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8 Abstract

9 Batch effect is a frequent challenge in deep sequencing data analysis that can lead to misleading
10 conclusions. We present scBatch, a numerical algorithm that conducts batch effect correction on the
11 count matrix of RNA sequencing (RNA-seq) data. Different from traditional methods, scBatch starts
12 with establishing an ideal correction of the sample distance matrix that effectively reflect the underlying
13 biological subgroups, without considering the actual correction of the raw count matrix itself. It then
14 seeks an optimal linear transformation of the count matrix to approximate the established sample pattern.
15 The benefit of such an approach is the final result is not restricted by assumptions on the mechanism of
16 the batch effect. As a result, the method yields good clustering and gene differential expression (DE)
17 results. We compared the new method, scBatch, with leading batch effect removal methods ComBat
18 and mnnCorrect on simulated data, real bulk RNA-seq data, and real single-cell RNA-seq data. The

19 comparisons demonstrated that scBatch achieved better sample clustering and DE gene detection results.
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» Introduction

21 In the recent decade, RNA sequencing (RNA-seq) has become a major tool for transcriptomics. Due
22 to the limitation of sequencing technology and sample preparations, technical variations exist among
23 reads from different batches of experiments. These unwanted technical variations, or batch effects, can
24 lead to misleading scientific findings in downstream data analysis (Hicks et al., 2017). Typically, batch
25 effects can alter the sample patterns, causing false interpretations about cell lineage and heterogeneity.
26 If the goal is to detect differential expression (DE) genes, the analysis can suffer loss of statistical power
27 and/or bias.

28 While the severity of batch effects varies in different datasets, batch effect corrections were shown to
2s be effective in general. For instance, batch effect correction on the ENCODE human and mouse tissues
so bulk RNA-seq data (Lin et al.,|2014), where the batch effects were intense, obtained largely different and
31 more sensible tissue clustering results compared to before correction (Gilad and Mizrahi-Man, 2015).
s2 In other datasets, batch effects are often more subtle. In such cases, although the true biological pattern
33 1s maintained to some extent, weak to moderate batch effects can still be observed. |[Hicks et al.| (2017)
s« discussed the coexistence of biological signal and technical variation, which may still compromise the
35 downstream analysis. The correction of the batch effects can yield better clustering results (Fei et al.,
ss |2018) on data with weak to moderate batch effects that were unobvious from dimension reduction plots
sz (Usoskin et al.| [2015; Muraro et al., 2016). These previous efforts argue for the inclusion of batch effect
s corrections as a routine procedure in data preparation.

39 Since the microarray era, efforts have been made to correct batch effects. Johnson et al.| (2007)
40 proposed an empirical Bayes algorithm, ComBat, to normalize the data by removing additive and mul-
41 tiplicative batch effects, which continued to be a successful method in RNA-seq data. Researchers also
42 attempted to find and correct unknown batch effects by utilizing control genes in microarray (Gagnon-
43 [Bartsch and Speed, [2012) and RNA-seq data (Leek, 2014} Risso et al., [2014; |Chen and Zhou, 2017)).

42 ComBat and the control gene methods are based on regression models, while more recent methods
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4s proposed different strategies that allow for more complex batch effect mechanisms. To achieve better
4 clustering performance, |Fei et al.| (2018)) developed a non-parametric approach, named QuantNorm, to
47 correct sample distance matrix by quantile normalization; Haghverdi et al.| (2018)) utilized the mutual
4 nearest neighbor relationships among samples from different batches to establish the MNN correction
49 scheme. As observed from the results in [Fei et al.| (2018) and Haghverdi et al.| (2018)), current methods
so have reached reasonable performances in sample pattern detection, such as finding clusters or conducting
51 dimension reduction.

52 However, DE detection appears not to be the emphasis of recent methods development. |Chen and
53 |[Zhou/(2017) only evaluated the clustering performances, while QuantNorm (Fei et al.,2018)) only returns
s4 corrected distance matrices and does not support DE tests. Although Haghverdi et al.[(2018)) conducted
55 DE tests, the user manual (https://bioconductor.org/packages/3.8/workflows/vignettes/
s6 [simpleSingleCell/inst/doc/work-5-mnn.html) of the corresponding bioconductor func-
57 tion, mnnCorrect, recommends not using the corrected count matrix for DE analysis with considera-
ss tions on manipulated data scales and mean-variance relationship.

59 Motivated by the challenges faced in DE detection, in this study we develop a new method, sc-
so Batch, to utilize the corrected sample distance matrix to further correct the count matrix. Specifically,
st we seek a linear transformation to the count matrix, such that the Pearson correlation matrix of the
e2 transformed matrix approximates the corrected correlation matrix obtained from QuantNorm. For this
63 purpose, we propose a random block coordinate descent algorithm to conduct linear transformation on
e+ the p (genes) xn (samples) count matrix. Simulation studies demonstrate that in terms of DE gene de-
65 tection, our method corrects the count matrix better compared to ComBat and MNN, with consistently
es higher area under the receiver operating characteristic curve (AUC) and area under the precision-recall
67 curve (PRAUC). In real data analyses, the proposed method also show strong performances in clustering
es and DE detection in a bulk RNA-seq dataset (Lin et al., |2014) and two scRNA-seq datasets (Usoskin

6o (et al.l[2015; Xin et al., 2016)).
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7 Results

71 Batch effect correction based on corrected sample correlation matrix

72 The scBatch method considers a study design scenario where the cell type or disease status composition
73 is not severely confounded with batch, i.e. different cell subtypes or disease status are roughly evenly
74 distributed among the batches. This balanced study design scheme has been recommended (Hicks et al.,
75 |2017) and widely adopted because it helps to avoid bias caused by confounding with batch. Under
76 this assumption, although the batch effect may interrupt the overall data pattern, the data pattern within
77 each batch should share similar characteristics, including similar quantile distributions in different batch
78 blocks in the sample distance matrix. Moreover, the balanced study design retain the above feature
79 in various types of omics data, allowing our approach to be applied to different types of data without
so restrictions of distribution assumptions on the distance matrix.

81 Fig. |l| summarizes the workflow of scBatch. Given a count matrix X and its Pearson correlation
s2 matrix, we first utilize QuantNorm to obtain the corrected sample Pearson correlation matrix D. Then X
83 and D are input to the proposed algorithm to seek the weight matrix W, such that the Pearson correlation
s« matrix of the linear transformation X x W approximates D). After the algorithm converges, the linear-
g5 transformed count matrix Y = X x W is output as the corrected count matrix that inherits the corrected
ss sample pattern in D. Although more complex models can be used to achieve nonlinear transformation,
sz we believe linear transformation can avoid over-correction while still achieving good results. Detailed

ss problem setup and algorithm design can be found in the Methods section.
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Normalized count matrix X
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Figure 1: Overview of scBatch workflow. For the preprocessed count matrix X, the Pearson correlation
matrix is corrected by QuantNorm to obtain a reference sample distance matrix D. Then the main algo-
rithm is utilized to search for the weight matrix W to achieve the objective that the Pearson correlation
of X x W is close to D. The corrected count matrix Y = X x W inherits the sample pattern information
from D, which can be used for downstream analyses.
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ss scBatch achieves better DE detection in simulations

90 In previous studies, we have shown that the corrected distance matrix by QuantNorm, i.e. the reference
o1 matrix used in this study, achieved better sample clustering results in simulations (Fei et al., 2018)).
92 However QuantNorm could not correct the count matrix, and hence the inability to improve differentially
93 expressed (DE) gene detection. In this simulation study, we focused on the capability of the new method
94 to facilitate the detection of DE genes after count matrix correction.

95 Simulated scRNA-seq datasets were generated by Bioconductor package splatter (Zappia et al.,
96 |2017) which controls the batch effect mechanisms by customizing relevant parameters. For all simu-
o7 lated datasets, four types of cells were distributed by random sampling in 4 batches. To compare the
9s effectiveness of DE detection using uncorrected data, MNN correction, ComBat correction and scBatch
%o correction, we considered five configurations of batch effect with different mechanisms (Fig. [2). For
100 configurations (I) to (IV), the complexity of batch effects increases, while configuration (V) serves as
101 the control group where no batch effect was introduced. Detailed simulation design and data generation
102 procedures are reported in Methods.

103 Standard DE detection method Seurat (Satija et al., | 2015) was utilized to conduct DE gene detection
104 for each pair of the four cell types. The available gold standard of DE gene lists enabled us to compute
105 area under the receiver operating characteristic curve (AUC) and area under the precision-recall curve
106 (PR-AUC), based on the adjusted p-values from DE tests. At each parameter setting, the simulations

107 and tests were repeated 50 times to obtain 50 corresponding AUC and PR-AUC values.
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Figure 2: Boxplots of AUC and PR-AUC indices computed from adjusted p-values from DE tests in
50 simulations from the five configurations (I - V). Each column represents one corresponding con-
figuration. The batch effect complexity was increased from configuration (I) to configuration (IV).
Configuration (V) contained no batch effect.

108 Fig. 2] displays the boxplots, generated by ggplot2 (Wickhaml 2016), of AUCs and PR-AUCs for
10e pairwise DE tests obtained from the 50 simulations. While ComBat and MNN achieved some improve-
1o ment from the uncorrected data, scBatch consistently ranked at the top in both metrics under different
111 simulation settings. Interestingly, under the control configuration where there was no batch effect, MNN

112 correction failed to retain the original sample pattern, resulting in reduced power in DE detection.

113 scBatch obtained better sample patterns for bulk RNA-seq data

114 To illustrate the utility of scBatch on different types of real data, we first considered a bulk RNA-seq data
115 of human and mouse tissues (Lin et al., |2014). The dataset consists of 13 tissues from human and their
116 counterparts in mouse. It is a typical example of data containing strong batch effects. Without batch
17 effect correction, the samples from the same species clustered together, as the tissues from different
11e  species were measured in different batches. Several re-analyses have shown that the samples would
19 be clustered by tissues instead of species after proper batch effect correction (Gilad and Mizrahi-Man,

120 20155 |Sudmant et al., 2015} [Fe1 et al., 2018)).
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Figure 3: Heatmaps of ENCODE mouse and human tissues data generated from the Pearson correlation
matrices of A raw count matrix; B count matrix corrected by ComBat; C count matrix corrected by
MNN; D count matrix corrected by scBatch. Hierarchical clustering was used to generate clusters. Red
rectangles mark the samples not clustered with their counterparts in the other species.

121 In our analysis, we compared the clustering performance of batch effect correction algorithms, in-

122 cluding ComBat, MNN and scBatch. We used heatmaps generated by R package pheatmap (Kolde
€ g ps g y Rp gep P

123 [and Kolde}, 2015) and Adjusted Rand Index (ARI) (Hubert and Arabie| [1985) calculated from hierar-

124 chical clustering for the comparison. As observed in Fig. [3JA, the subjects were mainly clustered by
125 species in the raw count matrix. After batch effect correction, ComBat (ARI = 0.70, Fig E[B) and MNN
126 (ARI = 0.68, Fig [3C) restored 10 out of 13 pairs of tissues, while scBatch (ARI = 0.88, Fig 3D) out-
127 perfomed the other two methods by retrieving 12 out of the 13 matches with reasonably high contrast
12s in the heatmap. The above results demonstrated scBatch’s ability to obtain better sample patterns. For
129 scBatch, the restoring of sample patterns was based on our previously published work of sample corre-
130 lation matrix correction 2018). Thus the results here on the mouse/human tissue data only

131 demonstrated that scBatch could truly adjust the count matrix such that the resulting sample correlation
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132 matrix approaches that generated by |Fei et al.| (2018)). In the next sections, we demonstrate the utility of

133 scBatch in DE gene detection on single cell RNAseq data.

13a  scBatch shows strong performance in cell heterogeneity investigation

135 Under the assumption of scBatch algorithm, the correction can be reliably applied for batches with
136 similar cell type compositions. This assumption is particularly suitable for the investigation of cell
137 heterogeneity from a certain tissue. We compared clustering and DE gene selection results of different
138 correction methods on two single-cell RNA-seq datasets, one for mouse neuron cells (Usoskin et al.,
139 |2015) and one for human pancreas cells (Xin et al.,2016). Our method not only obtained better sample

140 patterns, but also retained important information in marker genes.

141 Mouse neuron dataset GSE59739

142 The single-cell RNA-seq data was generated by [Usoskin et al.[|(2015). Cell labels determined by marker
143 genes were provided in the data. We based our analyses on the given cell labels to investigate the dif-
144 ferences of four main subtypes of cells, namely non-peptidergic nociceptors (NP), tyrosine hydroxylase
145 containing (TH), neurofilament containing (NF) and peptidergic nociceptors (PEP). As observed in the
146 two-dimensional t-SNE plot (top-left panel in Figure dJA), the uncorrected data maintained the cluster of
147 NF cells, while the other three subtypes formed a mixture. Regarding the library labels as batches, we

14s  conducted batch effect correction using ComBat, MNN and scBatch.
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Figure 4: A,C-F t-SNE plots of the sample patterns from uncorrected data (normalized raw count data),
ComBat correction, MNN correction and scBatch correction, colored by A cell labels from raw data, C
marker gene Nefh for NF cells, D marker gene Mrgprd for NP cells, E marker gene Tacl for PEP cells,
and F marker gene Th for TH cells. B Venn diagrams for the significant genes from pairwise differential
gene tests by Seurat (ISatija et al.l, |2015|) with adjusted p-values < 10~% and fold changes > 2.

In order to evaluate the clustering performance, we utilized t-distributed stochastic neighbor embed-
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150 ding (t-SNE) (Maaten and Hinton, 2008) dimension reduction, and the average ARI based on multiple
151 k-means clustering results. As the t-SNE plots (Fig. HJA) display, scBatch (bottom right) obtained
152 a clearer sample pattern which distinguished the four subtypes better. The ARI indices based on k-
153 means clustering results also demonstrated that scBatch (ARI = 0.72) outperformed uncorrected data
154 (ARI = 0.09), MNN (ARI = 0.08) and ComBat (ARI = 0.11) by a large margin. To further investigate
155 whether corrected count matrices kept crucial marker information, we plot the marker gene expression
156 levels in the t-SNE plots for the four cell subtypes, displayed in Figs. f[C, D, E, F. It can be observed
157 that scBatch correction inherited the marker information from the uncorrected data with large contrast,
158 while ComBat and MNN did not maintain as strong contrast in the marker genes.

159 Due to its ability to restore better sample patterns and maintain important marker contrasts , scBatch
160 also showed good performance in DE gene detection. We conducted DE gene detection between all
161 cell type pairs, using the method Seurat (Satija et al., 2015). Given the large differences between the
162 cell types, we used stringent criteria of adjusted p-value < 10~% and fold change > 2. Fig. shows
163 the Venn diagrams of DE genes detected from the different count matrices. As observed, the DE genes
164 from the uncorrected data were largely contained in the DE gene set from the scBatch-corrected data.
165 Moreover, scBatch found the largest number of DE genes in five out of the six subtype pairs, indicating
166 that more underlying information masked by batch effects may be revealed by scBatch.

167 Between the three batch-effect correction methods, scBatch and MNN tended to agree with each
1es other on this dataset. In most cases the majority of the genes found by MNN were also found by
169 scBatch. ComBat disagreed with the other two methods in some of the comparisons. In order to examine
170 their differences at the functional level, we used GOstats to analyze the over-representation of gene
171 ontology biological processes by the selected genes (Falcon and Gentleman, 2007)). In the neurofilament
172 containing (NF) cells v.s. tyrosine hydroxylase containing (TH) cells comparison, the largest difference
173 between ComBat and the other two methods was observed (Fig/B). Functional analysis revealed that
174 the top biological processes found in uncorrected data fall into axonogenesis, cell morphogenesis and

175 synapse assembly (Supplemental File S1). scBatch and MNN identified similar top biological processes

10
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176 such as those involved in synapse assembly and cell adhesion. These results are reasonable given the
177 functionality of the NF cells. On the other hand, the top terms resulting from the application of ComBat
178 were focused on regulation of ion transmembrane transport and synapse organization, the first of which
179 'was not obvious in terms of the biological functions to the NF and TH cells. The full GOstats results are

180 contained in Supplemental File S1.

181 Human pancreas data GSE81608

182 We analyzed another single-cell RNA-seq data of human pancreas cells (Xin et al., 2016). The dataset
183 consists of cells from healthy controls and patients with type Il diabetes. In this study, cells from different
184 donors were separately processed (Xin et al., [2016). Donor IDs can be regarded as batch labels. Here
185 we focused on healthy control cells to investigate the cell heterogeneity. There are four dominating
186 endocrine cell types - alpha cells that produce glucagon, beta cells that produce insulin and amylin, delta
187 cells that produce somatostatin, and gamma cells that produce pancreatic polypeptide. In this dataset,
18s  the distribution of cell types between the batches vary substantially. The proportion of alpha cells in
189 each batch ranged from 16.7% to 74.6% among the batches. The proportion of beta cells ranged from
190 14.0% to 54.2%. Given that gamma and delta cells account for small proportions in the pancreas islet,
191 the were not present in some of the batches. The range for delta cell was 0 to 8.3%, and the range for
192 gamma cell was 0 to 20.0%. These variations made the data more challenging than the mouse neuron
193 data. As observed in Fig. [5|A, the uncorrected data (top left) showed high distinction of alpha and beta

194 cells, while the gamma and delta cells were clustered together.

11
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We applied similar analysis procedure used for the mouse neuron data. From the t-SNE plots where
cells were colored by the provided subtype labels (Fig. [5]A), mixed gamma and delta cells appeared
in the patterns for both uncorrected data (top left) and ComBat-corrected data (top right), while MNN-

corrected data (bottom left) formed clusters which contained mixed types of cells. The pattern obtained
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199 by scBatch (bottom right), in contrast, successfully separated the four types of cells, although the dis-
200 tance between gamma and delta cells were still close.

201 As expected, in K-means clustering results, scBatch achieved highest average ARI (0.60), compared
202 to uncorrected data (0.42) and ComBat (0.44). On the other hand, the average ARI for MNN (-0.01)
20s indicates no correlation between the MNN sample pattern and the cell subtype labels. The marker gene
204 expressions on t-SNE plots (Figs. [5IC, D, E, F) similarly demonstrated that scBatch was able to maintain
205 marker gene information from the original data. The imbalance between the batches, especially the
206 lack of some cell types in certain batches, is likely the reason for MINN’s inconsistent performance. Its
207 nearest-neighbor based approach may mistakenly match different type of cells, and cause the adjustment
208 to be erraneous. On the other hand, although scBatch prefers balanced design, it appeared to be more
200 robust against the imbalance.

210 In the Venn diagrams of significant DE genes (Fig. [5B), as the cell labels did not match the clusters
211 in the MNN pattern, the detected DE gene set for MNN was largely different from the other three
212 approaches. Apart from the results by MNN, high agreements were observed among uncorrected data,
213 ComBat and scBatch, where scBatch was able to detect more DE genes in all six pairs.

214 We again used GOstats to analyze the over-representation of gene ontology biological processes by
215 the selected genes (Falcon and Gentleman, 2007). We take the DE genes between alpha and beta cells
216 as an example. The two types of cells produce hormones of opposite effects - glucagon and isulin, re-
217 spectively. From uncorrected data, the top GO terms represented by the DE genes include "regulation
21s  of system process", "digestion", and "regulation of heart contraction”. From ComBat-corrected data,
219 the top GO terms include "response to biotic stimulus”, "digestion", and "regulation of system process".
220 The top GO terms from scBatch include "G-protein coupled receptor signaling pathway", "response
221 to lipopolysaccharide”, "digestion". Lipopolysaccharides can modulate glucose metabolism (Nguyen
222 |et al., 2014). It is well-known that G-protein coupled receptors are regulated in beta cells to affect in-
223 sulin secretion and their natural ligands (Persaud, [2017)). The top GO terms from MNN were instead

non

224 focused on immune-related processes, including "chemokine-mediated signaling pathway", "inflamma-
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225 tory response” and "neutrophil chemotaxis". They do not reflect the biological functions and differences
226 of the alpha and beta cells. These results clearly indicate the scBatch and ComBat results are more

227 biologically plausible. The full list of the functional analysis results are in Supplemental File S2.

2s  Discussion

229 Batch effects are frequently encountered in omics data analysis, thus a crucial issue to address before
230 downstream analysis that leads to scientific discoveries. In this paper, we introduced a novel method for
231 batch effect correction.We have shown that the proposed method, scBatch, can obtain better clustering
232 pattern, maintain crucial marker information and detect more DE genes.

233 The method assumes roughly balanced sample population among batches. The assumption is strong
234 yet reasonable (Hicks et al.,[2017), and the method appeared to be robust when the assumption is mildly
235 violated. In the presence of technical variations and various confounders, a randomized design is ideal.
236 Data analysis requires proper randomization to determine the existence of latent groups or cell subtypes,
237 or to decide whether the gene expression differs between two populations. In reality, data analysts
238 sometimes encounter data where the biological groups and batch labels are totally confounded, which
239 brings tremendous challenges in downstream analysis. On the other hand, if the study design is balanced,
240 we will be able to restore the biological pattern, even if the technical variations dominate the sample
241 pattern in the raw data.

242 Computational cost is another practical concern for the application of algorithms. Compared to
243 ComBat and MNN, scBatch requires more computation time to reach optimal results. As shown in Sup-
244 plemental Fig.1, the running time increases faster than a linear growth rate as the sample size increases.
245 Moreover, for a fixed sample size, the time to convergence for scBatch also varied. The varied running
246 time was determined by the complication of batch effects, which decided the similarity between uncor-
247 rected sample pattern and the corrected referencing sample pattern. Although slower than ComBat and
246 MINN, the running speed of scBatch is within acceptable range. For a few hundred cells, the computing

249 time was in the range of minutes. For large studies with over 1000 cells, the computing can take hours.

14
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250 There is still large room to improve the proposed method. First, we only adopted the simplest linear
251 transformation of raw count matrix in this paper, while a non-linear transformation may better depict
252 the sample pattern in the corrected distance matrix. Secondly, the metrics of distance can also affect
253 the correction. We used the Pearson correlation matrix because it was easy to interpret and convenient
254 for gradient computation, while other distance metrics such as Spearman correlation may bring other
255  insights to the data pattern. Thus, a more universal numerical gradient descent algorithm may be applied

256 to adapt to different types of distance matrices.

7 Methods

258 Main algorithm

250 Problem setup The count matrix X,,.,, with p genes and n cells, in which the n cells fall into multiple
260 batches, is subject to batch effects. Based on the Pearson correlation matrix of X, a corrected n X n
261 correlation matrix D with improved sample similarities is obtained using the distance matrix correc-
262 tion algorithm QuantNorm (Fei et al.l |2018). Given D, the objective is to solve for an optimal n x n
263 weight matrix W such that the Pearson correlation of the linear-transformed count matrix ¥ = XW
264 approximates the sample pattern in D. The transformed count matrix Y can then be used in downstream
265 analyses. We note that similar to other methods, the resulting matrix may no longer be composed of

266 non-negative integers.

267 Least squares loss function In order to solve W, we propose to minimize the following least squares

268 loss function

1 I
L(W) = 2|[Dy = D[z = 5> Dy — Dyl (1
2 2

i=1 j=1

260 where Dy is the Pearson correlation matrix of Y,

-||F is the Frobenius norm and A;; denotes the (i, j)

270 entry of matrix A. Thus, the optimized weight matrix W, satisfies W,,; = argminy, L(W) and the
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271 corrected count matrix is Yy, = X W

Gradient of the loss function By chain rule, the gradient of the loss function L(W) is

O L(W) = (2 D) (Dy - D).

By definition, the 7, j entry of Dy satisfies

(XW)" (I, — J1,17)°X W,
WL, = S0 2 X Wy [(XW5)7 (1, = 11,152 X W,

{Dy}ij =

272 where W; is the ith column of W, I, is the p x p identity matrix, and 1,, is the p x 1 vector with all

0

273 entries equal to one. As can be observed, 57

Dy is a 4th-rank tensor in n-dimensional space. Thus the
274 gradient of the loss function L(Y"), which is the product of %Dy and the n X n matrix (Dy — D), is
275 also an X n matrix.

276 Although the scale of computation appears large, we derived an equivalent but more economic ap-
277 proach to compute the gradient in practice. Since {Dy };; involves only two columns from W, the
278 tensor %Dy is sparse so that all its entries can be saved in a 3rd-rank tensor in n-dimensional space.
279 Let A denote the kth column of matrix A. Considering the gradient performance and practical comput-
280 ing, moreover, we further decompose the calculation into columnwise gradients ﬁDy, k=1,..n,

281 which are n x n matrices. Using columnwise gradients as the unit, both coordinate gradient descent

282 (Wright, [2015)) and standard gradient descent can be easily implemented.

283 Denote C = XT(I, — %lp]lg)QX . By some algebra, the columnwise gradient %L(W) satisfies
iL(W) = iD T{D — Dy} + trace iD T{D — D}le (2)
oW, =\am, Y Yk k o,y Y k>
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where ey is a n X 1 vector in which the k entry is equal to one and others are equal to zero, and

6 CW CWk(WTCWk)T . T 1 o—1
Dy — _ 1,, @ diag(WTCW)°!/? :
ow,. ¥ (WICW,)1/? (WICW,)3/2 ® |{1n ® diag( )°H%}

28« where ©, o respectively represents Hadamard (elementwise) product and power, and ® represents outer

285 product.

Algorithm 1 Random block coordinate descent algorithm.

Input: raw count matrix X € RP*", reference distance matrix D &€ R™ ", initial weight matrix
W € R™*", group number m € [1,n], step size € € RY, tolerance tol € (0, €), function L returning
loss function and columnwise gradients.
[p, n] = dim(X)
while € > tol do
group = sample(1:m,size=n,replace=T)
fori=1,2, .., max(group) do
Wo=W
idx = group ==1
L,dL = L(W,idx)
W =W —e.xdL
Lnew = L(W)
if L., > L then
€ = 0.5¢
W =W,
else
€ =1.5¢
end if
end for
end while
Y=XxW
Output: Y.

286 Random block coordinate descent algorithm We adapt a flexible gradient descent algorithm (Al-
27 gorithm[I)). In each iteration, the algorithm first randomly partitions n subjects into m groups. Then
288 gradient descent is sequentially conducted from group 1 to group m to update the group-specific columns
289 in W. That is, the subjects are randomly partitioned in m group blocks in each iteration to improve the
200 robustness of gradient descent. Note the number of groups m can be customized as any integer from
291 1 to sample size n. When m = n, the algorithm is equivalent to the traditional gradient descent algo-

292 rithm; when m = 1, the algorithm is equivalent to the coordinate descent algorithm (Wright, 2015).
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203 The flexibility alleviated both the long running time of coordinate gradient descent algorithm (Wright,
204 [2015)) and the underperformed result of gradient descent algorithm. In order to dynamically adjust the
205 learning rate, we utilized Armijo line search (Armijo, |1966)). The algorithm is stopped when the step

206 size decreases below a threshold tol, indicating the approximation of a local minimum.

207 Simulation design

208 We applied Bioconductor package splatter (Zappia et al., [2017)) to simulate single-cell RNA-seq
209 data. Each dataset consisted of 1000 cells and 10000 genes from four biological groups. The biological
s0 groups were in a fixed proportion 4:3:2:1. The 1000 cells were randomly allocated to four batches with
st equal size (250 cells) with potentially different batch effect mechanisms controlled by batch location
so2 and scale parameters. The probability of a gene being differentially expressed was fixed as 0.1. The
303 splatter package reported DE factors for each gene in each group, which were used to establish the
s+ gold standard for evaluation. Given two groups of interest, if the ratio of DE factors for the two groups
sos was larger than 3/2 or smaller than 2/3, then the gene was regarded differentially expressed among the
306 two groups.

307 We considered four different configurations of the location and scale parameters of batch effects in
sos simulation studies: (I) Location was fixed as 0.1 and scale was fixed as 0.1 for all four batches. (II) Lo-
309 cation was 0.1, 0.2, 0.05, 0.15 respectively for the four batches, while scale was fixed 0.1. (III) Location
a0 was fixed 0.1 and scale was 0.05, 0.1, 0.25, 0.3 respectively for the four batches. (IV) Location was 0.1,
a1t 0.2, 0.05, 0.15 and scale was 0.05, 0.1, 0.25, 0.3, for the four batches respectively. (V) There were no
s1i2  batch effects. The location parameter decided the distance between different batches, while the scale pa-
a1z rameter controlled the shape of each batch. Under configuration (I) the batch effects followed the same
s12  mechanism for each batch, thus it was less challenging to correct. In contrast, the batch effect mecha-
315 nism varied from batch to batch under configuration (IV), which increased the difficulty of batch effect
s16  correction. Moreover, configuration (V) examined if the correction methods could maintain reasonable

317 performances when the batch effects were negligible. For each of the five configurations, we simulated
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s1s 50 datasets to be corrected by the three correction methods. For MNN, default hyperparameters were

s19  used. For scBatch, the hyperparameter m was chosen to be 5.

a0 Datasets and preprocessing

321 ENCODE human and mouse tissue data

s22  Generated by Lin et al.|(2014), the data was reanalyzed by (Gilad and Mizrahi-Man| (2015)). We utilized
323 the same dataset used in the reanalysis, which is available at Zenodo (Mizrahi-Man and Gilad, 2015,

322 [accessed on Feb 17 2019). The data we analyzed consisted of 26 subjects and 10290 genes.

325 Mouse neuron data

s2s The data were generated by [Usoskin et al.| (2015). The raw data can be obtained from the NCBI Gene
327 Expression Omnibus (GEO) with accession number GSE59739. We utilized a processed dataset from the
s2s  public data repository of Hemberg Group (https://hemberg-lab.github.io/scRNA.seqg.
329 |datasets/)), where normalization, outlier exclusion and log transformation were conducted to obtain
s30 a dataset with 622 cells and 25334 genes. We further removed two batches with too few samples. The

sa1 final data used for batch correction consisted of 610 cells and 25334 genes.

332 Human pancreas data

sss  The data were generated by [Xin et al.| (2016). The raw data is available at the NCBI Gene Expres-
s« sion Omnibus (GEO) with accession number GSE81608. The data used for analysis was also ob-
s3s fained from Hemberg Group’s repository (https://hemberg—lab.github.io/scRNA.seq.
336 |[datasets/)). We used the same gene filter mentioned in |Xin et al.| (2016) and retained genes with
337 RPKM counts greater than 100 in no less than 10 samples. Only cells from healthy donors were selected

sss in batch correction and downstream analysis. The processed data contained 651 cells and 6797 genes.
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ss9  Analysis and performance evaluation scheme

a0 Clustering analysis For the bulk RNA-seq data (Mizrahi-Man and Gilad, 2015, accessed on Feb 17
a1 [2019), we applied hierarchical clustering due to the small sample size. For the single-cell RNA-seq
a2 datasets, k-means clustering was repeatedly conducted. Based on the cell subtype labels provided in
s43  raw data, we utilized Adjusted Rand Index (ARI) (Hubert and Arabiel [1985)) to evaluate the agreement
344 between the provided labels and the clustering results. The ARI index equals one if the clustering result

a5 perfectly matches the cell labels, while the index values around zero under random assignment.

ass Differential expression analysis We applied Seurat (Satija et al., 2015) to conduct DE gene tests
a7 and adjusted the p-values by Benjamini and Hochberg approach (Benjamini and Hochberg] |1995). In
s4s  simulation studies, we base on the gold standard to directly calculate area under the receiver operating
a49 characteristic curve (AUC) and area under the precision-recall curve (PR-AUC) to compare DE detection
ss0  results. For real data, Venn diagrams are generated for genes with adjusted p-values < 10~ and log fold-
351 changes > 2 to check the agreements among different count matrices. Functional analysis of the DE
32 gene lists are conducted using the GOstats package (Falcon and Gentleman, |2007), which conducts

353 tests of over-representation of gene sets using hypergeometric test.

s« Code availability

35 We implemented the algorithm in the open-source R package scBatch, which is available on GitHub
6 (https://github.com/tengfei-emory/scBatch). The code to generate results and figures

357 in this paper is available on GitHub (https://github.com/tengfei-emory/scBatch-paper—scripts).
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