

1 **One year prevalence of psychotic disorders among first treatment contact patients at
2 Butabika National Psychiatric Referral Hospital in Uganda.**

3 **Authors:** Emmanuel Kiiza Mwesiga^{1,2,3}; Noeline Nakasujja^{1,2}; Juliet Nakku⁴; Annet Nanyonga⁴;
4 Joy Louise Gumikiriza^{1,2}; Paul Bangirana^{1,2}; Dickens Akena^{1,2}; Seggane Musisi^{1,2}.

5 **Author Affiliation**

6 1. Department of Psychiatry, College of Health Sciences, Makerere University
7 2. NURTURE Mental Health subgroup, College of Health Sciences Makerere University.
8 3. Department of Psychiatry and Mental Health, University of Cape Town.
9 4. National Psychiatric Teaching and Referral Hospital of Uganda.

10 **Corresponding Author:**

11 Dr. Emmanuel Kiiza Mwesiga
12 Department of Psychiatry,
13 College of Health Sciences, Makerere University
14 Email: emwesiga@chs.mak.ac.ug

15 **Key words/phrases:** Psychosis, burden, prevalence, first episode psychosis

16

17 **ABSTRACT**

18 **Introduction:** Hospital based studies for psychotic disorders are scarce in low and middle
19 income countries. This may impact on development of intervention programs.

20 **Objective:** We aimed to determine the burden of psychotic disorders among first treatment
21 contact patients at the national psychiatric referral hospital in Uganda.

22 **Methods:** A retrospective patient chart-file review was carried out in March 2019 for all
23 patients presenting to the hospital for the first time in the previous year. Patients were
24 categorised into those with and without psychotic disorders. We collected sociodemographic
25 data on age, gender, occupation, level of education, ethnicity, religion and home district. We
26 determined the one year prevalence of psychotic disorders among first treatment contact
27 patients. Using logistic regression models, we also determined the association between
28 psychotic disorders and various exposure variables among first treatment contact patients.

29 **Results:** In 2018, 63% (95% CI: 60.2 – 65.1) of all first time contact patients had a psychosis
30 related diagnosis. Among the patients with psychotic disorders, the median age was 29 years
31 (IQR 24 – 36). Most of the patients were male (62.8%) and unemployed (63.1%). After
32 adjusting for patients' residence, psychotic disorders were found to be more prevalent among
33 the female gender [OR 1.58 (CI1.46-1.72)] and those of Pentecostal faith [OR 1.25 (CI 1.10-
34 1.42)].

35 **Conclusion:** Among first treatment contact patients in Uganda, there is a large burden of
36 psychotic disorders. The burden was more prevalent among females as well as people of
37 Pentecostal faith who seemed to use their church for faith-based healing. Incidence studies
38 are warranted to determine if this phenomenon is replicated at illness onset.

39 **INTRODUCTION**

40 Psychotic disorders that include schizophrenia spectrum disorders as well as bipolar affective
41 disorders are the leading contributors to disease burden globally (1-3). Schizophrenia was
42 assigned the highest disability coefficient in global burden of disease (GBD) study (4, 5).
43 Psychotic disorders run a chronic course in the life of an individual. They usually present in
44 early adolescence with a first episode of psychosis; and then continue with some form of
45 disability thorough out the life of the individual (6). Patients with psychotic disorders are more
46 likely to have worse social functioning, poor quality of life and die earlier than their peers (7-
47 12). Correct management at initial presentation of psychotic disorders has been associated
48 with lower relapse rates, greater functional recovery and improved quality of life (13, 14).
49 Worldwide the prevalence for psychotic disorders has remained relatively stable between 1-
50 3% even in low and middle income countries (LMIC) like Uganda (3). Hospital based
51 prevalence rates for psychotic disorders especially among first time attended in LMIC are
52 however scarce. The current literature in the Ugandan setting has mainly dwelt on people with
53 HIV/AIDS among first time mental treatment contacts (15).

54 There is limited literature on the burden of psychotic disorders at initial mental treatment
55 contact in LMICs (16). It is unclear if the burden of psychotic disorders is greater than that for
56 other disorders like anxiety, mood or substance use disorders. Such information is crucial in
57 human resource allocation and the development of specialised services in tertiary care. The
58 sociodemographic profile of patients presenting to tertiary care in the Ugandan setting is not
59 well described. For example, literature has shown higher incident rates for psychotic disorders
60 among males than females (17-21). Whether this is replicated at presentation for care in our
61 setting is unknown. Also, the clinical profiles of the various psychotic disorders are unknown.
62 This is especially important as management differs between the different psychosis spectrum
63 disorders (22). The majority of patients with psychotic disorders prefer alternative and
64 complimentary therapies over western medicine (23-29). It is unclear if this preference
65 translates to lower rates and/or different clinical profiles for psychotic disorders among patients
66 presenting to mental health services for the first time. Such differences are important in
67 directing policy and developing interventions to improve care for patients with psychotic
68 disorders.

69 Describing the burden and risk factors for psychotic disorders at initial treatment contact is a
70 crucial step in developing interventions to improve the outcomes for patients with psychotic
71 disorders. In Uganda there is a precedent for this approach where extensive literature on the
72 burden of HIV/AIDS in the psychiatric setting was instrumental in development of interventions
73 for patients with severe mental illness suffering with AIDS (30-34). The current study therefore
74 aims to determine the burden of psychotic disorders among initial treatment contact patients
75 at the national psychiatric hospital in Uganda.

76 **METHODS**

77 The study took place at Butabika National Psychiatric Referral and Teaching Hospital, a 600
78 bed capacity mental hospital located approximately twelve kilometres from Kampala (35). The
79 hospital is located in the heart of the Greater Kampala Metropolitan Area (GKMA) where 10%
80 of Uganda's population reside and responsible for a third of the country's gross domestic
81 product (GDP) (36). Butabika National Psychiatric Referral and Teaching Hospital determines
82 the policy agenda for mental health in the country together with the Ministry Of Health and is
83 responsible for various levels of mental health training (37). It also plays a supervisory role

84 over all mental health provision services in the country that include 12 regional referral
85 hospitals and 96 district hospitals. Functioning below the district hospitals are three different
86 levels of health centres (HC) namely HC4, HC3 and HC2. Mental health provision starts at
87 HC3 level with subsequent referrals to higher centres. Currently, the hospital has specialised
88 services for substance use disorders at the Alcohol and drug unit, a forensic ward, a
89 specialised child and adolescent mental health unit as well as specialised occupational
90 therapy and psychotherapy units. In terms of human resource allocation, the national
91 psychiatric and teaching hospital is run by 72 clinicians (psychiatrists' clinical psychologists
92 and psychiatric clinical officers); 157 nurses, 4 social workers and 59 mental attendants. Given
93 that it is a national referral hospital it also provides non psychiatric care like HIV/AIDS care,
94 minor surgeries and dental services. Like in many similar facilities in LMICs there are a number
95 of challenges in provision of services primarily due to limited budgetary allocation (37, 38).

96 We used a retrospective case analysis of chart records to determine the burden, profile and
97 associated factors for psychotic disorders among first treatment contact patients. Approval for
98 the study was obtained from the Uganda National Council for Science and Technology
99 (UNCST) and the School of Medicine Research and Ethics Committee (SOMREC) of
100 Makerere University. We also received institutional approval from the hospital to carry out the
101 study. As this was a retrospective chart review of file records, we did not receive patient
102 consent. All patients presenting to the hospital for the first time who had a psychiatric diagnosis
103 on file between January 1st and December 31st, 2018 made our study population. We excluded
104 patients presenting for the first time for non-psychiatric services like dental services, routine
105 HIV care or minor surgeries like circumcision.

106 On a routine clinic day, the hospital records team opens a file for all patients presenting to the
107 hospital for the first time. The patient sociodemographic variables including age, gender,
108 ethnicity, religion, occupation and home district are recorded in the file before the patient is
109 sent to see a clinician. The clinician then makes a diagnosis, and a decision of whether to treat
110 the patient as an out-patient or send them to admission in one of the units described above.
111 Once the patient has received care, the health care workers return the patient file to the
112 records office for safe storage. Some patients receive care as in-patients, and others are
113 treated as out-patients and return to their homes the same day.

114 We used standardized questionnaires to extract sociodemographic and diagnosis data from
115 the chart files of all patients presenting to the hospital for the first time from January to
116 December 2018. Diagnoses of schizophrenia spectrum and related psychoses, bipolar
117 affective disorder and mood disorders with psychotic disorders were classified as psychotic
118 disorders. All other diagnoses among patients presenting for the first time including but not
119 limited to temporal lobe epilepsy, anxiety disorders, substance use disorders and depressive
120 disorders were classified as non-psychotic disorders. We considered sociodemographic
121 characteristics as the exposure variables and the diagnostic categories as the outcome
122 variables. Abstracted data from the files was entered into Epidata 3.1 by a database manager
123 and exported to Stata version 13 for analysis. Data analysis was conducted in March 2019.

124 Proportions of patients by different diagnostic categories were calculated to determine the one
125 year prevalence of psychotic disorders. Using bivariate analysis we compared the proportions
126 of participants with psychotic disorders to non-psychotic disorders along various exposures.
127 No variables exhibited any collinearity and the dataset had no outliers. We used a modified
128 Poisson regression model to establish factors associated with psychotic disorders given that

129 it has robust standard errors and therefore gives more accurate confidence intervals. Variables
130 with a level of significance less than 0.2 were included in the multivariate analysis. However,
131 region of origin was assessed for any possible confounding effects as ethnicity has been
132 shown to have a genetic biological risk factor for psychotic disorders At multi-variate analysis
133 a level of significance of less than 0.05 was used to test for significance between different
134 exposures and FEP.

135 RESULTS

136 Between January 1st, 2018 and December 31st, 2018; 1685 patients accessed services from
137 Butabika for the first time. A total of 201 (11.93%) patients lacked a diagnosis in their records
138 and were excluded from the final analysis. The total number of records reviewed for this study
139 was 1484. On average there were 5 new patients each day accessing the hospital for the first
140 time during the year 2018. Figure 1 shows the proportions of patients seen by month and
141 gender. Other baseline characteristics of all new participants are highlighted in table 1. Among
142 all new patients, the commonest diagnosis was a non-affective psychosis accounting for
143 32.01% of the total sample closely followed by substance use disorder at 30.39%. Anxiety
144 disorders were the least common final diagnosis at 0.47%. The frequencies of different
145 diagnoses among the total sample are highlighted in Figure 2.

146 *Figure 1: Bar Graph of number of participants by month of the year and gender*

147 *Table 1: Background characteristics of all patients who reported for the first time in 2018.*

Variable	Number (N)	Percentage (%)
≤ 29	757	52.9
> 29	674	47.1
Gender		
Male	930	62.8
Female	549	37.1
Religion		
Protestant	404	32.3
Catholic	407	32.5
Moslem	242	19.3
Seventh day Adventist	29	2.3
Pentecostal/Born again	123	9.8
Other religions	46	3.7
Occupation		
Student	89	6.4
Formal	108	7.8
Non-formal	270	19.4
Unemployed	922	66.4
Region		
Central	1,093	79.9
Eastern	102	7.5
Northern	30	2.2
Western	143	10.5

148

149 *Figure 2: A pie chart showing the different diagnostic categories for the whole sample.*

150 **Burden of psychotic disorders.**

151 Approximately two-thirds [62.7% (95% CI: 60.2 – 65.1)] of all patients had a psychotic disorder.
152 Among the patients classified as having psychotic disorders, 51.08% were classified as having
153 schizophrenia spectrum disorders, 30.75% as bipolar affective disorders and 18.17% as an
154 organic psychosis. The median age for patients with psychotic disorders was 29 years (IQR
155 24 – 36) with almost twice as many males as females. Most participants (76.03%) were
156 between the 30 to 39 age range with only 4.54% of patients below the age of 18 years. Other
157 baseline characteristics of the patients with psychotic disorders are shown in table 2.

158 *Table 2: Background characteristics of the sample of participants classified as having psychosis.*

Variable	All first time patients (N)	FEP [n(%)]	95% CI
Age			
≤ 29	757	459 (60.6)	57.1 – 64.1
> 29	674	436 (64.7)	61.0 – 68.2
Gender			
Male	930	486 (52.3)	49.0 – 55.5
Female	549	442 (80.51)	77.0 – 83.6
Religion			
Protestant	404	230 (56.9)	52.0 – 61.7
Catholic	407	261 (64.1)	59.3 – 68.7
Moslem	242	143 (59.1)	52.8 – 65.1
Seventh day Adventist	29	17 (58.6)	40.0 – 75.0
Pentecostal/Born again	123	95 (77.2)	69.0 – 83.8
Other religions	46	29 (63.0)	48.2 – 75.8
Occupation			
Student	89	43 (48.3)	38.1 – 58.7
Formal	108	63 (58.3)	48.8 – 67.3
Non-formal	270	174 (64.4)	58.5 – 69.9
Unemployed	922	582 (63.1)	60.0 – 66.2
Region			
Central	1,093	675 (61.8)	58.8 – 64.6
Eastern	102	67 (65.7)	55.9 – 74.3
Northern	30	17 (56.7)	38.5 – 73.2
Western	143	93 (65.0)	56.8 – 72.4

159

160 At bi-variate analysis, psychotic disorders were found to be more prevalent among the female
161 gender [Prevalence ratio (PR) 1.54 (confidence interval 1.43-1.66)] as well as patients who
162 reported to subscribe to the Catholic [PR 1.13 (CI 1.01-1.26)] or Pentecostal faiths [PR 1.36
163 (CI 1.19-1.54)]. Psychotic disorders were also more prevalent among patients of non-formal
164 employment, the unemployed as well as those presenting in the month of November. Other
165 associations are highlighted in Table 3.

166

167

168
169

Table 3: Bivariate analysis of the association between patients with a psychosis diagnosis and different sociodemographic variables.

Variable	Total (N)	FEP Prevalence n(%)	Prevalence ratio	95% CI	P-value
Age					
≤ 29	757	459 (60.6)	1	0.98 – 1.16	0.113
> 29	674	436 (64.7)	1.07		
Gender					
Male	930	486 (52.3)	1.00	1.43 – 1.66	< 0.001
Female	549	442 (80.51)	1.54		
Religion					
Protestant	404	230 (56.9)	1.00		
Catholic	407	261 (64.1)	1.13	1.01 – 1.26	0.037
Moslem	242	143 (59.1)	1.04	0.91 – 1.19	0.588
Seventh day Adventist	29	17 (58.6)	1.03	0.75 – 1.41	0.857
Pentecostal/Born again	123	95 (77.2)	1.36	1.19 – 1.54	< 0.001
Other religions	46	29 (63.0)	1.11	0.87 – 1.40	0.399
Occupation					
Student	89	43 (48.3)	1.00		
Formal	108	63 (58.3)	1.21	0.92 – 1.58	0.168
Non-formal	270	174 (64.4)	1.33	1.06 – 1.68	0.015
Unemployed	922	582 (63.1)	1.31	1.05 – 1.63	0.018
Region					
Central	1,093	675 (61.8)	1.00		
Eastern	102	67 (65.7)	1.06	0.92 – 1.23	0.414
Northern	30	17 (56.7)	0.92	0.67 – 1.26	0.594
Western	143	93 (65.0)	1.05	0.93 – 1.20	0.4321

170

171 In the final multi-variate model, gender [Prevalence ratio (PR) 1.58 (confidence interval 1.46-
172 1.72)], and Pentecostal faith [PR1.25 (CI1.10-1.42)] remained significant after controlling for
173 the region of the country the patient was from. Other associations are highlighted in table 4.

174

175

176

177

178

179

180 *Table 4: Multivariate analysis of the association between FEP and selected exposures.*

Variable	Prevalence ratio	95% CI	P-value
Age			
≤ 29	1.00	0.92 – 1.09	0.971
> 29	0.99		
Gender			
Male	1.00	1.46 – 1.72	< 0.001
Female	1.58		
Religion			
Protestant	1.00		
Catholic	1.11	1.00 – 1.24	0.050
Moslem	1.04	0.91 – 1.18	0.603
Seventh day Adventist	1.00	0.74 – 1.36	0.857
Pentecostal/Born again	1.25	1.10 – 1.42	0.001
Other religions	1.14	0.87 – 1.48	0.340

181

182 **DISCUSSION**

183 ***Mental health service requirements for patients with psychotic disorders:*** Over two-
184 thirds (67%) of all admissions presenting to the hospital for the first time in 2018 had a
185 psychotic disorder. To our knowledge this is the first published study highlighting the large
186 burden of psychotic disorders in the Ugandan setting among patients presenting for the first
187 time at a mental facility. The burden for psychotic disorders was greater than that for mood
188 disorders as well as substance use disorders. This suggests that there may be benefit in
189 introducing specialised early intervention services for psychotic disorders at the hospital.
190 Specialised services for psychotic disorders especially at the first episode of psychosis usually
191 lead to better outcomes for patients (39-42). Currently the hospital has specialised services
192 for substance use disorders, and it would be important to determine the benefit of similar
193 services for psychotic disorders. Future work on necessary components for an early
194 intervention psychosis clinic as well as cost benefit analyses of such a program are
195 recommended (13, 21, 42, 43). It is also known and often observed that psychotic disorders
196 tend to present with aggression and violence injuring staff and fellow patients (44, 45). Acute
197 psychiatric units or psychiatric intensive care units have been shown to be especially effective
198 in containing such potentially dangerous behaviour (44), hence calling for such care facilities
199 as useful additions to mental hospitals as opposed to just locked seclusion rooms as is the
200 practice at this facility (44, 45).

201 ***Time of presentation and duration of untreated illness:*** The low numbers of patients
202 presenting to the hospital younger than 18 years of age is worrying as it may point to delay in
203 presentation for services. The course of psychotic disorders is characterised by a psychosis
204 prodrome before onset of illness usually in the late teens or early adulthood (40, 46). That

205 most of our patients present outside this age range may imply that either the onset of
206 psychosis is late in this population or that there is a long duration of untreated psychosis
207 (DUP). The latter theory is probably more likely since DUP has been reported to be longer in
208 Sub-Saharan Africa compared to high income countries (47-49). This is important for future
209 intervention programs given that DUP is a key predictor of outcomes for patients with psychotic
210 disorders (14, 46, 50).

211 **Gender and initial presentation to care with psychotic disorders:** Females were more
212 likely to present to the hospital than males with a psychotic illness. The incidence of psychotic
213 disorders is higher in males than females in previous literature (17-21). Greater prevalence
214 among the female gender might be due to the difference in care seeking between males and
215 females rather than greater incidence in the community. This, however, would need
216 confirmation with longitudinal studies. It is also important to note that it is unlikely that a patient
217 with psychosis brought themselves to the hospital. Further studies are therefore required to
218 understand why there is preference for bringing females to the hospital than males.

219 **Culture and initial presentation to care with a psychotic disorder:** Culture plays an
220 important role in symptom presentation, care seeking and access to health services (51, 52).
221 From this study, it is not possible to determine why there is greater prevalence for initial
222 presentation at the hospital for psychotic disorders over non-psychotic disorders. Previous
223 literature by Abbo et al (2009) highlighted that patients are more likely to use both African
224 traditional therapies and biomedicine if the patient has a severe illness or poor global
225 functioning (23). It is therefore possible that the patients coming to the hospital are the ones
226 who were very ill and generally disruptive in the communities in which they lived.
227 Unfortunately, this chart review could not answer this question but further highlights that
228 patients may be coming late with long duration of untreated psychosis. Previous literature has
229 highlighted the preference for alternative and complementary therapies for the initial
230 management of psychotic disorders in this setting (23, 24, 26, 27).

231 Psychotic disorders were more prevalent among people of the Pentecostal faith. It is important
232 to clarify that this finding does not mean that people of this faith are more at risk for psychotic
233 disorders. Rather the findings suggest that people of Pentecostal faith with psychotic disorders
234 were more likely than other faiths to seek care from the national referral and psychiatric
235 hospital. Another plausible explanation might be due to explanatory models for mental illness
236 in our setting characterised by beliefs in supernatural causations of psychotic disorders (53).
237 This may make patients resort to this faith because of its supposed ability to heal mental
238 disorders through prayer hence leading to more psychotic cases there eventually presenting
239 to the hospital (54, 55).

240 Ethnicity has a strong association to genetic risk which is a key biological risk factor for
241 psychotic disorders (56, 57). Psychotic disorders were not found to be more prevalent in any
242 particular ethnic grouping or region of origin. Uganda is one of the most ethnically diverse
243 societies in the world (58) and this sample had more than 30 different tribes. It would therefore
244 require larger sample sizes to determine an association between a specific ethnicity and onset
245 of psychotic disorders. Currently a large genetic study is underway in Uganda to try and
246 determine the genetic risk for psychotic disorders (59).

247 **Limitations of the study:** A major limitation of the study was its retrospective study design
248 which could cause information bias. The information however collected was primarily on
249 sociodemographic characteristics which are not usually prone to bias. Also, failure to confirm

250 the diagnoses with a standardized tool could lead to misclassification bias. However, Butabika
251 is a national referral hospital with expertise in mental health care service provision and the
252 diagnoses were made by qualified psychiatrists; so we were fairly confident in the diagnoses
253 made.

254 **CONCLUSION**

255 There seems to be a large burden of psychotic disorders (67%) among patients presenting to
256 the national psychiatric hospital in Uganda for the first time. Many of the participants were
257 female calling for further studies to understand this phenomenon in our setting. More studies
258 are also needed to define the duration of untreated psychosis in this population given that
259 most of the first time patients were older than the normal onset for psychotic disorders. Finally,
260 there may be benefits in introducing specialised intervention services for psychotic disorders
261 at the national referral hospital in the form of specialised early intervention services as well as
262 “safe wards models” as acute psychiatric units or psychiatric intensive care units at such large
263 mental health facilities

264 **ACKNOWLEDGEMENT**

265 We acknowledge the patients who presented to the hospital for the first time. Dr. Linnet Ongeri
266 of Kenya Medical Research Institute gave invaluable guidance on the manuscript for which
267 we are grateful.

268 **Funding**

269 The work was supported by Grant Number D43TW010132 supported by Office Of The
270 Director, National Institutes Of Health (OD), National Institute Of Dental & Craniofacial
271 Research (NIDCR), National Institute Of Neurological Disorders And Stroke (NINDS), National
272 Heart, Lung, And Blood Institute (NHLBI), Fogarty International Centre (FIC), National Institute
273 On Minority Health And Health Disparities (NIMHD). Its contents are solely the responsibility
274 of the authors and do not necessarily represent the official views of the supporting offices.

275 **Competing Interests**

276 The authors declare no competing interests.

277 **Author contributions:** EKM, NN and SM conceptualised the research idea. EKM, AN, JN
278 and JLG supervised the data extraction exercise. PB and DA advised on the analysis of the
279 results. All authors were involved in writing the manuscript and approved the final manuscript
280 for submission.

281 **Data Availability**

282 The data underlying the results presented in the study are available from the corresponding
283 author on request.

284 **REFERENCES**

- 285 1. Hyman S, Parikh R, Collins PY, Patel V. Adult Mental Disorders.
- 286 2. Ruggeri M, Leese M, Thornicroft G, Bisoffi G, Tansella M. Definition and prevalence of severe
287 and persistent mental illness. *The British Journal of Psychiatry*. 2000;177(2):149-55.
- 288 3. Association AP. *DSM 5*: American Psychiatric Association; 2013.
- 289 4. Rössler W, Salize HJ, van Os J, Riecher-Rössler A. Size of burden of schizophrenia and psychotic
290 disorders. *European Neuropsychopharmacology*. 2005;15(4):399-409.
- 291 5. Salomon JA, Vos T, Hogan DR, Gagnon M, Naghavi M, Mokdad A, et al. Common values in
292 assessing health outcomes from disease and injury: disability weights measurement study for the
293 Global Burden of Disease Study 2010. *Lancet*. 2012;380(9859):2129-43.
- 294 6. Urs Heilbronner, Myrto Samara, Stefan Leucht, Peter Falkai, Thomas G. Schulze. The
295 Longitudinal Course of Schizophrenia Across the Lifespan: Clinical, Cognitive, and Neurobiological
296 Aspects. *Harvard Review of Psychiatry*. 2016;24(2):118-28. doi:10.1097/HRP.0000000000000092.
- 297 7. Broussard B, Kelley ME, Wan CR, Cristofaro SL, Crisafio A, Haggard PJ, et al. Demographic,
298 socio-environmental, and substance-related predictors of duration of untreated psychosis (DUP).
299 *Schizophrenia Research*. 2013;148(1):93-8.
- 300 8. Emsley R, Chiliza B, Schoeman R. Predictors of long-term outcome in schizophrenia. *Curr Opin
301 Psychiatry*. 2008;21(2):173-7.
- 302 9. Erin E Michalak, Lakshmi N Yatham, Raymond W Lam. Quality of life in bipolar disorder: A
303 review of the literature. *Health and quality of life outcomes*. 2005;3(72):doi:10.1186/477-7525-3-72.
- 304 10. Abebaw Fekadu , Girmay Medhin, Derege Kebede, Atalay Alem Excess mortality in severe
305 mental illness: 10-year population-based cohort study in rural Ethiopia. *The British Journal of
306 Psychiatry*. 2015;206:289-96. doi: 10.1192/bjp.bp.114.149112.
- 307 11. Gregory E. Simon, Christine Stewart, Bobbi Jo Yarborough, Frances Lynch, Karen J. Coleman,
308 Arne Beck, et al. Mortality Rates After the First Diagnosis of Psychotic Disorder in Adolescents and
309 Young Adults. *JAMA Psychiatry*. 2018;doi:10.1001/jamapsychiatry.2017.4437.
- 310 12. Solomon Teferra, Teshome Shibre, Abebaw Fekadu, Girmay Medhin, Asfaw Wakwoya, Atalay
311 Alem, et al. Five-year mortality in a cohort of people with schizophrenia in Ethiopia. *BMC Psychiatry* ,
312 . 2011;11::165 doi.org/10.1186/471-244X-11-165.
- 313 13. Marshall M, Lockwood A, Lewis S, Fiander M. Essential elements of an early intervention
314 service for psychosis: the opinions of expert clinicians. *BMC Psychiatry*. 2004;4:17.
- 315 14. Marshall M, Rathbone J. Early intervention for psychosis. (1469-493X (Electronic)).
- 316 15. Maling S, Todd J, Van der Paal L, Grosskurth H, Kinyanda E. HIV-1 seroprevalence and risk
317 factors for HIV infection among first-time psychiatric admissions in Uganda. *AIDS care*.
318 2011;23(2):171-8.
- 319 16. Sharifi V, Amin-Esmaeili M, Hajebi A, Motevalian A, Radgoodarzi R, Hefazi M, et al. Twelve-
320 month prevalence and correlates of psychiatric disorders in Iran: the Iranian Mental Health Survey,
321 2011. *Archives of Iranian medicine*. 2015;18(2):76-84.
- 322 17. Anderson KK, Fuhrer R, Abrahamowicz M, Malla AK. The incidence of first-episode
323 schizophrenia-spectrum psychosis in adolescents and young adults in montreal: an estimate from an
324 administrative claims database. *Can J Psychiatry*. 2012;57(10):626-33.
- 325 18. Anderson KK, Norman R, MacDougall AG, Edwards J, Palaniyappan L, Lau C, et al. Estimating
326 the incidence of first-episode psychosis using population-based health administrative data to inform
327 early psychosis intervention services. *Psychol Med*. 2018:1-9.
- 328 19. Elliot M Goldner, Lorena Hsu, Paul Waraich, Julian M Somers. Prevalence and Incidence
329 Studies of Schizophrenic Disorders: A Systematic Review of the Literature. *Can J Psychiatry*.
330 2002;47:833-43.
- 331 20. Hannah E. Jongsma, Charlotte Gayer-Anderson, Antonio Lasalvia, Diego Quattrone, Alice
332 Mulè, Andrei Szöke, et al. Treated Incidence of Psychotic Disorders in the Multinational EU-GEI Study.
333 *JAMA Psychiatry*. 2018;JAMA Psychiatry(75):1.

334 21. Perez J, Russo DA, Stochl J, Shelley GF, Crane CM, Painter M, et al. Understanding causes of
335 and developing effective interventions for schizophrenia and other psychoses.

336 22. Kane JM, Leucht S, Carpenter D, Docherty JP. The expert consensus guideline series.
337 Optimizing pharmacologic treatment of psychotic disorders. Introduction: methods, commentary, and
338 summary. *J Clin Psychiatry*. 2003;64 Suppl 12:5-19.

339 23. Abbo C, Ekblad S, Waako P, Okello E, Musisi S. The prevalence and severity of mental illnesses
340 handled by traditional healers in two districts in Uganda. *Afr Health Sci*. 2009;1(9):S16-22.

341 24. Abbo C, Odokonyero R, Ovuga E. A narrative analysis of the link between modern medicine
342 and traditional medicine in Africa: a case of mental health in Uganda. *Brain research bulletin*. 2018.

343 25. Sorsdahl K, Stein DJ, Grimsrud A, Seedat S, Flisher AJ, Williams DR, et al. Traditional healers in
344 the treatment of common mental disorders in South Africa. *The Journal of nervous and mental*
345 *disease*. 2009;197(6):434-41.

346 26. Abbo C, Ekblad S, Waako P, Okello E, Muhwezi W, Musisi S. Psychological distress and
347 associated factors among the attendees of traditional healing practices in Jinja and Iganga districts,
348 Eastern Uganda: a cross-sectional study. *Int J Ment Health Syst*. 2008;2(1):1752-4458.

349 27. Abbo C, Okello ES, Musisi S, Waako P, Ekblad S. Naturalistic outcome of treatment of psychosis
350 by traditional healers in Jinja and Iganga districts, Eastern Uganda - a 3- and 6 months follow up. *Int J*
351 *Ment Health Syst*. 2012;6(1):1752-4458.

352 28. Schmid GB, Brunisholz K. [Evaluation of use of complementary and alternative medicine by
353 schizophrenic patients]. *Forschende Komplementarmedizin* (2006). 2007;14(3):167-72.

354 29. Abbo C, Ekblad S, Waako P, Okello E, Musisi S. The prevalence and severity of mental illnesses
355 handled by traditional healers in two districts in Uganda. *Afr Health Sci*. 2009;9 Suppl 1:S16-22.

356 30. Nakasujja N, Allebeck P, Agren H, Musisi S, Katabira E. Cognitive dysfunction among HIV
357 positive and HIV negative patients with psychosis in Uganda. *PLoS ONE*. 2012;7(9).

358 31. Nakimuli-Mpungu E, Musisi S, Wamala K, Okello J, Ndyanabangi S, Mojtabai R, et al. The Effect
359 of Group Support Psychotherapy Delivered by Trained Lay Health Workers for Depression Treatment
360 Among People with HIV in Uganda: Protocol of a Pragmatic, Cluster Randomized Trial. *JMIR research*
361 *protocols*. 2017;6(12):e250.

362 32. Akena D, Joska J, Stein DJ. Sensitivity and specificity of the Akena Visual Depression Inventory
363 (AViDI-18) in Kampala (Uganda) and Cape Town (South Africa). *Br J Psychiatry*. 2018;212(5):301-7.

364 33. Kinyanda E, Salisbury TT, Levin J, Nakasujja N, Mpango RS, Abbo C, et al. Rates, types and co-
365 occurrence of emotional and behavioural disorders among perinatally HIV-infected youth in Uganda:
366 the CHAKA study. *Soc Psychiatry Psychiatr Epidemiol*. 2019;54(4):415-25.

367 34. Sacktor NC, Wong M, Nakasujja N, Skolasky RL, Selnes OA, Musisi S, et al. The International
368 HIV Dementia Scale: a new rapid screening test for HIV dementia. *AIDS* (London, England).
369 2005;19(13):1367-74.

370 35. Kigozi F, Ssebunya J, Kizza D, Cooper S, Ndyanabangi S. An overview of Uganda's mental
371 health care system: results from an assessment using the world health organization's assessment
372 instrument for mental health systems (WHO-AIMS). *Int J Ment Health Syst*. 2010;4(1):1.

373 36. Publication WB. GreatKampalaMetropolitanAreaQuickFacts.

374 37. Petersen I, Marais D, Abdulmalik J, Ahuja S, Alem A, Chisholm D, et al. Strengthening mental
375 health system governance in six low- and middle-income countries in Africa and South Asia:
376 challenges, needs and potential strategies. *Health policy and planning*. 2017;32(5):699-709.

377 38. Ssebunya J, Kangere S, Mugisha J, Doocrat S, Chisholm D, Lund C, et al. Potential strategies for
378 sustainably financing mental health care in Uganda. *Int J Ment Health Syst*. 2018;12:74.

379 39. Coentre R, Levy P, Figueira ML. [Early intervention in psychosis: first-episode psychosis and
380 critical period]. *Acta medica portuguesa*. 2011;24(1):117-26.

381 40. Moe AM, Rubinstein EB, Gallagher CJ, Weiss DM, Stewart A, Breitborde NJ. Improving access
382 to specialized care for first-episode psychosis: an ecological model. *Risk management and healthcare*
383 *policy*. 2018;11:127-38.

384 41. Rangaswamy T, Mangala R, Mohan G, Joseph J, John S. Early intervention for first-episode
385 psychosis in India. *East Asian archives of psychiatry : official journal of the Hong Kong College of*
386 *Psychiatrists = Dong Ya jing shen ke xue zhi : Xianggang jing shen ke yi xue yuan qi kan.* 2012;22(3):94-9.

387 42. Stafford MR, Jackson H, Mayo-Wilson E, Morrison AP, Kendall T. Early interventions to prevent
388 psychosis: systematic review and meta-analysis. *The BMJ.* 2013;346:f185.

389 43. White DA, Luther L, Bonfils KA, Salyers MP. Essential components of early intervention
390 programs for psychosis: Available intervention services in the United States. *Schizophr Res.*
391 2015;168(1-2):79-83.

392 44. Musisi SM, Wasylewski DA, Rapp MS. A psychiatric intensive care unit in a psychiatric hospital.
393 *Can J Psychiatry.* 1989;34(3):200-4.

394 45. Baumgardt J, Jäckel D, Helber-Böhnen H, Stiehm N, Morgenstern K, Voigt A, et al. Preventing
395 and Reducing Coercive Measures—An Evaluation of the Implementation of the Safewards Model in
396 Two Locked Wards in Germany. *Frontiers in Psychiatry.* 2019;10(340).

397 46. Murru A, Carpinello B. Duration of untreated illness as a key to early intervention in
398 schizophrenia: A review. *Neuroscience Letters.* 2018;669:59-67.

399 47. Davis GP, Tomita A, Baumgartner JN, Mtshemla S, Nene S, King H, et al. Substance use and
400 duration of untreated psychosis in KwaZulu-Natal, South Africa. *The South African journal of*
401 *psychiatry : SAJP : the journal of the Society of Psychiatrists of South Africa.* 2016;22(1):a852.

402 48. Tomita A, Burns JK, King H, Baumgartner JN, Davis GP, Mtshemla S, et al. Duration of untreated
403 psychosis and the pathway to care in KwaZulu-Natal, South Africa. *J Nerv Ment Dis.* 2015;203(3):222-
404 5.

405 49. Chiliza B, Asmal L, Emsley R. Early intervention in schizophrenia in developing countries: focus
406 on duration of untreated psychosis and remission as a treatment goal. *Int Rev Psychiatry.*
407 2012;24(5):483-8.

408 50. N. M. Menzes, T. Arenovich, R. B. Zipursky. A systematic review of longitudinal outcome
409 studies of first-episode psychosis. *Psychological Medicine.* 2006;36:1349-62
410 doi:10.1017/S0033291706007951.

411 51. Maraj A, Anderson KK, Flora N, Ferrari M, Archie S, McKenzie KJ. Symptom profiles and
412 explanatory models of first-episode psychosis in African-, Caribbean- and European-origin groups in
413 Ontario. *Early Interv Psychiatry.* 2017;11(2):165-70.

414 52. Singh SP, Brown L, Winsper C, Gajwani R, Islam Z, Jasani R, et al. Ethnicity and pathways to
415 care during first episode psychosis: the role of cultural illness attributions. *BMC Psychiatry.*
416 2015;15:287.

417 53. Desai G, Chaturvedi SK. Idioms of Distress. *Journal of neurosciences in rural practice.*
418 2017;8(Suppl 1):S94-S7.

419 54. Kar N. Resort to faith-healing practices in the pathway to care for mental illness: a study on
420 psychiatric inpatients in Orissa. *Mental Health, Religion and Culture.* 2008;11(7):720-40.

421 55. Peltzer K. Faith healing for mental and social disorders in the Northern Province (South Africa).
422 *Journal of Religion in Africa/Religion en Afrique.* 1999;29(3):387.

423 56. Busby GB, Band G, Si Le Q, Jallow M, Bougama E, Mangano VD, et al. Admixture into and within
424 sub-Saharan Africa. *eLife.* 2016;5.

425 57. Stevenson A, Akena D, Stroud RE, Atwoli L, Campbell MM, Chibnik LB, et al. Neuropsychiatric
426 Genetics of African Populations-Psychosis (NeuroGAP-Psychosis): a case-control study protocol and
427 GWAS in Ethiopia, Kenya, South Africa and Uganda. *BMJ open.* 2019;9(2):e025469.

428 58. Alesina AFaE, William and Devleeschauwer, Arnaud and Kurlat, Sergio and Waciarg, Romain
429 T., Fractionalization (June 2002). Harvard Institute Research Working Paper No. 1959.

430 59. Anne Stevenson, Dickens Akena, Rocky E Stroud, Lukoye Atwoli, Megan M Campbell, Lori B
431 Chibnik, et al. Neuropsychiatric Genetics of African Populations-Psychosis (NeuroGAPPsychosis): a
432 case-control study protocol and GWAS in Ethiopia, Kenya, South Africa and Uganda. *BMJ open.*
433 2019:e025469. doi:10.1136/bmjopen-2018-.

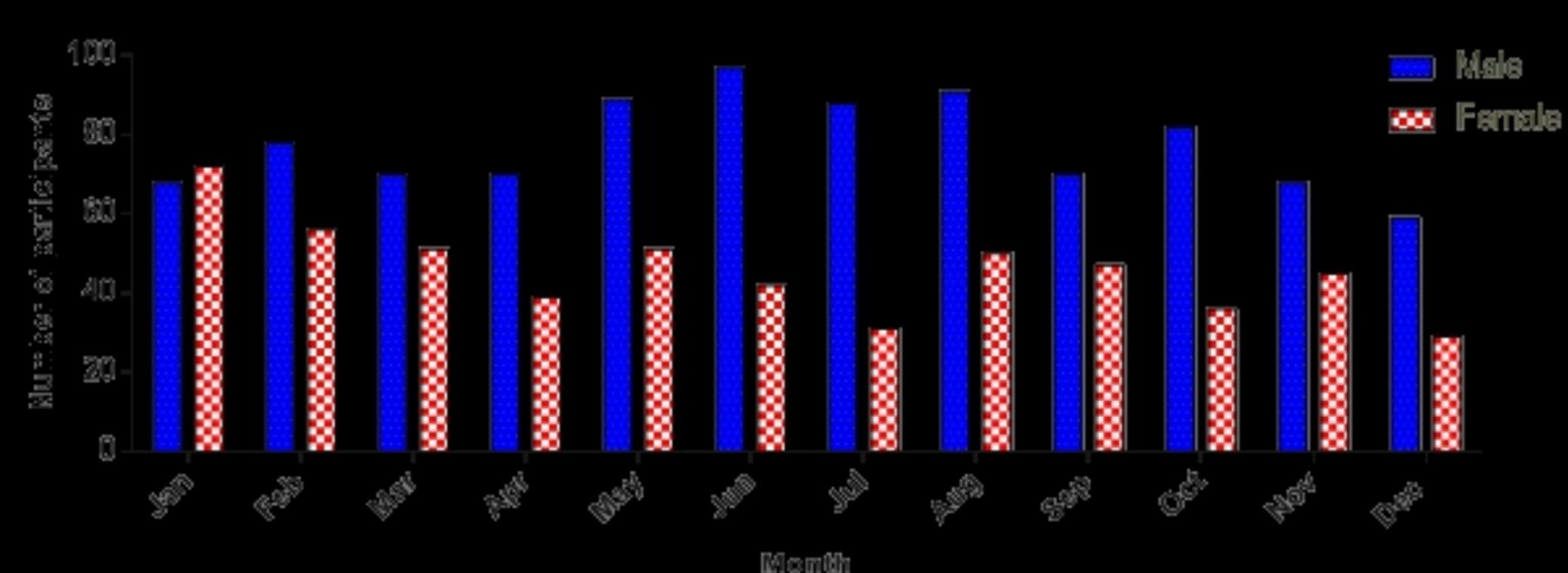


Figure 1

Figure 2