

1 **Evaluation of Open Hollow Hydroxyapatite Microsphere on Bone Regeneration in Rat**

2 **Calvarial Defects**

3 Youqu Shen¹, Mohamed Rahaman¹, Yongxian Liu¹, Yue-Wern Huang^{2*}

4

5 ¹Department of Materials Science and Engineering, Missouri University of Science and Technology
6 Rolla, MO, 65409

7 ²Department of Biological Sciences, Missouri University of Science and Technology Rolla, MO,
8 65409

9

10

11 *Corresponding author:
12 Yue-Wern Huang, Ph.D.

13 Department of Biological Sciences
14 Missouri University of Science and Technology
15 E-mail: huang@mst.edu (YH)

16

17 Author Contributions:
18 Conceived and designed the experiments: MR YL YWH. Performed the experiments: YS. Analyzed
19 the data: YS MR YL YWH. Wrote the paper: YS MR YWH.

20

21

1 **Abstract**

2 Hollow hydroxyapatite (HA) microspheres showed the ability to facilitate bone regeneration
3 in rats with non-healing calvarial defects. However, new bone formation in the rat calvarial defect
4 implanted with the closed HA microspheres was limited. The objective of this work is to evaluate
5 size-, time, and structure-dependent bone regeneration between open and closed HA microspheres in
6 an osseous model. Open HA microspheres were obtained by sectioning closed HA microspheres.
7 The open HA microsphere had dense convex surface and rough and porous concave surface. For
8 both size ranges (ϕ 106-150 μm vs. ϕ 212-250 μm), the open HA microsphere were more effective in
9 facilitating bone regeneration than the closed HA microspheres in rat calvarial defects. Bone
10 regeneration in the open HA microspheres ($49 \pm 7\%$ for ϕ 106-150 μm ; $40 \pm 8\%$ for ϕ 212-250 μm)
11 were higher than the closed HA microsphere ($26 \pm 8\%$ for ϕ 106-150 μm ; $30 \pm 9\%$ for ϕ 212-250 μm)
12 at 12 weeks. Furthermore, the open HA microspheres of smaller size showed a significant increase in
13 bone regeneration than the open HA microspheres of larger size at both 6 weeks and 12 weeks. The
14 difference in bone regeneration between these microspheres could be due to their differences in
15 microstructures, namely curvature, concavity, porosity, surface roughness, and total surface area
16 available for cells to attached to.

17 **Keywords**

18 Hollow hydroxyapatite microspheres; Osteogenesis; Bone regeneration; Rat calvarial defect model

1 **Introduction**

2 Effective regeneration of bone defects caused by trauma or chronic diseases is a significant
3 clinical challenge. Over the past few decades, researchers have investigated the mechanism of bone
4 regeneration to better inform the designs of healing strategies [1-3]. Bone healing involves three
5 primary stages: the early inflammatory stage; the repair stage and the late remodeling stage [4].
6 These three stages are distinct, but continuous. In the inflammatory stage, a hematoma forms and
7 inflammatory cells infiltrate the bone, resulting in the formation of granulation tissue, vascular tissue
8 and immature tissue. During the repair stage, new blood vessels are developed to facilitate tissue
9 regeneration and a soft callus is formed around the repair site. Bone healing is completed during the
10 remodeling stage in which the bone is restored to its original shape, structure and mechanical
11 strength.

12 Clinically, bone deficiency is overcome using treatments that rely on bone regeneration and
13 augmentation. While various treatments have been investigated with encouraging results [5],
14 complete and predictable bone reconstruction is often difficult [6]. Autologous bone grafts are the
15 gold standard for treatment because they contain osteoinductive growth factors, osteogenic cells and
16 a structural scaffold. However, disadvantages of this treatment include limited tissue availability,
17 increased surgery time, additional pain and cosmetic imperfection at the donor site [6-8]. Many of
18 these issues can increase the health care cost for the patient [9]. An alternative to autogenous bone is
19 allogenic bone, which can induce moderate healing results due to its preserved osteoinductivity.
20 However, allografts are costly, can have unpredictable effects on growth due to donor variance,
21 cause adverse immune reactions, and increase the risk of disease transference [10-12]. Synthetic bone

22 grafts have advantages such as consistent quality, safety, and good tissue tolerance, but they usually
23 function as inert or merely osteoconductive implants. Encouraging results have been reported.

24 Hydroxyapatite (HA), the main component and essential ingredient of human bone, can be
25 prepared by chemical reactions. Studies have demonstrated that HA supports bone regeneration and
26 bonding to surrounding tissue because of its biocompatibility, bioactivity, and osteoconductivity

27 [13]. Our studies with the closed HA microspheres showed the ability to regenerate bone in non-
28 healing rat calvarial defects [14, 15]. Experiments with ϕ 106-150 μm and ϕ 150-250 μm closed HA

29 microspheres showed differences in mechanical properties and biological tests [16]. The size
30 variation of closed HA microspheres could affect the structure of HA microspheres. The changes in

31 structure can influence on the biological tests in return. We sporadically observed that there tended to
32 be better bone regeneration with broken closed microspheres with micro-concavity [15, 17]. This

33 observation motivated us to design this study that focused on enhanced bone regeneration with open
34 microspheres. We hypothesize that open HA microsphere with special geometric characters can yield

35 better bone regeneration compared with the closed HA microspheres. Our goal is to investigate
36 whether bone regeneration in an osseous model is microgeometry-, size-, and time-dependent. To

37 achieve our goal, two size ranges (ϕ 106-150 μm and ϕ 212-250 μm) of closed and open HA
38 microspheres were created. Bone regeneration was conducted with a rat calvarial defect model. No

39 osteoinductive agents were added in order to distinguish the intrinsic osteogenic properties of the
40 open HA microspheres.

41 **Materials and Method**

42 **Preparation of closed and open hollow hydroxyapatite (HA)**
43 **microspheres**

44 The closed hollow HA microspheres were prepared by conversion solid glass microspheres in
45 aqueous phosphate solution as described in a previous study. Briefly, calcium-lithium-borate glass
46 with the composition of 15CaO, 11Li₂O and 74B₂O₃ (wt. %), designated as CaLB3-15, was prepared
47 by melting CaCO₃, Li₂CO₃, H₃BO₃ (Alfa Aesar, Haverhill, MA, USA) in a platinum crucible at 1200
48 °C for 45 min and then quenching the melt between stainless steel plates. Glass particles of were
49 obtained by grinding the glass *via* a mortar and pestle, crashing in a shatter box and sieving through
50 100 and 140 mesh sieves for ϕ 106-150 μ m in size, or 60 and 70 mesh sieves for ϕ 212-250 μ m in
51 size. Glass microspheres were obtained by dropping the crushed particles down through a vertical
52 furnace at 1200 °C. The closed hollow hydroxyapatite microspheres were obtained by reacting the
53 glass microspheres in a 0.02 M K₂HPO₄ solution at 37 °C and pH = 9 for 7 days. In the conversion
54 process, 1 g glass was immersed in a 200 ml phosphate solution and the system was stirred gently
55 and continuously. The converted microspheres were washed with distilled water and anhydrous
56 ethanol, and then dried at room temperature for at least 12 h and at 90 °C for at least 12 h.

57 The open hollow HA microspheres were obtained by sectioning the closed hollow HA
58 microspheres using a microtome. Briefly, the closed HA microspheres were fixed on a wax block
59 using a water-soluble tape and were sectioned by microtome. The open HA microspheres were
60 washed with distilled water and ethanol, and then dried at room temperature for at least 12 h and at
61 90 °C for at least 12 h. The debris in open HA microspheres were removed using sieves.

62 **Characterization of closed and open hollow hydroxyapatite (HA)
63 microspheres**

64 The microstructures of the closed HA microspheres, cross-section of closed HA microspheres,
65 and open HA microspheres were observed using a scanning electron microscope (SEM; S4700
66 Hitachi, Tokyo, Japan) with an accelerating voltage of 15kV and working distance at 12 mm. The
67 local composition of the surface layer, middle layer and inner layer of the mesoporous shell wall of
68 the HA microspheres was investigated using energy dispersive X-ray (EDS) analysis in SEM with an
69 electron beam spot size of 1 μ m.

70 The specific surface area (SSA) of the closed and open HA microspheres and pore size
71 distribution of the shell wall were measured by using nitrogen absorption (Autosorb-1;
72 Quantachrome, Boynton Beach, FL) as described in a previous study. Three hundred milligrams of
73 closed or open HA microspheres were weighted and evacuated at 120 °C for 15 h to remove
74 absorbed moisture. The volume of nitrogen absorbed and desorbed at different relative gas pressure
75 was measured and used to construct adsorption-desorption isotherms. The first twelve points of the
76 adsorption isotherm, which initially followed a linear trend implying monolayer formation of
77 adsorbate, were fitted to the Brunauer-Emmett-Teller equation to determine the specific surface area.
78 The pore size distribution of the shell wall of the hollow HA microspheres was calculated using the
79 Barrett-Joiner-Halenda method applied to the deposition isotherms [18].

80 **Animals and surgical procedures**

81 All animal use and care procedures were approved by the Missouri S&T Institutional Animal
82 Care and Use Committee in compliance with the NIH Guide for Care and Use of Laboratory
83 Animals (1985). The rat calvarial defects were implanted with four groups of implants composed of
84 closed or open hollow HA microspheres for 6 weeks and 12 weeks (Table 1). The implantation time
85 was based upon considerable bone regeneration in rat calvarial defects implanted with hollow HA
86 microspheres observed in previous studies. The closed or open HA microspheres of ϕ 212-250 μm
87 were randomly implanted to defect areas. The closed or open HA microspheres of ϕ 106-150 μm
88 microspheres were randomly implanted to defect areas, but mixing implants of closed and open
89 microspheres in the same animal was avoided due to the possible migration of low-weight open HA
90 microspheres.

91 **Table 1. Implants groups composed of closed or open hollow hydroxyapatite microspheres.**

Group	HA microspheres	Sample size (n)	
		6 weeks	12 weeks
1	106-150 μm	Closed	5
		Open	5
3	212-250 μm	Closed	5
		Open	5

92 The male Sprague-Dawley rats (3 months old, weight = 350 ± 30 g, Envigo, USA) were
93 acclimated for 2 weeks to diet, water, and housing under a 12 h/12 h light/dark cycle. The rats were
94 anesthetized with a combination of ketamine and xylene (0.15 μl per 100 g) and maintained under

95 anesthesia with isoflurane in oxygen. The surgery area was shaved, scrubbed with 70% ethanol and
96 iodine, and draped. With sterile instruments and using an aseptic technique, a 1 cm cranial skin
97 incision was made in an anterior to posterior direction along the midline. The subcutaneous tissue,
98 musculature and periosteum were dissected and reflected to expose the calvaria. Bilateral full
99 thickness defects (4.6 mm in diameter) were created in the central area of each parietal bone using a
100 saline-cooled trephine drill. The sites were constantly irrigated with sterile PBS to prevent
101 overheating of the bone margins and to remove the bone debris. Each defect was randomly implanted
102 with HA microspheres of each group. After the implantation of the hollow HA microspheres, one
103 drop of Ringer's solution was added to each defect. The periosteum and skin were repositioned and
104 closed with wound clips. Each animal received an intramuscular injection of ~200 μ l buprenorphine
105 and ~200 μ l penicillin post-surgery. All animals were monitored daily for the condition of the
106 surgical wound, food intake, activity and clinical signs of infection. After 6 weeks, the animals were
107 sacrificed by CO₂ inhalation, and the calvarial defect sites with surrounding bone and soft tissue
108 were harvested for subsequent evaluations.

109 **Histological processing**

110 Harvested calvarial samples were fixed in a 10% formaldehyde solution for five days. The
111 samples were cut into half after being washed with deionized water. Half of the sample was for
112 paraffin embedding, and the other half was for poly (methyl methacrylate) (PMMA) embedding. The
113 paraffin-embedded samples were decalcified in 14 wt. % ethylenediaminetetraacetic acid (EDTA,
114 Sigma-Aldrich, USA) for 2 weeks, dehydrated in ethanol, and then embedded in paraffin using
115 standard histological techniques. These samples were sectioned using microtome. The thickness of

116 the tissue section with paraffin was 5 μm . These slices were then stained with hematoxylin and eosin
117 (H&E) [19]. Without decalcification, the samples for PMMA embedding were dehydrated in ethanol
118 and embedded in PMMA. These samples were sectioned, affixed to acrylic slices, and ground to a
119 thickness down to 50 μm using a micro-grinding system (EXAKT 400CS, Norderstedt, Germany).
120 The von Kossa staining was used to observe mineralization [20].

121 **Histomorphometric analysis**

122 Histomorphometric analysis was carried out using optical images of stained sections and
123 Image J software (National Health Institute, USA). The percentage of new bone formed in calvarial
124 defect was evaluated from the H&E stained sections. The newly formed bone was identified by
125 outlining the edge of the defect, with the presence of old and new bone being identified by lamellar
126 and woven bone, respectively. The total defect area was measured from one edge of the old calvarial
127 bone, including the entire implant and tissue within it, to the other edge of the old bone. The newly
128 formed bone within this area was then outlined and measured; the amount of the new bone was
129 expressed as a percentage of the total defect area. The amount of von Kossa positive area was shown
130 as a percent of the total defect area.

131 **Statistical analysis**

132 Measurements of the percentage of new bone (relative to the entire defect area) were
133 expressed as a mean \pm SD. Analysis for differences between groups was performed using one-way
134 analysis of variance (ANOVA) followed by the Tukey's post hoc test; the differences were
135 considered significant at $P < 0.05$.

136 **Results**

137 **Geometry of the closed and open hydroxyapatite microspheres**

138 The closed HA microspheres were prepared by converting glass microspheres in a phosphate
139 solution. The diameters of the starting glass microspheres were ϕ 106-150 μm and ϕ 212-250 μm ,
140 respectively. After conversion, changes in the diameter of the microspheres were negligible. The
141 SEM images revealed a spherical shape of closed HA microspheres with two size ranges: ϕ 106-150
142 μm (thereafter, small size; Fig. 1A1 and A2) and ϕ 212-250 μm (thereafter, large size; Fig. 1C1 and
143 C2). Open HA microspheres were sectioned from closed HA microspheres using a microtome. The
144 SEM images confirmed precise sectioning of open HA microspheres of both sizes (Fig. 1B1, B2, D1
145 and D2). Compared to the complete spherical structure of closed HA microspheres, the open HA
146 microspheres were near hemispherical. The hollow microsphere had a mesoporous shell and a
147 hollow core (0.6 of the microsphere diameter). The shell wall consisted of two distinct layers: a
148 denser external layer and a more porous internal layer. For both size ranges of HA microspheres, the
149 thickness of the denser layer was $\sim 5 \mu\text{m}$. The open HA microspheres of both sizes showed the dense
150 external part and rough and porous internal part of the shell wall (Fig. 2). Both size ranges of the
151 closed and open HA microspheres showed similar microstructures of the shell wall. The HA
152 microspheres were formed by needle-like hydroxyapatite nanoparticles. The external surface tended
153 to be denser than the internal surface.

154 **Figure 1. SEM images of 106-150 μm closed HA microspheres (A1, A2) and open HA**
155 **microspheres (B1, B2) and 212-250 μm closed HA microspheres (C1, C2) and open HA**
156 **microspheres (D1, D2).**

157 **Figure 2. SEM images of external surface (A) and internal surface (B) of 106-150 μm open HA**
158 **microspheres and external surface (C) and internal surface (D) of 212-250 μm open HA**
159 **microspheres.**

160 The BET surface area and average pore size of closed HA microspheres in two size ranges are
161 summarized in Table 2. The surface areas of small and large closed HA microspheres were 101 m^2/g
162 and 168 m^2/g , respectively. The average pore sizes of small and large closed HA microspheres were
163 13 nm and 10 nm, respectively. The surface area was higher in the large HA microspheres, while the
164 average pore size was higher in the small HA microspheres.

165 **Table 2. Surface area and average pore size of 106-150 μm and 212-250 μm HA microspheres.**

HA microspheres	Surface area (m^2/g)	Average pore size (nm)
106-150 μm	101	13
212-250 μm	168	10

166 **Composition of the closed and open hollow hydroxyapatite**
167 **microspheres**

168 A high-resolution cross-section of the hollow HA microspheres in both sizes is shown in Fig.
169 3. The shell walls of the microspheres were divided into three regions: external layer, middle layer
170 and inner layer. Compositions at the midpoint of each region were analyzed by EDS for the Ca/P

171 atomic ratio (Table 3). The Ca/P atomic ratios of the HA microspheres of small size from the surface
172 layer to the inner layer were 1.63 ± 0.11 , 1.63 ± 0.11 , and 1.60 ± 0.14 . The Ca/P atomic ratios of the
173 HA microsphere of large size from the surface layer to the inner layer were 1.67 ± 0.10 , 1.63 ± 0.08
174 and 1.63 ± 0.06 . There was no significant difference in Ca/P ratio within the three regions or between
175 the two size ranges of HA microspheres ($n=10$, $p>0.05$). The Ca/P atomic ratios of the three regions
176 were close to the theoretical Ca/P value of stoichiometric hydroxyapatite, 1.67.

177 **Figure 3. SEM images of cross section of 106-150 μ m open HA microspheres (A) and 212-
178 250 μ m open HA microspheres (B).**

179 **Table 3. Ca/P atomic ratio ($n = 10$; mean \pm SD) for the three regions for 106–150 μ m and
180 212–250 μ m.**

HA microspheres	Cross-sectional zone	Ca/P atomic ratio (mean \pm SD)
106-150 um	Surface layer (A)	1.63 ± 0.11
	Middle layer (B)	1.63 ± 0.11
	Inner layer (C)	1.60 ± 0.14
	Surface layer (D)	1.67 ± 0.10
	Middle layer (E)	1.63 ± 0.08
	Inner layer (F)	1.63 ± 0.06

181 **Evaluation of bone regeneration in rat calvarial defects**

182 H&E and von Kossa stained sections of the implants with closed and open hollow HA
183 microspheres of the two size ranges after 6 weeks in rat calvarial defects are shown in Fig. 4 and Fig.

184 5. Bone regeneration was limited and confined mainly to the edge of the defects and some bone
185 bridging along the bottom of implants. Fibrous tissues (light blue in H&E stained sections) filled the
186 space between the microspheres. New bone formation in the implants with the smaller size of closed
187 and open HA microspheres was $12 \pm 3\%$ and $17 \pm 6\%$, respectively (Fig. 4 and Table 4). The von
188 Kossa positive areas in the implants with the smaller size of closed and open HA microspheres
189 were $41 \pm 3\%$ and $49 \pm 5\%$, respectively (Table 5). The percentages of new bone in the implants
190 with the larger size of closed and open HA microspheres were $6 \pm 2\%$ and $12 \pm 3\%$, respectively
191 (Fig. 5). The von Kossa positive areas in the implants with the larger size of closed and open HA
192 microspheres were $30 \pm 3\%$ and $35 \pm 3\%$, respectively. Open HA microspheres showed significant
193 improvement in bone regeneration compared with closed HA microspheres for both size ranges at 6
194 weeks in rat calvarial defects ($n = 5$, p 's < 0.05 for both sizes, Fig. 8 and 9). Smaller closed HA
195 microspheres showed a significant increase in bone regeneration than the larger closed HA
196 microspheres ($n = 5$, $p < 0.05$). Based on the H&E results, there was a borderline difference in new
197 bone formation between the two size ranges of open HA microspheres ($n = 5$, $p = 0.050$). However,
198 based on von Kossa results, the smaller open HA microspheres showed a significant enhancement in
199 bone growth compared to the larger open HA microspheres ($n = 5$, $p < 0.001$).

200 **Table 4. Comparative new bone formation in all implants after 6 or 12 weeks based on H&E**
201 **staining. The amount of new bone is expressed as a percent of the total defect area (mean \pm**
202 **SD).**

203

Hollow HA microspheres		New bone (%)	
		6 weeks	12 weeks
ϕ 106-150 μ m	Closed	12 \pm 3	26 \pm 8
	Open	17 \pm 6	49 \pm 7
ϕ 212-250 μ m	Closed	6 \pm 2	30 \pm 9
	Open	12 \pm 3	40 \pm 8

204 **Figure 4. H&E stained and von Kossa sections of implants composed of closed (A1, B1) and**
205 **open (A2, B2) hollow HA microspheres (ϕ 106-150 μ m) after 6 weeks in rat calvarial defects;**
206 **(C, D) higher-magnification images of boxed area in (A1, A2). HB: host bone; NB: new bone.**
207 **Blue arrow: new bone growth in micro-concavity.**

208 **Figure 5. H&E and von Kossa stained sections of implants composed of closed (A1, B1) and**
209 **open (A2, B2) HA microspheres (ϕ 212-250 μ m) after 6 weeks in rat calvarial defects; (C, D)**
210 **higher-magnification images of boxed area in (A1, A2). HB: host bone; NB: new bone. Blue**
211 **arrow: new bone growth in micro-concavity.**

212 **Figure 8. Comparative new bone formation in implants with closed and open hollow HA**
213 **microspheres with diameter of 106-150 μ m or 212-250 μ m after 6 weeks (6 W) and 12 weeks**
214 **(12 W) in rat calvarial defects (Mean \pm SD; n = 5~10, * significant difference between groups; p**
215 **< 0.05).**

216 **Figure 9. Comparative von Kossa positive area for implants of closed and open hollow HA**
217 **microspheres with diameter of 106-150 μ m or 212-250 μ m after 6 weeks (6 W) and 12 weeks (12**

218 **W) in rat calvarial defects (Mean \pm SD; n = 5~10, * significant difference between groups; p <**
219 **0.05).**

220 Higher magnification images of the closed and open HA microspheres of both sizes are shown
221 in Fig. 4C and D (from the boxed areas of Fig. 4A1 and A2) and Fig. 5C and D (from the boxed
222 areas in Fig. 5A1 and A2). For the closed HA microspheres in both size ranges, bone formation was
223 scanty, while the fibrous tissues filled the pore space between the closed HA microspheres and
224 infiltrated into the hollow core of some broken closed HA microspheres. In comparison, more bone
225 regeneration was observed in the micro-concavity of open HA microspheres (indicated by blue
226 arrows) in both sizes (ϕ 106-150 μ m and ϕ 212-250 μ m).

227 The outcomes from the implants with the closed and open HA microspheres of the two size
228 ranges after 12 weeks in rat calvarial defects are shown in Figs. 6 and 7. New bones were formed
229 from the edge of the defects and on the bottom of the implants. For the open HA microspheres of
230 both size ranges, more new bone growth in the micro-concavity can be found; the remaining open
231 HA microspheres can be observed in the new bone bridging the ends of defects. For the closed and
232 open HA microspheres of small size (Fig. 6), the percentages of new bone formation were $26 \pm 8\%$
233 and $49 \pm 7\%$, respectively; the von Kossa positive areas were $55 \pm 5\%$ and $76 \pm 4\%$, respectively.
234 For the closed and open HA microspheres of large size (Fig. 7), the percentages of new bone were 30
235 $\pm 9\%$ and $40 \pm 8\%$, respectively; the von Kossa positive areas were $56 \pm 5\%$ and $65 \pm 5\%$,
236 respectively. The open HA microspheres showed significant improvement in bone regeneration when
237 compared to the closed HA microspheres in both size ranges during a period of 12 weeks in rat
238 calvarial defects (n = 5, p's < 0.001 for small size; n = 5, p's < 0.05 for large size). There was no

239 significant difference in new bone formation between the two size ranges of closed HA microspheres
240 ($n = 5\sim 10, p > 0.05$). However, smaller open HA microspheres showed a more significant increase in
241 bone regeneration than larger closed HA microspheres ($n = 5, p < 0.05$). Bone regeneration was
242 time-dependent for both size ranges; new bone formation increased significantly from 6 weeks to 12
243 weeks in rat calvarial defects ($n = 5, p's < 0.001$ for closed HA microspheres; $n = 5\sim 10, p's < 0.001$
244 for open HA microspheres).

245 **Figure 6. H&E and von Kossa stained sections of implants composed of closed (A1, B1) and**
246 **open (A2, B2) HA microspheres ($\phi 106\text{-}150 \mu\text{m}$) after 12 weeks in rat calvarial defects; (C, D)**
247 **higher-magnification images of boxed area in (A1, A2). HB: host bone; NB: new bone. Blue**
248 **arrow: new bone growth in micro-concavity.**

249 **Figure 7. H&E and von Kossa stained sections of implants composed of closed (A1, B1) and**
250 **open (A2, B2) HA microspheres ($\phi 212\text{-}250 \mu\text{m}$) after 12 weeks in rat calvarial defects; (C, D)**
251 **higher-magnification images of boxed area in (A1, A2). HB: host bone; NB: new bone. Blue**
252 **arrow: new bone growth in micro-concavity.**

253 A comparison of closed and open HA microspheres in both sizes at 12 weeks is shown in
254 higher magnified images in Fig. 6C and D (from the boxed areas of Fig. 6A1 and A2) and Fig. 7C
255 and D (from the boxed areas of Fig. 7A1 and A2). Bone regeneration in the cores of some broken
256 closed HA microspheres was identified. A higher degree of new bone formation in the micro-
257 concavity of open HA microspheres was observed.

258 **Discussion**

259 The capability of HA microspheres to regenerate bone can presumably be affected by the
260 differences between closed and open HA microspheres in microstructure. In this study, the
261 microstructure of closed and open HA microspheres in two size ranges (ϕ 106-150 μm vs. ϕ 212-250
262 μm) were analyzed. To test HA microspheres in facilitating bone regeneration, rat calvarial defects
263 were created and HA microspheres were implanted. Bone regeneration was evaluated in weeks 6 &
264 12.

265 For both size ranges, the thickness of the denser (outer) layer was \sim 5 μm , while the ratio of
266 the hollow core diameter to the microsphere diameter is \sim 0.6. The factors leading to these two
267 distinct layers are still unclear. In the glass conversion process [16, 21-23], ions are dissolved from
268 glass (i.e., Ca^{2+} , Li^+ , B^{3+}) to the aqueous solution. The Ca^{2+} from glass reacts immediately with
269 phosphate anions from solution to form calcium phosphate. The calcium phosphate precipitates onto
270 the glass surface due to its insolubility in the system. As the glass dissolves, the calcium phosphate
271 layer continues to thicken until the glass is completely converted to calcium phosphate. The kinetics
272 and mechanism of the formation of the HA layer in borate glass is investigated in several studies [22,
273 24-26]. The conversion rate is initially described by a reaction-controlled model (linear kinetics);
274 however, at the later stage, a three-dimensional diffusion model (parabolic kinetics) better explains
275 the conversion rate. Presumably, the denser layer and porous layer results from these two kinetic
276 models. Additional experiments can be set-up to further investigate the dynamic changes of SSA and
277 pore size.

278 Our *in vivo* experiment showed the effectiveness of open HA microspheres in bone
279 regeneration. For both size ranges of the open HA microspheres, new bone formation was observed

280 in both 6 weeks and 12 weeks post-implantation. The amount of new bone growth increased from 6
281 weeks to 12 weeks. In the study of 12-week implantation with small microspheres, new bone
282 formation with the implants of open microsphere was about twice that of the closed microspheres;
283 for large microspheres, new bone formation in the implants of open microspheres was about 30%
284 higher than that of the closed microspheres. Thus, the open microspheres were more effective in
285 facilitating bone regeneration than the closed microspheres. Compared to the closed microsphere, the
286 open microsphere had a micro-concave region with a more porous and rougher surface (see Fig
287 1&2). These characters (i.e., micro-concavity, porosity, roughness) could contribute to the difference
288 in bone regeneration between the closed and open microspheres.

289 The effectiveness of micro-concavity in bone regeneration has been investigated by others
290 [27-32]. Substantial mineralization of simulated body fluid on the discs made of calcium phosphate
291 ceramic were observed inside concavities but not at the planar surface [31]. Smaller concavity (0.4
292 mm in diameter) can induce much more mineralization than larger concavities (0.8 mm or 1.8 mm in
293 diameter) [31]. An *in vivo* study demonstrated that concavity appeared to stimulate formation of
294 blood vessels, a critical process for bone formation [32]. Stem cells showed better outcomes on a
295 concave surface than a flat surface in terms of cell maturation, osteodifferentiation, and specific
296 protein production [28]. Bone formation by intramembranous ossification preferred to occur on a
297 concave surface as well [30]. Concavity is also conducive to accumulation of growth factors such as
298 BMPs [27]. Differences in microstructure may also be a contributing factor to the outcome of bone
299 regeneration. The internal concave surface was more porous and rougher compared to external
300 convex surface.

301 The differences in porosity and roughness could influence dissolution/degradation of
302 biomaterials, adsorption of growth factors, and mineral deposition from body fluid [33-40]. For
303 instance, the degradation of a porous surface could lead to faster Ca^{2+} release which is a key factor in
304 facilitating angiogenesis [41]. Further, a more porous and rougher surface could be a more suitable
305 substrate for adsorption of biologically active molecules, such as BMPs and growth factors.
306 Together, these lead to enhanced cell attachment, proliferation and differentiation.

307 Dissolution/degradation of HA have been shown to be affected by the ratio of Ca/P of the
308 microspheres [42-44]. The dissolution of HA in water increased as the Ca/P ratio decreased [42].
309 Higher dissolution/degradation of HA could release more Ca^{2+} and phosphate ions, which could
310 facilitate bone regeneration. In this study, there was no significant difference in Ca/P ratio within the
311 three regions or between the two size ranges of HA microspheres. It is possible that the Ca/P ratio of
312 our HA microspheres can be manipulated to achieve varying degree of dissolution.

313 The current study demonstrated that the small open microspheres induced a more significant
314 increase in bone regeneration than the large open microspheres at both 6 weeks and 12 weeks. One
315 reason for this difference may be attributed to total surface area on microspheres where cells can be
316 attached to. A simulation of the difference in available surface area for cell attachment was made.
317 Given the same mass, the same size distribution pattern of the open and closed microspheres of the
318 same size, and the same density of the shell of the microspheres of different sizes, the open
319 microspheres of the same size have larger surface area than that of the closed microspheres for cells
320 to attached to. For instance, the closed and open microspheres of $\phi 106\text{-}150 \mu\text{m}$ have surface areas of
321 584 cm^2 (assuming the total volume of the microsphere shell is 1 cm^3) and 981 cm^2 , respectively.

322 The closed and open microspheres of ϕ 212-250 μm surface areas of have 328 cm^2 and 552 cm^2 ,
323 respectively. Another reason for the difference in bone regeneration could be due to the curvature.
324 The small microspheres have higher curvature than the large microspheres. It remains to be
325 investigated how the curvature of the microspheres affect cellular physiology leading to the
326 differential outcome of bone regeneration.

327 An apparent observation is that new bone formation with implants of the small open
328 microspheres was able to completely bridge the defects at the bottoms of all the implants. In
329 comparison, not all animals with closed microspheres were able to bridge the entire defects. During
330 the regeneration process, new bone formation started from the edge of the host bone and from the
331 bottom of the defect (dura matter), where osteogenic cells and blood supply were abundant. The
332 open microspheres might absorb the osteogenic factors by diffusion or fluid transport and trigger
333 bone growth in the micro-concavity. The open microspheres at the bottom of the implants had the
334 best chance of contact with the osteogenic factors not only from dura matter but also from the edges
335 induced by the open microsphere in periphery. We observed that a large number of smaller pieces of
336 open microspheres was found in the bottom of the implants. This might be caused by the rats'
337 physical activity of daily living.

338 In this work, the closed HA microspheres of ϕ 106-150 μm significantly enhance bone
339 regeneration than those of ϕ 212-250 μm at 6 weeks; no significant difference in bone regeneration
340 between two size ranges at 12 weeks. Compared to the work by Fu [14], new bone formation with
341 the closed HA microspheres of ϕ 150-250 μm was significantly greater than that with the closed HA
342 microspheres of ϕ 106-150 μm at 12 weeks. It should be noted that there is a significant difference in

343 the size range of the large microspheres between these two studies; thus, they should not be viewed
344 as conflicting results.

345 Conclusion

346 The open HA microspheres significantly enhance the bone regeneration as compared to the
347 closed HA microspheres at both 6 weeks and 12 weeks. Compared with the larger size of open HA
348 microspheres (smaller curvature), the smaller size of open HA microspheres (larger curvature)
349 resulted in a more significant increase in bone regeneration. The differences in microstructures of the
350 HA microspheres (i.e., curvature, concavity, porosity, surface roughness, total surface area available
351 for cells to attached to) may deserve future attention of investigation.

352 Acknowledgements

353 The work is financially supported by National Institute of Health [Grant #1R15DE023987-01].
354 We thank technical support by the S&T Material Research Center and the Department of Biological
355 Sciences.

356 Conflicts of Interest

357 The authors declare that there are no conflicts of interest.

358 Abbreviations

359 BSA, bovine serum albumin; HA, hydroxyapatite; PBS, phosphate Buffer Saline; BMP-2, bone
360 morphogenetic protein-2; H&E, hematoxylin and eosin; FBS, fetal bovine serum; EDTA,
361 ethylenediaminetetraacetic acid

362 References

363 1. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in
364 orthopaedic surgery: from basic science to clinical practice. *Journal of Materials Science: Materials*
365 in Medicine

366 2014;25(10):2445-61. <http://doi.org/10.1007/s10856-014-5240-2>. PubMed PMID:
367 24865980; PubMed Central PMCID: PMCPMC4169585.

368 2. Deschaseaux F, Sensébé L, Heymann D. Mechanisms of bone repair and regeneration. *Trends in*
369 *Molecular Medicine*. 2009;15(9):417-29. <http://doi.org/10.1016/j.molmed.2009.07.002>. PubMed
370 3. Loi F, Córdova LA, Pajarin J, Lin T-h, Yao Z, Goodman SB. Inflammation, fracture and bone
371 repair. *Bone*. 2015;86:119-30. <http://doi.org/10.1016/j.bone.2016.02.020>. PubMed PMID: 26946132;
372 PubMed Central PMCID: PMCPMC4833637.

373 4. Kalfas IH. Principles of bone healing. *Neurosurg Focus*. 2001;10(4):E1.
374 <http://doi.org/10.3171/foc.2001.10.4.2>. PubMed PMID: 16732625.

375 5. Scarano A, Degidi M, Iezzi G, Pecora G, Piattelli M, Orsini G, et al. Maxillary sinus
376 augmentation with different biomaterials: a comparative histologic and histomorphometric study in
377 man. *Implant dentistry*. 2006;15(2):197-207. <http://doi.org/10.1097/01.id.0000220120.54308.f3>.
378 PubMed PMID: 16766904.

379 6. Trombelli L. Which reconstructive procedures are effective for treating the periodontal
380 intraosseous defect? *Periodontology 2000*. 2005;37(1):88-105. <http://doi.org/10.1111/j.1600-0757.2004.03798.x>. PubMed PMID: 15655027.

382 7. Kao RT, Conte G, Nishimine D, Dault S. Tissue engineering for periodontal regeneration.

383 Journal of the California Dental Association. 2005;33(3):205-15. <http://doi.org/10.4103/1735-3327.107570>. PubMed PMID: 15918402.

385 8. Pandit N, Malik R, Philips D. Tissue engineering: A new vista in periodontal regeneration.

386 Journal of Indian Society of Periodontology. 2011;15(4):328-37. <http://doi.org/10.4103/0972-124X.92564>. PubMed PMID: 22368355; PubMed Central PMCID: PMCPMC3283928.

388 9. Dahlin C, Johansson A, Sahlgrenska a, Institute of Clinical Sciences SfAB, Orthopaedics DoB,

389 Göteborgs u, et al. Iliac crest autogenous bone graft versus alloplastic graft and guided bone

390 regeneration in the reconstruction of atrophic maxillae: a 5 - year retrospective study on cost -

391 effectiveness and clinical outcome. Clinical Implant Dentistry and Related Research.

392 2011;13(4):305-10. <http://doi.org/10.1111/j.1708-8208.2009.00221.x>. PubMed PMID: 21087398.

393 10. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36(3):S20-

394 S7. <http://doi.org/10.1016/j.injury.2005.07.029>. PubMed PMID: 16188545.

395 11. McAuliffe JA. Bone graft substitutes. Journal of Hand Therapy. 2003;16(2):180-7.

396 [http://doi.org/10.1016/S0894-1130\(03\)80013-3](http://doi.org/10.1016/S0894-1130(03)80013-3). PubMed PMID: 16359252.

397 12. Reikerås O, Shegarfi H, Naper C, Reinholt FP, Rolstad B. Impact of MHC mismatch and

398 freezing on bone graft incorporation: An experimental study in rats. Journal of Orthopaedic

399 Research. 2008;26(7):925-31. <http://doi.org/10.1002/jor.20595>. PubMed PMID: 18302282.

400 13. Von Recum A, Jacobi JE. Handbook of biomaterials evaluation: scientific, technical, and

401 clinical testing of implant materials. 2nd ed. Philadelphia, PA: Taylor & Francis; 1999.

402 14. Fu H, Rahaman MN, Brown RF, Day DE. Evaluation of bone regeneration in implants
403 composed of hollow HA microspheres loaded with transforming growth factor β 1 in a rat calvarial
404 defect model. *Acta Biomaterialia*. 2013;9(3):5718-27. <http://doi.org/10.1016/j.actbio.2012.11.017>.

405 PubMed PMID: 23168225; PubMed Central PMCID: PMCPMC3562431.

406 15. Xiao W, Fu H, Rahaman MN, Liu Y, Bal BS. Hollow hydroxyapatite microspheres: A novel
407 bioactive and osteoconductive carrier for controlled release of bone morphogenetic protein-2 in bone
408 regeneration. *Acta Biomaterialia*. 2013;9(9):8374-83. <http://doi.org/10.1016/j.actbio.2013.05.029>.

409 PubMed PMID: 23747325; PubMed Central PMCID: PMCPMC3732511

410 16. Fu H. Hollow hydroxyapatite microspheres as devices for controlled delivery of proteins and as
411 scaffolds for tissue engineering: ProQuest Dissertations Publishing; 2012.

412 17. Rahaman MN, Xiao W, Liu Y, Bal BS, editors. Osteoconductive and osteoinductive implants
413 composed of hollow hydroxyapatite microspheres2014.

414 18. Barrett EP, Barrett EP, Joyner LG, Joyner LG, Halenda PP, Halenda PP. The determination of
415 pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms.
416 *Journal of the American Chemical Society*. 1951;73(1):373-80. <http://doi.org/10.1021/ja01145a126>.

417 19. Feng JQ, Zhang J, Dallas SL, Lu Y, Chen S, Tan X, et al. Dentin matrix protein 1, a target
418 molecule for cbfa1 in bone, ss a unique bone marker gene. *Journal of Bone and Mineral Research*.
419 2002;17(10):1822-31. <http://doi.org/10.1359/jbmr.2002.17.10.1822>. PubMed PMID: 12369786.

420 20. Bonewald LF, Harris SE, Rosser J, Dallas MR, Dallas SL, Camacho NP, et al. Von Kossa
421 staining alone is not sufficient to confirm that mineralization in vitro represents bone formation.

422 Calcified Tissue International. 2003;72(5):537-47. <http://doi.org/10.1007/s00223-002-1057-y>.

423 PubMed PMID: 12724828.

424 21. Fears KP. Formation of hollow hydroxyapatite microspheres 2001.

425 22. Nancollas GH, Zhang J. Formation and dissolution mechanisms of calcium phosphates in

426 aqueous systems. In: Brown PW, Constantz B, editors. Hydroxyapatite and related materials. United

427 States of America: CPC Press, Inc.; 1994. p. 73-81.

428 23. Wang Q, Huang W, Wang D, Darvell BW, Day DE, Rahaman MN. Preparation of hollow

429 hydroxyapatite microspheres. Journal of Materials Science: Materials in Medicine. 2006;17(7):641-

430 6. <http://doi.org/10.1007/s10856-006-9227-5>. PubMed PMID: 16770549.

431 24. Gu Y, Xiao W, Lu L, Huang W, Rahaman MN, Wang D. Kinetics and mechanisms of

432 converting bioactive borate glasses to hydroxyapatite in aqueous phosphate solution. Journal of

433 Materials Science. 2011;46(1):47-54. <http://doi.org/10.1007/s10853-010-4792-x>.

434 25. Huang W, Rahaman MN, Day DE, Li Y. Mechanisms for converting bioactive silicate, borate,

435 and borosilicate glasses to hydroxyapatite in dilute phosphate solution. Physics and Chemistry of

436 Glasses-European Journal of Glass Science and Technology Part B. 2006;47(6):647-58.

437 26. Yao A-H, Lin J, Duan X, Huang W-H. Formation mechanism of multilayered structure on

438 surface of bioactive borosilicate glass. Chinese Journal of Inorganic Chemistry. 2008;24(7):1132-6.

439 27. Ripamonti U. Functionalized Surface Geometries Induce:“Bone: Formation by Autoinduction”.

440 Frontiers in physiology. 2018;8:1084. <http://doi.org/10.3389/fphys.2017.01084>. PubMed PMID:

441 29467661; PubMed Central PMCID: PMCPMC5808255

442 28. Graziano A, d'Aquino R, Cusella-De Angelis MG, Laino G, Piattelli A, Pacifici M, et al.

443 Concave Pit-Containing Scaffold Surfaces Improve Stem Cell-Derived Osteoblast Performance and

444 Lead to Significant Bone Tissue Formation. PLoS ONE. 2007;2(6):e496.

445 <http://doi.org/10.1371/journal.pone.0000496>. PubMed PMID: 17551577; PubMed Central PMCID:

446 PMCPMC1876259

447 29. Gray C, Boyde A, Jones S. Topographically induced bone formation in vitro: implications for

448 bone implants and bone grafts. Bone. 1996;18(2):115-23. [http://doi.org/10.1016/8756-3282\(95\)00456-4](http://doi.org/10.1016/8756-3282(95)00456-4). PubMed PMID: 8833205.

450 30. Coathup MJ, Hing KA, Samizadeh S, Chan O, Fang YS, Campion C, et al. Effect of increased

451 strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction. Journal of

452 Biomedical Materials Research Part A. 2012;100A(6):1550-5. <http://doi.org/10.1002/jbm.a.34094>.

453 PubMed PMID: 22419568.

454 31. Bianchi M, Urquia Edreira ER, Wolke JGC, Birgani ZT, Habibovic P, Jansen JA, et al. Substrate

455 geometry directs the in vitro mineralization of calcium phosphate ceramics. Acta Biomaterialia.

456 2014;10(2):661-9. <http://doi.org/10.1016/j.actbio.2013.10.026>. PubMed PMID: 24184857.

457 32. Scarano A, Perrotti V, Artese L, Degidi M, Degidi D, Piattelli A, et al. Blood vessels are

458 concentrated within the implant surface concavities: a histologic study in rabbit tibia. Odontology.

459 2014;102(2):259-66. <http://doi.org/10.1007/s10266-013-0116-3>. PubMed PMID: 23783569.

460 33. Yuan H, Yang Z, Li Y, Zhang X, De Bruijn JD, De Groot K. Osteoinduction by calcium

461 phosphate biomaterials. Journal of Materials Science: Materials in Medicine. 1998;9(12):723-6.

462 <http://doi.org/10.1023/A:1008950902047>. PubMed PMID: 15348929.

463 34. Danoux CB, Barbieri D, Yuan H, de Bruijn JD, van Blitterswijk CA, Habibovic P. In vitro and
464 in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration.
465 Biomatter. 2014;4(1):e27664. <http://doi.org/10.4161/biom.27664>. PubMed PMID: 24441389;
466 PubMed Central PMCID: PMCPMC3961484.

467 35. Fujibayashi S, Neo M, Kim H-M, Kokubo T, Nakamura T. Osteoinduction of porous bioactive
468 titanium metal. Biomaterials. 2004;25(3):443-50. [http://doi.org/10.1016/S0142-9612\(03\)00551-9](http://doi.org/10.1016/S0142-9612(03)00551-9).
469 PubMed PMID: 14585692.

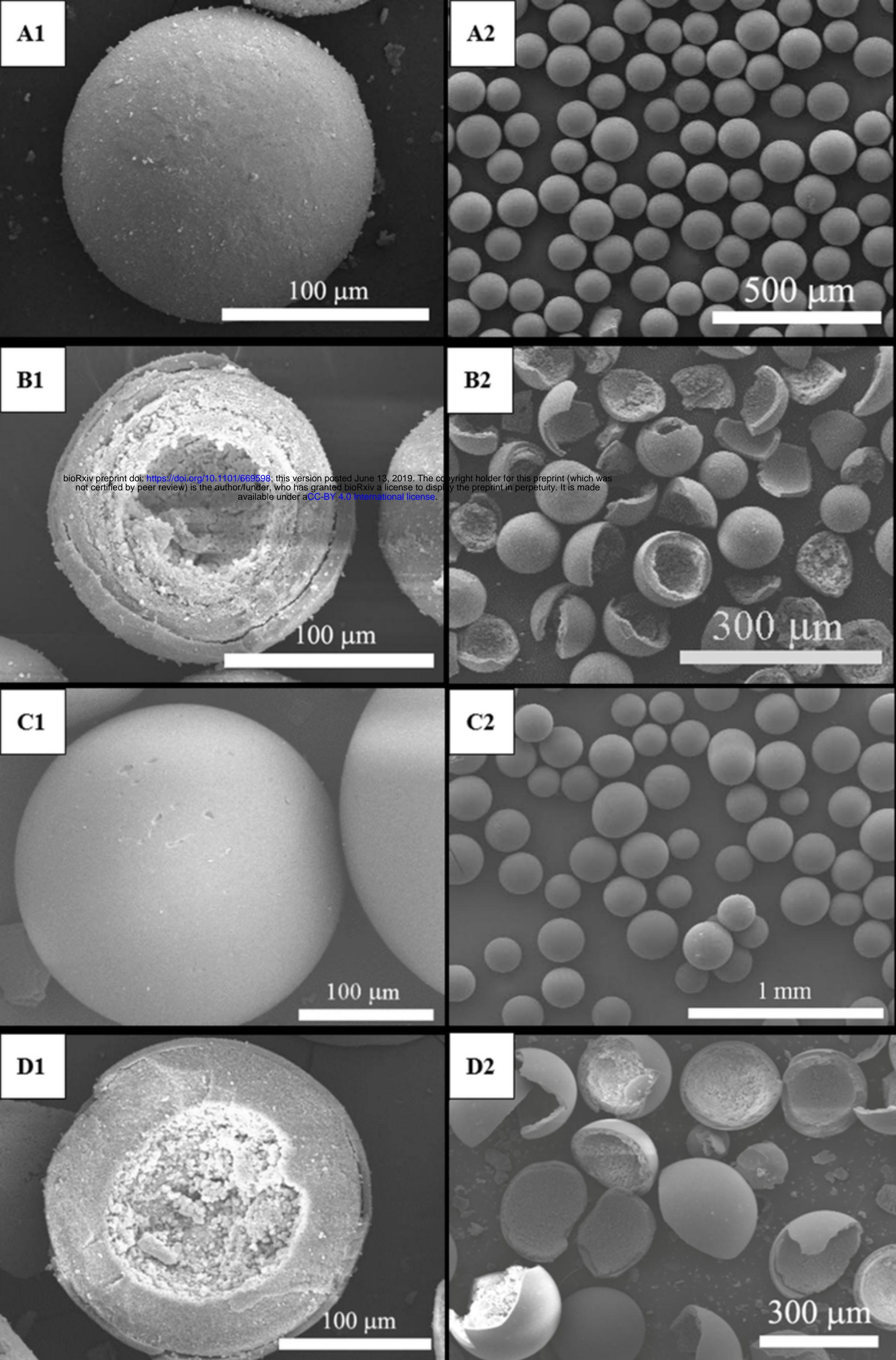
470 36. García-Gareta E, Hua J, Knowles JC, Blunn GW. Comparison of mesenchymal stem cell
471 proliferation and differentiation between biomimetic and electrochemical coatings on different
472 topographic surfaces. Journal of Materials Science: Materials in Medicine. 2013;24(1):199-210.
473 <http://doi.org/10.1007/s10856-012-4789-x>. PubMed PMID: 23053816.

474 37. Barbieri D, Renard AJS, de Bruijn JD, Yuan H. Heterotopic bone formation by nano-apatite
475 containing poly (D,L-lactide) composites. European cells & materials. 2010;19:252-61.
476 <http://doi.org/10.22203/eCM.v019a24>. PubMed PMID: 20526989.

477 38. Kilpadi KL, Chang P-L, Bellis SL. Hydroxyapatite binds more serum proteins, purified
478 integrins, and osteoblast precursor cells than titanium or steel. Journal of Biomedical Materials
479 Research. 2001;57(2):258-67. [http://doi.org/10.1002/1097-4636\(200111\)57:2<258::AID-JBM1166>3.0.CO;2-R](http://doi.org/10.1002/1097-4636(200111)57:2<258::AID-JBM1166>3.0.CO;2-R). PubMed PMID: 11484189.

481 39. Bagambisa FB, Joos U. Preliminary studies on the phenomenological behaviour of osteoblasts
482 cultured on hydroxyapatite ceramics. Biomaterials. 1990;11(1):50-6. [http://doi.org/10.1016/0142-9612\(90\)90052-R](http://doi.org/10.1016/0142-9612(90)90052-R). PubMed PMID: 2154267.

484 40. Hing KA. Bioceramic bone graft substitutes: Influence of porosity and chemistry. International
485 Journal of Applied Ceramic Technology. 2005;2(3):184-99. <http://doi.org/10.1111/j.1744-7402.2005.02020.x>.


487 41. Aguirre A, González A, Navarro M, Castaño Ó, Planell JA, Engel E. Control of
488 microenvironmental cues with a smart biomaterial composite promotes endothelial progenitor cell
489 angiogenesis. European Cells and Materials. 2012;24:90-106. <http://doi.org/10.22203/eCM.v024a07>.

490 42. Mavropoulos E, Rossi AM, da Rocha NCC, Soares GA, Moreira JC, Moure GT. Dissolution of
491 calcium-deficient hydroxyapatite synthesized at different conditions. Materials Characterization.
492 2003;50(2):203-7. [http://doi.org/10.1016/S1044-5803\(03\)00093-7](http://doi.org/10.1016/S1044-5803(03)00093-7).

493 43. Driessens F. Formation and stability of calcium phosphates in relation to the phase composition
494 of the mineral in calcified tissues. Bioceramics Calcium Phosphate: CRC Press; 2018. p. 1-32.

495 44. Tofighi A, Schaffer K, Palazzolo R, editors. Calcium phosphate cement (CPC): a critical
496 development path. Key Engineering Materials; 2008: Trans Tech Publ.

497

Figure 1



Figure 2

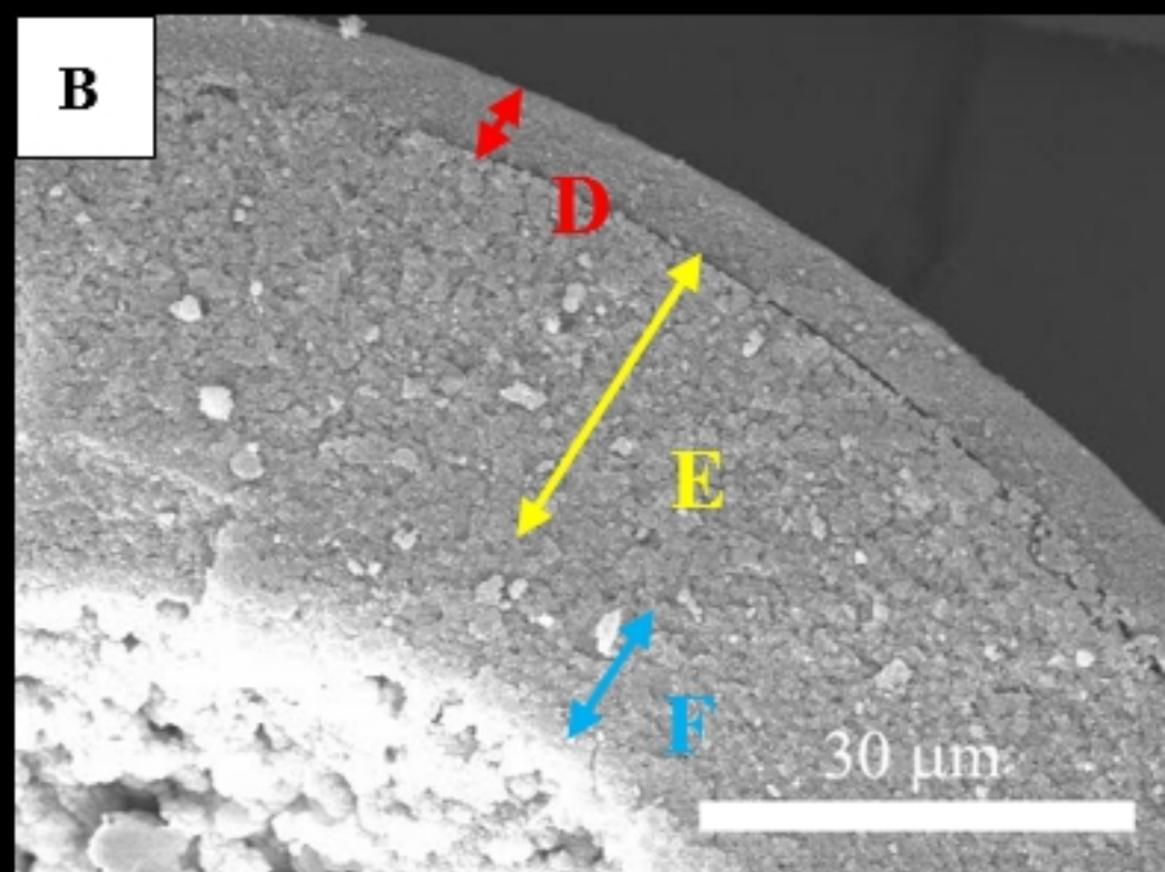
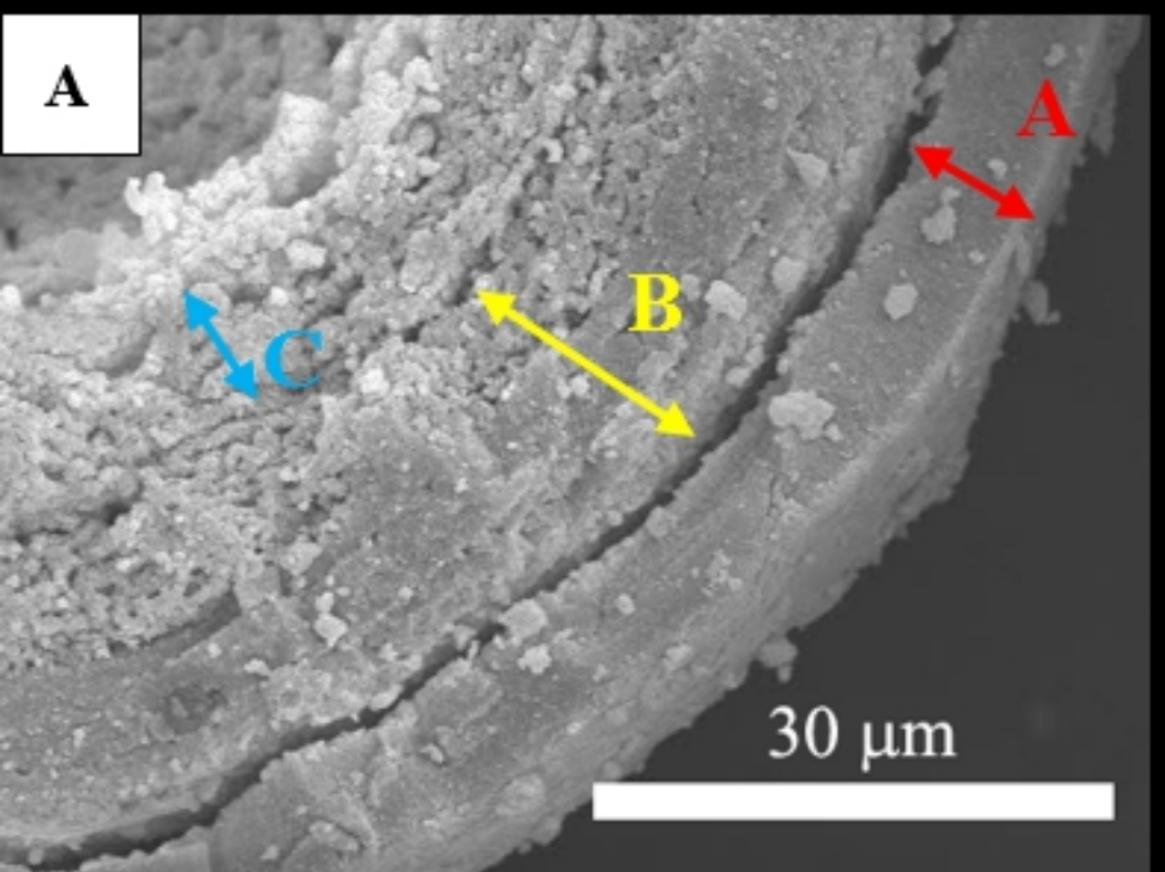
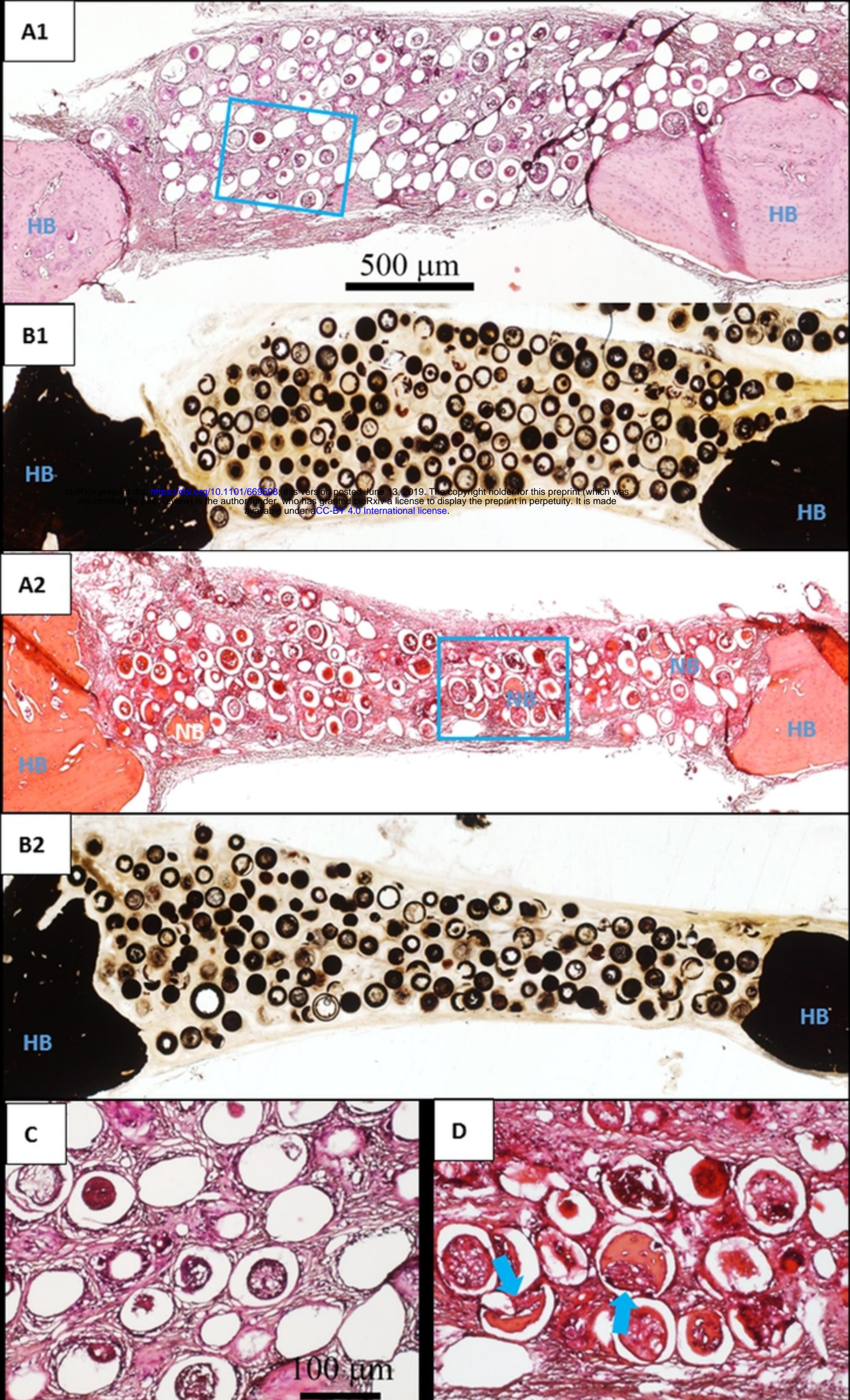
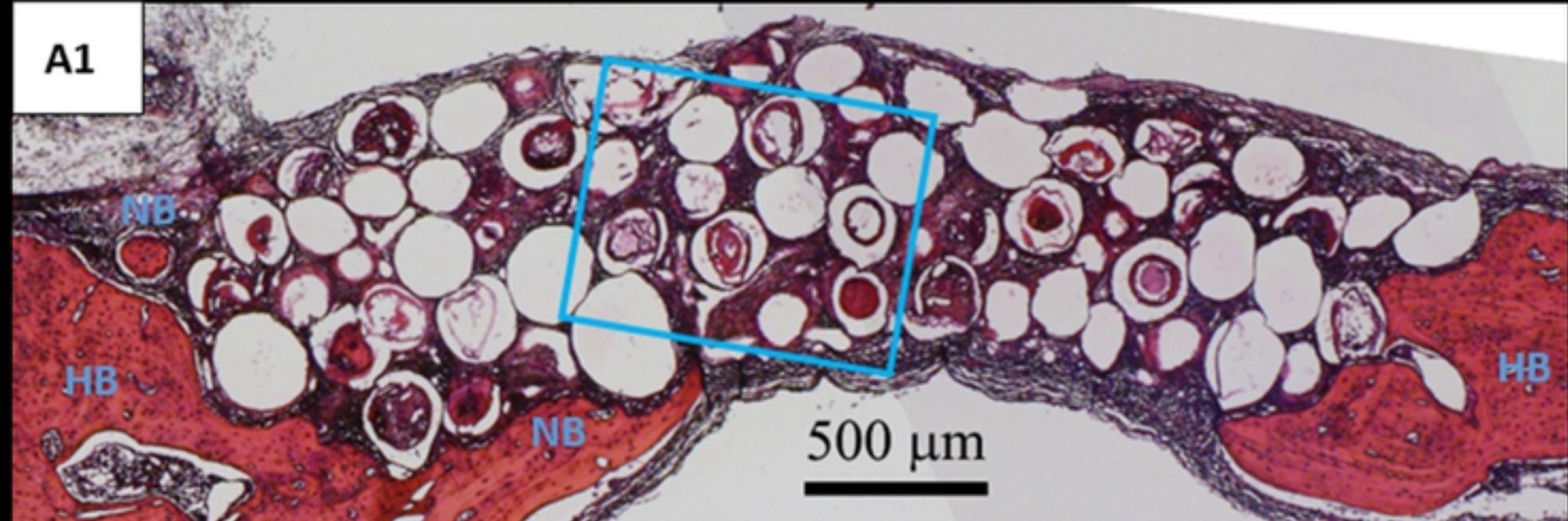
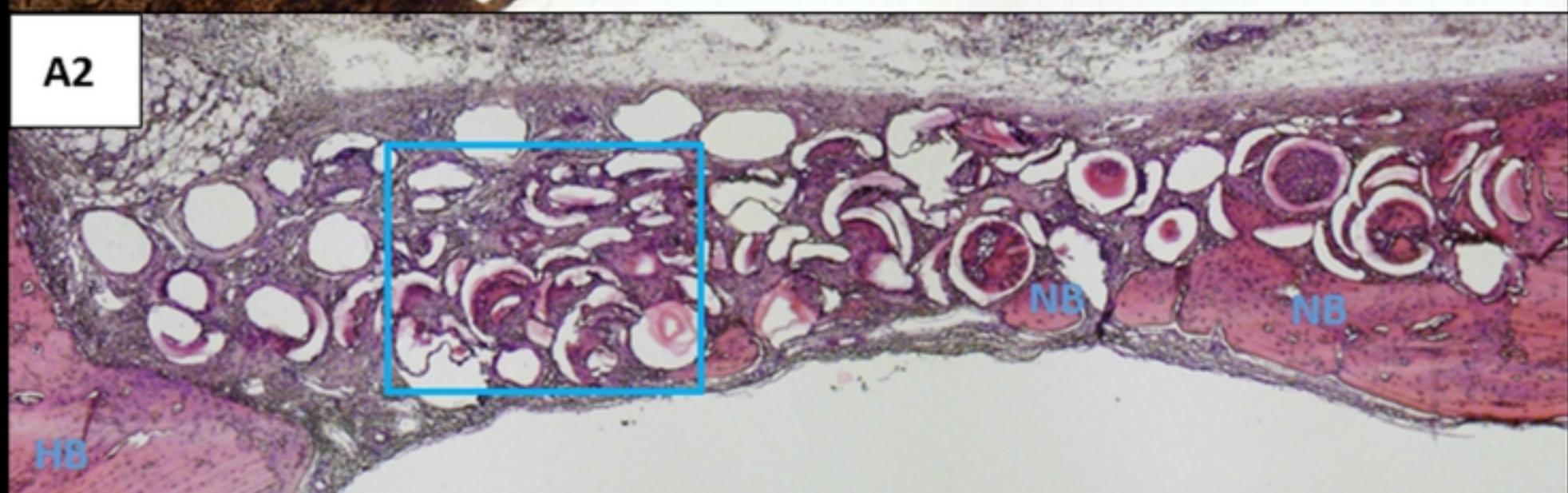
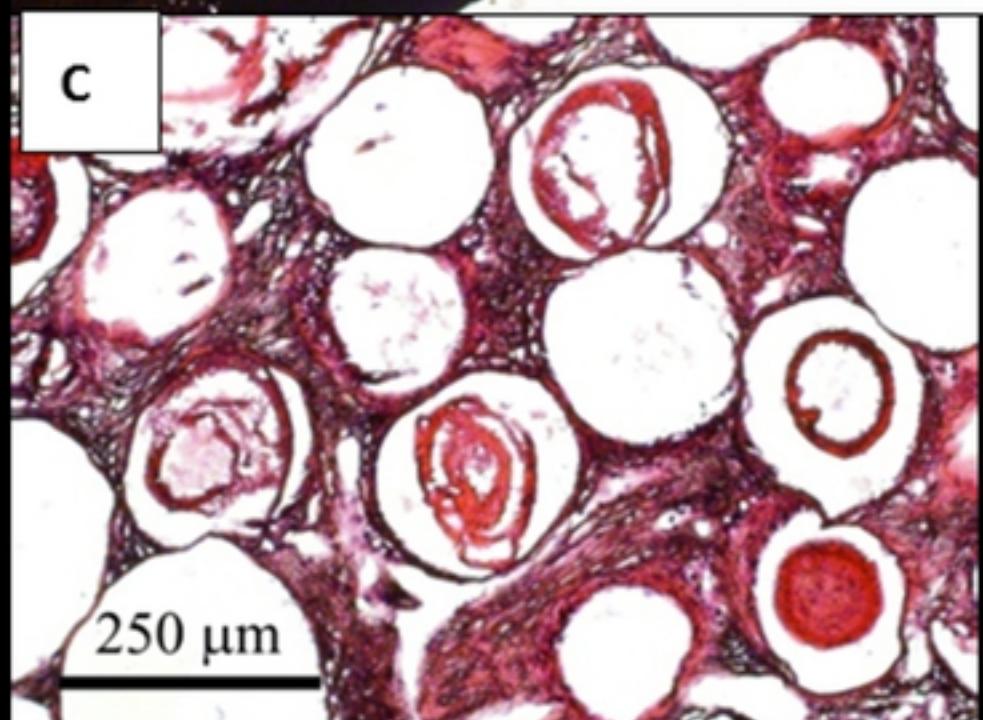
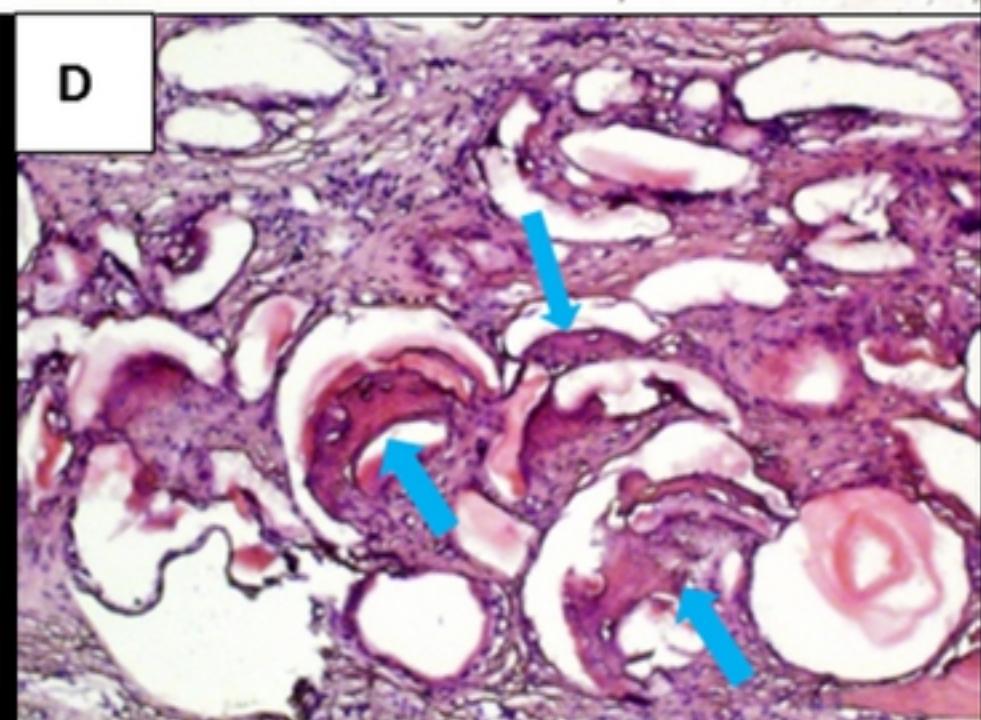
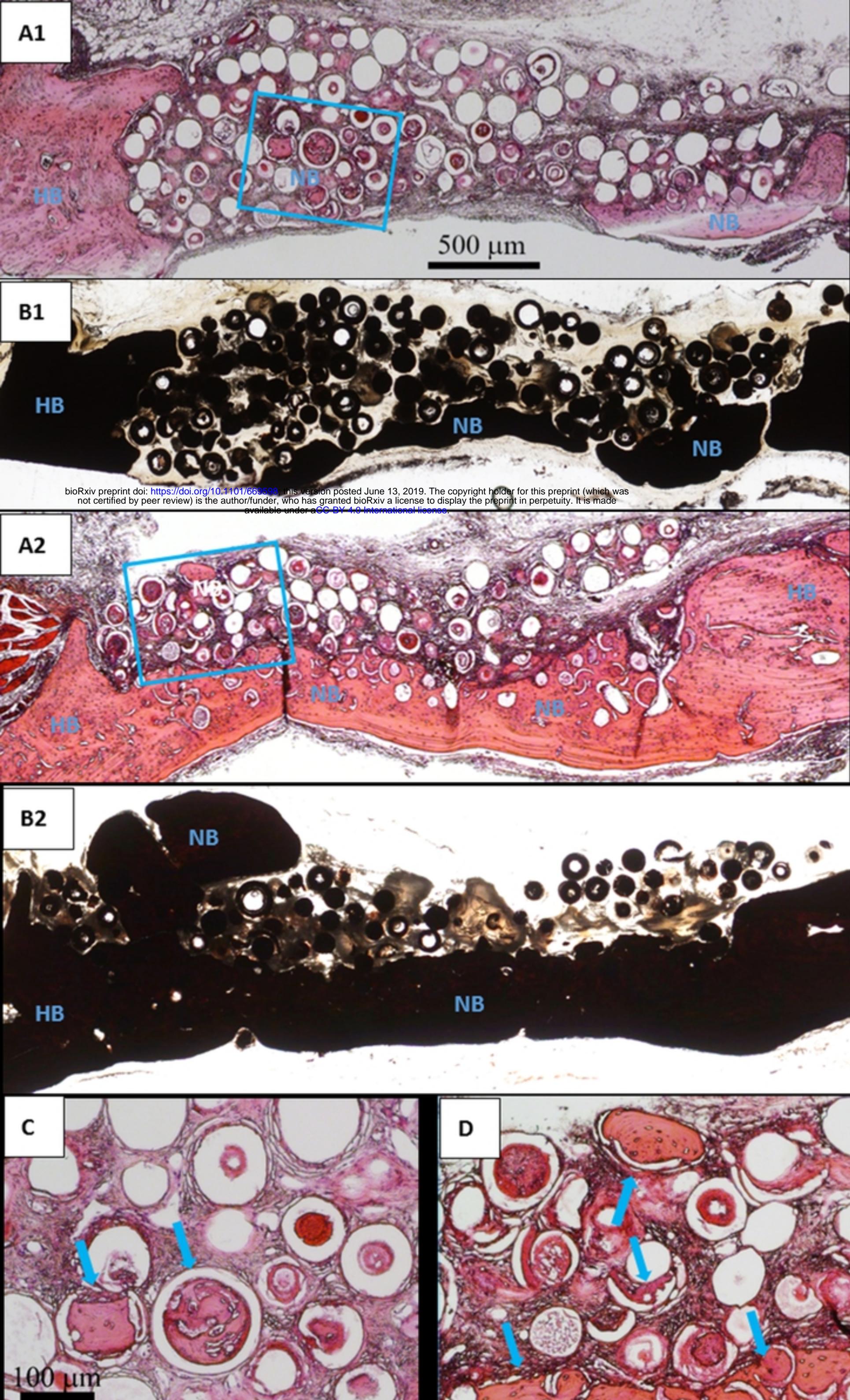
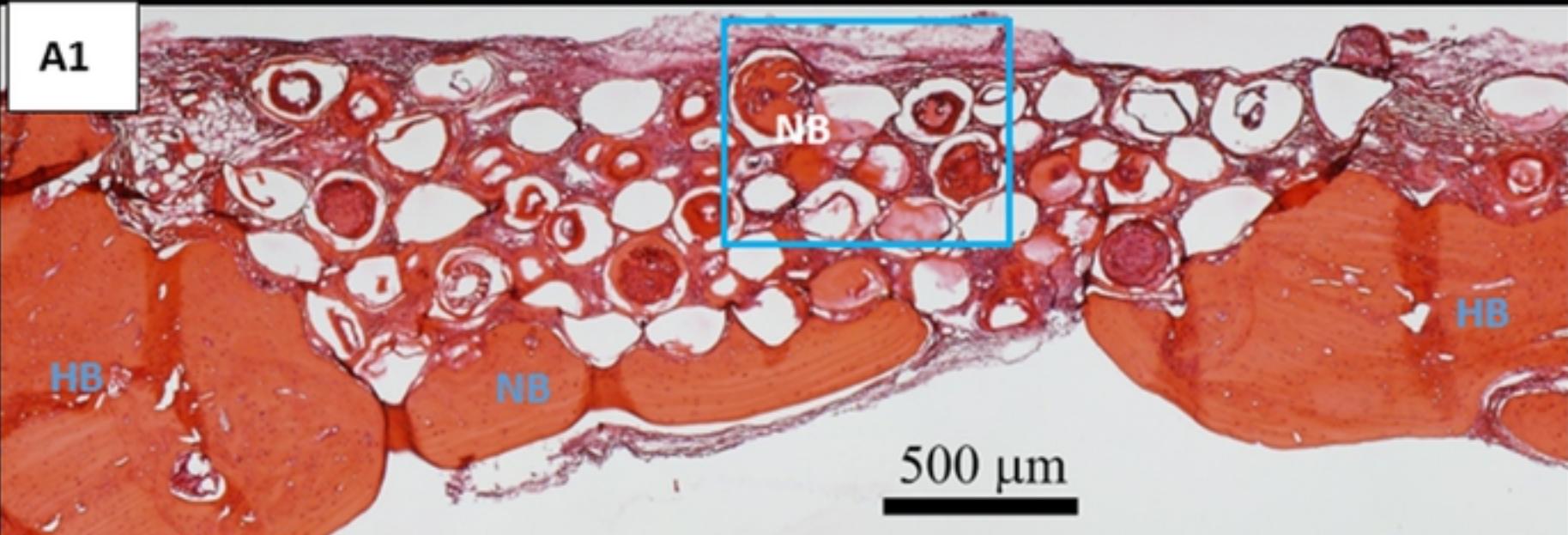
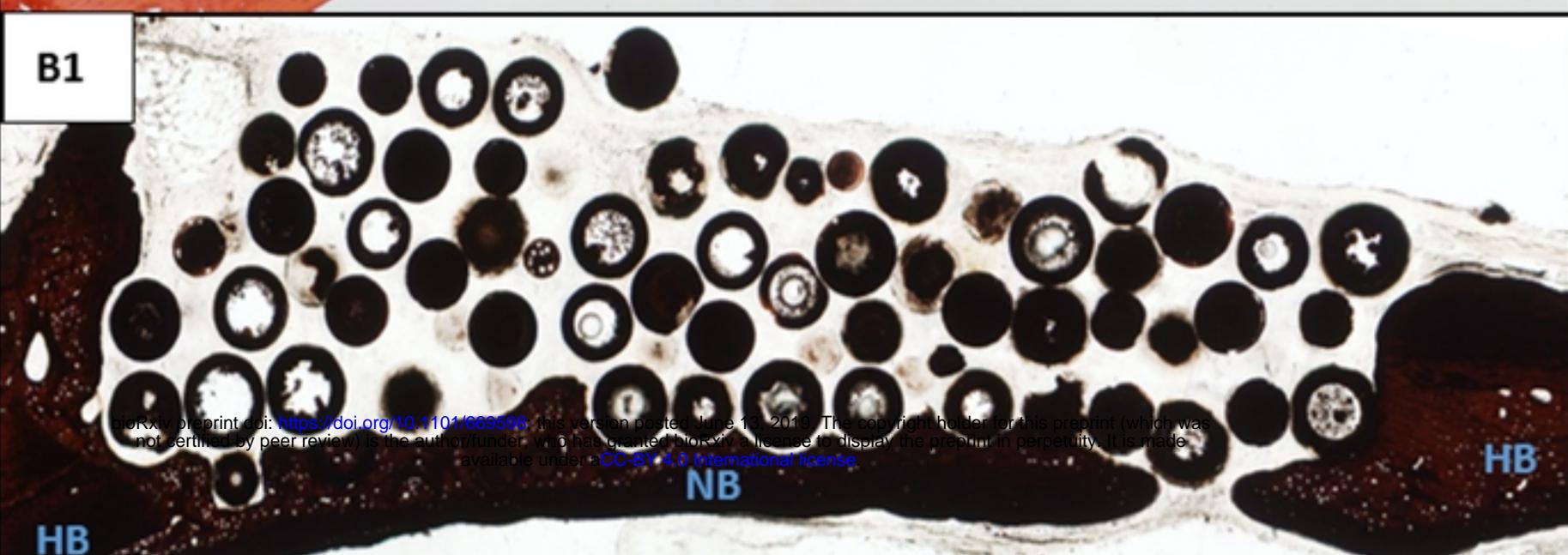








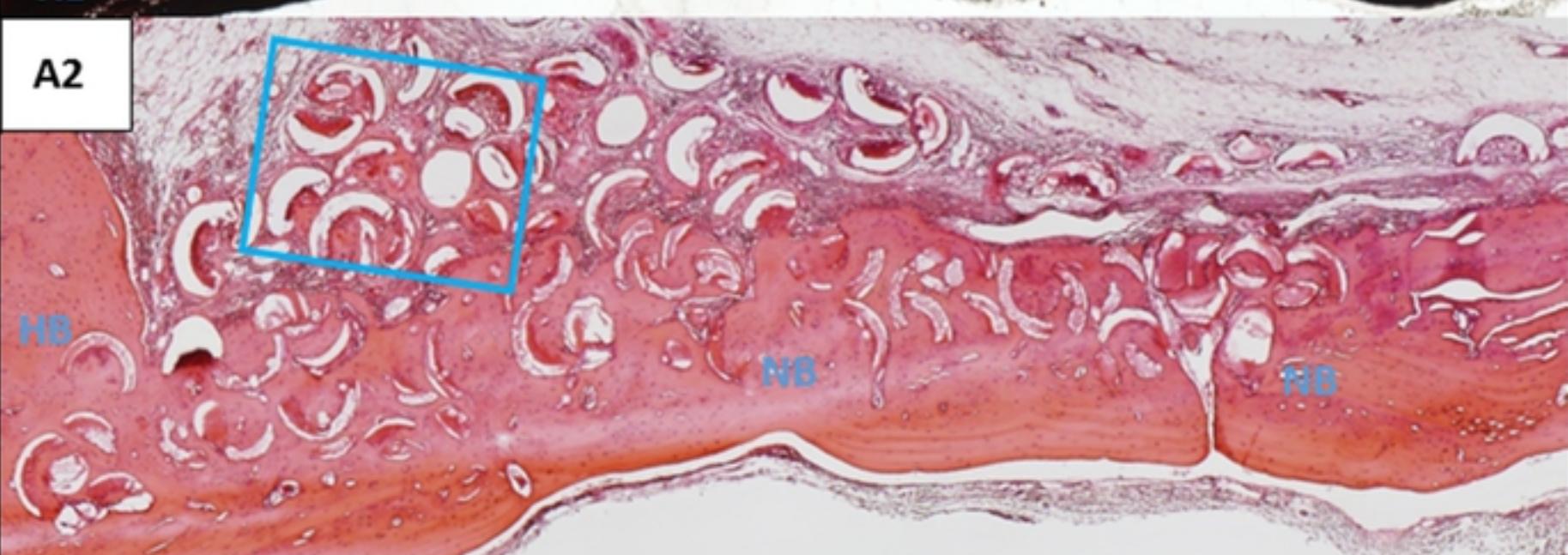
Figure 3

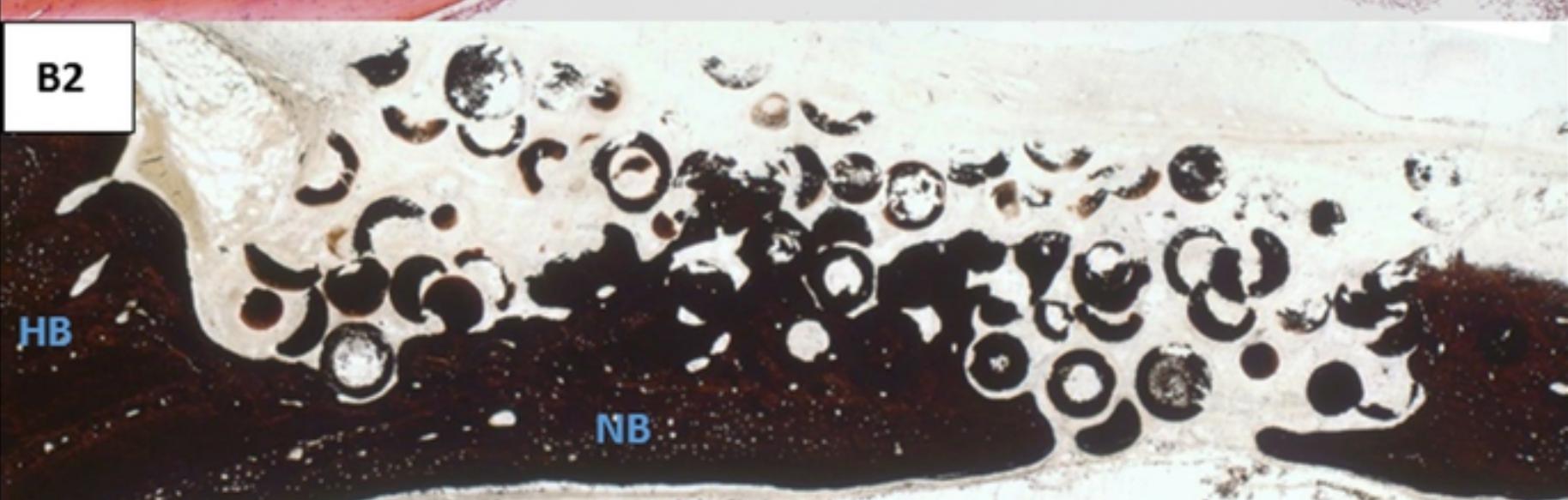
A1**B1****A2****B2****C****D****Figure 5**

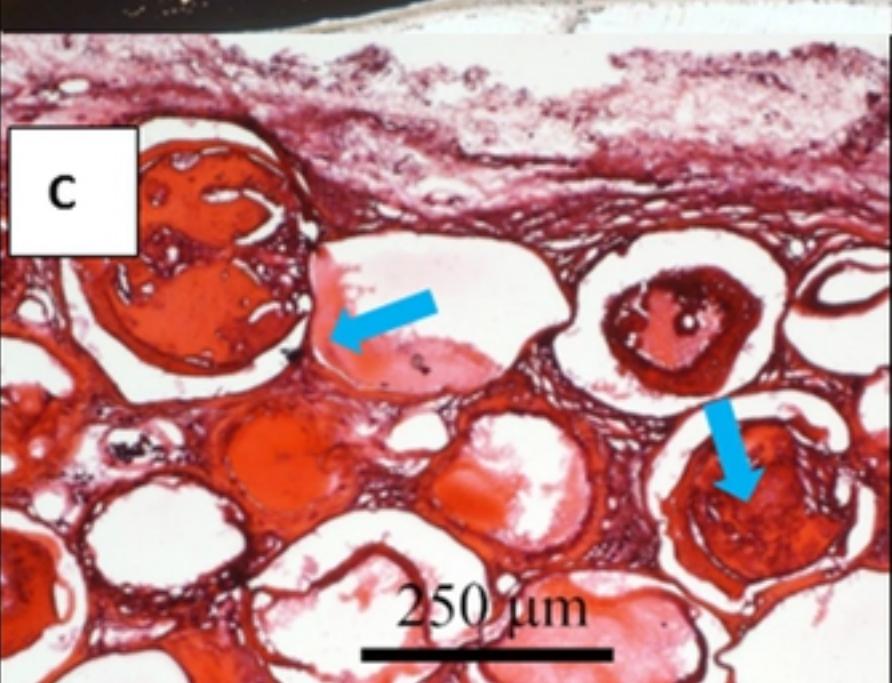




Figure 6

bioRxiv preprint doi: <https://doi.org/10.1101/669598>; this version posted June 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


A1


B1


A2

B2

C

D

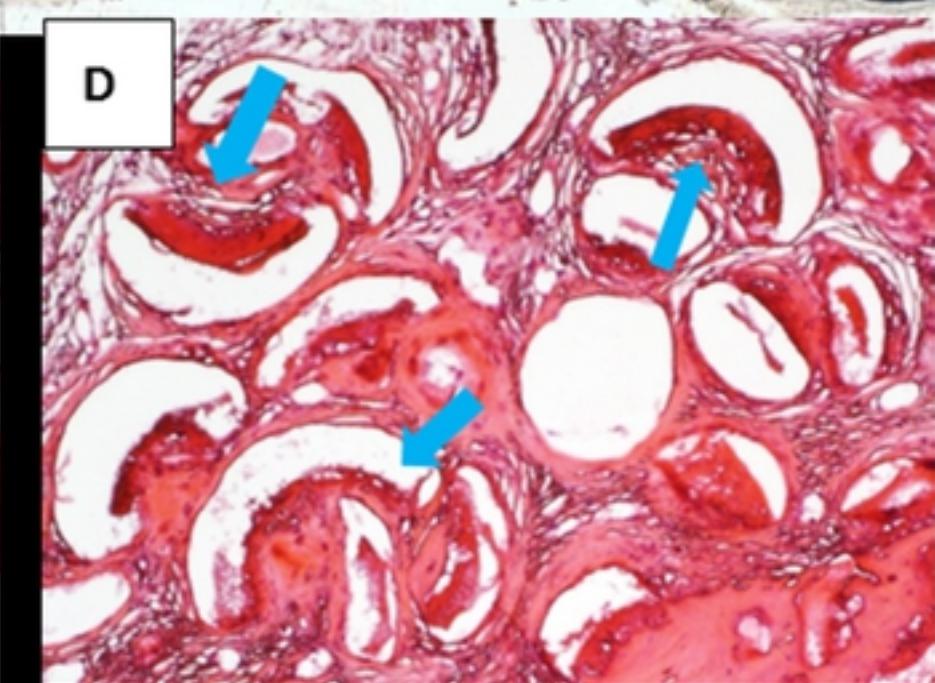


Figure 7

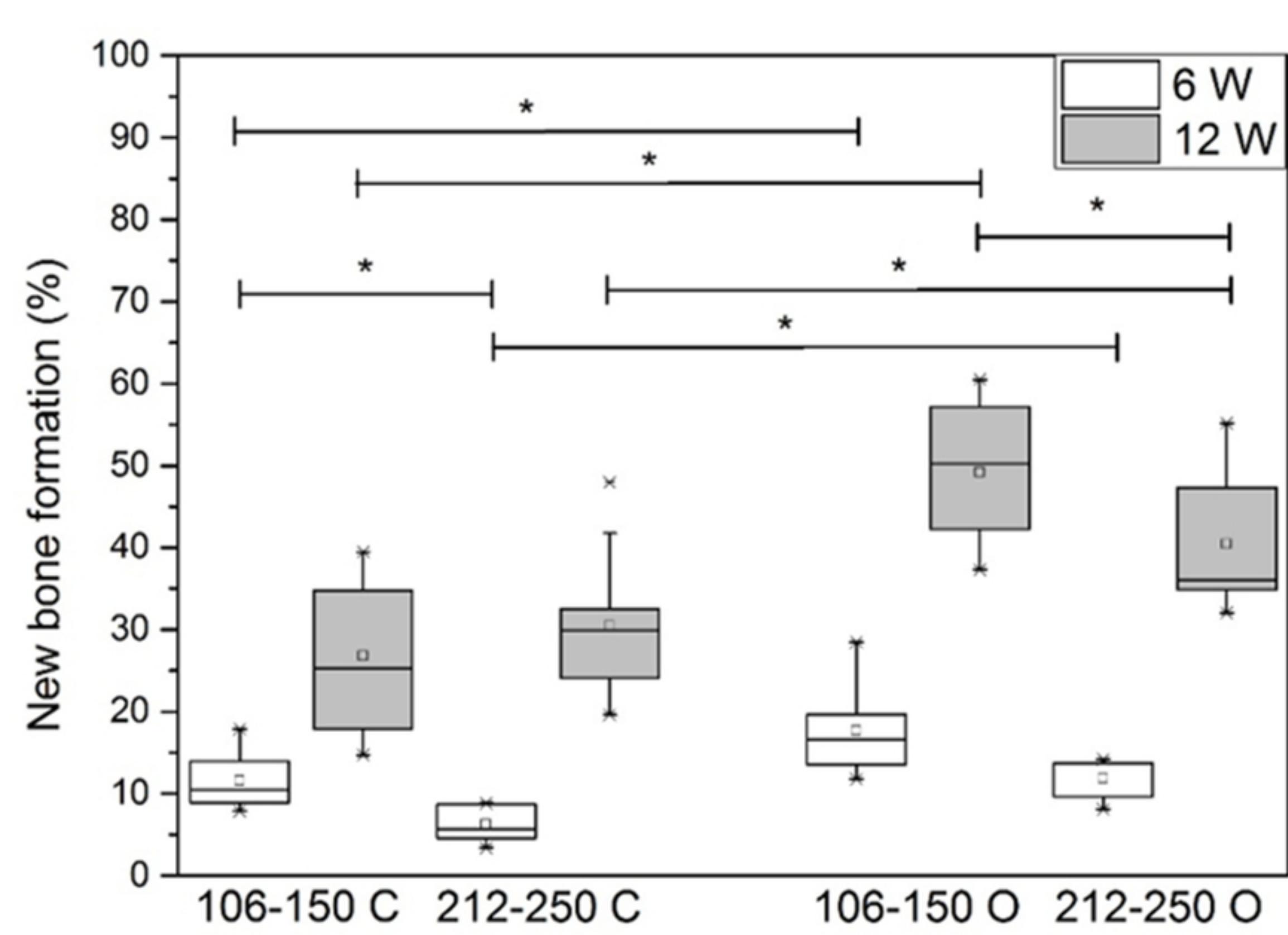


Figure 8

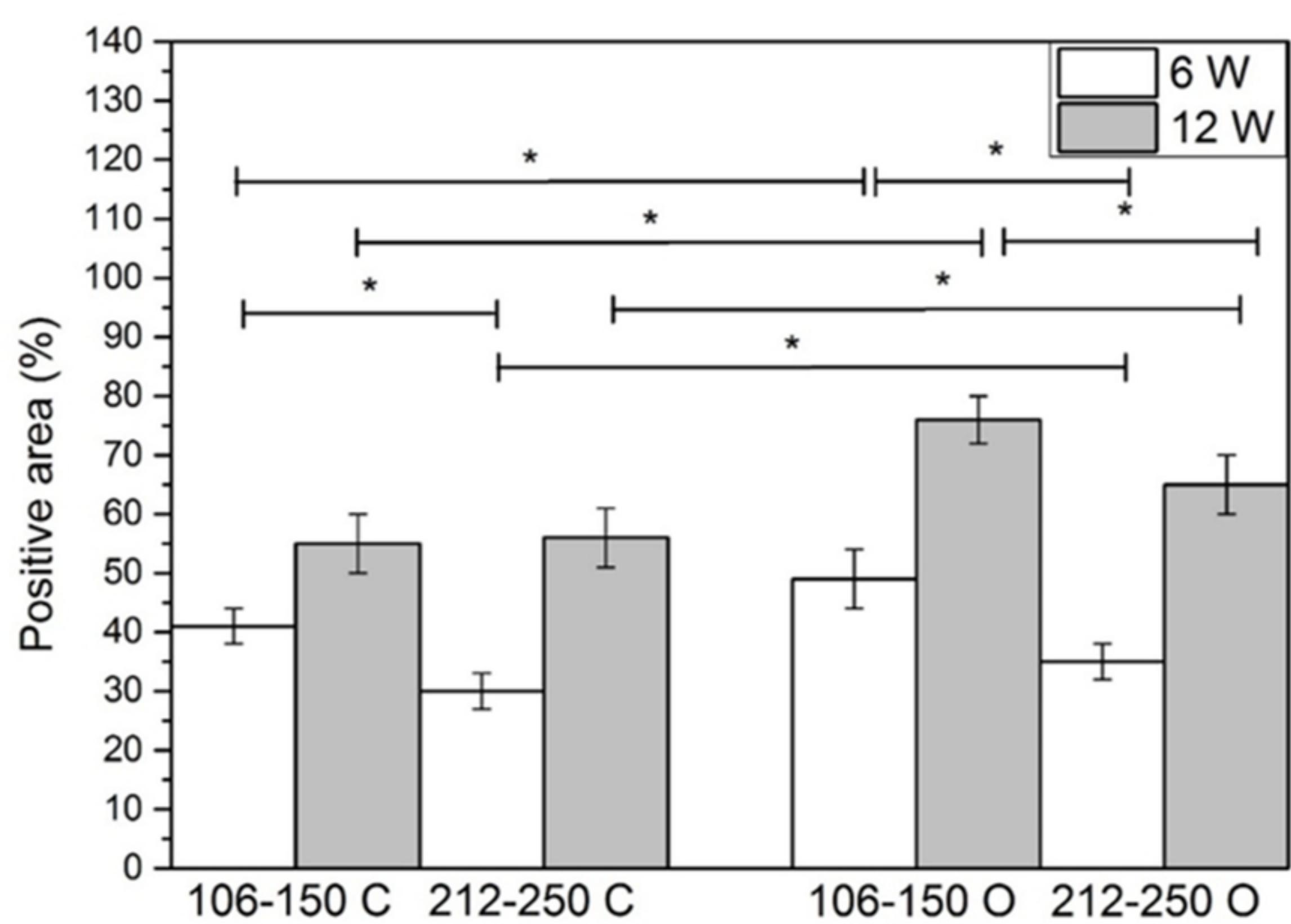


Figure 9