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Abstract

BAMscale is a one-step tool that processes DNA sequencing datasets from chromatin binding
(ChIP-seq) and chromatin state changes (ATAC-seq, END-seq) experiments to DNA replication
data (OK-seq, NS-seq and replication timing). The outputs include normalized peak scores in text
format and scaled coverage tracks (BigWig) which are directly accessible to data visualization
programs. BAMscale (available at https://github.com/nchi/BAMscale) effectively processes large
sequencing datasets (~100Gb size) in minutes, outperforming currently available tools.
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Main

Improved technologies and decreasing sequencing costs enable in-depth analysis of chromatin
changes for genome-wide comparisons. These studies identify genomic regions with enrichment
of binding proteins (ChlP-seq), DNA accessibility (ATAC-seq), DNA breaks (END-seq) or genome
replication origin mapping (OK-seq, NS-seq) and timing summarized in Fig.1A-D. In most cases,
peak strengths are quantified and normalized by performing multiple analysis steps. This is
usually carried out with “in-house” scripts i.e. time-consuming case-by-case programming.
Although there are available tools for sequencing track generation [1-3], they either require
multiple steps, and/or need more computation time to generate results ready for visualization.
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Figure 1. Application and benchmarking of BAMscale on different sequencing datasets. A)
Scaled coverage track generation and peak quantification of ChIP-seq and ATAC-seq data. Local
differential H3K27ac signal at the HOXB7 locus in MV4-11 (wildtype) and PKC412-resistant (R)
(drug resistant) cells, and global H3K27ac increase. B) OK-seq coverage tracks can be generated
in one step, outputting scaled strand-specific coverage tracks, and the replication-fork
directionality (red). C) Mapping DNA-breaks from END-seq, creating strand-specific or
unstranded coverage tracks. D) Analysis of replication timing data. E) Performance comparison
of peak quantification and F) correlation of raw read counts in ~33k peaks between BAMscale
and bedtools. G) Coverage tracks generation benchmarks using IGVTools (unscaled output),
Deeptools and BAMscale (scaled output).

Here we introduce BAMscale, a new genomic software tool for generating normalized peak
coverages and scaled sequencing coverage tracks in BigWig format. These two functions enable
rapid and highly accurate identification of genome-wide and local changes by normalizing and
scaling data in a single step. To achieve higher accuracy in peak quantification, our tool by default
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calculates the number of aligned reads by processing the entire BAM file, producing better
alignment estimates than by simply using the aligned BAM index file where duplication metrics
are not present. This feature is important in cases where a set of samples have higher duplication
rates, skewing the results of normalization (supplementary methods). The default coverage track
generation involves normalizing the per-base (binned) coverage to the total number of aligned
bases divided by the genome size. Since our tool is developed in the C language using the
samtools library [4], it has superior performance to existing software. BAMscale can process
~100GB of aligned data (in BAM format) in under 20 minutes using a computer with 4 processing
threads.

BAMscale quantifies ChlP-seq/ATAC-seq peaks from BAM and BED files producing raw read
counts, as well as TPM, FPKM and library size normalized peak scores (Fig.1A). By providing
accurate peak quantification in parallel with generated scaled coverage tracks, BAMscale
simplifies the comparison and visualization of genome-wide and local changes. To illustrate this
point, we reanalyzed published histone ChIP-seq data from MV4-11 cell line and their PKC412 (a
multi-target protein kinase inhibitor) resistant counterpart (MV4-11R) [5]. In agreement with
published results, we observed a global increase of H3K27ac, a decrease in H3K27me3 and a
predominantly unchanged H3K4me3 signal in the drug-resistant cells (Fig.1A, Fig.S1). Drug
resistant cells displayed elevated protein expression of HOXB7 [5], which has increased histone
H3K27ac signal, a known marker for active genes.

BAMscale also enables processing of Okazaki fragment sequencing (OK-seq) data in a single step,
generating scaled strand-specific coverage tracks (of Watson and Crick strands), as well as
guantified replication fork directionality (RFD) ratios, as shown for K562 cells [6] (Fig.1B). OK-seq
identifies genomic regions where replication origins have synchronized initiation and
directionality [7]. In this approach, RNA-primed Okazaki fragments are measured using strand-
specific sequencing. Genomic regions with synchronized origins display a shift in positive and
negative (Watson/Crick) strand ratios.

Replication-timing sequencing involves identifying copy-number state differences between G1-
phase and replicating S-phase (or asynchronous - AS) cells. The G1-synchronized cells have a
diploid genome state (2N copies) while copy-number status of replicating cells ranges between
2N for late-replicating regions and 4N for early-replicating regions [8, 9]. The results of
replication-timing sequencing consist of two (or more) genome sequencing files with high
coverages (usually >50x), which are used to classify and identify the replication timing of the
genome. BAMscale processes and generates scaled-coverage tracks, as well as the log; coverage
ratios for the entire human genome in minutes (Fig.1C). Additionally, BAMscale includes a simple
script to generate BED formatted segments of early-, mid-early-, mid-late- and late-replicating
regions.

While performance of BAMscale for peak quantification is comparable to the most commonly
used bedtools[2] program using a single processing thread, BAMscale reduces execution time to
~50% when using multiple threads (Fig.1D). In addition, bedtools will only calculate raw read
counts, while BAMscale performs normalization of raw read counts while outputting FPKM, TPM
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and library size normalized peak scores. This enables a direct comparison of peaks between
conditions. Correlation of raw read counts from the two methods is above 0.99 (Fig.1E and
Fig.S2).

Most studies employing DNA-capture-based sequencing methods concentrate on local examples
with genes of interest. Current popular methods either generate unscaled coverage tracks or
require multiple processing steps and computational time. BAMscale is capable of generating
scaled coverage tracks, enabling a direct comparison of signal intensities using the IGV[3] browser
or the UCSC genome browser [10]. BAMscale outperforms the popularly used IGVtools using one
(or multiple threads) by over 1.5-fold (Fig.1F) in track generation. Additionally, 1GVtools
computes unscaled coverage tracks with no possibility for read filtering (such as duplicate reads,
or poor alignment quality). The execution time of BAMscale is approximately 6-times quicker
than the deeptools[1] bamCompare program (Fig.1E) for scaling coverage tracks. This is
important when large BAM files have to be processed, such as replication timing data, where
BAMscale can create scaled coverage tracks and log; coverage ratios for ~100Gb of data in
approximately 20 minutes. BAMscale can be easily used to compare multiple different datasets,
such as OK-seq, END-seq and replication timing, generating reproducible results [11] (Fig.53-S4).

To further demonstrate the potential of BAMscale, we compared differences in chromatin
accessibility from ATAC-seq data recently published by our group [12]. In the analysis, we
compared the effect of camptothecin (CPT) treatment in CEM-CCRF (SLFN11-positive) cells and
their isogenic SFLN11-knockout. After CPT treatment, chromatin accessibility remained
unchanged in the SLFN11-KO cells, while accessibility of pre-existing sites strongly increased in
the SLFN11-positive cells (Fig.2A). Using the GIGGLE tool [13] on the Cistrome [14] website, we
found that ATAC-seq peaks strongly overlapped H3K27ac, H3K4me3 and H3K9ac sites, which are
histone marks associated with active genes (Fig.2B). Colocalization analysis of sites with >3-fold
increase during CPT treatment in SLFN11-positive cells showed ~20% increase in overlap with
H3K4me3 and H3K9ac sites, identified using Coloweb [15] (Fig.S5, supp. table 1). DNA
accessibility sites were strongly enriched in gene promoter regions, such as in the TOP1 and CTCF
gene promoters (Fig.2C).
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Figure 2. Application of BAMscale on ATAC-seq data. A) ATAC-seq signal change is observed in
wild-type CEM-CCRF cells (SLFN11 positive), and not in the SLFN11 isogenic knockout. B)
Colocalization of opening ATAC-seq peaks using GIGGLE and cistrome. C) Examples of chromatin
accessibility in the TOP1 and CTCF genes.

Next, we compared replication timing data to OK-seq and NS-seq (Nascent strand sequencing) in
the human leukemia K562 cell line. Replication timing results (Fig.3A i) and the generated
segments (Fig.3A ii) showed that early-replicating regions strongly correlate with active
chromatin (Fig.3A iii) identified with ChromHMM [16, 17]. Furthermore, BAMscale showed a
strong overlap of OK-seq [6] RFD strand switches (associated with synchronized replication
initiation zones) with active (eu)chromatin (Fig.3A iv,v). Fewer than 0.5% of identified OK-seq
strand switches were identified in heterochromatin, where no overlap with active chromatin
regions was found. Similarly, we observed higher NS-seq signal (and replication origin peaks) in
euchromatin (Fig.3A vi). Early-replicating regions tend to have more replication initiation sites,
which gradually decrease in later phases of replication timing (Fig.3B). These results correlate
strongly with the NS-seq results showing that early replicating regions have higher peak densities
compared to later-replicating regions (Fig.3C).
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Figure 3. Comparison of different replication sequencing methods. A) Replication timing ratios
(i), replication timing profile (ii), active/repressed chromatin regions (iii), strong OK-seq strand
switch coordinates (iv), OK-seq replication-fork directionality ratios (v) and NS-seq (replication
origin) tracks for K562 cell line. B) OK-seq strand switches in the four segments of replication. C)
NS-seq peak abundances in the four replication timing phases.

Widespread usage of DNA capture-based methods helps us understand and categorize changes
in chromatin state and their regulatory effects. Using BAMscale as a peak quantification method
and a scaled coverage-track generation tool, we are capable of identifying single focal changes
on the genome as well as understanding how certain conditions alter the chromatin profile.
Finally, to our knowledge, BAMscale is the only tool that can directly output scaled stranded
(Watson/Crick) coverages and RFD tracks for visualization of OK-seq data and stranded coverage
tracks for END-seq data.
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Supplementary figure 1. Comparison of three histone marks in MV4-11 and MV4-11R cells
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Supplementary figure 2. Comparison of raw read counts analyzed with BAMscale and BEDtools
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Supplementary figure 4. Comparison of deposited and reprocessed END-seq and OK-seq tracks.
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Supplementary figure 3. Comparison of deposited and reprocessed END-seq and OK-seq tracks
showing replication timing.
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SUPPLEMENTARY TABLES

Supplementary table 1. Colocalization statistics of ATAC peaks with histone marks from U20S
cells calculated with Coloweb.

Colocalization of peaks >3x opening from CPT treatment (Coloweb, K562, ROl centered)

Peak Percentage Average

Feature AMI BMI Height Near Features | Total Features | Feature Length
H3K4Me3 | 2974.8 0 303.4 97.80% 58775 151
H3K9Ac 2486.4 | 0.5 185 95.80% 36409 991
H3K27Ac 1186.6 | 13.5 76 79.00% 58937 2783
H3K79Me2 | 1174.6 2 63 40.00% 29111 9625
H3K4Me2 | 903.7 | 23.6 52 74.10% 70379 2086
H3K4Mel | 729.8 | 0.2 48.9 95.70% 108851 627
H4K20Mel | 650 3.7 34.3 42.30% 44202 18011
H3K9Mel 106.1 | 8.8 11.4 61.60% 88350 8569
H3K9Me3 54.7 0.2 9.4 25.20% 43231 21534
H3K36Me3 | 45.2 | 245.2 11 53.30% 36411 151
H3K27Me3 | 12.3 0 174 0.90% 1379 151

Colocalization of peaks <3x opening from CPT treatment (Coloweb, K562, ROl centered)

Peak Percentage Average

Feature AMI BMI Height Near Features | Total Features | Feature Length
H3K4Me3 | 2201.2 0 224.9 77.90% 58775 151
H3K9Ac 1894.6 | 0.3 148.7 73.80% 36409 991
H3K27Ac 1000.5 0 67.7 70.80% 58937 2783
H3K79Me2 | 851.7 0 49.2 35.50% 29111 9625
H3K4Me2 | 777.5 | 0.6 47.3 68.20% 70379 2086
H3K27Me3 | 756.7 0 214 2.90% 1379 151
H3K4Mel 661.7 2.5 43,5 77.00% 108851 627
H4K20Mel | 660.4 | 4.2 31.8 39.50% 44202 18011
H3K9Mel 162.4 | 0.1 10.5 57.10% 88350 8569
H3K9Me3 98.9 0 10.7 29.10% 43231 21534

H3K36Me3 3.4 24.2 7.1 37.80% 36411 151
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