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Abstract8

Batch effect is a frequent challenge in deep sequencing data analysis that can lead to misleading9

conclusions. We present scBatch, a numerical algorithm that conducts batch effect correction on the10

count matrix of RNA sequencing (RNA-seq) data. Different from traditional methods, scBatch starts11

with establishing an ideal correction of the sample distance matrix that effectively reflect the underlying12

biological subgroups, without considering the actual correction of the raw count matrix itself. It then13

seeks an optimal linear transformation of the count matrix to approximate the established sample pattern.14

The benefit of such an approach is the final result is not restricted by assumptions on the mechanism of15

the batch effect. As a result, the method yields good clustering and gene differential expression (DE)16

results. We compared the new method, scBatch, with leading batch effect removal methods ComBat17

and mnnCorrect on simulated data, real bulk RNA-seq data, and real single-cell RNA-seq data. The18

comparisons demonstrated that scBatch achieved better sample clustering and DE gene detection results.19
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Introduction20

In the recent decade, RNA sequencing (RNA-seq) has become a major tool for transcriptomics. Due21

to the limitation of sequencing technology and sample preparations, technical variations exist among22

reads from different batches of experiments. These unwanted technical variations, or batch effects, can23

lead to misleading scientific findings in downstream data analysis (Hicks et al., 2017). Typically, batch24

effects can alter the sample patterns, causing false interpretations about cell lineage and heterogeneity.25

If the goal is to detect differential expression (DE) genes, the analysis can suffer loss of statistical power26

and/or bias.27

While the severity of batch effects varies in different datasets, batch effect corrections were shown to28

be effective in general. For instance, batch effect correction on the ENCODE human and mouse tissues29

bulk RNA-seq data (Lin et al., 2014), where the batch effects were intense, obtained largely different and30

more sensible tissue clustering results compared to before correction (Gilad and Mizrahi-Man, 2015).31

In other datasets, batch effects are often more subtle. In such cases, although the true biological pattern32

is maintained to some extent, weak to moderate batch effects can still be observed. Hicks et al. (2017)33

discussed the coexistence of biological signal and technical variation, which may still compromise the34

downstream analysis. The correction of the batch effects can yield better clustering results (Fei et al.,35

2018) on data with weak to moderate batch effects that were unobvious from dimension reduction plots36

(Usoskin et al., 2015; Muraro et al., 2016). These previous efforts argue for the inclusion of batch effect37

corrections as a routine procedure in data preparation.38

Since the microarray era, efforts have been made to correct batch effects. Johnson et al. (2007)39

proposed an empirical Bayes algorithm, ComBat, to normalize the data by removing additive and mul-40

tiplicative batch effects, which continued to be a successful method in RNA-seq data. Researchers also41

attempted to find and correct unknown batch effects by utilizing control genes in microarray (Gagnon-42

Bartsch and Speed, 2012) and RNA-seq data (Leek, 2014; Risso et al., 2014; Chen and Zhou, 2017).43

ComBat and the control gene methods are based on regression models, while more recent methods44
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proposed different strategies that allow for more complex batch effect mechanisms. To achieve better45

clustering performance, Fei et al. (2018) developed a non-parametric approach, named QuantNorm, to46

correct sample distance matrix by quantile normalization; Haghverdi et al. (2018) utilized the mutual47

nearest neighbor relationships among samples from different batches to establish the MNN correction48

scheme. As observed from the results in Fei et al. (2018) and Haghverdi et al. (2018), current methods49

have reached reasonable performances in sample pattern detection, such as finding clusters or conducting50

dimension reduction.51

However, DE detection appears not to be the emphasis of recent methods development. Chen and52

Zhou (2017) only evaluated the clustering performances, while QuantNorm (Fei et al., 2018) only returns53

corrected distance matrices and does not support DE tests. Although Haghverdi et al. (2018) conducted54

DE tests, the user manual (https://bioconductor.org/packages/3.8/workflows/vignettes/55

simpleSingleCell/inst/doc/work-5-mnn.html) of the corresponding bioconductor func-56

tion, mnnCorrect, recommends not using the corrected count matrix for DE analysis with considera-57

tions on manipulated data scales and mean-variance relationship.58

Motivated by the challenges faced in DE detection, in this study we develop a new method, sc-59

Batch, to utilize the corrected sample distance matrix to further correct the count matrix. Specifically,60

we seek a linear transformation to the count matrix, such that the Pearson correlation matrix of the61

transformed matrix approximates the corrected correlation matrix obtained from QuantNorm. For this62

purpose, we propose a random block coordinate descent algorithm to conduct linear transformation on63

the 𝑝 (genes) ×𝑛 (samples) count matrix. Simulation studies demonstrate that in terms of DE gene de-64

tection, our method corrects the count matrix better compared to ComBat and MNN, with consistently65

higher area under the receiver operating characteristic curve (AUC) and area under the precision-recall66

curve (PRAUC). In real data analyses, the proposed method also show strong performances in clustering67

and DE detection in a bulk RNA-seq dataset (Lin et al., 2014) and two scRNA-seq datasets (Usoskin68

et al., 2015; Xin et al., 2016).69
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Results70

Batch effect correction based on corrected sample correlation matrix71

The scBatch method considers a study design scenario where the cell type or disease status composition72

is not severely confounded with batch, i.e. different cell subtypes or disease status are roughly evenly73

distributed among the batches. This balanced study design scheme has been recommended (Hicks et al.,74

2017) and widely adopted because it helps to avoid bias caused by confounding with batch. Under75

this assumption, although the batch effect may interrupt the overall data pattern, the data pattern within76

each batch should share similar characteristics, including similar quantile distributions in different batch77

blocks in the sample distance matrix. Moreover, the balanced study design retain the above feature78

in various types of omics data, allowing our approach to be applied to different types of data without79

restrictions of distribution assumptions on the distance matrix.80

Fig. 1 summarizes the workflow of scBatch. Given a count matrix 𝑋 and its Pearson correlation81

matrix, we first utilize QuantNorm to obtain the corrected sample Pearson correlation matrix 𝐷. Then 𝑋82

and 𝐷 are input to the proposed algorithm to seek the weight matrix 𝑊 , such that the Pearson correlation83

matrix of the linear transformation 𝑋 ×𝑊 approximates 𝐷. After the algorithm converges, the linear-84

transformed count matrix 𝑌 = 𝑋×𝑊 is output as the corrected count matrix that inherits the corrected85

sample pattern in 𝐷. Although more complex models can be used to achieve nonlinear transformation,86

we believe linear transformation can avoid over-correction while still achieving good results. Detailed87

problem setup and algorithm design can be found in the Methods section.88
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Figure 1: Overview of scBatch workflow. For the preprocessed count matrix 𝑋 , the Pearson correlation
matrix is corrected by QuantNorm to obtain a reference sample distance matrix 𝐷. Then the main algo-
rithm is utilized to search for the weight matrix 𝑊 to achieve the objective that the Pearson correlation
of 𝑋×𝑊 is close to 𝐷. The corrected count matrix 𝑌 = 𝑋×𝑊 inherits the sample pattern information
from 𝐷, which can be used for downstream analyses.
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scBatch achieves better DE detection in simulations89

In previous studies, we have shown that the corrected distance matrix by QuantNorm, i.e. the reference90

matrix used in this study, achieved better sample clustering results in simulations (Fei et al., 2018).91

However QuantNorm could not correct the count matrix, and hence the inability to improve differentially92

expressed (DE) gene detection. In this simulation study, we focused on the capability of the new method93

to facilitate the detection of DE genes after count matrix correction.94

Simulated scRNA-seq datasets were generated by Bioconductor package splatter (Zappia et al.,95

2017) which controls the batch effect mechanisms by customizing relevant parameters. For all simu-96

lated datasets, four types of cells were distributed by random sampling in 4 batches. To compare the97

effectiveness of DE detection using uncorrected data, MNN correction, ComBat correction and scBatch98

correction, we considered five configurations of batch effect with different mechanisms (Fig. 2). For99

configurations (I) to (IV), the complexity of batch effects increases, while configuration (V) serves as100

the control group where no batch effect was introduced. Detailed simulation design and data generation101

procedures are reported in Methods.102

Standard DE detection method Seurat (Satija et al., 2015) was utilized to conduct DE gene detection103

for each pair of the four cell types. The available gold standard of DE gene lists enabled us to compute104

area under the receiver operating characteristic curve (AUC) and area under the precision-recall curve105

(PR-AUC), based on the adjusted p-values from DE tests. At each parameter setting, the simulations106

and tests were repeated 50 times to obtain 50 corresponding AUC and PR-AUC values.107
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Figure 2: Boxplots of AUC and PR-AUC indices computed from adjusted p-values from DE tests in
50 simulations from the five configurations (I - V). Each column represents one corresponding con-
figuration. The batch effect complexity was increased from configuration (I) to configuration (IV).
Configuration (V) contained no batch effect.

Fig. 2 displays the boxplots, generated by ggplot2 (Wickham, 2016), of AUCs and PR-AUCs for108

pairwise DE tests obtained from the 50 simulations. While ComBat and MNN achieved some improve-109

ment from the uncorrected data, scBatch consistently ranked at the top in both metrics under different110

simulation settings. Interestingly, under the control configuration where there was no batch effect, MNN111

correction failed to retain the original sample pattern, resulting in reduced power in DE detection.112

scBatch obtained better sample patterns for bulk RNA-seq data113

To illustrate the utility of scBatch on different types of real data, we first considered a bulk RNA-seq data114

of human and mouse tissues (Lin et al., 2014). The dataset consists of 13 tissues from human and their115

counterparts in mouse. It is a typical example of data containing strong batch effects. Without batch116

effect correction, the samples from the same species clustered together, as the tissues from different117

species were measured in different batches. Several re-analyses have shown that the samples would118

be clustered by tissues instead of species after proper batch effect correction (Gilad and Mizrahi-Man,119

2015; Sudmant et al., 2015; Fei et al., 2018).120

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 13, 2019. ; https://doi.org/10.1101/669739doi: bioRxiv preprint 

https://doi.org/10.1101/669739
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Heatmaps of ENCODE mouse and human tissues data generated from the Pearson correlation
matrices of A raw count matrix; B count matrix corrected by ComBat; C count matrix corrected by
MNN; D count matrix corrected by scBatch. Hierarchical clustering was used to generate clusters. Red
rectangles mark the samples not clustered with their counterparts in the other species.

In our analysis, we compared the clustering performance of batch effect correction algorithms, in-121

cluding ComBat, MNN and scBatch. We used heatmaps generated by R package pheatmap (Kolde122

and Kolde, 2015) and Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) calculated from hierar-123

chical clustering for the comparison. As observed in Fig. 3A, the subjects were mainly clustered by124

species in the raw count matrix. After batch effect correction, ComBat (ARI = 0.70, Fig 3B) and MNN125

(ARI = 0.68, Fig 3C) restored 10 out of 13 pairs of tissues, while scBatch (ARI = 0.88, Fig 3D) out-126

perfomed the other two methods by retrieving 12 out of the 13 matches with reasonably high contrast127

in the heatmap. The above results demonstrated scBatch’s ability to obtain better sample patterns. For128

scBatch, the restoring of sample patterns was based on our previously published work of sample corre-129

lation matrix correction (Fei et al., 2018). Thus the results here on the mouse/human tissue data only130

demonstrated that scBatch could truly adjust the count matrix such that the resulting sample correlation131
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matrix approaches that generated by Fei et al. (2018). In the next sections, we demonstrate the utility of132

scBatch in DE gene detection on single cell RNAseq data.133

scBatch shows strong performance in cell heterogeneity investigation134

Under the assumption of scBatch algorithm, the correction can be reliably applied for batches with135

similar cell type compositions. This assumption is particularly suitable for the investigation of cell136

heterogeneity from a certain tissue. We compared clustering and DE gene selection results of different137

correction methods on two single-cell RNA-seq datasets, one for mouse neuron cells (Usoskin et al.,138

2015) and one for human pancreas cells (Xin et al., 2016). Our method not only obtained better sample139

patterns, but also retained important information in marker genes.140

Mouse neuron dataset GSE59739141

The single-cell RNA-seq data was generated by Usoskin et al. (2015). Cell labels determined by marker142

genes were provided in the data. We based our analyses on the given cell labels to investigate the dif-143

ferences of four main subtypes of cells, namely non-peptidergic nociceptors (NP), tyrosine hydroxylase144

containing (TH), neurofilament containing (NF) and peptidergic nociceptors (PEP). As observed in the145

two-dimensional t-SNE plot (top-left panel in Figure 4A), the uncorrected data maintained the cluster of146

NF cells, while the other three subtypes formed a mixture. Regarding the library labels as batches, we147

conducted batch effect correction using ComBat, MNN and scBatch.148
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Figure 4: A,C-F t-SNE plots of the sample patterns from uncorrected data (normalized raw count data),
ComBat correction, MNN correction and scBatch correction, colored by A cell labels from raw data, C
marker gene Nefh for NF cells, D marker gene Mrgprd for NP cells, E marker gene Tac1 for PEP cells,
and F marker gene Th for TH cells. B Venn diagrams for the significant genes from pairwise differential
gene tests by Seurat (Satija et al., 2015) with adjusted p-values < 10−6 and fold changes > 2.

In order to evaluate the clustering performance, we utilized t-distributed stochastic neighbor embed-149
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ding (t-SNE) (Maaten and Hinton, 2008) dimension reduction, and the average ARI based on multiple150

k-means clustering results. As the t-SNE plots (Fig. 4A) display, scBatch (bottom right) obtained151

a clearer sample pattern which distinguished the four subtypes better. The ARI indices based on k-152

means clustering results also demonstrated that scBatch (ARI = 0.72) outperformed uncorrected data153

(ARI = 0.09), MNN (ARI = 0.08) and ComBat (ARI = 0.11) by a large margin. To further investigate154

whether corrected count matrices kept crucial marker information, we plot the marker gene expression155

levels in the t-SNE plots for the four cell subtypes, displayed in Figs. 4C, D, E, F. It can be observed156

that scBatch correction inherited the marker information from the uncorrected data with large contrast,157

while ComBat and MNN did not maintain as strong contrast in the marker genes.158

Due to its ability to restore better sample patterns and maintain important marker contrasts , scBatch159

also showed good performance in DE gene detection. We conducted DE gene detection between all160

cell type pairs, using the method Seurat (Satija et al., 2015). Given the large differences between the161

cell types, we used stringent criteria of adjusted p-value < 10−6 and fold change > 2. Fig. 4B shows162

the Venn diagrams of DE genes detected from the different count matrices. As observed, the DE genes163

from the uncorrected data were largely contained in the DE gene set from the scBatch-corrected data.164

Moreover, scBatch found the largest number of DE genes in five out of the six subtype pairs, indicating165

that more underlying information masked by batch effects may be revealed by scBatch.166

Between the three batch-effect correction methods, scBatch and MNN tended to agree with each167

other on this dataset. In most cases the majority of the genes found by MNN were also found by168

scBatch. ComBat disagreed with the other two methods in some of the comparisons. In order to examine169

their differences at the functional level, we used GOstats to analyze the over-representation of gene170

ontology biological processes by the selected genes (Falcon and Gentleman, 2007). In the neurofilament171

containing (NF) cells v.s. tyrosine hydroxylase containing (TH) cells comparison, the largest difference172

between ComBat and the other two methods was observed (Fig.4B). Functional analysis revealed that173

the top biological processes found in uncorrected data fall into axonogenesis, cell morphogenesis and174

synapse assembly (Supplemental File S1). scBatch and MNN identified similar top biological processes175
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such as those involved in synapse assembly and cell adhesion. These results are reasonable given the176

functionality of the NF cells. On the other hand, the top terms resulting from the application of ComBat177

were focused on regulation of ion transmembrane transport and synapse organization, the first of which178

was not obvious in terms of the biological functions to the NF and TH cells. The full GOstats results are179

contained in Supplemental File S1.180

Human pancreas data GSE81608181

We analyzed another single-cell RNA-seq data of human pancreas cells (Xin et al., 2016). The dataset182

consists of cells from healthy controls and patients with type II diabetes. In this study, cells from different183

donors were separately processed (Xin et al., 2016). Donor IDs can be regarded as batch labels. Here184

we focused on healthy control cells to investigate the cell heterogeneity. There are four dominating185

endocrine cell types - alpha cells that produce glucagon, beta cells that produce insulin and amylin, delta186

cells that produce somatostatin, and gamma cells that produce pancreatic polypeptide. In this dataset,187

the distribution of cell types between the batches vary substantially. The proportion of alpha cells in188

each batch ranged from 16.7% to 74.6% among the batches. The proportion of beta cells ranged from189

14.0% to 54.2%. Given that gamma and delta cells account for small proportions in the pancreas islet,190

the were not present in some of the batches. The range for delta cell was 0 to 8.3%, and the range for191

gamma cell was 0 to 20.0%. These variations made the data more challenging than the mouse neuron192

data. As observed in Fig. 5A, the uncorrected data (top left) showed high distinction of alpha and beta193

cells, while the gamma and delta cells were clustered together.194
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Figure 5: A,C-F t-SNE plots of the sample patterns from uncorrected data (normalized raw count data),
ComBat-corrected data, MNN-corrected data and scBatch-corrected data, colored by A, cell types, C,
marker gene GCG for alpha cells, D, marker gene INS for beta cells, E, marker gene PPY for gamma
cells, and F, marker gene SST for delta cells. B, Venn diagrams for the significant genes from pairwise
differential gene tests by Seurat (Satija et al., 2015) with adjusted p-values < 10−6 and log fold changes
> 2.

We applied similar analysis procedure used for the mouse neuron data. From the t-SNE plots where195

cells were colored by the provided subtype labels (Fig. 5A), mixed gamma and delta cells appeared196

in the patterns for both uncorrected data (top left) and ComBat-corrected data (top right), while MNN-197

corrected data (bottom left) formed clusters which contained mixed types of cells. The pattern obtained198
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by scBatch (bottom right), in contrast, successfully separated the four types of cells, although the dis-199

tance between gamma and delta cells were still close.200

As expected, in K-means clustering results, scBatch achieved highest average ARI (0.60), compared201

to uncorrected data (0.42) and ComBat (0.44). On the other hand, the average ARI for MNN (-0.01)202

indicates no correlation between the MNN sample pattern and the cell subtype labels. The marker gene203

expressions on t-SNE plots (Figs. 5C, D, E, F) similarly demonstrated that scBatch was able to maintain204

marker gene information from the original data. The imbalance between the batches, especially the205

lack of some cell types in certain batches, is likely the reason for MNN’s inconsistent performance. Its206

nearest-neighbor based approach may mistakenly match different type of cells, and cause the adjustment207

to be erraneous. On the other hand, although scBatch prefers balanced design, it appeared to be more208

robust against the imbalance.209

In the Venn diagrams of significant DE genes (Fig. 5B), as the cell labels did not match the clusters210

in the MNN pattern, the detected DE gene set for MNN was largely different from the other three211

approaches. Apart from the results by MNN, high agreements were observed among uncorrected data,212

ComBat and scBatch, where scBatch was able to detect more DE genes in all six pairs.213

We again used GOstats to analyze the over-representation of gene ontology biological processes by214

the selected genes (Falcon and Gentleman, 2007). We take the DE genes between alpha and beta cells215

as an example. The two types of cells produce hormones of opposite effects - glucagon and isulin, re-216

spectively. From uncorrected data, the top GO terms represented by the DE genes include "regulation217

of system process", "digestion", and "regulation of heart contraction". From ComBat-corrected data,218

the top GO terms include "response to biotic stimulus", "digestion", and "regulation of system process".219

The top GO terms from scBatch include "G-protein coupled receptor signaling pathway", "response220

to lipopolysaccharide", "digestion". Lipopolysaccharides can modulate glucose metabolism (Nguyen221

et al., 2014). It is well-known that G-protein coupled receptors are regulated in beta cells to affect in-222

sulin secretion and their natural ligands (Persaud, 2017). The top GO terms from MNN were instead223

focused on immune-related processes, including "chemokine-mediated signaling pathway", "inflamma-224
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tory response" and "neutrophil chemotaxis". They do not reflect the biological functions and differences225

of the alpha and beta cells. These results clearly indicate the scBatch and ComBat results are more226

biologically plausible. The full list of the functional analysis results are in Supplemental File S2.227

Discussion228

Batch effects are frequently encountered in omics data analysis, thus a crucial issue to address before229

downstream analysis that leads to scientific discoveries. In this paper, we introduced a novel method for230

batch effect correction.We have shown that the proposed method, scBatch, can obtain better clustering231

pattern, maintain crucial marker information and detect more DE genes.232

The method assumes roughly balanced sample population among batches. The assumption is strong233

yet reasonable (Hicks et al., 2017), and the method appeared to be robust when the assumption is mildly234

violated. In the presence of technical variations and various confounders, a randomized design is ideal.235

Data analysis requires proper randomization to determine the existence of latent groups or cell subtypes,236

or to decide whether the gene expression differs between two populations. In reality, data analysts237

sometimes encounter data where the biological groups and batch labels are totally confounded, which238

brings tremendous challenges in downstream analysis. On the other hand, if the study design is balanced,239

we will be able to restore the biological pattern, even if the technical variations dominate the sample240

pattern in the raw data.241

Computational cost is another practical concern for the application of algorithms. Compared to242

ComBat and MNN, scBatch requires more computation time to reach optimal results. As shown in Sup-243

plemental Fig.1, the running time increases faster than a linear growth rate as the sample size increases.244

Moreover, for a fixed sample size, the time to convergence for scBatch also varied. The varied running245

time was determined by the complication of batch effects, which decided the similarity between uncor-246

rected sample pattern and the corrected referencing sample pattern. Although slower than ComBat and247

MNN, the running speed of scBatch is within acceptable range. For a few hundred cells, the computing248

time was in the range of minutes. For large studies with over 1000 cells, the computing can take hours.249
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There is still large room to improve the proposed method. First, we only adopted the simplest linear250

transformation of raw count matrix in this paper, while a non-linear transformation may better depict251

the sample pattern in the corrected distance matrix. Secondly, the metrics of distance can also affect252

the correction. We used the Pearson correlation matrix because it was easy to interpret and convenient253

for gradient computation, while other distance metrics such as Spearman correlation may bring other254

insights to the data pattern. Thus, a more universal numerical gradient descent algorithm may be applied255

to adapt to different types of distance matrices.256

Methods257

Main algorithm258

Problem setup The count matrix 𝑋𝑝×𝑛 with 𝑝 genes and 𝑛 cells, in which the 𝑛 cells fall into multiple259

batches, is subject to batch effects. Based on the Pearson correlation matrix of 𝑋 , a corrected 𝑛 × 𝑛260

correlation matrix 𝐷 with improved sample similarities is obtained using the distance matrix correc-261

tion algorithm QuantNorm (Fei et al., 2018). Given 𝐷, the objective is to solve for an optimal 𝑛 × 𝑛262

weight matrix 𝑊 such that the Pearson correlation of the linear-transformed count matrix 𝑌 = 𝑋𝑊263

approximates the sample pattern in 𝐷. The transformed count matrix 𝑌 can then be used in downstream264

analyses. We note that similar to other methods, the resulting matrix may no longer be composed of265

non-negative integers.266

Least squares loss function In order to solve 𝑊 , we propose to minimize the following least squares267

loss function268

𝐿(𝑊 ) =
1

2
||𝐷𝑌 −𝐷||2𝐹 =

1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

|𝐷𝑌 𝑖𝑗 −𝐷𝑖𝑗 |2, (1)

where 𝐷𝑌 is the Pearson correlation matrix of 𝑌 , || · ||𝐹 is the Frobenius norm and 𝐴𝑖𝑗 denotes the (𝑖, 𝑗)269

entry of matrix 𝐴. Thus, the optimized weight matrix 𝑊𝑜𝑝𝑡 satisfies 𝑊𝑜𝑝𝑡 = argmin𝑊𝐿(𝑊 ) and the270
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corrected count matrix is 𝑌𝑜𝑝𝑡 = 𝑋𝑊𝑜𝑝𝑡.271

Gradient of the loss function By chain rule, the gradient of the loss function 𝐿(𝑊 ) is

𝜕

𝜕𝑊
𝐿(𝑊 ) = (

𝜕

𝜕𝑊
𝐷𝑌 )

𝑇 (𝐷𝑌 −𝐷).

By definition, the 𝑖, 𝑗 entry of 𝐷𝑌 satisfies

{𝐷𝑌 }𝑖𝑗 =
(𝑋𝑊𝑖)

𝑇 (𝐼𝑝 − 1
𝑝1𝑝1

𝑇
𝑝 )

2𝑋𝑊𝑗√︁
(𝑋𝑊𝑖)𝑇 (𝐼𝑝 − 1

𝑝1𝑝1
𝑇
𝑝 )

2𝑋𝑊𝑖

√︁
(𝑋𝑊𝑗)𝑇 (𝐼𝑝 − 1

𝑝1𝑝1
𝑇
𝑝 )

2𝑋𝑊𝑗

,

where 𝑊𝑖 is the 𝑖th column of 𝑊 , 𝐼𝑝 is the 𝑝 × 𝑝 identity matrix, and 1𝑝 is the 𝑝 × 1 vector with all272

entries equal to one. As can be observed, 𝜕
𝜕𝑊 𝐷𝑌 is a 4th-rank tensor in 𝑛-dimensional space. Thus the273

gradient of the loss function 𝐿(𝑌 ), which is the product of 𝜕
𝜕𝑊 𝐷𝑌 and the 𝑛× 𝑛 matrix (𝐷𝑌 −𝐷), is274

also a 𝑛× 𝑛 matrix.275

Although the scale of computation appears large, we derived an equivalent but more economic ap-276

proach to compute the gradient in practice. Since {𝐷𝑌 }𝑖𝑗 involves only two columns from 𝑊 , the277

tensor 𝜕
𝜕𝑊 𝐷𝑌 is sparse so that all its entries can be saved in a 3rd-rank tensor in 𝑛-dimensional space.278

Let 𝐴𝑘 denote the 𝑘th column of matrix 𝐴. Considering the gradient performance and practical comput-279

ing, moreover, we further decompose the calculation into columnwise gradients 𝜕
𝜕𝑊𝑘

𝐷𝑌 , 𝑘 = 1, ..., 𝑛,280

which are 𝑛 × 𝑛 matrices. Using columnwise gradients as the unit, both coordinate gradient descent281

(Wright, 2015) and standard gradient descent can be easily implemented.282

Denote 𝐶 = 𝑋𝑇 (𝐼𝑝 − 1
𝑝1𝑝1

𝑇
𝑝 )

2𝑋 . By some algebra, the columnwise gradient 𝜕
𝜕𝑊𝑘

𝐿(𝑊 ) satisfies283

𝜕

𝜕𝑊𝑘
𝐿(𝑊 ) =

(︂
𝜕

𝜕𝑊𝑘
𝐷𝑌

)︂𝑇

{𝐷𝑌 𝑘 −𝐷𝑘}+ trace
[︂(︂

𝜕

𝜕𝑊𝑘
𝐷𝑌

)︂𝑇

{𝐷𝑌 −𝐷}
]︂
ek, (2)
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where ek is a 𝑛× 1 vector in which the 𝑘 entry is equal to one and others are equal to zero, and

𝜕

𝜕𝑊𝑘
𝐷𝑌 =

[︂
𝐶𝑊

(𝑊 𝑇
𝑘 𝐶𝑊𝑘)1/2

− 𝐶𝑊𝑘(𝑊
𝑇𝐶𝑊𝑘)

𝑇

(𝑊 𝑇
𝑘 𝐶𝑊𝑘)3/2

]︂
⊙

[︂{︀
1𝑛 ⊗ diag(𝑊 𝑇𝐶𝑊 )∘1/2

}︀∘−1
]︂
,

where ⊙, ∘ respectively represents Hadamard (elementwise) product and power, and ⊗ represents outer284

product.285

Algorithm 1 Random block coordinate descent algorithm.

Input: raw count matrix 𝑋 ∈ R𝑝×𝑛, reference distance matrix 𝐷 ∈ R𝑛×𝑛, initial weight matrix
𝑊 ∈ R𝑛×𝑛, group number 𝑚 ∈ [1, 𝑛], step size 𝜖 ∈ R+, tolerance 𝑡𝑜𝑙 ∈ (0, 𝜖), function 𝐿 returning
loss function and columnwise gradients.
[𝑝, 𝑛] = dim(𝑋)
while 𝜖 > 𝑡𝑜𝑙 do
𝑔𝑟𝑜𝑢𝑝 = sample(1:m,size=n,replace=T)
for i = 1, 2, ... , max(𝑔𝑟𝑜𝑢𝑝) do
𝑊0 = 𝑊
𝑖𝑑𝑥 = 𝑔𝑟𝑜𝑢𝑝 == 𝑖
𝐿, 𝑑𝐿 = 𝐿(𝑊, 𝑖𝑑𝑥)
𝑊 = 𝑊 − 𝜖. * 𝑑𝐿
𝐿𝑛𝑒𝑤 = 𝐿(𝑊 )
if 𝐿𝑛𝑒𝑤 ≥ 𝐿 then
𝜖 = 0.5𝜖
𝑊 = 𝑊0

else
𝜖 = 1.5𝜖

end if
end for

end while
Y = 𝑋 ×𝑊
Output: 𝑌 .

Random block coordinate descent algorithm We adapt a flexible gradient descent algorithm (Al-286

gorithm 1). In each iteration, the algorithm first randomly partitions 𝑛 subjects into 𝑚 groups. Then287

gradient descent is sequentially conducted from group 1 to group 𝑚 to update the group-specific columns288

in 𝑊 . That is, the subjects are randomly partitioned in 𝑚 group blocks in each iteration to improve the289

robustness of gradient descent. Note the number of groups 𝑚 can be customized as any integer from290

1 to sample size 𝑛. When 𝑚 = 𝑛, the algorithm is equivalent to the traditional gradient descent algo-291

rithm; when 𝑚 = 1, the algorithm is equivalent to the coordinate descent algorithm (Wright, 2015).292
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The flexibility alleviated both the long running time of coordinate gradient descent algorithm (Wright,293

2015) and the underperformed result of gradient descent algorithm. In order to dynamically adjust the294

learning rate, we utilized Armijo line search (Armijo, 1966). The algorithm is stopped when the step295

size decreases below a threshold 𝑡𝑜𝑙, indicating the approximation of a local minimum.296

Simulation design297

We applied Bioconductor package splatter (Zappia et al., 2017) to simulate single-cell RNA-seq298

data. Each dataset consisted of 1000 cells and 10000 genes from four biological groups. The biological299

groups were in a fixed proportion 4:3:2:1. The 1000 cells were randomly allocated to four batches with300

equal size (250 cells) with potentially different batch effect mechanisms controlled by batch location301

and scale parameters. The probability of a gene being differentially expressed was fixed as 0.1. The302

splatter package reported DE factors for each gene in each group, which were used to establish the303

gold standard for evaluation. Given two groups of interest, if the ratio of DE factors for the two groups304

was larger than 3/2 or smaller than 2/3, then the gene was regarded differentially expressed among the305

two groups.306

We considered four different configurations of the location and scale parameters of batch effects in307

simulation studies: (I) Location was fixed as 0.1 and scale was fixed as 0.1 for all four batches. (II) Lo-308

cation was 0.1, 0.2, 0.05, 0.15 respectively for the four batches, while scale was fixed 0.1. (III) Location309

was fixed 0.1 and scale was 0.05, 0.1, 0.25, 0.3 respectively for the four batches. (IV) Location was 0.1,310

0.2, 0.05, 0.15 and scale was 0.05, 0.1, 0.25, 0.3, for the four batches respectively. (V) There were no311

batch effects. The location parameter decided the distance between different batches, while the scale pa-312

rameter controlled the shape of each batch. Under configuration (I) the batch effects followed the same313

mechanism for each batch, thus it was less challenging to correct. In contrast, the batch effect mecha-314

nism varied from batch to batch under configuration (IV), which increased the difficulty of batch effect315

correction. Moreover, configuration (V) examined if the correction methods could maintain reasonable316

performances when the batch effects were negligible. For each of the five configurations, we simulated317
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50 datasets to be corrected by the three correction methods. For MNN, default hyperparameters were318

used. For scBatch, the hyperparameter 𝑚 was chosen to be 5.319

Datasets and preprocessing320

ENCODE human and mouse tissue data321

Generated by Lin et al. (2014), the data was reanalyzed by Gilad and Mizrahi-Man (2015). We utilized322

the same dataset used in the reanalysis, which is available at Zenodo (Mizrahi-Man and Gilad, 2015,323

accessed on Feb 17 2019). The data we analyzed consisted of 26 subjects and 10290 genes.324

Mouse neuron data325

The data were generated by Usoskin et al. (2015). The raw data can be obtained from the NCBI Gene326

Expression Omnibus (GEO) with accession number GSE59739. We utilized a processed dataset from the327

public data repository of Hemberg Group (https://hemberg-lab.github.io/scRNA.seq.328

datasets/), where normalization, outlier exclusion and log transformation were conducted to obtain329

a dataset with 622 cells and 25334 genes. We further removed two batches with too few samples. The330

final data used for batch correction consisted of 610 cells and 25334 genes.331

Human pancreas data332

The data were generated by Xin et al. (2016). The raw data is available at the NCBI Gene Expres-333

sion Omnibus (GEO) with accession number GSE81608. The data used for analysis was also ob-334

tained from Hemberg Group’s repository (https://hemberg-lab.github.io/scRNA.seq.335

datasets/). We used the same gene filter mentioned in Xin et al. (2016) and retained genes with336

RPKM counts greater than 100 in no less than 10 samples. Only cells from healthy donors were selected337

in batch correction and downstream analysis. The processed data contained 651 cells and 6797 genes.338
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Analysis and performance evaluation scheme339

Clustering analysis For the bulk RNA-seq data (Mizrahi-Man and Gilad, 2015, accessed on Feb 17340

2019), we applied hierarchical clustering due to the small sample size. For the single-cell RNA-seq341

datasets, k-means clustering was repeatedly conducted. Based on the cell subtype labels provided in342

raw data, we utilized Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) to evaluate the agreement343

between the provided labels and the clustering results. The ARI index equals one if the clustering result344

perfectly matches the cell labels, while the index values around zero under random assignment.345

Differential expression analysis We applied Seurat (Satija et al., 2015) to conduct DE gene tests346

and adjusted the p-values by Benjamini and Hochberg approach (Benjamini and Hochberg, 1995). In347

simulation studies, we base on the gold standard to directly calculate area under the receiver operating348

characteristic curve (AUC) and area under the precision-recall curve (PR-AUC) to compare DE detection349

results. For real data, Venn diagrams are generated for genes with adjusted p-values < 10−6 and log fold-350

changes > 2 to check the agreements among different count matrices. Functional analysis of the DE351

gene lists are conducted using the GOstats package (Falcon and Gentleman, 2007), which conducts352

tests of over-representation of gene sets using hypergeometric test.353

Code availability354

We implemented the algorithm in the open-source R package scBatch, which is available on GitHub355

(https://github.com/tengfei-emory/scBatch). The code to generate results and figures356

in this paper is available on GitHub (https://github.com/tengfei-emory/scBatch-paper-scripts).357
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