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Abstract

We present Bisque, a tool for estimating cell type proportions in bulk expression. Bisque
implements a regression-based approach that utilizes single-cell RNA-seq (scRNA-seq) data to
generate a reference expression profile and learn gene-specific bulk expression transformations
to robustly decompose RNA-seq data. These transformations significantly improve
decomposition performance compared to existing methods when there is significant technical
variation in the generation of the reference profile and observed bulk expression. Importantly,
compared to existing methods, our approach is extremely efficient, making it suitable for the
analysis of large genomic datasets that are becoming ubiquitous. When applied to subcutaneous
adipose and dorsolateral prefrontal cortex expression datasets with both bulk RNA-seq and
single-nucleus RNA-seq (snRNA-seq) data, Bisque was able to replicate previously reported
associations between cell type proportions and measured phenotypes across abundant and rare
cell types. Bisque requires a single-cell reference dataset that reflects physiological cell type
composition and can further leverage datasets that includes both bulk and single cell
measurements over the same samples for improved accuracy. We further propose an additional
mode of operation that merely requires a set of known marker genes. Bisque is available as an R

package at: https://github.com/cozygene/bisque.


https://doi.org/10.1101/669911
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/669911,; this version posted June 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Introduction

Bulk RNA-seq experiments typically measure total gene expression from heterogeneous tissues,
such as tumor and blood samples'?. Variability in cell type composition can significantly
confound analyses of these data, such as in identification of expression quantitative trait loci
(eQTLs) or differentially expressed genes®. Cell type heterogeneity may also be of interest in
profiling changes in tissue composition associated with disease, such as cancer* or diabetes’. In
addition, measures of cell composition can be leveraged to identify cell-specific eQTLs®’ or

differential expression® from bulk data.

Traditional methods for determining cell type composition, such as immunohistochemistry or
flow cytometry, rely on a limited set of molecular markers and lack in scalability relative to the
current rate of data generation®. Single-cell technologies provide a high-resolution view into
cellular heterogeneity and cell type-specific expression’!!. However, these experiments remain
costly and noisy compared to bulk RNA-seq'?. Collection of bulk expression data remains an
attractive approach for identifying population-level associations, such as differential expression
regardless of cell type specificity. Moreover, many bulk RNA-seq studies that have been
performed in recent years resulted in a large body of data that is available public databases such
as dbGAP and GEO. Given the wide availability of these bulk data, the estimation of cell type
proportions, often termed decomposition, can be used to extract large-scale cell type specific

information.
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There exist a number of methods for decomposing bulk expression, many of which are
regression-based and leverage cell type-specific expression data as a reference profile'.
CIBERSORT" is a SVM-regression based approach, originally designed for microarray data,
that utilizes a reference generated from purified cell populations. A major limitation of this
approach is the reliance on sorting cells to estimate a reference gene expression panel.
BSEQ-sc' instead generates a reference profile from single-cell expression data that is used in
the CIBERSORT model. MuSiC'® also leverages single-cell expression as a reference, instead
using a weighted non-negative least squares regression (NNLS) model for decomposition, with

improved performance over BSEQ-sc in several datasets.

The distinct nature of the technologies used to generate bulk and single-cell sequencing data may
present an issue for decomposition models that assume a direct proportional relationship between
the single-cell-based reference and observed bulk mixture. For example, the capture of mRNA
and chemistry of library preparation can differ significantly between bulk tissue and single-cell
RNA-seq methods, as well as between different single-cell technologies'”'®. Moreover, some
technologies may be measuring different parts of the transcriptome, such as nuclear pre-mRNA
in single-nucleus RNA-seq (snRNA-seq) experiments as opposed to cellular and extra-cellular
mRNA observed in traditional bulk RNA-seq experiments. As we show later, these differences
may introduce gene-specific biases that break down the correlation between cell type-specific
and bulk tissue measurements. Thus, while single-cell RNA-seq technologies have provided

unprecedented resolution in identifying expression profiles of cell types in heterogeneous tissues,
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these profiles generally may not follow the direct proportionality assumptions of

regression-based methods, as we demonstrate here.

We present Bisque, a highly efficient tool to measure cellular heterogeneity in bulk expression
through robust integration of single-cell information, accounting for biases introduced in the
single-cell sequencing protocols. The goal of Bisque is to integrate the different
chemistries/technologies of single-cell and bulk tissue RNA-seq to estimate cell type proportions
from tissue-level gene expression measurements across a larger set of samples. Our
reference-based model decomposes bulk samples using a single-cell-based reference profile and,
while not required, can leverage single-cell and bulk measurements for the same samples for
further improved decomposition accuracy. This approach employs gene-specific transformations
of bulk expression to account for biases in sequencing technologies as described above. When a
reference profile is not available, we propose BisqueMarker, a semi-supervised model that
extracts trends in cellular composition from normalized bulk expression samples using only
cell-specific marker genes that could be obtained using single cell data. We demonstrate using
simulated and real datasets from brain and adipose tissue that our method is significantly more
accurate than existing methods. Furthermore, it is extremely efficient, requiring seconds in cases
where other methods require hours; thus, it is scalable to large genomic datasets that are now

becoming available.
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Results

Method overview (Bisque)

A graphical overview of Bisque is presented in Figure 1. Our reference-based decomposition
model requires bulk RNA-seq counts data and a reference dataset with read counts from
single-cell RNA-seq. In addition, the single-cell data should be labeled with cell types to be
quantified. A reference profile is generated by averaging read count abundances within each cell
type in the single-cell data. Given both the reference, our method learns gene-specific
transformations of the bulk data to account for technical biases between the sequencing
technologies. Bisque can then estimate cell proportions from the bulk RNA-seq data using the
reference and the transformed bulk expression data using non-negative least-squares (NNLS)

regression.

Evaluation of decomposition performance in human adipose tissue

We applied our method to 106 bulk RNA-seq subcutaneous adipose tissue samples collected
from both lean and obese individuals, where 6 samples have both bulk RNA-seq and snRNA-seq
data available (Table 1). Adipose tissue consists of several cell types, including adipocytes which
are expected to be the most abundant population. Adipose tissue also contains structural cell
types (i.e. fibroblasts and endothelial cells) and immune cells (i.e. macrophages and T cells)".

These 5 cell type populations were identified from the snRNA-seq data (Supplementary Fig. 1a).

We observed significant biases between the snRNA-seq and bulk RNA-seq data in samples that

had both data available. We found that the linear relationship between the pseudo-bulk (summed
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snRNA-seq reads across cells) and the true bulk expression varied significantly by each gene
(Fig. 2a). Specifically, we observed best fit lines relating these expression levels between
technologies with a mean slope of roughly 0.30 and a variance in slope of 5.67. In our model, a
slope of 1 would indicate no bias between technologies. We further investigated whether gene
expression differences between the bulk and snRNA-seq were the same across individuals and
experiments. Comparing log-ratios of RNA-seq to snRNA-seq expression levels, we found that
the majority of gene biases were preserved across individuals, tissues, and experiments (R=0.75
across experiments) (Supplementary Fig. 3), providing evidence that technological differences

drive consistent gene expression differences across bulk and snRNA-seq methods.

We performed simulations based on the adipose snRNA-seq data to demonstrate the effect of
technology-based biases between the reference profile and bulk expression on decomposition
performance. In these analyses, we benchmarked Bisque and three existing methods (MuSiC,
BSEQ-sc, and CIBERSORT). Briefly, we simulated bulk expression for 6 individuals by
summing the observed snRNA-seq read counts. To model discordance between the reference and
bulk, we applied gene-specific linear transformations of the simulated bulk expression. For each
gene, the coefficient and intercept of the linear transformation were sampled from half-normal
distributions with increasing variance. In this model, a higher variance corresponds to a larger
bias between sequencing experiments. While these transformations closely mirrored the Bisque
decomposition model, they utilized the true snRNA-seq counts for each individual whereas
Bisque learned these transformations using the reference profile generated from averaging these

counts across all cells. Hence, this simulation framework introduced additional noise that Bisque
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does not entirely model. We evaluated decomposition performance by comparing proportion
estimates to the proportions observed in the snRNA-seq data in terms of global Pearson
correlation (R) and root mean squared deviation (RMSD). Due to the small number of samples,
we applied leave-one-out cross-validation to predict the cell composition of each individual
using the remaining snRNA-seq samples as training data for each method. In these simulations,
Bisque remained robust (R = 0.85, RMSD = 0.07) at higher levels of simulated bias between the

bulk and snRNA-seq-based reference (Fig. 2b).

Next, we performed this cross-validation benchmark on the observed bulk RNA-seq data for
these 6 individuals and found that Bisque (R = 0.923, RMSD = 0.074) provided significantly
improved global accuracy in detecting each cell type over existing methods (Table 2,
Supplementary Fig. 1b). MuSiC (R =-0.111, RMSD = 0.427), BSEQ-sc (R =-0.113, RMSD =
0.432), and CIBERSORT (R =-0.131, RMSD = 0.416) severely underestimated the proportion
of adipocytes (the most abundant population in adipose tissue) while overestimating the
endothelial cell fraction. We also benchmarked CIBERSORTx*’, which employs a batch
correction mode to account for biases in sequencing technologies. While CIBERSORTx (R =
0.687, RMSD = 0.099) outperformed existing methods, Bisque provided improved accuracy. It
should be noted that cell-specific accuracy is more informative than global R and RMSD;
however, these small sample sizes did not provide robust measures of within-cell-type
performance in this cross-validation framework (Supplementary Fig. 1¢). We were able to
slightly improve the number of detected cell populations by MuSiC, BSEQ-sc, and CIBERSORT

when we considered only snRNA-seq reads aligning to exonic regions of the transcriptome,
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indicating that intronic reads introduced increasing discrepancy between snRNA-seq and bulk
RNA-seq in the context of decomposition. However, given that a significant portion of the
nuclear transcriptome consists of pre-mRNA, this filtering process removed over 40 percent of
cells detected in the snRNA-seq data. Moreover, Bisque provided improved accuracy over

existing methods using this exonic subset of the snRNA-seq data (Supplementary Fig. 1d).

We then applied these decomposition methods to the remaining 100 bulk samples and found that
the distribution of cell proportion estimates produced by Bisque were most concordant with the
expected distribution inferred from the limited number of snRNA-seq samples and previously
reported proportions®'?? (Fig. 3a). While these benchmarks provided a measure of calibration
(i.e. the ability to detect cell populations in expected ranges), they did not provide measurements
of cell-specific proportion accuracy across individuals. In order to evaluate cell-specific
accuracy, we replicated previously reported associations between cell proportions and measured
phenotypes. Specifically, we compared cell proportion estimates from each method to body mass
index (BMI) and Matsuda index, a measure of insulin resistance. We measured the significance

of these association accounting for age, age-squared, sex, and relatedness.

Obesity is associated with adipocyte hypertrophy, the expansion of the volume of fat cells®;
thus, we expected a negative association between adipocyte proportion and BMI. Bisque, MuSiC
and CIBERSORTX produced adipocyte proportion estimates that replicate this behavior, while
BSEQ-sc and CIBERSORT were unable to detect this cell population (Fig. 3b). The adipocyte

proportion estimates produced by Bisque (p = 0.030) and CIBERSORTx (p =0.001) had a


https://doi.org/10.1101/669911
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/669911,; this version posted June 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

significant negative association with BMI (Supplementary Table 1a). In addition, macrophage
abundance has been shown to increase in adipose tissue with higher levels of obesity,
concomitant with a state of low grade inflammation®*. Each method detected macrophage
populations that positively associated with BMI; however, only Bisque (p < 0.001), BSEQ-sc (p

=0.004) and CIBERSORTX (p = 0.049) reached significance (Supplementary Table 1b).

T cells were the least abundant cell type population identified from the snRNA-seq data,
constituting around 4 percent of all sequenced nuclei. The abundance of T cells has been
observed to positively correlate with insulin resistance. Thus, we compared decomposition
estimates for T cell proportions to Matsuda index. As a lower Matsuda index indicates higher
insulin resistance, we expect a negative association between T cell proportion and Matsuda
index. Proportion estimates produced by Bisque and CIBERSORTXx followed this trend while the
remaining existing methods did not identify T cells in the bulk samples (Fig. 3c). We found this
association significant for Bisque (p < 0.001) and CIBERSORTx (p = 0.047) (Supplementary
Table 1c¢) after correcting for diabetes status, since Matsuda index may not be informative in

these individuals®.

Evaluation of decomposition performance in human dorsolateral prefrontal cortex tissue
We also benchmarked these decomposition methods using expression data collected from the
dorsolateral prefrontal cortex (DLPFC). This dataset was generated by the Rush Alzheimer’s
Disease (AD) Center?’ and includes 636 postmortem bulk RNA-seq samples. Both bulk

RNA-seq and snRNA-seq data were collected from 8 of the individuals (Table 1). Using the
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same pipeline we used to process the adipose dataset, we identified 11 clusters: 3 neuronal
subtypes, 2 interneuronal subtypes, 2 astrocyte subtypes, oligodendrocytes, oligodendrocyte
progenitor cells, and microglia (Supplementary Fig. 2a). We observed a higher overlap in marker
genes for these clusters than in those identified in the adipose dataset (average of 10% of marker

genes shared between clusters in DLPFC compared to 3% in adipose) (Supplementary Fig. 4a-b)

We again applied leave-one-out cross-validation on the 8 individuals with both RNA-seq and
snRNA-seq data available. In this example, randomly sampled 25% of the nuclei in the
snRNA-seq data to accommodate CIBERSORTx (which is currently web-based and restricts the
size of files that can be processed). Bisque was able to detect each cell population identified from
the snRNA-seq data with high global accuracy (R=0.924, RMSD=0.029) while MuSiC (R =
-0.192, RMSD = 0.173), BSEQ-sc (R = 0.098, RMSD = 0.120), and CIBERSORT (R =-0.281,
RMSD = 0.197) did not detect a number of cell populations (Table 3, Supplementary Fig. 2b,
Supplementary Fig. 2¢). Bisque also provided higher accuracy than CIBERSORTx (R = 0.671,
RMSD = 0.070). However, we found that the performance of the existing methods improved
when estimates with subtypes were summed together (Supplementary Fig. 2d). While each
method was able to quantify major cell populations after merging subtypes, Bisque was able to
distinguish between these closely related cell populations. Interestingly, we found that in both
adipose and DLPFC, endothelial cell proportions were overestimated by each of the existing

methods.

11
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We applied these decomposition methods to the remaining 628 individuals and compared the
distribution of estimates to the proportions observed in the 8 snRNA-seq samples. We found that
Bisque was able to detect each cell population and produced estimates that were closest in mean
to the snRNA-seq observations (Fig. 4a). The increased accuracy of Bisque over existing
methods persisted when we merged closely related subtypes (Supplementary Fig. 2e). Moreover,
immunohistochemistry (IHC) analyses on a 70 of these samples found similar proportions of
major cell populations®, confirming the relative accuracy of snRNA-seq based estimates of cell

proportions.

Again, to determine cell-specific decomposition accuracy, we replicated known associations
between cell type proportions and measured phenotypes in the 628 individuals. For these
analyses, we compared cell proportion estimates to each individual’s Braak stage and physician
cognitive diagnostic category at time of death. Braak stage is a semiquantitative measure of
neurofibrillary tangles, ranging in value from 0 to 5 with increasing severity. The cognitive
diagnostic category provides a semiquantitative measure of dementia severity, where a code of 1
indicates no cognitive impairment and 5 indicates a confident diagnosis of AD by physicians.

We accounted for age, age-squared, and sex to determine the significance of these associations.

Neuronal death is a hallmark symptom of AD?. Therefore, we expected to find a negative
association between cognitive diagnosis and neuron proportion. We found that each
decomposition method provides estimates of total neuron proportion that tend to decrease with

cognitive diagnostic category (Fig. 4b). Each method generates proportions with negative

12
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association with cognitive diagnosis. Each method, excluding BSEQ-sc, reached significance in
this model (p < 0.003 for each method) (Supplementary Table 2a). As another example, we
compared each individual’s Braak stage to their estimated proportion of microglia, a relatively
small cell population that constituted roughly 5 percent of the sequenced nuclei. Microglia
activation has been observed to increase with AD severity®’. We used Braak stage as a proxy for
AD severity and expected a positive association between microglia proportion and Braak stage.
Bisque and MuSiC provided estimates that follow this expected trend (Fig. 4c). Only Bisque
produced estimates with a significant positive association (p = 0.001) (Supplementary Table 2b).
Interestingly, we observe a decrease in microglia proportions estimated by Bisque in Braak stage

6 individuals which has been previously observed in AD patients®'.

Runtime comparisons of reference-based decomposition methods

Given the large amounts of transcriptomic data that are becoming available, we also
benchmarked these decomposition methods in terms of runtime. In the subcutaneous adipose
dataset, which included 100 bulk RNA-seq samples and 6 snRNA-seq samples with about 1,800
nuclei sequenced per individual, Bisque was able to estimate cell proportions efficiently
compared to existing methods. Bisque (1 second) and MuSiC (1 second) provided decomposition
estimates faster than BSEQ-sc (26 seconds), CIBERSORT (27 seconds), and CIBERSORTx
(389 seconds) (Fig. 5a). Bisque also provided improved efficiency in processing the reduced
DLPFC dataset, which included 628 bulk RNA-seq samples and 8 snRNA-seq samples with

around 2,125 nuclei per individual. Bisque (4 seconds) and MuSiC (10 seconds) estimated cell
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proportions relatively quickly compared to BSEQ-sc (273 seconds), CIBERSORT (298 seconds),

and CIBERSORTXx (6,566 seconds) (Fig. 5b).

Marker-based decomposition using known cell type marker genes

While a reference profile from snRNA-seq can help to decompose bulk level gene expression, it
may not be available for the same data set. The majority of bulk RNA-seq data sets do not have
corresponding snRNA-seq data in the same set of individuals. However, marker gene
information from prior experiments can still be applied to distinct expression data sets of the
same tissue. The basis of most decomposition methods relies on the logic that as the proportion
of a cell type varies across individuals, the expression of its marker genes will tend to correlate in
the same direction as its cell type proportion. This linear co-variation can be captured in a
principal components analysis (PCA). Under the same argument, the more cell type-specific a
marker gene is, the more its expression will reflect its cell type proportion. These observations
form the basis for BisqueMarker, a weighted PCA-based (WPCA) decomposition approach.
Genes that are more specifically expressed within a cell type will provide more information than
genes with shared expression across cell types. To estimate cell type proportions without the use
of cell type-specific gene expression information, we applied wPCA to bulk-level adipose tissue

expression.

For each cell type, we extracted the first PC from a wPCA of the expression matrix of its

markers. The expression matrix was corrected for the first global expression PC as a covariate so

that wPCA estimates would not reflect technical variation. We first confirmed that these genes

14


https://doi.org/10.1101/669911
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/669911,; this version posted June 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

were distinct across cell types. If 2 cell types share a high proportion of marker genes, the wPCA
estimates from bulk RNA-seq will correlate highly. We then investigated whether the second or
third PC could have represented cell type proportions. The percent of variance explained by the
first PC was typically 30-60% across adipose cell types, and additionally, over 90% of the
markers correlated in the same direction as the first PC. In contrast, roughly 50-70% of markers
correlated in the same direction as the second or third PC. As performed for reference-based
decomposition, we correlated phenotypes with cell type proportions estimated by BisqueMarker.
We identified the same associations as with reference-based decomposition, demonstrating its
validity when a reference is not available (Supplementary Table 1). Similarly, we observed the
same trends between estimated cell type abundances and phenotypes as we did using our

reference-based method in the DLPFC cohort (Supplementary Table 2).
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Discussion

Bisque effectively leverages single-cell information to decompose bulk expression samples,
outperforming existing methods in datasets with snRNA-seq data available. In simulations, we
demonstrated that the decomposition accuracy of Bisque is robust to increasing variation
between the generation of the reference profile and bulk expression, which is a significant issue
when comparing snRNA-seq and bulk RNA-seq data. In observed bulk expression, our
reference-based method accurately estimates cell proportions that are consistent with previously
reported distributions and reliably detects rare cell types. We found that these estimates
consistently follow expected trends with measured phenotypes, suggesting that cell-specific
estimates of proportion are sufficiently accurate to extract relevant biological signals. In addition,
differences in tissue structure can lead to significant differences in the quality of single-cell
expression data*>. We demonstrated the improved performance of our method in adipose and

DLPFC, two distinct tissues, suggesting that Bisque is robust across different tissue types.

The cell type proportion estimates determined by Bisque may be utilized to effectively identify
cell-type-specific interactions, such as expression quantitative trait loci (eQTLs), and adjust for
confounding effects from variability in cell populations. With this reference-based approach,
single-cell sequencing of a subset of samples from large-scale bulk expression cohorts can

provide high power to detect cell-specific associations in complex phenotypes and diseases.

However, we note that there are limitations to this reference-based method that users should

consider. First, if the number of individuals with single-cell data available is small, the reference
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profile and gene-specific transformations may become unreliable. In addition, a key assumption
of our transformation framework is that single-cell based estimates of cell proportions accurately
reflect the true proportions we wish to estimate. Given that snRNA-seq can provide less bias in

3334 we expect our reference-based method

isolating specific cell types compared to scRNA-seq
to have more significant improvement over existing methods using these data. Nevertheless, the
accuracy of Bisque may decrease if the proportion of cell types captured by single-cell
experiments differs significantly from the true physiological distributions. Our results

demonstrate that even with these limitations, Bisque can be used to provide cell-type specific

biological insight in relevant datasets.

In cases where these described issues may be significant, BisqueMarker provides cell type
abundance estimations using only known marker genes. While this reference-free method may
be less accurate than reference-based methods, it does not depend on single-cell based estimates
of cell proportions or expression profiles, but rather on the fact that the expression in certain
genes differs across different cell types; moreover, this method also does not model explicitly the
expression level, and it is thus robust to biases in the single cell sequencing protocol. We found
that BisqueMarker estimates followed expected trends with measured phenotypes; however, it
should be noted that this method estimates relative differences in abundances that cannot be
compared across cell types. Also, given the semi-supervised nature of this method, these cell
type abundance estimates may include signals from technical or other biological variation in the
data. Therefore, we highly suggest applying this method to data that is properly normalized with

sources of undesired variation removed.
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Methods

Processing bulk expression data

Paired-end reads were aligned with STAR v2.5.1 using default options. Gene counts were
quantified using featureCounts v1.6.3. For featureCounts, fragments were counted at the
gene-name level. Alignment and gene counts were generated against the GRCh38.p12 genome
assembly. STAR v2.5.1 and GRCh38.p12 were included with CellRanger 3.0.2, which was used

to process the single-nucleus data.

Processing single-nucleus expression data

Reads from single nuclei sequenced on the 10x Genomics Chromium platform were aligned and
quantified using the CellRanger 3.0.2 count function against the GRCh38.p12 genome assembly.
To account for reads aligning to both exonic and intronic regions, each gene transcript in this
reference assembly was relabeled as an exon since CellRanger counts exonic reads only. We
perform this additional step since snRNA-seq captures both mature mRNA and pre-mRNA, the

latter of which includes intronic regions.

After aggregating each single-nucleus sample with the CellRanger aggr function, the full dataset
was processed using Seurat v3.0.0%. The data were initially filtered for genes expressed in at
least 3 cells and filtered for cells with reads quantified for between 200 and 2,500 genes. We
further filtered for cells that had percentage of counts coming from mitochondrial genes less than
or equal to 5 percent. The data were normalized, scaled, and corrected for mitochondrial read

percentages with sctransform v0.2.0% using default options.
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To identify clusters, Seurat employs a shared nearest neighbor approach. We identified clusters
using the top 10 principal components of the processed expression data with resolution set at 0.2.
The resolution parameter controls the number of clusters that will be identified, and suggested
values vary depending on the size and quality of the dataset. We chose a value that produced 6
clusters in the adipose dataset and 13 clusters in the DLPFC dataset and visualized the clustering

results with UMAPY.

Marker genes were identified by determining the average log-fold change of expression of each
cluster compared to the rest of the cells. We identified marker genes as those with an average
log-fold change above 0.25. The significance of the differential expression of these genes was
determined using a Wilcoxon rank sum test. Only genes that were detected in at least 25 percent
of cells were considered. Clusters with many mitochondrial genes as markers (nine genes
detected in both datasets) were removed from both datasets. In addition, a cluster with only three
marker genes was removed from the DLPFC datasets. Finally, we remove mitochondrial genes
from the list of marker genes for decomposition as we assume reads aligning to the
mitochondrial genome originate from extra-nuclear RNA in the snRNA-seq dataset (targeting

nuclear RNA).

Clusters were labeled by considering cell types associated with the identified marker genes.

Marker genes were downloaded from PanglaoDB* and filtered for entries validated in human

cells. For each gene, we count the possible cell type labels. Each cluster was labeled as the most
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frequent cell type across all of its marker genes, with each label associated with a gene weighted
by the average log-fold change. If multiple clusters shared a cell type label, we consider each

cluster a subtype of this label.

Exon-aligned reads were processed in the same exact procedure but snRNA-seq data was aligned
to just exonic regions. Cluster names were manually changed for both datasets when aligned to
exons to match the clusters from intronic reads as well. Specifically, for clusters identified in the
exonic data not found in the full data, we relabeled as the label with the highest score found in
the full data. These relabeled clusters were similar in proportion to the corresponding cluster in

the full dataset.

Learning a single-cell based reference and bulk transformation for reference-based
decomposition

We assume that only a subset of genes are relevant for estimating cell type composition. For the
adipose and DLPFC datasets, we selected the marker genes identified by Seurat as described
previously. Moreover, we filter out genes with zero variance in the single-cell data, unexpressed
genes in the bulk expression, and mitochondrial genes. We convert the remaining gene counts to

counts-per-million to account for variable sequencing depth. For m genes and £ cell types, a

reference profile Z € R™** s generated by averaging relative abundances within each cell type

across the entire single-cell dataset.

20


https://doi.org/10.1101/669911
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/669911,; this version posted June 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Though there is a strong positive correlation between bulk and single-cell based pseudo-bulk
(summed single-cell counts) expression data, we observe that the relationship is not one-to-one
and varies between genes. This behavior indicates that the distribution of observed bulk
expression may significantly differ from the distribution of the single-cell profile weighted by
cell proportions. We propose transforming the bulk data to maximize the global linear
relationship across all genes for improved decomposition. Our goal is to recover a one-to-one
relationship between the transformed bulk and expected convolutions of the reference profile
based on single-cell based estimates of cell proportions. This transformed bulk expression better

satisfies the assumptions of regression-based approaches under sum-to-one constraints.

. kxn/ . . . .
Cell type proportions P € R™™ are determined by counting the cells with each label in the

single-cell data for n’ individuals. Given these proportions and the reference profile 7, we
calculate the pseudo-bulk for the single-cell samples as Y =>2p , where Y € R™ ™ For each

gene J, our goal is to transform the observed bulk expression across all n bulk samples

n n’
X; € R" {6 match the mean and variance of ¥ € R ; hence, the transformation of X will

be a linear transformation.

If individuals with both single-cell and bulk expression are available, we fit a linear regression

/
model to learn this transformation. Let <*j denote the expression values for these n’ overlapping
individuals. We fit the following model (with an intercept) and apply the model to the remaining

bulk samples as our transformation:
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Y}' = BJX JI + €
If there are no single-cell samples that have bulk expression available, we assume that the
observed mean of YJ is the true mean of our goal distribution for the transformed Xj. We

further assume that the sample variance observed in Yjis larger than the true variance of the goal

distribution, since the number of single-cell samples is typically small. We use a shrinkage

estimator of the sample variance of Y} that minimizes the mean squared error and results in a

smaller variance than the unbiased estimator:

n/

1 _
A2 2
i T o > (Vi =Y))
i=1
We transform the remaining bulk as follows:
X:— X, _
Xj,trcmsformed = QO’]’ + Y}

g X;
where a bar indicates the mean value of the observed data and ?X; is the unbiased sample

variance of XJ‘.

To estimate cell type proportions, we apply non-negative least squares regression with an
additional sum-to-one constraint to the transformed bulk data. For individual 7, we minimize the

following with respect to the cell proportion estimate Pi:

||sz - Xi,t’ransformed”g s.t. Di Z 07 sz =1
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Simulating bulk expression based on single-nucleus counts
We simulate the base bulk expression as the sum of all counts across cells/nuclei sequenced from

an individual. To introduce gene-specific variation between the bulk and single-cell data, we
sample a coefficient 5 and an intercept & from a half-normal (HN) distributions:

Bj ~HN(1,0)

aj ~ HN(0,0)

(1~ 2)

where the variance of the HN distribution is m’. At 0 = 0, the base simulated bulk
expression remains unchanged. We used a HN distribution to ensure coefficients and intercepts
are positive. While our method can handle negative coefficients, this simulation model assumes
expression levels have a positive correlation across technologies. We performed 10 replicates of
this data-generating process at each ¢ in 0, 5, 10, 20. Decomposition performance on these data
were measured in terms of global R and RMSD and plotted with 95% confidence intervals based

on bootstrapping.

Determining significance of cell proportion associations with measured phenotypes
Reported associations were measured in terms of Spearman correlation. To determine the
statistical significance of these associations while accounting for possible confounding factors,
we applied two approaches. For the adipose dataset, which consisted entirely of twin pairs, we
applied a linear mixed-effects model (R nlme package) with random effects accounting for
family. For the DLPFC dataset, we assumed individuals were unrelated and fit a simple linear

model (R base package). In each model, we include cell type proportion, age, age-squared, and
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sex as covariates. We introduced an additional covariate for diabetes status when regressing
Matsuda index due to a known significant association between these two variables. We test
whether the cell proportion effect estimates deviate significantly from O using a t-test. Each R

method implements the described model fitting and significance testing.

Estimating relative cellular heterogeneity with a semi-supervised weighted PCA model

In order to estimate cell type proportions across individuals without the use of a cell
type-specific gene expression panel as reference, we use a weighted PCA approach.
BisqueMarker requires a set of marker genes for each cell type as well as the specificity of each
marker determined by the fold change from a differential expression analysis. Typical single-cell
RNA-seq workflows calculate marker genes and provide both p-values and fold changes, as in
Seurat®. For each cell type, we take statistically significant marker genes (FDR < 0.05) ranked
by p-value. A weighted PCA is calculated on the expression matrix using a subset of the marker
genes by first scaling the expression matrix and multiplying each gene column by its weight (the
log fold-change) X W , where X is the sample by gene expression matrix and WV is a diagonal
matrix with entries equal to log fold-change of the corresponding gene. The bulk expression X
should be corrected for global covariates so that the proportion estimates do not reflect this
global variation. The first PC calculated from X W is used as the estimate of the cell type
proportion. This allows cell type-specific genes to be prioritized over more broadly expressed
genes. Alternatively, if weights are not available, PCA can be run on the matrix X and the first

PC can be used.
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In order to select marker genes, we iteratively run the above PCA procedure on a specified range
of markers (from 25 to 200) and calculate the ratio of the first eigenvalue to the second. We then
select the number of marker genes to use that maximizes this ratio. This procedure is similar to
other methods which select the number of markers to use by maximizing the condition number

of the reference matrix'>.
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Tables

Tissue Number of | Bulk snRNA-seq | snRNA-seq | Total | Average Number of
Samples RNA-seq platform samples nuclei | nuclei per cell types
platform individual
Subcutaneous | 106 Illumina 10x 6 10,947 | 1,824 5
adipose NovaSeq Genomics
Chromium
Dorsolateral 636 Illumina 10x 8 68,028 | 8,503 11
prefrontal HiSeq Genomics
cortex Chromium

Table 1: Summary of snRNA-seq and bulk expression datasets used for benchmarking Bisque and existing methods.

Method R RMSD

Bisque 0.923 + 0.064 0.074 + 0.034
CIBERSORTx 0.687 £ 0.450 0.099 + 0.046
MuSiC -0.111 4+ 0.182 0.427 4+ 0.058
BSEQ-sc -0.113 £+ 0.180 0.432 + 0.058
CIBERSORT -0.131 + 0.176 0.416 £ 0.059

Table 2: Leave-one-out cross-validation in subcutaneous adipose using 6 samples with snRNA-seq and bulk RNA-seq data
available. Proportions based on snRNA-seq were used as a proxy for the true proportions. Performance measured in
Pearson correlation (R) and root-mean-square deviation (RMSD) across all 5 identified cell types in each sample. Reported
values were averaged across the 6 samples with standard deviation indicated.

Method R RMSD

Bisque 0.924 + 0.062 0.029 + 0.010
CIBERSORTx 0.671 £ 0.153 0.070 £ 0.019
MusSiC -0.192 £+ 0.107 0.173 £ 0.013
BSEQ-sc 0.098 + 0.216 0.120 £ 0.023
CIBERSORT -0.281 £ 0.049 0.197 + 0.012

Table 3: Leave-one-out cross-validation in dorsolateral prefrontal cortex using 8 samples with snRNA-seq and bulk
RNA-seq data available. Proportions based on snRNA-seq were used as a proxy for the true proportions. Performance
measured in Pearson correlation (R) and root-mean-square deviation across all 11 identified cell types in each sample.
Reported values were averaged across the 8 samples with standard deviation indicated. We performed these experiments
with 25% of the snRNA-seq data in order to accommodate the file size limit of the current web-based implementation of

CIBERSORTXx.
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a Association of adipocyte proportion estimates in adipose tissue with BMI

Method Spearman Spearman Effect Effect Effect Effect
Correlation p-value Estimate Standard t-value p-value
Error
Bisque -0.178 0.090 -0.282 0.126 -2.240 0.030
MuSiC 0.038 0.719 -0.081 0.108 -0.754 0.455
BSEQ-sc - - - - _ -
CIBERSORT | - - - - - -
CIBERSORTx | -0.295 0.005 -0.355 0.102 -3.478 0.001
BisqueMarker | -0.227 0.030 -0.304 0.096 -3.154 0.003
b Association of macrophage proportion estimates in adipose tissue with BMI
Method Spearman Spearman Effect Effect Effect Effect
Correlation p-value Estimate Standard t-value p-value
Error
Bisque 0.389 < 0.001 0.460 0.099 4.671 < 0.001
MuSiC 0.065 0.540 0.034 0.110 0.308 0.760
BSEQ-sc 0.238 0.022 0.278 0.092 3.301 0.004
CIBERSORT 0.239 0.022 0.162 0.102 1.597 0.118
CIBERSORTx | 0.283 0.007 0.212 0.104 2.029 0.049
BisqueMarker | 0.296 0.004 0.253 0.103 2.465 0.018
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c Association of T cell proportion estimates in adipose tissue with Matsuda index

Method Spearman Spearman Effect Effect Effect Effect
Correlation p-value Estimate Standard t-value p-value
Error
Bisque -0.195 0.075 -0.287 0.116 -3.328 < 0.001
MuSiC - - - - - -
BSEQ-sc - - - - - -
CIBERSORT | - - - - - -
CIBERSORTx | -0.311 0.004 -0.230 0.111 -2.060 0.047
BisqueMarker | -0.294 0.007 -0.304 0.096 -3.154 0.003

Supplementary Table 1: Significance of associations of estimated cell proportions and measured phenotypes in 100
subcutaneous adipose tissue samples. We fit a linear mixed-effects model (LMM) to account for the twin structure of the
dataset as a random effect, with additional fixed effects to account for age, age-squared, and sex. Expected effect directions
were based on previously reported findings. An entry of ‘-’ indicates that the method did not detect the indicated cell
population in any of the samples. Bold values were found to be significant at a = 0.05 and in expected directions.

a Association of adipocyte proportion with BMI. A negative association was expected.

b Association of macrophage proportion with BMI. A positive association was expected.

¢ Association of T cell proportion with Matusda index, a measure of insulin resistance. A negative association was
expected. An additional covariate accounting for diabetes status was added to the LMM due to previously reported
significant associations with Matsuda index.
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Method Spearman Spearman Effect Effect Effect Effect
Correlation p-value Estimate Standard t-value p-value
Error
Bisque -0.167 < 0.001 -0.115 0.039 -2.950 0.003
MuSiC -0.167 < 0.001 -0.123 0.039 -3.155 0.002
BSEQ-sc -0.142 < 0.001 0.018 0.039 0.465 0.642
CIBERSORT | -0.173 < 0.001 -0.116 0.039 -2.965 0.003
CIBERSORTx | -0.162 < 0.001 -0.137 0.039 -3.517 < 0.001
BisqueMarker | -0.141 < 0.001 -0.121 0.039 -3.098 0.002
b Association of microglia proportion estimates in DLPFC tissue with Braak stage
Method Spearman Spearman Effect Effect Effect Effect
Correlation p-value Estimate Standard t-value p-value
Error
Bisque 0.094 0.018 0.118 0.037 3.220 0.001
MuSiC 0.057 0.151 0.019 0.037 0.509 0.611
BSEQ-sc -0.190 < 0.001 -0.166 0.037 -4.525 < 0.001
CIBERSORT | 0.003 0.943 -0.005 0.037 -0.137 0.891
CIBERSORTx | 0.109 0.006 0.056 0.037 1.517 0.130
BisqueMarker | 0.092 0.021 0.054 0.037 1.444 0.149

Supplementary Table 2: Significance of associations of estimated cell proportions and measured phenotypes in DLPFC
tissue. We fit a linear model with covariates to account for age, age-squared, and sex. Expected effect directions were based
on previously reported findings. Bold values were found to be significant at o = 0.05 and in expected directions.

a Association of neuron proportion with cognitive diagnosis category. A negative association was expected.

b Association of microglia proportion with Braak stage, a measure of neurofibrillary tangles. A positive association was
expected.
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Figure 1: Graphical overview of the Bisque decomposition method. We integrate single-cell and bulk expression by
learning gene-specific bulk transformations (pictured on right) that align the two datasets for accurate decomposition.

36


https://doi.org/10.1101/669911
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/669911; this version posted June 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

a
= 8000 . 8000 .
S S e °e
%‘ 6000 ¢ 6000 ¢
e}
S % [ 1] % @
kel
3 e 9 S °
& 4000 = 4000 —
o
@
2]
© Gene Slope Gene Slope
£ 2000 BN CFD 0.153 2000 N CFD 1.000
o] L .: BN PDE3B 0.718 .‘ B PDE3B 1.000
Q e v BN IGFBP7 0.707 ’.3 BN IGFBP7 1.000
ko) g ° BN FRMD4B  6.462 L BN FRMD4B  1.000
2 o ¢ N SKAP1 11.020 0o © . SKAP 1.000
n
0 5000 10000 15000 20000 0 2000 4000 6000 8000
Observed bulk (CPM) Bisque transformed bulk (CPM)
b
0.16
0.90
0.80 0.14
0.70 ¥ 0.12
0.60 8010 /f_—
@ 0.50 2
0.40 o 0.08
0.30
0.06
0.20 /
0.10 0.04
0.00 0.02
0 10 20 0 10 20

Variance in gene-specific transformations (o)

I Bisque B Music Il BSEQ-sc I CIBERSORT

Figure 2: The effect of discrepancies between a single-cell based reference and bulk expression on decomposition.

a Observed discrepancies in real data between single-nucleus and bulk expression for selected marker genes (left) for six
individuals. Each color corresponds to a gene. On the left, observed bulk expression on the x-axis is plotted against the
pseudo-bulk expression on the y-axis, where pseudo-bulk expression is calculated by summing the single-cell based reference
with cell proportions as weights. On the right, the Bisque transformation of bulk expression is on the x-axis. Bisque
recovers a one-to-one relationship by transforming the bulk expression for improved decomposition accuracy (right).

b Simulation of bulk expression for six individuals based on true adipose snRNA-seq data with increasing gene-specific
differences. These differences are modeled as a linear transformation of the summed snRNA-seq counts with coefficient and
intercept sampled from Half-Normal distributions with parameter as indicated on the x-axis. At o = 0, the simulated bulk
is simply the sum of the observed single-cell read counts. Performance on y-axis measured in global Pearson correlation (R)
(left) and root mean squared deviation (RMSD) (right). Shaded regions indicate 95% confidence intervals based on
bootstrapping. Bisque remains robust to increasing gene-specific variation between single-cell and bulk expression levels.
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Figure 3: Decomposition benchmark in human subcutaneous adipose tissue.

a Comparison of decomposition estimates from 100 individuals with estimates from 6 individuals with snRNA-seq data
available. Each color represents a benchmarked method.

b-c Scatterplots comparing decomposition estimates with measured phenotypes in 100 individuals. Reported ‘rho’
corresponds to Spearman correlation. CIBERSORT and BSEQ-sc are not shown since they did not detect these cell
populations. These examples include the most abundant (adipocytes) and rarest (T cells) cell types identified in the
snRNA-seq data. Significance of associations reported in Supplementary Table 1.

b Adipocyte proportion has been observed to negatively correlate with BMI so we expected a negative correlation. Bisque
(p = 0.030) and CIBERSORTx (p = 0.001) produced significant negative associations after correcting for sex, age,
age-squared, and relatedness.

c T cell proportion has previously been reported to positively correlate with insulin resistance. Matsuda index decreases
with higher insulin resistance so we expected a negative correlation. Bisque (p < 0.001) and CIBERSORTx (p = 0.003)
produced significant negative associations after correcting for diabetes status, sex, age, age-squared, and relatedness.
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Figure 4: Decomposition benchmark in human dorsolateral prefrontal cortex tissue. We randomly sampled 25% of the
nuclei in the snRNA-seq data to accommodate the file size limit of the web-based implementation of CIBERSORTx at the
time of writing.

a Comparison of decomposition estimates from 628 individuals with estimates from 8 individuals with snRNA-seq data
available. Each color represents a benchmarked method.

b-c Violin plots depicting association of decomposition estimates aggregated into major cell types with measured
phenotypes in 628 individuals. Reported ‘rho’ corresponds to Spearman correlation. Examples shown are for the most
abundant (neurons) and least abundant (microglia) populations detected in the snRNA-seq data. Significance of
associations reported in Supplementary Table 2.

b Neuronal degeneration has been observed in patients diagnosed with Alzheimer’s disease (AD). Cognitive diagnostic
category measures a physician’s diagnosis of cognitive impairment (CI), with 0 indicating no CI and 4 indicating a confident
AD diagnosis. We expected a negative correlation between neuron proportion and cognitive diagnostic category.

¢ Microglia proportion has been observed to positively correlate with increased severity of AD symptoms, such as
neurofibrillary tangles. Braak stage provides a semiquantitative measure of tangle severity, so we expected an overall
positive correlation between microglia proportion and Braak stage. In addition, a decrease in microglia abundance has been
previously reported at Braak stages 5 through 6 in AD patients. Only Bisque produced estimates with a significant positive
association (p = 0.001) after correcting for sex, age, and age-squared.
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Figure 5: Runtime comparisons in log-transformed seconds for benchmarked reference-based decomposition methods.

a Runtime for subcutaneous adipose dataset, which included 100 RNA-seq samples and 6 snRNA-seq samples with around
1,800 nuclei per individual.

b Runtime for dorsolateral prefrontal cortex dataset, which included 628 RNA-seq samples and 8 snRNA-seq samples. We
benchmarked each method using around 2,125 nuclei per snRNA-seq sample.
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Supplementary Figure 1: Decomposition of human subcutaneous adipose tissue.

a UMAP projection of snRNA-seq data with 5 identified cell type clusters labeled.

b Leave-one-out cross-validation using 6 samples with snRNA-seq and bulk RNA-seq data available. Proportions based on
snRNA-seq were used as a proxy for the true proportions on the x-axis. Estimated proportions for an individual were
generated by each decomposition method using the remaining 5 individuals as training data. Each color represents one of
the 5 identified cell populations.

c Leave-one-out cross-validation performance after normalization of estimates within each cell type to determine
cell-specific accuracy. Normalized estimates are robust to inflation of global Pearson correlation by large cell populations;
however, these metrics are noisy when considering only six individuals.

d Leave-one-out cross-validation performance on exon-aligned snRNA-seq data. Existing methods are able to detect
additional cell populations using the exonic subset of the snRNA-seq data, though around 40% of the sequenced cells are

filtered out.
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Supplementary Figure 2: Decomposition of human DLPFC tissue.

a UMAP projection of snRNA-seq data with 11 identified cell type clusters labeled.

b Leave-one-out cross validation using 8 samples with snRNA-seq and bulk RNA-seq data available. Proportions based on
snRNA-seq were used as a proxy for the true proportions on the x-axis. Estimated proportions for an individual were
generated by each decomposition method using the remaining 7 individuals as training data. Each color represents one of
the 11 identified cell populations.

¢ Leave-one-out cross-validation performance after normalization of estimates within each cell type to determine
cell-specific accuracy. As described previously, performance metrics on normalized data provide better measure of global
accuracy but are noisy with small sample sizes.

d Leave-one-out cross-validation performance after merging closely related cell subtypes into 6 clusters. Performance of
existing methods increases compared to decomposition into 11 clusters with related subtypes.

e Decomposition of remaining 628 individuals with cell subtype merging. The aggregated cell type proportions estimated
from the 8 snRNA-seq samples are similar to THC estimates for neurons and astrocytes from 70 individuals in the cohort
(data not shown).
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Adipose Gene Log Ratios

Supplementary Figure 3: Consistency of snRNA-seq to bulk RNA-seq expression log-ratios across individuals, tissues,
and experiments.

a Heatmap depicting Pearson correlation between pairs of individual’s log-ratios of snRNA-seq expression to bulk RNA-seq
gene expression measured in counts per million (CPM). A sample prefix of ‘A’ indicates an individual from the adipose
dataset and ‘C’ indicates an individual from the cortex dataset. Correlation is high between individuals within experiments
as well as between experiments/tissues, indicating the same genes are over /under-expressed in snRNA-seq when compared
to bulk RNA-seq.

b Scatterplot of average snRNA-seq to bulk RNA-seq gene expression log-ratios across individuals in adipose dataset
(x-axis) and cortex dataset (y-axis). Each point corresponds to a gene detected in both experiments, depicting the average
ratio across all individuals for that tissue. The snRNA-seq to bulk RNA-seq ratios vary across genes and correlate
(R=0.747) between these two experiments.
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Supplementary Figure 4: Shared marker genes between identified clusters in snRNA-seq data. Heatmaps of proportion
of shared marker genes where an entry indicates the proportion of marker genes for the cluster on the x-axis that are found
in the cluster on the y-axis.

a The 5 clusters identified in adipose tissue are relatively distinct in their marker genes.

b The 11 clusters identified in DLPFC tissue have several closely related subtypes, such as neurons and astrocytes.
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