multiforme (GBM) stem cell viability [24], and is an important component
98 of the mitochondrial unfolded protein response (mtUPR) necessary for breast cancer metastasis

99 [25]. The latter function of SIRT3 is being attributed to its role as a regulator of the antioxidant
100 response required for tumor cell survival and metastasis.

101 Although, previous reports have demonstrated that SIRT3 exerts anti-proliferative and
102 anti-migratory effects on ovarian cancer cells [26, 27], the role of SIRT3 during ovarian cancer
103 transcoelomic spread has not been investigated. Moreover, when and where SIRT3 is
104 expressed during tumor progression remains unknown. We discovered that SIRT3 is
105 upregulated in a context-dependent manner in ovarian cancer cells, and indeed has a specific
106 pro-metastatic role, by supporting anchorage-independent survival. While SIRT3 expression is
107 low in primary ovarian tumors and knock-down of its expression has no deleterious
108 consequences in attached proliferating conditions, we demonstrate that SIRT3 activity and
109 transcription are specifically induced in response to anchorage-independence, and that this
110 transient increase results in the activation of the mitochondrial antioxidant SOD2, which is
111 necessary for anchorage-independent survival and peritoneal colonization *in vivo*. These
112 findings provide important evidence of the function of SIRT3 in ovarian cancer, and clarify
113 several contradictory findings associated with the role and expression of SIRT3 in cancer
114 progression.

115 **Results**

116

117 **SIRT3 expression increases in a context-dependent manner during ovarian cancer**
118 **metastasis and is induced in response to matrix detachment.**

119 Expression analysis of primary ovarian tumors and matching cells derived from
120 malignant ascites, and omental and peritoneal metastatic lesions from a publicly available data
121 set (GEO:GSE85296) revealed that SIRT3 levels are heterogeneous in tissues representing
122 different stages of transcolomic metastatic spread (**Fig. 1A**). While SIRT3 levels were lowest in
123 primary ovarian tumors, highest SIRT3 expression was found in cells derived from malignant
124 ascites. In two of four patient samples, the increase in SIRT3 expression was maintained in
125 omental and peritoneal metastatic lesions, while in the other cases SIRT3 expression reverted
126 to levels observed in primary tumors of the ovary. These data suggest that detachment induces
127 transient increases in SIRT3 expression in malignant ascites.

128 We next tested if a loss of matrix attachment induces SIRT3 expression. Consistently,
129 we found that SIRT3 expression increased when ovarian cancer cell lines (**Fig. 1B**), and
130 ascites-derived primary epithelial ovarian cancer cells (EOCs, **Fig. 1C**) from Stage III and IV
131 high grade serous adenocarcinoma patients were cultured under anchorage-independence in
132 ultra-low attachment (ULA) dishes. RNA expression analysis of EOCs from a separate patient
133 cohort revealed that SIRT3, SIRT1 and SIRT4 were the only members of the sirtuin gene family
134 responsive to mRNA increases when maintained in anchorage-independent conditions (**Fig.**
135 **1D**). Interestingly, the transient increase in SIRT3 expression observed in patient ascites (**Fig.**
136 **1A**) could be recapitulated in 2/3 cell lines tested, where SIRT3 expression reverted to basal
137 levels following cell re-attachment (**Fig. 1E&F**). These data highlight that SIRT3 expression in
138 ovarian cancer is transient, and induced in a context-dependent manner in response to matrix
139 detachment.

140

141 **SIRT3 regulates mitochondrial reactive oxygen species scavenging by activating SOD2**
142 **in anchorage-independence.**

143 Matrix detachment elevates cytosolic [6] and mitochondrial reactive oxygen species [28],
144 which are thought to contribute to anoikis of non-transformed epithelial cells [6]. To determine if
145 SIRT3 protects cells from mitochondrial redox stress in anchorage-independence, we monitored
146 MitoSox fluorescence in response to SIRT3 knock-down, using several independent si/shRNAs
147 (**Fig. 2A & Supp. Fig. 1A**). Inhibition of SIRT3 expression increased MitoSox fluorescence in
148 anchorage-independent conditions (**Fig. 2B**), indicating that SIRT3 is necessary to maintain low
149 mitochondrial superoxide (O_2^-) levels following detachment. Interestingly, SIRT3 knock-down
150 had no effect on MitoSox fluorescence in attached conditions (**Supp. Fig. 1B**), suggesting that
151 SIRT3 has a specific role in protecting against mitochondria oxidant stress during anchorage-
152 independence.

153 A major antioxidant target of SIRT3 is manganese superoxide dismutase 2 (SOD2),
154 which is one of three superoxide dismutases in the cell, and the primary enzyme responsible for
155 the dismutation of O_2^- to hydrogen peroxide (H_2O_2) in the mitochondrial matrix. SIRT3 regulates
156 SOD2 at both the transcriptional level, *via* deacetylation and activation of the SOD2 transcription
157 factor FOXO3a [25, 29], and by directly deacetylating and activating SOD2 dismutase activity
158 [9-12]. Concomitant to SIRT3 increases, SOD2 activity and expression were strongly induced in
159 response to detachment of ovarian cancer cell lines (**Fig. 2C**) and patient ascites-derived cells
160 (**Fig. 2D**), indicating that the SIRT3/SOD2 axis is an important adaptation for anchorage-
161 independence.

162 SIRT3 was directly responsible for enhanced SOD2 activity in detached cells, as evident
163 by SIRT3 sh/siRNA mediated knock-down (**Fig. 2E**). This was accompanied by an increase in
164 SOD2 acetylation at lysine 68, specifically in anchorage-independent conditions (**Fig. 2F**).
165 Importantly, we observed that the SIRT3-dependent increase in SOD2 activity is an early

166 response following matrix detachment. SOD2 activity rapidly increased within 2 hours of matrix
167 detachment, prior to detectable changes in *SOD2* transcription, and this early increase in SOD2
168 dismutase activity was abrogated by SIRT3 knock-down (**Fig. 2G, Supp. Fig. 1C**).

169 In addition to this early regulation of SOD2, we observed increased SOD2 expression
170 after 6 hours following matrix detachment, and this was also significantly abrogated by SIRT3
171 knock-down (**Fig. 2H**). Notably, transcript levels of *SIRT3* in patient specimens from GEO data
172 set GSE85296 strongly correlated with *SOD2* levels, where high expression was similarly
173 observed in ascites-derived cells (**Fig. 2I**). These data demonstrate that the mitochondrial O₂⁻
174 scavenger SOD2 is dually regulated by SIRT3 following detachment, and that the SIRT3/SOD2
175 axis is an early adaptation to anchorage-independence.

176

177 **SIRT3 knock-down increases glycolysis in anchorage-independent cells.**

178 Given that SIRT3 has previously been associated with suppression of glycolysis [18, 30],
179 we set out to determine if increased SIRT3 expression alters glycolytic flux following cellular
180 detachment. First, we determined if glucose consumption and lactate production are altered in
181 in detached cells, and found that overall glucose consumption was increased, while relative
182 lactate production to glucose consumption was decreased, compared to attached cells (**Fig.**
183 **3A**). This suggests that cells in anchorage-independence re-route glucose consumption away
184 from lactic acid production. SIRT3 knock-down significantly increased the ratio of lactate
185 production to glucose consumption in detached cells (**Fig. 3B & Supp. Fig. 2**), and assessment
186 of the optical redox ratio of the metabolic coenzymes FAD and NAD(P)H using multiphoton
187 imaging [31] demonstrated a significant decrease in the FAD / [FAD + NAD(P)H] ratio with
188 SIRT3 knock-down in anchorage-independent cells (**Fig. 3C**). To test if the above results
189 indicate that increased SIRT3 expression switches glucose utilization away from lactate
190 production towards Oxidative Phosphorylation, we examined changes in extracellular
191 acidification rate (ECAR) and oxygen consumption rate (OCR) using extracellular flux analysis.

192 As expected, addition of glucose rapidly increased ECAR in both attached and detached cells
193 (**Fig. 3D**). SIRT3 knock-down significantly increased basal glycolytic rate (basal ECAR) in
194 detached cells following glucose addition, while it had no significant effect on basal ECAR in
195 attached conditions (**Fig. 3E**). While cells in anchorage-independence displayed similar basal
196 glycolytic rate, their maximal glycolytic capacity, stimulated by suppression of respiration with
197 the mitochondrial ATP synthase inhibitor Oligomycin A, was significantly decreased compared
198 to attached cells. Moreover, this was reversed when SIRT3 expression was suppressed (**Fig.**
199 **3F**). These data demonstrate that SIRT3 suppresses glycolytic capacity of tumor cells in
200 anchorage-independent conditions.

201 As expected OCR was inhibited in response to glucose addition in attached conditions,
202 as cells use glucose primarily for lactic acid production (**Fig. 3G**). Interestingly, extracellular flux
203 analysis confirmed that detached cells do not utilize glucose primarily for lactate production, and
204 also increase their oxygen consumption in response to glucose addition (**Fig. 3G&H**). While
205 OCR was further suppressed by SIRT3 knock-down in attached cells, large variability in OCR
206 readings between experimental replicates was unable to ascertain if SIRT3 directly inhibits
207 Oxidative Phosphorylation in detached conditions.

208

209 **The SIRT3-dependent oxidant scavenging is necessary for ovarian cancer anchorage-
210 independent survival.**

211 Since we found that SIRT3 is specifically increased upon cell detachment, we tested the
212 necessity of SIRT3 for anchorage-independent survival. Knock-down of SIRT3 significantly
213 increased the fraction of dead cells when OVCA433, SK-OV-3 and OVCAR3 cells were cultured
214 in anchorage-independent conditions (**Fig. 4A, Supp. Fig. 3A**). This was accompanied by an
215 inability of cells to rapidly aggregate into spheroid clusters within 6 hours following detachment
216 (**Supp. Fig. 3B**), and resulted in loosely aggregated OVCA433 cells, and smaller and less
217 uniform SK-OV-3 spheroids by 72 hours of anchorage-independence (**Fig. 4A**). Loss of SIRT3

218 expression increased the fraction of apoptotic cells following matrix detachment, while there was
219 no effect of SIRT3 knock-down on apoptosis in attached conditions, suggesting that SIRT3 is
220 inhibitory to anoikis (**Fig. 4B**). A pro-survival role for SIRT3 was also observed in single cell
221 clonogenic assays. SIRT3 knock-down significantly inhibited colony number, but not average
222 colony size, indicating that SIRT3 knock-down inhibits initial single cell survival and seeding,
223 rather than proliferation (**Fig. 4C**). Accordingly, shRNAs to SIRT3 had no significant impact on
224 cell cycle progression (**Fig. 4D, Supp. Fig. 3C**). Cells in detached conditions had fewer cells in
225 S and G2/M phases of the cell cycle, suggesting that these cells slow their proliferation, as
226 previously demonstrated [32], however this was unaffected by SIRT3 knock-down (**Fig. 4D**).
227 These data demonstrate that SIRT3 is necessary for survival under anchorage-independence
228 by inhibiting anoikis.

229 As expected, SOD2, the target of SIRT3, was similarly necessary for anchorage-
230 independent survival. SOD2 knock-down significantly increased the dead cell fraction and
231 mitochondrial O₂⁻ levels of detached ovarian cancer cells (**Fig. 5A&B, Supp. Fig. 4**). Cell death
232 and MitoSox fluorescence induced by SIRT3 knock-down was successfully rescued with a
233 mitochondrial SOD2 porphyrin mimetic MnTBAP and the glutathione precursor N-acetyl-L-
234 cysteine (NAC; **Fig. 5C&D, Supp. Fig. 5**), indicating that SIRT3-mediated oxidant scavenging is
235 an important pro-survival mechanism for ovarian cancer cells following detachment.

236

237 **SIRT3 and SOD2 are necessary for metastatic colonization of the peritoneal cavity.**

238 Since anchorage-independent survival is a critical step for successful transcoelomic
239 metastasis of ovarian cancer cells in the peritoneal cavity [3, 4], we tested if the increases in
240 SIRT3 and SOD2 specific to detachment are necessary for peritoneal tumor formation *in vivo*.
241 To transiently decrease SIRT3 and SOD2 expression during the anchorage-independent phase,
242 SK-OV-3-luc cells were transfected with siRNAs targeting either SIRT3, SOD2 or a scramble
243 control. Twenty-four hours later cells were detached and 1x10⁶ viable cells suspended in 150 µl

244 PBS immediately injected into the peritoneal cavity of NSG mice (n=8), and tumor establishment
245 monitored by bioluminescence imaging. Either SIRT3 or SOD2 knock-down significantly
246 inhibited peritoneal tumor formation over time (**Fig. 6A-C**). Assessment of the omentum, a major
247 target tissues of metastatic ovarian cancer [33], and a site where the majority of SK-OV-3
248 tumors were detected, revealed that control SK-OV-3 tumor cells replaced most of the
249 adipocytes in this tissue. SIRT3 knock-down, and to a greater extent SOD2 knock-down,
250 resulted in the establishment of fewer tumor nodules in the omentum, suggesting that the loss of
251 these proteins leads to reduced seeding of viable tumor cells, likely as a consequence of
252 increased anoikis during dissemination (**Fig. 6D-H**). The size of individual tumor nodules was
253 not significantly different and varied widely in all experimental groups, although a trend in larger
254 tumors was observed from control scramble siRNA transfected SK-OV-3 tumor cells (**Fig. 6H**).
255 The above data demonstrate that SIRT3 and SOD2 are necessary for successful transcoelomic
256 tumor formation *in vivo*.

257 **Discussion**

258 Here, we present new evidence for the pro-metastatic role of SIRT3 in cancer, and
259 demonstrate that the mitochondrial SIRT3/SOD2 stress response pathway is specifically
260 upregulated in response to cellular detachment (**Fig. 1**), and specifically necessary for
261 anchorage-independent survival and transcoelomic metastasis (**Fig. 4&6**).

262 Similar to several cancers previously reported [13-17], the expression of SIRT3 is low in
263 primary tumors of high-grade serous adenocarcinoma samples from the Cancer Genome Atlas
264 (TCGA). However, contrary to other tumor types, low SIRT3 expression was not associated with
265 a decreased in overall patient survival (**Supp. Fig. 6**). The observation that a decrease in SIRT3
266 expression does not predict an unfavorable patient outcome somewhat contradicts previous
267 reports of the anti-tumorigenic effects of SIRT3 in ovarian cancer cells [26, 27], and highlights
268 that SIRT3 likely plays a dichotomous role during the progression of ovarian cancer. The
269 context-dependent regulation of SIRT3 during ovarian cancer metastatic progression is evident
270 by our findings that SIRT3 expression is significantly increased in cells derived from patient
271 ascites, compared to matching primary ovarian tumor tissue (**Fig. 1**). We propose that this
272 transient regulation addresses the seeming contradiction between SIRT3's anti-proliferative
273 properties and low primary tumor expression, and the role of SIRT3 as an important
274 mitochondrial stress response gene important for cell survival.

275 Few studies have examined the context-specific regulation and function of SIRT3 in
276 cancer. Most work demonstrating the anti-tumor role of SIRT3 was based on discoveries that
277 SIRT3 expression is downregulated in a number of primary tumors, and that this decrease is
278 associated with poor patient survival [13, 14, 16, 17]. The functional consequences of SIRT3
279 loss were mainly assessed in attached cell culture conditions or *in vivo* models testing the role
280 of SIRT3 on primary tumor growth, without assessment of its function in metastatic progression
281 [12, 18, 19]. However, our work and that of others is starting to unravel the complex role and
282 regulation of SIRT3 during cancer progression. While we observed that manipulation of SIRT3

283 expression has few deleterious effects in attached cells, SIRT3 and its downstream target, the
284 mitochondrial O₂⁻ scavenger SOD2 were required for survival following matrix detachment (**Fig.**
285 **4&5**), and this was necessary for successful peritoneal tumor formation *in vivo* (**Fig. 6**).
286 Importantly, we found that the SIRT3-dependent increase in SOD2 activity is an early response
287 to matrix detachment and sustained under long term anchorage-independence through SIRT3-
288 mediated SOD2 transcriptional regulation (**Fig. 2**), likely as a consequence of SIRT3-dependent
289 FOXO3a deacetylation [25, 29]. Concurrent with our findings, SIRT3 has been implicated in
290 anoikis resistance of oral squamous cell carcinoma cells [34], and for the maintenance of
291 mitochondrial ROS scavenging in GBM stem cells [24]. In addition, the SIRT3/FOXO3a/SOD2
292 axis is upregulated as part of the mtUPR and necessary for breast cancer metastasis [25, 35].
293 Moreover, we and others have demonstrated that SOD2 is required by metastatic cells as an
294 adaptation to oxidative stress, for the maintenance of mitochondrial fidelity, and as a regulator of
295 mitochondria redox signaling [20, 36-38].

296 Highlighting the dichotomous role of SIRT3 in cancer is the finding that the SIRT3-
297 dependent regulation of SOD2 is also a previously described mechanism of SIRT3's anti-tumor
298 activity. We find that mitochondrial oxidant scavenging is necessary for anchorage-independent
299 survival, and that both SIRT3 and SOD2 are required for this (**Fig. 4&5**). Conversely, increased
300 oxidant production in *Sirt3* knock-out mice was shown to induce tumor formation when *Sirt3*-/-
301 MEFs were transformed with oncogenes Ras and Myc, as a result of increased DNA oxidation
302 [12]. In addition, the anti-tumor effects of SIRT3 were demonstrated to be related to
303 manipulation of tumor metabolism *via* SIRT3 inhibition of HIF-1 α [18, 30]. The increase in
304 mitochondrial O₂⁻ levels in SIRT3 knock-down cells was shown to result in HIF-1 α protein
305 stabilization as a consequence of prolyl-hydroxylase inhibition, and the increased glycolytic
306 phenotype of SIRT3 knock-down cells associated with this ROS-mediated increase in HIF-1 α -
307 signaling [18, 30]. While we similarly found that SIRT3 suppresses glycolysis, increased HIF-1 α

308 stabilization with SIRT3 loss was a phenotype limited to attached conditions (**Supp. Fig. 7**).
309 HIF-1 α levels remained unaltered following SIRT3 knock-down in anchorage-independence,
310 indicating that the effects of SIRT3 on glycolysis are not coupled to HIF-1 α suppression in this
311 state of tumor metastasis. Several other metabolic enzymes are known SIRT3 targets. For
312 example, activation of IDH2 by SIRT3-dependent deacetylation can shift metabolism from
313 glycolysis to oxidative phosphorylation [39], and the presence of IDH1 and IDH2 is important for
314 survival of anchorage-independent cells by aiding in regeneration of NADPH for glutathione
315 reduction [28]. Moreover, SIRT3 is a known activator of pyruvate dehydrogenase (PDH),
316 resulting in enhanced shuttling of pyruvate into the TCA cycle [40, 41]. It remains to be
317 determined if these enzymes contribute to the suppression of glycolysis elicited by SIRT3
318 expression in anchorage-independence, or if alternate deacetylation targets of SIRT3 have
319 functional roles in this stage of metastasis. As suggested by analysis of lactate levels and
320 extracellular acidification rate measurements (**Fig. 3**), increased glucose uptake in anchorage-
321 independent cells is more uncoupled from lactate production compared to attached cells. It is
322 now well accepted that metabolic flexibility is a hallmark of cancer, allowing cells to cope with
323 fluctuations in nutrient availability during different tumor stages and in response to changing
324 tumor microenvironments. This is evident in anchorage-independent cancer spheroids, which
325 are often enriched in cancer stem cells, and marked by the ability to readily switch their
326 metabolism to induce the pentose phosphate pathway, TCA cycle and oxidative
327 phosphorylation, based on nutrient availability and anabolic demands [6, 42]. As previously
328 reported [32], we also observed a change in cell cycle in detached cells, suggesting that the
329 switch from high lactate production to glucose utilization for other metabolic pathways may be a
330 reflection of a switch from pro-proliferative energy demands in attached cells to pro-survival
331 metabolism in anchorage-independence. The observed suppression of glycolytic capacity by
332 SIRT3 in detached cells requires further attention, and could be an important mechanism for

333 cancer cells to survive metastatic spread in new tumor environments with alternate carbon
334 sources, including the ascites fluid and the adipocyte-rich omentum [43]. In addition, the
335 suppression of glycolytic flux by SIRT3 may be a further survival mechanism to prevent lactic
336 acid toxicity.

337 In conclusion, our data suggest that the rapid and sustained upregulation of SIRT3
338 following matrix detachment is necessary for SOD2-mediated mitochondrial oxidant scavenging
339 to enhance anchorage-independent survival and peritoneal colonization of ovarian cancer cells.
340 Additional consequences of the context specific increase of SIRT3 on metabolic changes likely
341 further aid in transcoelomic spread as a response to changing nutrient environments. Our study
342 highlights the context-dependent role and regulation of SIRT3 in cancer and has important
343 implications for future targeting of this protein for anti-cancer therapies.

344 **Materials and Methods**

345 **GEO data set.** GEO data set GSE85296 was examined using GEO2R (NCBI) to
346 determine SIRT3 and SOD2 expression in matching ovarian, peritoneal, omental and ascites
347 specimens from four ovarian serous adenocarcinoma patients.

348 **Cell lines and cell culture conditions.** OVCA433 and OVCA420 cells were provided
349 by Dr. S.K. Murphy (Duke University). ES-2 and NIH-OVCAR3 cells were purchased from
350 American Type Culture Collection (CRL-1978, HTB-161; ATCC Manassas, VA). OVCA433,
351 OVCA420 and OVCAR3 cells were cultured in RPMI media supplemented with 10% FBS.
352 Luciferase expressing SK-OV-3-Luc cells were from the Japanese Collection of Research
353 Bioresources Cell Bank and cultured in McCoy's 5A medium with 10% FBS. All cells were
354 maintained at 37°C with 5% CO₂. Cell authentication was carried out by the commercial provider
355 or in-house through STR genotyping. In rescue experiments cells were co-treated with the
356 Manganese Porphyrin O₂⁻ scavenger ortho tetrakis(N-n-butoxyethylpyridinium-2-yl) porphyrin
357 (MnTnBuOE-2-PyP5+), provided by Dr. Ines Batinic Haberle (Duke University), or with N-acetyl-
358 L-cysteine (Sigma), for indicated times and doses.

359 **Culturing cells in ULA plates.** Cells were trypsinized, counted, and equal viable cells
360 seeded in 6-well Ultra Low Attachment (ULA; Corning) plates (1x10⁵ cells/2 mL/well) for RNA
361 and protein extraction. For live/dead and MitoSOX staining, cells were seeded 1x10³ cells/200
362 µL/well in 96-well round-bottom ULA plates.

363 **EOC specimens from patient ascites.** Ascites specimens from patients diagnosed with
364 high grade serous adenocarcinoma (Stage III-IV) were collected at the Penn State Cancer
365 Institute (Hershey, PA) and the London Health Sciences Centre (London, Ontario), with
366 approval granted from the Penn State College of Medicine and Western University Ontario
367 institutional research ethics boards, respectively. EOCs were isolated from ascites, as
368 previously described [44], and maintained in culture at 37°C, 5% CO₂ in MCDB/M199 medium
369 supplemented with 10% FBS and penicillin/streptomycin. Microarray analysis was carried out on

370 total RNA extracted from EOCs obtained at Western University, as previously described [45],
371 using the Ad-GFP transduced controls. RNA was extracted following culturing for 72 h in ULA
372 plates or from controls grown in attached conditions. Affymetrix Human Genome U133A
373 GeneChip analysis (Santa Clara, CA) was carried out at Precision Biomarker Resources Inc.
374 (Evanston, IL).

375 **Semi-quantitative real-time RT-PCR.** RNA was extracted using the Direct-zol RNA
376 MicroPrep (Zymo Research, R2062) and cDNA synthesized using the iScript cDNA kit (Bio-Rad,
377 1708891). Real-time RT-PCR was performed using the iTaq Universal SYBR Green Supermix
378 (Bio-Rad) and Bio-Rad CFX96 Real-Time PCR System. Relative SIRT3 mRNA expression was
379 normalized to the geometric mean of 4 housekeeping genes: HPRT1, TBP, 18S, and GAPDH,
380 and data analyzed using the $\Delta\Delta Ct$ method. The following primers were used: SIRT3-sense (S):
381 5'-AGCCCTCTTCATGTTCCGAAGTGT-3'; SIRT3-antisense (AS): 5'-
382 TCATGTCAACACCTGCAGTCCCTT-3'; HPRT1-S: 5'-TGACCTTGATTATTTCAGCTAACC-3';
383 HPRT1-AS: 5'-CGAGCAAGACGTTCAGTCCT-3' ; TBP-S: 5'-TTGGGTTTCCAGCTAAGTTCT-
384 3'; TBP-AS: 5'-CCAGGAAATAACTCTGGCTCA-3'; 18S-S: 5'-AGAACCGGCTACCACATCCA-
385 3'; 18S-AS: 5'-CACCAAGACTTGCCTCCA-3'
386 GAPDH-S: 5'-GAGTCAACGGATTGGTCGT-3'; GAPDH-AS: 5'-
387 TTGATTGGAGGGATCTCG-3'. SOD2-S: 5'-TCCACTGCAAGGAACAAACAG-3'
388 SOD2-AS: 5'-CGTGGTTACTTTGCAAGC-3'.

389 **RNA interference.** Short hairpin RNA (shRNA) with non-targeting scramble sequence
390 (5'-GCACTACCAGAGCTAACTCAGATAGTACT-3') or targeting SIRT3 sequences
391 (shSIRT3_#1: 5'- GTACAGCAACCTCCAGCAGTACGATCTCC-3'; shSIRT3_#2: 5'-
392 AACCGAAATATGTGAACTGAGTGGACACC-3'; shSIRT3_#3: 5'-
393 TCTTCACTCTGCTGAAGCTCTTAATGGAA-3'; shSIRT3_#4: 5'-
394 TCACATTCTGTTGACTCTCCATACTCAGC-3') in pRS vector (Origene, TR309432) were used
395 to stably transfect OVCA433 cells (**Supp. Fig. 1A**). Clones expressing shSIRT3_#2 and

396 shSIRT3_#3 were used for all subsequent experiments. Scramble non-targeting SMARTpool
397 control (D-001810-10-05), SIRT3-specific SMARTpool siRNA oligonucleotides (L-004827-01-
398 0005), SOD2-specific siRNA oligonucleotides (siSOD2_#1: 5'-AAGUAAACCACGAUCGUUA-3',
399 J-009784-06-0005 and siSOD2_#2: 5'-CAACAGGCCUUAUUCCACU-3', J-009784-08-0005)
400 were obtained from Life Technologies and 60pmol/1x10⁵ cells transfected using Lipofectamine
401 RNAiMax.

402 **Immunoblotting.** Lysates were prepared in RIPA buffer supplemented with protease
403 and phosphatase inhibitors, and equal protein separated on tris-glycine SDS-PAGE, followed by
404 transfer to PVDF membranes. Membranes were blocked in 5% milk/TBS/0.1%Tween-20, and
405 incubated overnight at 4°C with the following antibodies: SIRT3 (5490S, Cell Signaling
406 Technology); Histone H3 (9715S, Cell Signaling Technology); SOD2 (ab13533, Abcam);
407 acetyl(K68)-SOD2 (ab137037, Abcam); GAPDH (AM4300, Invitrogen); β-actin (AM4302,
408 Invitrogen); HIF1α antibody (610958, BD). HRP-conjugated secondary antibodies were obtained
409 from GE Healthcare. Blots were visualized on a ChemiDoc MP system (Bio-Rad) using Femto
410 ECL chemiluminescence substrate (Thermo Scientific).

411 **Live/dead staining.** Cell viability was determined by staining cells with 2μM Calcein AM
412 and 4μM ethidium homodimer (Sigma) in PBS for 30 min at 37 °C, followed by imaging on a
413 Keyence BZ-X700 fluorescence microscope and analysis using Image J.

414 **Annexin V and Cell cycle Analysis.** Apoptosis Annexin V and Cell Cycle analysis were
415 performed using a Muse Flow cytometer (Sigma Milipore), according to manufacturer's
416 instructions.

417 **Clonogenicity assay.** Single cell survival clonogenicity assays were performed as
418 previously described [46, 47]. Briefly, 45 cells/well were plated in 12-well cell culture dishes and
419 colonies (≥50 cells/colony) visualizing with 0.05% crystal violet dye.

420 **Mitochondrial Superoxide (O_2^-) Detection.** 5 μ M MitoSOX Red (Invitrogen) was added
421 to cells in HBSS for 30 min followed by washing. Images were captured using a Keyence BZ-
422 X700 fluorescence microscope and fluorescence signal quantified using Image J.

423 **SOD Zymography.** SOD activity was analyzed using zymography, as previously
424 described [48, 49]. Briefly, cells were lysed by sonication in potassium phosphate buffer (pH 7.8,
425 0.1 mM EDTA), and 50 μ g of the proteins resolved by electrophoresis in a 10% non-denaturing
426 polyacrylamide gel. Gels were incubated for 15 min in the dark with 2.5mM nitro blue
427 tetrazolium, 30 mM TEMED, 0.028 mM riboflavin, 50 mM phosphate buffer, pH7.8, followed by
428 washing in H_2O , and visualization of SOD activity by light exposure.

429 **Media Glucose and Lactate Quantification.** Cells were seeded in 6-well adherent or
430 ULA plates (1×10^5 cells/2 mL/well). After 24 h, media were collected by centrifugation and 200
431 μ L analyzed for glucose and lactate content using the YSI 2900D Biochemistry analyzer (Xylem,
432 Yellow Springs, OH), and values corrected for cell numbers.

433 **Optical Redox Ratio imaging.** Anchorage-independent spheroids were imaged using
434 the Nikon A1 MP+ Multi-Photon Microscope system (Nikon Instruments, New York) to assess
435 endogenous fluorescence signals produced by NAD(P)H and FAD, as detailed in Supplemental
436 Methods.

437 **Extracellular flux analysis.** Oxygen consumption rate (OCR) and extracellular
438 acidification rate (ECAR) were measured using a Seahorse XFp Analyzer (Agilent). 24 h prior to
439 the assay cells were seeded at a density of 10,000 cells well into a XFp cell culture plate
440 (attached conditions). Anchorage-independent cells were cultured for 24 h in 96 well round
441 bottom ULA plates, followed by washing in assay media, and transfer of 10 spheroids into each
442 assay well (1,000 cells per spheroid). Basal glycolysis was derived as the difference between
443 ECAR following addition of glucose (10mM) and inhibition of glycolysis by 2-deoxy-glucose
444 (50mM). Glycolytic capacity/maximal ECAR was determined following addition of the
445 mitochondrial ATP synthase inhibitor Oligomycin (1 μ M).

446 **Intraperitoneal *in vivo* xenografts.** SK-OV-3-Luc cells were transfected with scramble,
447 SOD2 or SIRT3 siRNA (Dharmacon, as above). Cells were detached 24 h after transfection,
448 washed, counted and 1x10⁶ viable cells resuspended in 150 μ l of PBS before immediate IP
449 injection into female Nod *scid* gamma mice (NSG, bred in house). Approval for animal studies
450 was sought from the Penn State College of Medicine IACUC prior to study commencement.
451 Luminescence imaging carried out every 2-3 days using an IVIS luminescence imaging system
452 10 min after mice were injected with 10 μ l/g of body weight 15 mg/mL *in vivo* grade D-Luciferin
453 (PerkinElmer). Mice were sacrificed by CO₂ asphyxiation followed by cervical dislocation if they
454 reached AAALAC-defined endpoints, or at day 31 post tumor cell injection. At necropsy organs
455 were preserved in 10% buffered formalin, followed by paraffin embedding, sectioning, and
456 staining with hematoxylin and eosin. Number and size of tumors per longitudinal section of each
457 omentum were imaged by microscopy and quantified in a blinded manner using Image J.

458 **Statistical analysis.** All data are representatives of at least three independent
459 experiments, unless otherwise noted. Data are expressed as mean \pm SEM, and statistical
460 analysis performed using GraphPad Prism Software v8, with statistical tests chosen based on
461 experimental design, as described in figure legends.

462 **Acknowledgements:**

463 We thank Usawadee Dier, Dr. LP Madhubhani Hemachandra, Dr. Sarah Engelberth, Larissa
464 Suparmanto, Sadie Dierschke, and Gina Deiter for technical assistance. We thank Dr. Arati
465 Sharma and Dr. David Claxton (Penn State) for providing PDX animals. We are grateful for Dr.
466 Vonn Walter's advice on TCGA data analysis. MnTnBuOE-2-PyP5+ was kindly provided by Dr.
467 Ines Batinic Haberle (Duke University). OVCA433 and OVCA420 cells were a generous gift
468 from Dr. Susan Murphy (Duke University). This work was supported by NIH grants
469 R00CA143229 (N.H.), R01CA230628 (N.H. & M.K.), S100D018124 (T.A.), by the Rivkin Center
470 for Ovarian Cancer (NH), an equipment grant from Seahorse/Agilent (N.H.), and the Penn State
471 Cancer Institute Developmental Fund Award (N.H.). Collection of ascites was partially supported
472 by DoD Pilot award W81XWH-16-1-0117 (N.H.).

473

474 **Conflict of Interest:**

475 The authors declare no competing financial interests in relation to the work described.

476

477 **Author Contributions:**

478 Y.S.K. and P.G.V. contributed to study design, manuscript writing, and the majority of
479 experimental execution and data analysis. V.M.J. and D.H.S. assisted with cell culture studies.
480 L.C.C. carried out Seahorse experiments. B.L.W. and S.S. contributed to *in vivo* studies and
481 data analysis. C.W.C. and K.M.A. performed YSI experiments. T.A. assisted in multiphoton
482 experiments and performed data analysis. T.G.S. carried out microarray expression and data
483 analysis. J.I.W. performed analysis of tumor sections. N.Y.L. assisted in data interpretation and
484 manuscript editing. R.P. provided patient ascites and tumor cells and assisted in study design.
485 K.M. contributed to conceptual design, data interpretation and writing of the manuscript. N.H.
486 conceived and supervised the study, designed experiments and wrote the manuscript.

487

488 **References**

489 1 Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD *et al.* Ovarian
490 cancer statistics, 2018. *CA Cancer J Clin* 2018; **68**: 284-296.

491

492 2 Sehouli J, Senyuva F, Fotopoulou C, Neumann U, Denkert C, Werner L *et al.* Intra-
493 abdominal tumor dissemination pattern and surgical outcome in 214 patients with
494 primary ovarian cancer. *J Surg Oncol* 2009; **99**: 424-427.

495

496 3 Tan DS, Agarwal R, Kaye SB. Mechanisms of transcoelomic metastasis in ovarian
497 cancer. *The lancet oncology* 2006; **7**: 925-934.

498

499 4 Cai Q, Yan L, Xu Y. Anoikis resistance is a critical feature of highly aggressive ovarian
500 cancer cells. *Oncogene* 2015; **34**: 3315-3324.

501

502 5 Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z *et al.*
503 Oxidative stress inhibits distant metastasis by human melanoma cells. *Nature* 2015; **527**:
504 186-191.

505

506 6 Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY *et al.* Antioxidant
507 and oncogene rescue of metabolic defects caused by loss of matrix attachment. *Nature*
508 2009; **461**: 109-113.

509

510 7 Davison CA, Durbin SM, Thau MR, Zellmer VR, Chapman SE, Diener J *et al.* Antioxidant
511 enzymes mediate survival of breast cancer cells deprived of extracellular matrix. *Cancer*
512 *research* 2013; **73**: 3704-3715.

513

514 8 Le Gal K, Ibrahim MX, Wiel C, Sayin VI, Akula MK, Karlsson C *et al.* Antioxidants can
515 increase melanoma metastasis in mice. *Science translational medicine* 2015; **7**:
516 308re308.

517

518 9 Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative
519 stress by SIRT3-mediated SOD2 activation. *Cell metabolism* 2010; **12**: 662-667.

520

521 10 Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S *et al.* Tumour suppressor SIRT3
522 deacetylates and activates manganese superoxide dismutase to scavenge ROS. *EMBO
523 reports* 2011; **12**: 534-541.

524

525 11 Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H *et al.* Sirt3-mediated
526 deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in
527 response to stress. *Molecular cell* 2010; **40**: 893-904.

528

529 12 Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD *et al.*
530 SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of
531 mitochondrial integrity and metabolism during stress. *Cancer cell* 2010; **17**: 41-52.

532

533 13 McGlynn LM, McCluney S, Jamieson NB, Thomson J, MacDonald AI, Oien K *et al.*
534 SIRT3 & SIRT7: Potential Novel Biomarkers for Determining Outcome in Pancreatic
535 Cancer Patients. *PLoS one* 2015; **10**: e0131344.

536

537 14 Desouki MM, Doubinskaia I, Gius D, Abdulkadir SA. Decreased mitochondrial SIRT3
538 expression is a potential molecular biomarker associated with poor outcome in breast
539 cancer. *Hum Pathol* 2014; **45**: 1071-1077.

540

541 15 Yang B, Fu X, Shao L, Ding Y, Zeng D. Aberrant expression of SIRT3 is conversely
542 correlated with the progression and prognosis of human gastric cancer. *Biochem*
543 *Biophys Res Commun* 2014; **443**: 156-160.

544

545 16 Zhang CZ, Liu L, Cai M, Pan Y, Fu J, Cao Y *et al.* Low SIRT3 expression correlates with
546 poor differentiation and unfavorable prognosis in primary hepatocellular carcinoma. *PLoS*
547 *one* 2012; **7**: e51703.

548

549 17 Zhou Y, Cheng S, Chen S, Zhao Y. Prognostic and clinicopathological value of SIRT3
550 expression in various cancers: a systematic review and meta-analysis. *Onco Targets*
551 *Ther* 2018; **11**: 2157-2167.

552

553 18 Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J *et al.* SIRT3 opposes
554 reprogramming of cancer cell metabolism through HIF1alpha destabilization. *Cancer cell*
555 2011; **19**: 416-428.

556

557 19 Yu W, Denu RA, Krautkramer KA, Grindle KM, Yang DT, Asimakopoulos F *et al.* Loss of
558 SIRT3 Provides Growth Advantage for B Cell Malignancies. *The Journal of biological*
559 *chemistry* 2016; **291**: 3268-3279.

560

561 20 Kim YS, Gupta Vallur P, Phaeton R, Mythreye K, Hempel N. Insights into the
562 Dichotomous Regulation of SOD2 in Cancer. *Antioxidants (Basel)* 2017; **6**.

563

564 21 Alhazzazi TY, Kamarajan P, Verdin E, Kapila YL. SIRT3 and cancer: tumor promoter or
565 suppressor? *Biochimica et biophysica acta* 2011; **1816**: 80-88.

566

567 22 Alhazzazi TY, Kamarajan P, Joo N, Huang JY, Verdin E, D'Silva NJ *et al.* Sirtuin-3
568 (SIRT3), a novel potential therapeutic target for oral cancer. *Cancer* 2011; **117**: 1670-
569 1678.

570

571 23 Wei Z, Song J, Wang G, Cui X, Zheng J, Tang Y *et al.* Deacetylation of serine
572 hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. *Nature
573 communications* 2018; **9**: 4468.

574

575 24 Park HK, Hong JH, Oh YT, Kim SS, Yin J, Lee AJ *et al.* Interplay between TRAP1 and
576 sirtuin-3 modulates mitochondrial respiration and oxidative stress to maintain stemness
577 of glioma stem cells. *Cancer research* 2019.

578

579 25 Kenny TC, Hart P, Ragazzi M, Sersinghe M, Chipuk J, Sagar MAK *et al.* Selected
580 mitochondrial DNA landscapes activate the SIRT3 axis of the UPR(mt) to promote
581 metastasis. *Oncogene* 2017; **36**: 4393-4404.

582

583 26 Xiang XY, Kang JS, Yang XC, Su J, Wu Y, Yan XY *et al.* SIRT3 participates in glucose
584 metabolism interruption and apoptosis induced by BH3 mimetic S1 in ovarian cancer
585 cells. *Int J Oncol* 2016; **49**: 773-784.

586

587 27 Dong XC, Jing LM, Wang WX, Gao YX. Down-regulation of SIRT3 promotes ovarian
588 carcinoma metastasis. *Biochem Biophys Res Commun* 2016; **475**: 245-250.

589

590 28 Jiang L, Shestov AA, Swain P, Yang C, Parker SJ, Wang QA *et al.* Reductive
591 carboxylation supports redox homeostasis during anchorage-independent growth.
592 *Nature* 2016; **532**: 255-258.

593

594 29 Rangarajan P, Karthikeyan A, Lu J, Ling EA, Dheen ST. Sirtuin 3 regulates Foxo3a-
595 mediated antioxidant pathway in microglia. *Neuroscience* 2015; **311**: 398-414.

596

597 30 Bell EL, Emerling BM, Ricoult SJ, Guarente L. SirT3 suppresses hypoxia inducible factor
598 1alpha and tumor growth by inhibiting mitochondrial ROS production. *Oncogene* 2011;
599 **30**: 2986-2996.

600

601 31 Hou J, Williams J, Botvinick EL, Potma EO, Tromberg BJ. Visualization of Breast Cancer
602 Metabolism Using Multimodal Nonlinear Optical Microscopy of Cellular Lipids and Redox
603 State. *Cancer research* 2018; **78**: 2503-2512.

604

605 32 Correa RJ, Peart T, Valdes YR, DiMattia GE, Shepherd TG. Modulation of AKT activity
606 is associated with reversible dormancy in ascites-derived epithelial ovarian cancer
607 spheroids. *Carcinogenesis* 2012; **33**: 49-58.

608

609 33 Kenny HA, Lal-Nag M, White EA, Shen M, Chiang CY, Mitra AK *et al.* Quantitative high
610 throughput screening using a primary human three-dimensional organotypic culture
611 predicts in vivo efficacy. *Nature communications* 2015; **6**: 6220.

612

613 34 Kamarajan P, Alhazzazi TY, Danciu T, D'Silva N J, Verdin E, Kapila YL. Receptor-
614 interacting protein (RIP) and Sirtuin-3 (SIRT3) are on opposite sides of anoikis and
615 tumorigenesis. *Cancer* 2012; **118**: 5800-5810.

616

617 35 Kenny TC, Craig AJ, Villanueva A, Germain D. Mitohormesis Primes Tumor Invasion
618 and Metastasis. *Cell Rep* 2019; **27**: 2292-2303 e2296.

619

620 36 Hempel N, Carrico PM, Melendez JA. Manganese superoxide dismutase (Sod2) and
621 redox-control of signaling events that drive metastasis. *Anti-cancer agents in medicinal*
622 *chemistry* 2011; **11**: 191-201.

623

624 37 Hemachandra LP, Shin DH, Dier U, Iuliano JN, Engelberth SA, Uusitalo LM *et al.*
625 Mitochondrial Superoxide Dismutase Has a Protumorigenic Role in Ovarian Clear Cell
626 Carcinoma. *Cancer research* 2015; **75**: 4973-4984.

627

628 38 Connor KM, Hempel N, Nelson KK, Dabiri G, Gamarra A, Belarmino J *et al.* Manganese
629 superoxide dismutase enhances the invasive and migratory activity of tumor cells.
630 *Cancer research* 2007; **67**: 10260-10267.

631

632 39 Zou X, Zhu Y, Park SH, Liu G, O'Brien J, Jiang H *et al.* SIRT3-Mediated Dimerization of
633 IDH2 Directs Cancer Cell Metabolism and Tumor Growth. *Cancer research* 2017; **77**:
634 3990-3999.

635

636 40 Ozden O, Park SH, Wagner BA, Yong Song H, Zhu Y, Vassilopoulos A *et al.* SIRT3
637 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. *Free radical*
638 *biology & medicine* 2014; **76**: 163-172.

639

640 41 Jing E, O'Neill BT, Rardin MJ, Kleinridders A, Ilkeyeva OR, Ussar S *et al.* Sirt3 regulates
641 metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation.
642 *Diabetes* 2013; **62**: 3404-3417.

643

644 42 Emmings E, Mullany S, Chang Z, Landen CN, Jr., Linder S, Bazzaro M. Targeting
645 Mitochondria for Treatment of Chemoresistant Ovarian Cancer. *International journal of*
646 *molecular sciences* 2019; **20**.

647

648 43 Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR *et al.*
649 Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor
650 growth. *Nat Med* 2011; **17**: 1498-1503.

651

652 44 Shepherd TG, Theriault BL, Campbell EJ, Nachtigal MW. Primary culture of ovarian
653 surface epithelial cells and ascites-derived ovarian cancer cells from patients. *Nat Protoc*
654 2006; **1**: 2643-2649.

655

656 45 Peart TM, Correa RJ, Valdes YR, Dimattia GE, Shepherd TG. BMP signalling controls
657 the malignant potential of ascites-derived human epithelial ovarian cancer spheroids via
658 AKT kinase activation. *Clinical & experimental metastasis* 2012; **29**: 293-313.

659

660 46 Dier U, Shin DH, Hemachandra LP, Uusitalo LM, Hempel N. Bioenergetic analysis of
661 ovarian cancer cell lines: profiling of histological subtypes and identification of a
662 mitochondria-defective cell line. *PLoS one* 2014; **9**: e98479.

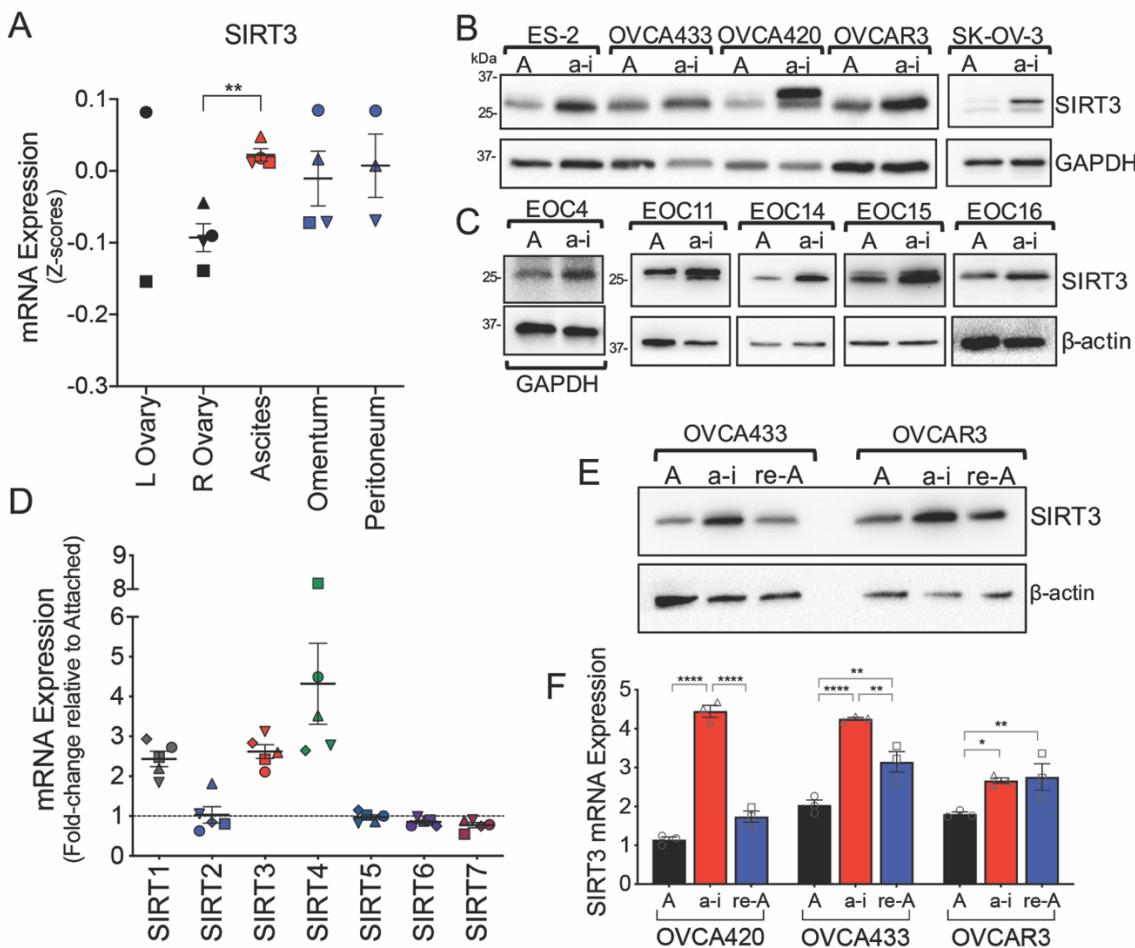
663

664 47 Worley BL, Kim YS, Mardini J, Zaman R, Leon KE, Vallur PG *et al.* GPx3 supports
665 ovarian cancer progression by manipulating the extracellular redox environment. *Redox*
666 *biology* 2018.

667

668 48 Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay
669 applicable to acrylamide gels. *Anal Biochem* 1971; **44**: 276-287.

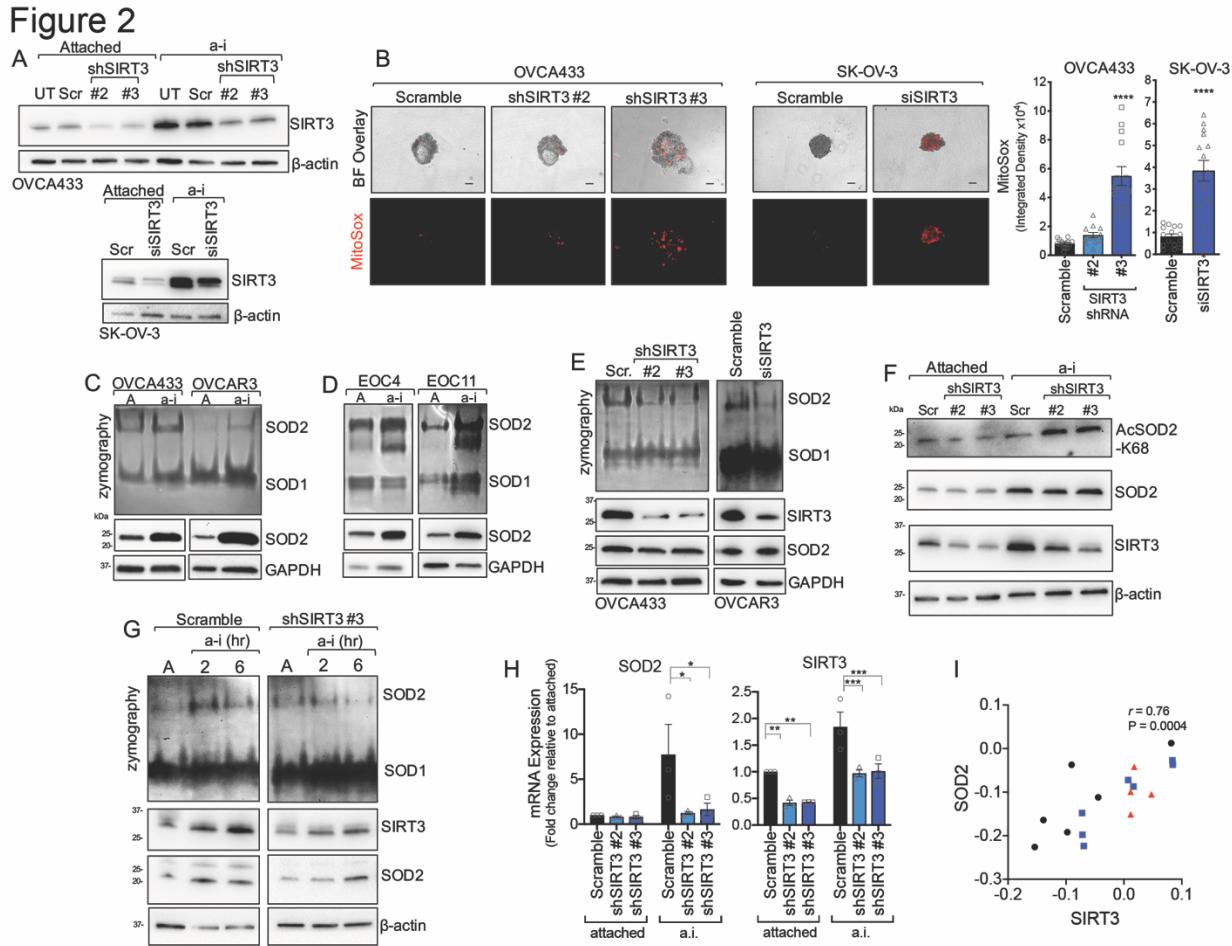
670


671 49 Hempel N, Ye H, Abessi B, Mian B, Melendez JA. Altered redox status accompanies
672 progression to metastatic human bladder cancer. *Free radical biology & medicine* 2009;
673 **46**: 42-50.

674

675

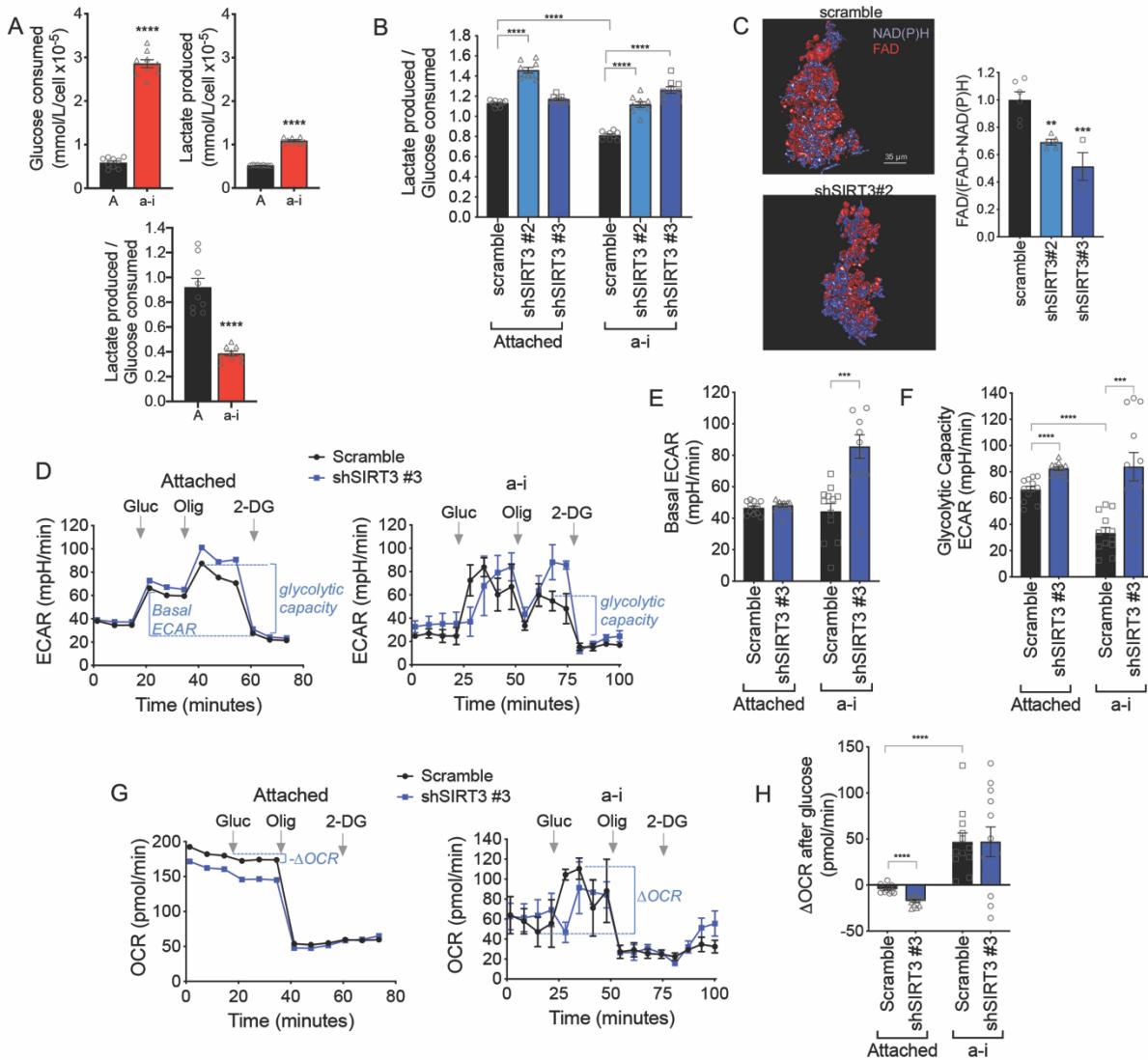
676 **Figures and Legends**


Figure 1

677

678 **Figure 1: Ovarian cancer SIRT3 expression is context-dependent, and increases in**
679 **response to anchorage-independence. A.** SIRT3 mRNA expression in tumor samples from
680 primary tumors of the ovary, matching ascites, and omental and peritoneal metastatic lesions
681 (Geo:GSE85296, n=4, mean expression at each site per patient shown, repeated measures
682 ANOVA P = 0.047, Dunnett's multiple comparison test **P = 0.005). **B.** Ovarian cancer cell lines
683 were cultured in anchorage-independent (a-i) conditions using ultra low attachment (ULA) plates
684 for 72 h, and SIRT3 protein expression compared to cell cultures in attached (A) conditions
685 using western blotting. **C.** Epithelial ovarian cancer cells (EOCs) were derived from ascites of
686 Stage III and IV high grade serous adenocarcinoma patients and cultured in attached or a-i

687 conditions for 72 h. SIRT3 expression was assessed as in B. **D.** mRNA levels of sirtuin family
688 members were assessed using U133 microarray after EOCs derived from patient ascites (n=5)
689 were cultured in a-i conditions for 72 h as described in [45]. mRNA levels are expressed relative
690 to cells grown in attached conditions. **E.** SIRT3 protein expression was assessed by western
691 blotting of lysates from attached cell cultures (A), cells maintained for 24 h in ULA plates (a-i)
692 and 24 hours following re-attachment (re-A). **F.** SIRT3 mRNA expression was assessed by
693 semi-quantitative real time RT-PCR following cell culturing as in F, and expressed relative to
694 OVCA420 in attached conditions (n=3; two-way ANOVA, Tukey's multiple comparison test
695 *P<0.05, **P<0.001, ****P<0.0001).

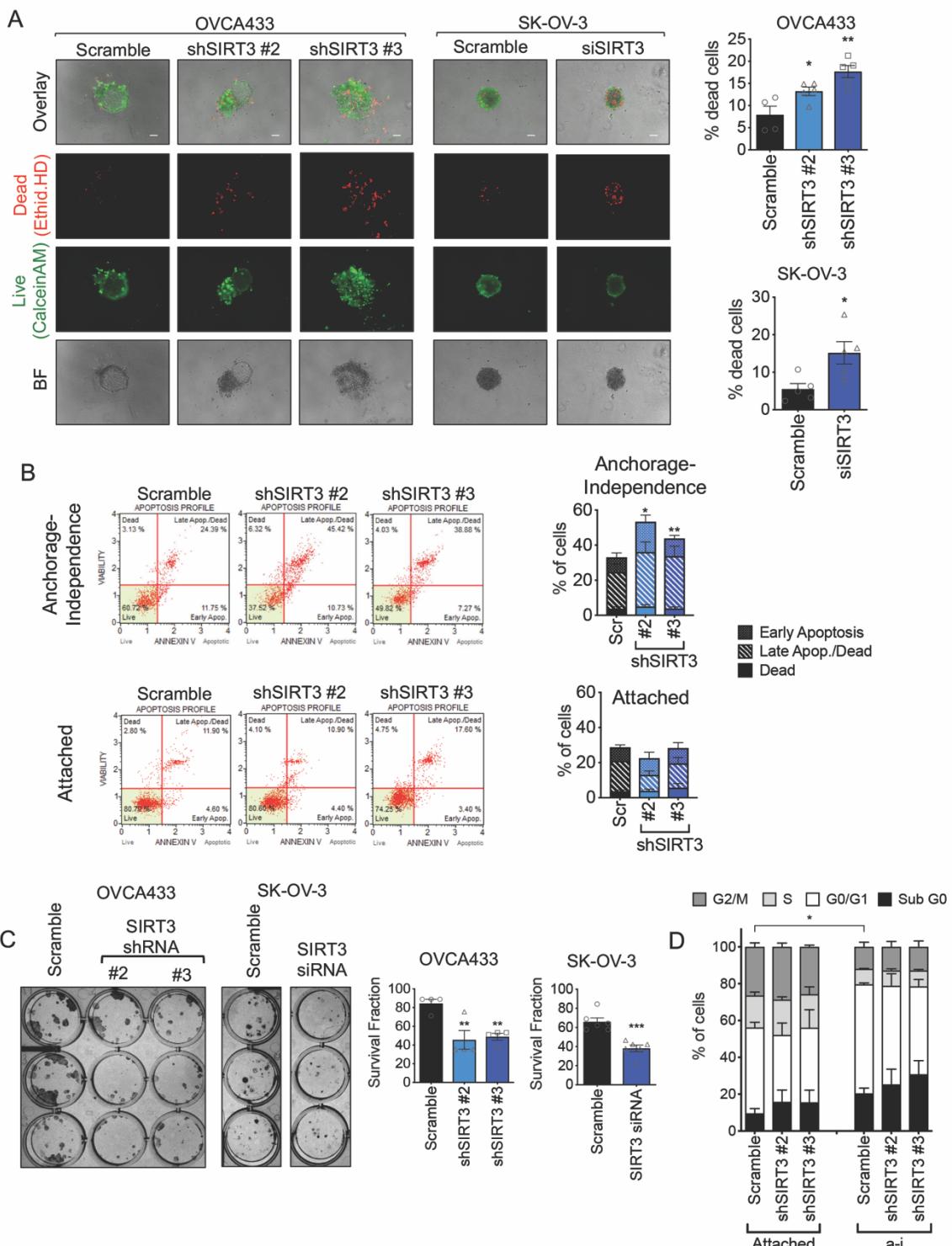


696

697 **Figure 2: SIRT3 maintains superoxide (O_2^-) scavenging in anchorage-independent**
698 **conditions by activating SOD2. A.** SIRT3 expression was inhibited using stable shRNA
699 transfection of OVCA433 cells or transient delivery of siRNA in SK-OV-3 (UT, un-transfected;
700 Scr, scramble control). **B.** SIRT3 knock-down increases oxidation and fluorescence of the
701 mitochondrial O_2^- probe MitoSox in ULA cultured OVCA433 (A) and SK-OV-3 (B) ovarian
702 cancer cells. Quantification of MitoSox signal (n=12-14 \pm SEM; OVCA433: one-way ANOVA
703 P<0.0001, Tukey's multiple comparisons test ****P<0.0001, **P=0.001; SK-OV-3: unpaired t-
704 test ****P<0.0001, scale bar = 100 μ m). **C&D.** Ovarian cancer cell lines (C) and patient ascites-
705 derived epithelial ovarian cancer cells (EOC, D) were cultured in anchorage-independent (a-i)
706 conditions for 72 h using ultra low attachment (ULA) plates. SOD2 activity was assessed by in

707 gel zymography and compared to cell cultures in attached (A) conditions. **E.** shRNA and siRNA-
708 mediated SIRT3 knock-down inhibits SOD2 activity in ULA cultured (72 h) ovarian cancer cells,
709 assessed by SOD zymography. **F.** SIRT3 knock-down increases SOD2 acetylation at lysine 68
710 in OVCA433 cells cultured in a-i conditions. **G.** SOD2 activity is induced within 2 h of matrix
711 detachment in a SIRT3-dependent manner. SOD2 activity was assessed by zymography in
712 attached (A) OVCA433 cells and cells cultured for 2 or 6 h in anchorage-independence (a-i). **H.**
713 SIRT3 knock-down inhibits SOD2 transcription in a.i.. mRNA expression was assessed by semi-
714 quantitative real time RT-PCR following cell culturing in ULA plates for 24 h. Data expressed
715 relative to expression in scramble transfected cells in attached conditions (n=3; two-way
716 ANOVA, Dunnett's multiple comparison test *P<0.05, **P<0.01, ***P<0.001). **I.** Positive
717 correlation between SIRT3 and SOD2 mRNA expression in tumor tissues derived from primary
718 ovarian tumors (●), ascites (▲), and peritoneal or omental lesions (■; Geo:GSE85296, Pearson
719 correlation).

Figure 3

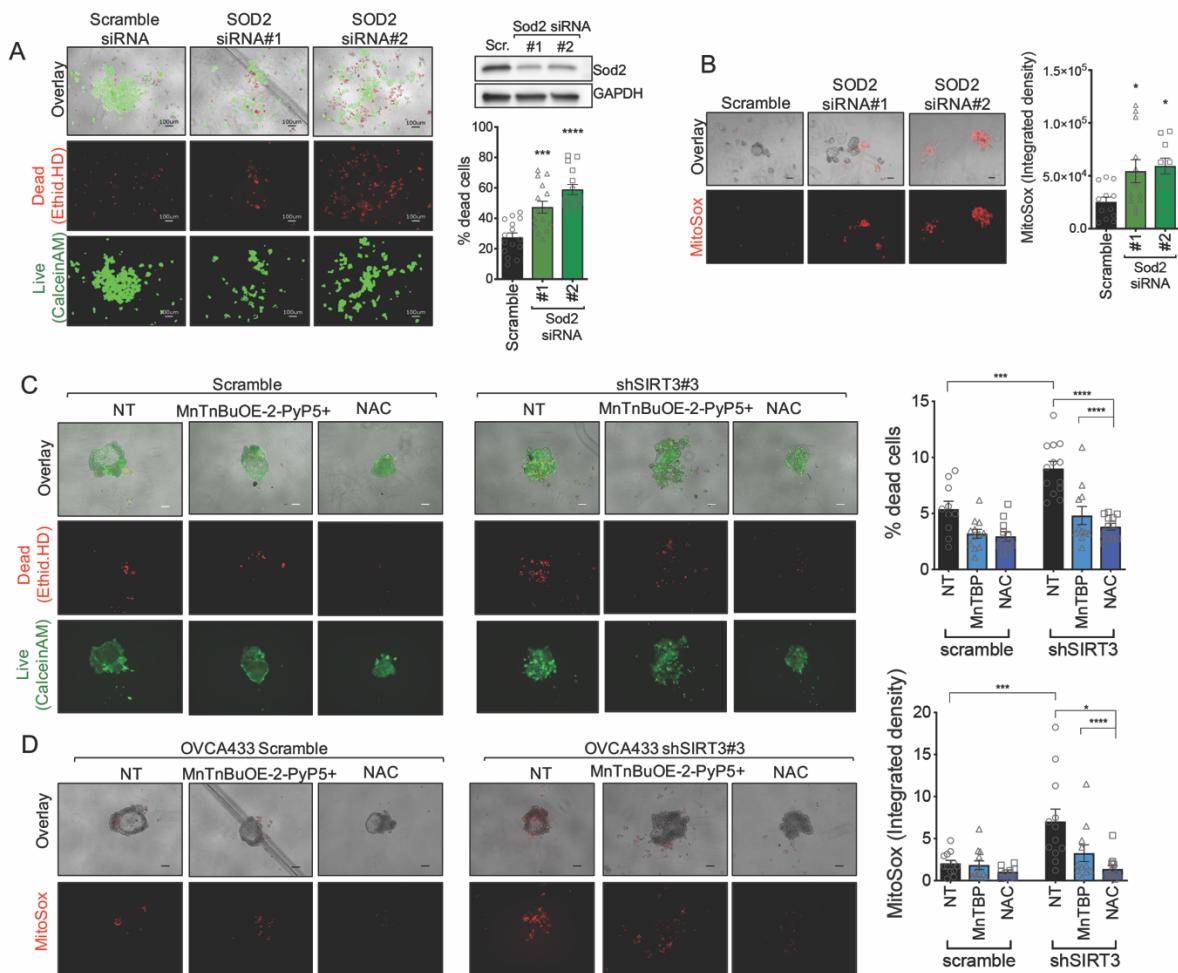

720

721 **Figure 3: SIRT3 suppresses the glycolytic capacity of anchorage-independent (a-i) cells.**

722 **A.** OVCA433 a-i cultured cells (24 h) consume more glucose per cell compared to attached
 723 cells, but produce less lactate relative to glucose consumed ($n=9 \pm \text{SEM}$; unpaired t-test
 724 $****P<0.0001$). **B.** SIRT3 knock-down shifts OVCA433 cells towards enhanced lactate
 725 production relative to glucose consumption ($n=9 \pm \text{SEM}$; one-way ANOVA $P=0.01$, Tukey's
 726 multiple comparisons test $****P<0.0001$). **C.** The optical redox ratio FAD / FAD + NAD(P)H is
 727 decreased in a-i conditions following SIRT3 knock-down in OVCA433 ($n=3-5$; unpaired t-test

728 *P=0.04). **D.** Extracellular Acidification Rates (ECAR) were measured in attached and a-i
729 OVCA433 cells using a Seahorse XFp extracellular flux analyzer. One representative
730 experiment shown (n=3). 10mM glucose (Gluc), 1 μ M Oligomycin A (Oligo) and 50mM 2-
731 Deoxyglucose (2-DG) were added at indicated times. **E. & F.** SIRT3 knock-down increases
732 basal ECAR/Glycolysis (E) and Glycolytic Capacity (F). **G.** Oxygen Consumption rate (OCR)
733 was monitored simultaneously as in D. were determined as a change in ECAR or OCR following
734 addition of Glucose, respectively. **H.** Attached cells display a decrease in OCR, while cells in a-i
735 significantly increase their OCR following glucose addition. (E, F & H, n=12; ***P<0.001,
736 *****P<0.0001)

Figure 4



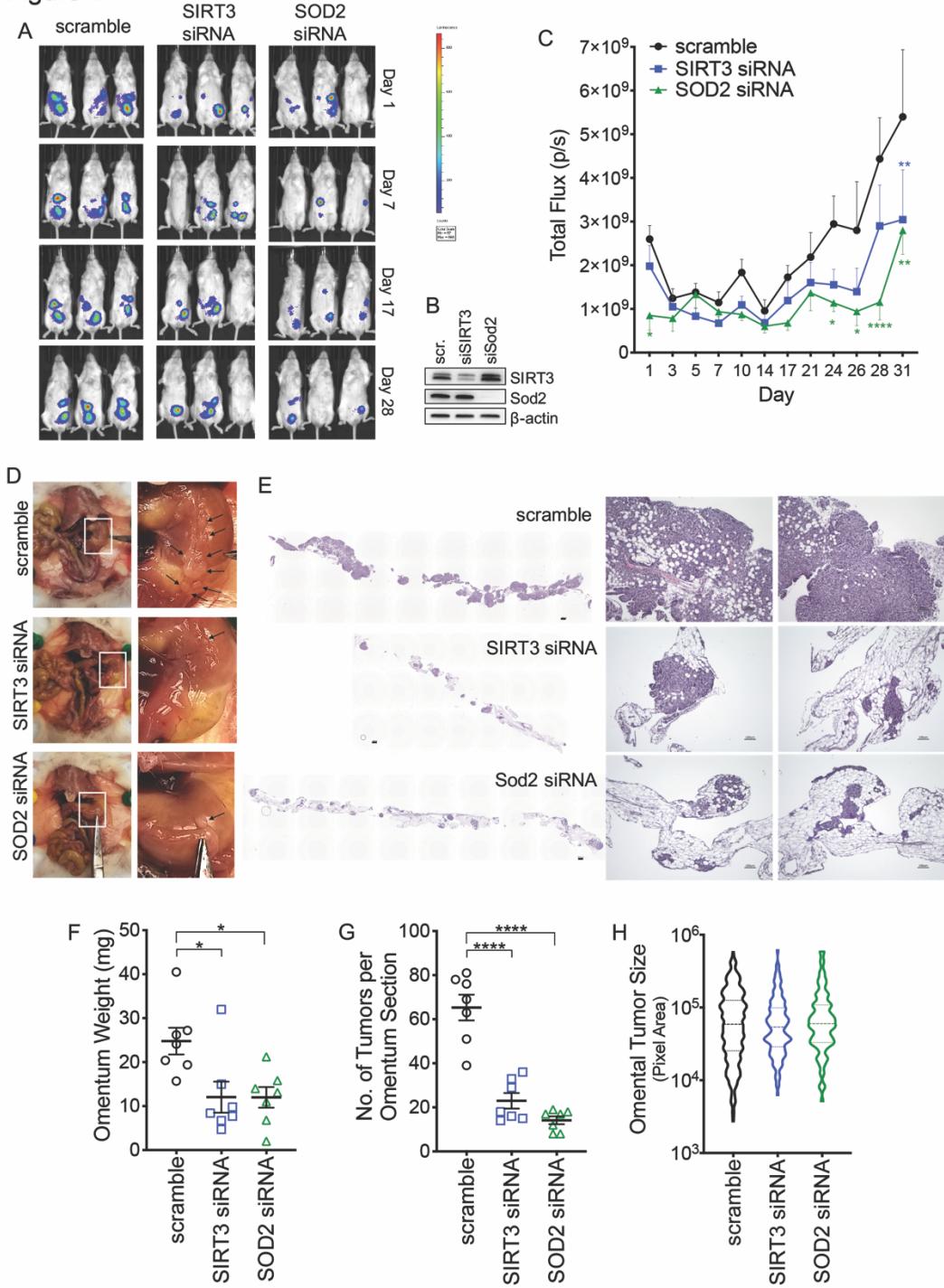
737

738 **Figure 4: SIRT3 expression is required for anchorage-independent ovarian cancer cell**
739 **survival. A.** SIRT3 knock down increases the dead cell fraction of cells in anchorage-

740 independent (a-i) spheroid aggregates, when cultured in ULA plates for 72 h. Cells were stained
741 with Ethidium homodimer (dead cells) and Calcein AM (live cells) and fractions of live and dead
742 cells quantified (n=4; OVCA433: one-way ANOVA P=0.002, Tukey's multiple comparison test
743 *P=0.04, **P=0.001; SK-OV-3: unpaired t-test *P=0.019; scale bar = 100 μ m). **B.** SIRT3 knock-
744 down increases the apoptotic fraction of cells cultured for 24 h in anchorage-independence, but
745 not in attached conditions. Apoptosis was assessed by Annexin V (n=4-5 experimental
746 replicates; repeated measures ANOVA of total dead cell fraction, a-i: P=0.008, Attached: not
747 significant; Bonferroni's multiple comparison test *P<0.05, **P<0.01). **C.** SIRT3 knock-down
748 inhibits single cell clonogenic survival (n=4-6; OVCA433: one-way ANOVA P=0.005, Tukey's
749 multiple comparison test **P<0.01; SK-OV-3: unpaired t-test *P=0.0004). **D.** SIRT3 knock-down
750 does not significantly affect cell cycle progression in either attached or a-i cultured OVCA433
751 cells. (a-i, 24 h, n=3 experimental replicates; Two-way ANOVA, Tukey's post-test *P=0.036,
752 comparison of G0/G1).

Figure 5

753

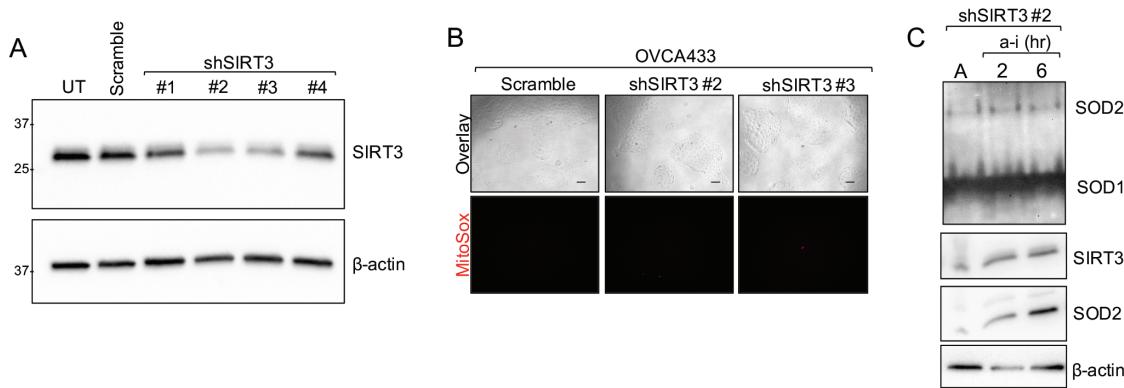

754 **Figure 5: SOD2 and oxidant scavenging are required for anchorage-independent survival.**

755 **A.** SOD2 knock-down increases the dead cell fraction of OVCA433 cells in anchorage-
 756 independent (a-i) spheroid aggregates, when cultured in ULA plates for 72 h. Cells were stained
 757 with Ethidium homodimer (dead cells) and Calcein AM (live cells) and fractions of live and dead
 758 cells quantified (n=15; one-way ANOVA P<0.0001, Tukey's multiple comparison test
 759 ***P=0.0003, ****P<0.0001). SOD2 expression was inhibited using siRNA in OVCA433 cells
 760 (Scr, scramble control) **B.** SOD2 knock-down increases oxidation and fluorescence of the
 761 mitochondrial O₂⁻ probe MitoSox in ULA cultured OVCA433 cells (n=10-12; one-way ANOVA
 762 P=0.01, Tukey's multiple comparisons test *P<0.05). **C.** Co-treatment of cells with 10μM

763 MnTBAP or 2mM NAC rescues OVCA433 cell viability following siRNA mediated SIRT3 knock-
764 down; and **D.** results in decreased mitochondrial MitoSox oxidation (72 h a-i; n=12-15; \pm SEM;
765 OVCA433: one-way ANOVA P<0.0001, Tukey's multiple comparisons test ****P<0.0001,
766 **P=0.001; SK-OV-3: unpaired t-test ****P<0.0001).

767

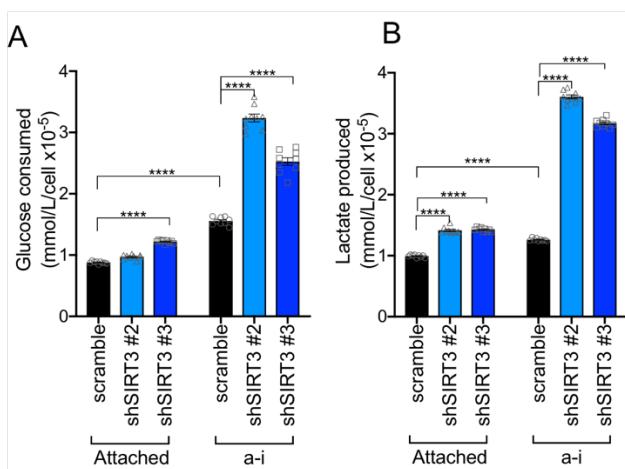
Figure 6


768

769 **Figure 6: SIRT3 and SOD2 are required for successful metastasis to the omentum. A.**

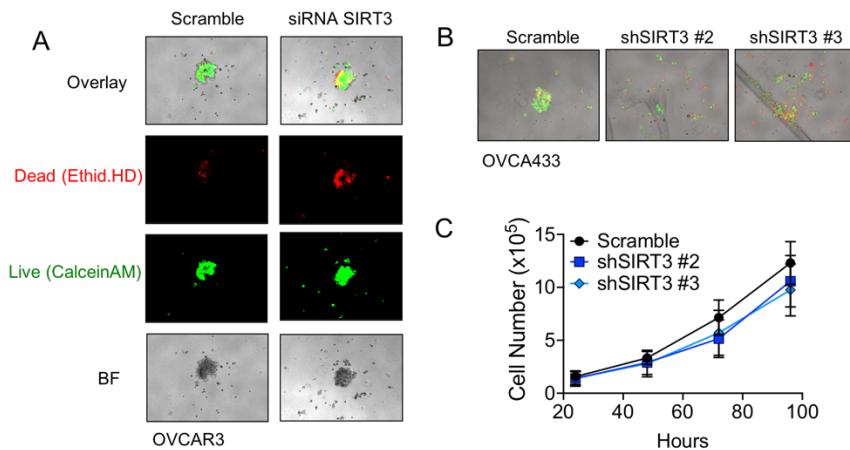
770 Representative tumor luminescence images of NSG mice injected with SK-OV-3-luciferase cells
771 transfected with either scramble siRNA, siRNA targeting SIRT3 or SOD2. **B.** Western blot

772 demonstrating knock down of SIRT3 and SOD2 three days after transfection. **C.** Quantification
773 of whole animal tumor luminescence over time (n=7-8; Mixed-design ANOVA P=0.004,
774 Dunnett's post test *P < 0.05, **P < 0.01, ****P < 0.0001). **D.** Assessment of the peritoneal
775 cavity revealed that the majority of SK-OV-3 tumors (black arrows) were localized to the
776 omentum. **E.** H & E staining of omental demonstrates that SIRT3 and SOD2 knock down
777 abrogate tumor burden in the omentum. **F.** SIRT3 and SOD2 knock down decreases omental
778 weight and **G.** number of tumors per longitudinal section of omentum assessed by H & E (One
779 way ANOVA, F: P = 0.01, G: P < 0.0001; Tukey's post test *P < 0.05, P < 0.0001). **H.** Spread of
780 individual omental tumor sizes (violin plot, median + interquartile range).

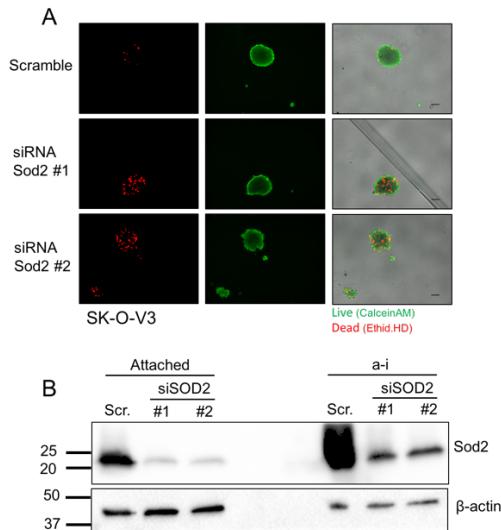

781 **Supplemental Figures**

782

783 **Supplemental Figure 1: A** SIRT3 protein expression knock-down following transient
784 transfection of four shRNAs targeting SIRT3. shRNAs #2 and #3 were chosen for the
785 establishment of OVCA433 stable knock-down cells. **B.** SIRT3 knock-down has little
786 effect on superoxide levels in attached culture conditions, as assessed by MitoSox
787 staining. **C.** SOD2 activity is inhibited by SIRT3 knock-down in early time points of
788 matrix detachment. SOD2 activity was assessed by zymography in attached (A)
789 OVCA433 cells and cells cultured for 2 or 6 h in anchorage-independence (a-i).

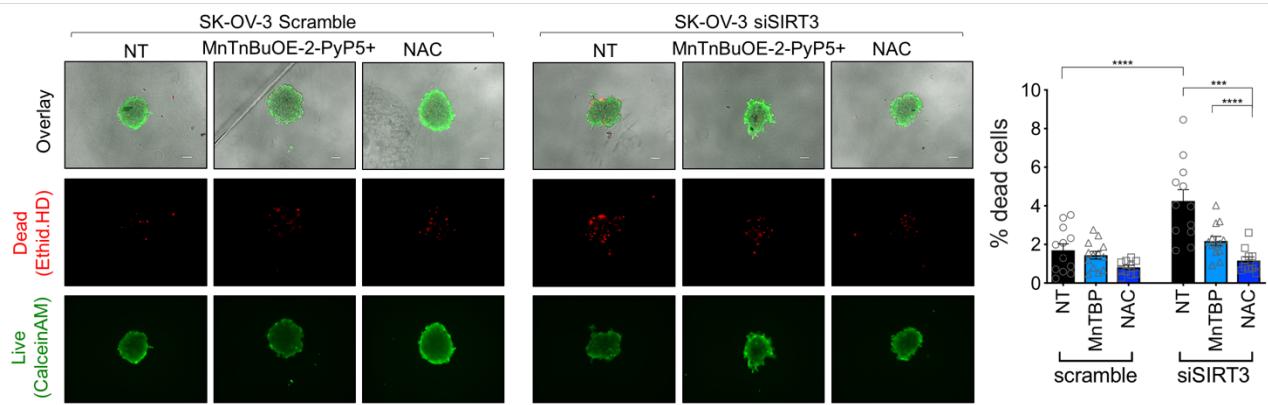

790

791


792 **Supplemental Figure 2:** Media glucose (**A**) and lactate (**B**) levels were measured using
793 the YSI biochemical analyzer and expressed as Glucose consumed and lactate
794 produced by correcting for media glucose and lactate levels respectively, and
795 expressed relative to cell numbers (n=9; one-way ANOVA P=0.01, Tukey's multiple
796 comparisons test ****P<0.0001).

797

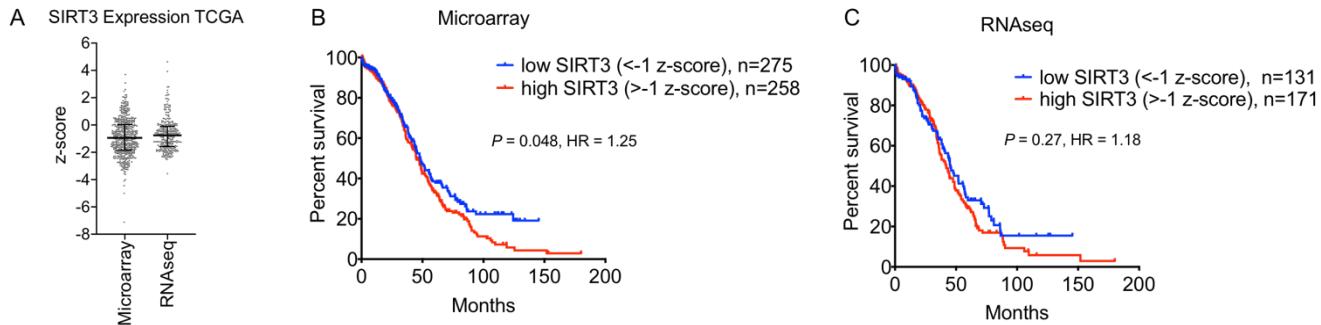
798


799 **Supplemental Figure 3: A.** SIRT3 knock-down via siRNA delivery increases the dead
800 cell fraction of OVCAR3 cells cultured as spheroid aggregates for 72 h in ULA plates.
801 Cells were stained for live and dead cells using Ethidium Homodimer and Calcein AM,
802 respectively. **B.** Stable SIRT3 knock-down via shRNA inhibits rapid aggregation of
803 OVCA433 in anchorage-independent cell culture conditions. 1,000 cells were plated per
804 well in 96 well ULA culture plates and live dead staining carried out 6 hours after
805 seeding. **C.** SIRT3 knock-down does not significantly affect OVCA433 cell proliferation
806 in attached conditions (n=3).

807

808 **Supplemental Figure 4: A.** SOD2 knock-down decreases cell viability in SK-OV-3 cells
809 cultured in anchorage-independence for 72 h. Cells were stained for live and dead cells
810 using Ethidium Homodimer and Calcein AM, respectively. **B.** Western blot analysis of
811 Sod2 expression in SK-OV-3 cells following siRNA mediated knock-down.

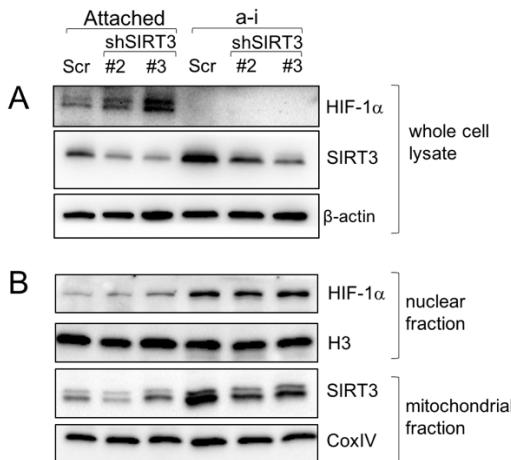
812



813

814 **Supplemental Figure 5:** Treatment of cells with 10µM MnTBAP or 2mM NAC rescues
815 SK-OV-3 cell viability.

816


817

818

819 **Supplemental Figure 6: A.** Spread of SIRT3 expression in TCGA serous ovarian
820 adenocarcinoma samples subjected to Agilent micro-array (n=533) and RNAseq
821 (n=303) analysis (median with interquartile range indicated). **B & C.** Kaplan Meier
822 curves of overall survival of samples subjected to Microarray analysis (**B**), and RNA seq
823 analysis (**C**). Samples with SIRT3 expression z-score <-1 were compared to those with
824 z score >-1. (Log-rank Mantel-Cox test).

825

826

827 **Supplemental Figure 7:** SIRT3 knock-down does not affect HIF-1 α levels in
828 anchorage-independent conditions (a-i). **A.** SIRT3 knock-down increases total HIF-1 α
829 levels in attached conditions only. (Representative blot shown - same lysates as Figure

830 2F). **B.** HIF-1 α nuclear localization is enhanced in a-i compared to attached conditons.

831 SIRT3 knock-down does not affect HIF-1 α nuclear localization in a-i.

832

833 **Supplemental Methods**

834

835 **Optical Redox Ratio imaging.** Anchorage-independent spheroids were imaged
836 using the Nikon A1 MP+ Multi-Photon Microscope system (Nikon Instruments, New
837 York) to assess endogenous fluorescence signals produced by NAD(P)H and FAD,
838 using a mode-locked femto-second Spectra-Physics InSight DS femtosecond single-box
839 laser system with automated dispersion compensation tunable between 680-1300 nm
840 (Spectra-Physics, Mountain View, CA) and Nikon scan head coupled with Nikon upright
841 microscope system (Nikon Instruments, New York). The laser output was attenuated
842 using AOTF and the average power was consistently maintained below the damage
843 threshold of the samples. The laser beam tuned to 1000 nm was then focused on the
844 specimen through a high numerical aperture, low magnification, long working distance,
845 dipping objective, CFI75 Apo Water 25X/1.1 LWD 2.0mm WD, and backscattered
846 emissions collected through the same objective lens. Nikon Element Software was used
847 for the image acquisition. In the reflection mode, non-descanned high-sensitivity GaAsP
848 detectors were used for very efficient signal detection. A 750 nm Dichroic was used to
849 prevent the scattered IR laser radiation from reaching the detector and a 460 nm long
850 pass dichroic beam splitter (460 DCLP, Chroma Technology, USA) was used to collect
851 NAD(P)H signal below 460 nm, a 560 nm long pass dichroic beam splitter (560 DCLP,
852 Chroma Technology, USA) and a 660 nm long pass dichroic beam splitter (660 DCLP,

853 Chroma Technology, USA) were used to collect FAD signal above 560 and below 660
854 nm. Spectral measurements to confirm the presence of NAD(P)H and FAD signals were
855 also performed using 32-channel Nikon Spectral Detector integrated with Nikon A1 MP+
856 Multi-Photon Microscope system. For 3D image data set acquisition, the multiphoton
857 excitation beam tuned to 1000 nm was first focused at the maximum signal intensity
858 focal position within the spheroid sample and the appropriate detector levels were then
859 selected to obtain the voxel intensities within range of 0-4095 (12-bit images) using a
860 color gradient function. Later on, the beginning and end of the 3D stack (i.e. the top and
861 the bottom optical sections) were set based on the signal level degradation. A series of
862 2D Images for a selected 3D stack volume were then acquired at 512 X 512 pixels. The
863 3D stack images with optical section thickness (z-axis) of approximately 2.0 μm were
864 captured with voxel size of 0.5 X 0.5 X 2 μm . For each spheroid volume reported, z-
865 section images were compiled and the 3D image restoration performed using
866 VOLOCITY (Perkin Elmar, UK). The volume estimation was performed on the 3D image
867 data sets recorded from at least 3 spheroids. A noise removal filter was applied, and the
868 lower threshold level in the histogram set to exclude all possible background voxel
869 values. Sum of all voxels intensities above this threshold level was determined to be
870 total NAD(P)H and FAD signals. The optical redox ratio was calculated from mean voxel
871 intensity values using the equation, FAD/(FAD+NAD(P)H).

872 **TCGA analysis.** Agilent micro-array (n=533) and RNAseq (n=303) expression
873 data from high grade serous adenocarcinomas were obtained from the cancer genome
874 atlas (TCGA), using the cBioPortal interface (cBioportal.org; z-score spread of SIRT3

875 expression) ¹. Overall survival was plotted using GraphPad Prism software and
876 statistical differences determined using log rank test (Mantel-Cox).

877

878 **Supplemental Reference:**

879 1 Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA *et al.* The cBio cancer
880 genomics portal: an open platform for exploring multidimensional cancer genomics data.
881 Cancer Discov 2012; 2: 401-404.